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Abstract—Recent increase in the complexity of the circuits has
brought high-level synthesis tools as a must in the digital circuit
design. However, these tools come with several limitations, and
one of them is the efficient use of pipelined arithmetic operators.
This paper explains how to generate efficient hardware with
pipelined operators for regular codes with perfect loop nests.
The part to be mapped to the operator is identified, then the
program is scheduled so that each operator result is available
exactly at the time it is needed by the operator, keeping the
operator busy and avoiding the use of a temporary buffer. Finally,
we show how to generate the VHDL code for the control unit and
how to link it with specialized pipelined floating-point operators
generated using open-source FloPoCo tool. The method has been
implemented in the Bee research compiler and experimental
results on DSP kernels show promising results with a minimum of
94% efficient utilization of the pipelined operators for a complex
kernel.

I. INTRODUCTION

Application development is moving towards packing more

features per product. In order to cope with competition, added

features usually employ complex algorithms, making full use

of existing processing power. When application performance is

poor, one may envision accelerating the whole application or

a computationally demanding kernel using the following solu-

tions: (1) multi-core general purpose processor (GPP): may not

accelerate non-standard computations (exponential, logarithm,

square-root) (2) application-specific integrated circuit (ASIC):

the price tag is often too big, (3) Field Programmable Gate

Array (FPGA): provide a balance between the performance of

ASIC and the costs of GPP.

FPGAs have a potential speedup over microprocessor sys-

tems that can go beyond two orders of magnitude, depend-

ing on the application. Traditionally, such accelerations are

believed to be obtained only using low-abstraction languages

such as VHDL or Verilog taking advantage of the specificity

of the deployment FPGA. However, designing entire systems

using these languages is tedious and error-prone.

In order to address the productivity issue, much research

has focused on high-level synthesis (HLS) tools [22], [2], [9],

[1], [7], which input the system description in higher level

language, such as C programming language (C). Unfortunately,

so far none of these tools come close to the speedups obtained

by manual design. Moreover, these tools have important data

type limitations.

In order to take advantage of the hardware carry-chains (for

performing fast additions) and of the Digital Signal Processing

(DSP) blocks (for performing fast multiplications) available in

modern FPGAs, most HLS tools use fixed-point data types for

which the operations are implemented using integer arithmetic.

Adapting the fixed-point format of the computations along

the datapath is possible, but requires as much expertise as

expressing the computational kernel using VHDL or Verilog

for a usually lower performance kernel. Keeping the same

fixed-point format for all computations is also possible, but

in this case either the design will overflow/underflow if the

format is too small, either will largely overestimate the optimal

circuit size when choosing a large-enough format.

For applications manipulating data having a wide dy-

namic range, HLS tools supporting standard floating-point

precisions [9], or even custom precisions can be used [1].

Floating-point operators are more complex than their fixed-

point counterparts. Their pipeline depth may count tens of

cycles for the same frequency for which the equivalent fixed-

point operator require just one cycle. Current HLS tools make

use the pipelined FP operators cores in a similar fashion as

for combinatorial operators, but employing stalling whenever

feedback loops exists. This severely affects performance.

In this paper, we describe an automatic approach for syn-

thesizing a specific but wide class of applications into fast

FPGA designs. This approach accounts for the operator’s

pipeline depth and uses state of the art code transformation

techniques for scheduling computations in order to avoid

pipeline stalling. We present here two classic examples: matrix

multiplication and the Jacobi stencil for which we describe

the computational kernels, code transformations and provide

synthesis results. For these applications, simulation results

show that our scheduling is within 5% of the best theoretical

pipeline utilization.

II. RELATED WORK

In the last years, important advances have been made in the

generation of computational accelerators from higher-level of

abstraction languages. Many of this languages are usually but

not limited to C-like subsets with additional extensions. The

more restrictive the subset is, the more limited is the number

of applications can be synthesized.



For example, Spark [20] can only synthesize integer

datatypes. This is unfortunate, as the application class requir-

ing only integer computations is very narrow.

Tools like Gaut [22], Impulse-C [2], Synphony [7] require

the user to convert the floating-foint (FP) specification into a

user-defined fixed-point format. Other, like Mentor Graphics’

CatapultC [5], claim that this conversion is done automatically.

Either way, without additional knowledge on the ranges of

processed data, the determined fixed-point formats are just

estimations. Spikes the input data can cause overflows which

invalidate large volumes of computations.

In order to workaround the known weaknesses of fixed-point

arithmetic, AutoPilot [9] and Cynthesizer [1] (in SystemC)

can synthesize FP datatypes by instantiating FP cores within

the hardware accelerator. AutoPilot can instantiate IEEE-754

Single Precision (SP) and Double Precision (DP) standard

FP operators. Cynthesizer can instantiate custom precision FP

cores, parametrized by exponent and fraction width. Moreover,

the user has control over the number of pipeline stages of the

operators, having an indirect knob on the design frequency.

Using this pipelined operators requires careful scheduling

techniques in order to (1) ensure correct computations (2)

prevent stalling the pipeline for some data dependencies. For

algorithms with no data dependencies between iterations, it

is indeed possible to schedule one operation per cycle, and

after an initial pipeline latency, the arithmetic operators will

output one result every cycle. For other algorithms, these tools

manage to ensure (1) at the expense of (2). For example, in

the case of algorithms having inter-iteration dependencies, the

scheduler will stall successive iterations for a number of cycles

equal to the pipeline latency of the operator. As said before,

complex computational functions, especially FP, can have tens

and even hundreds of pipeline stages, therefore significantly

reducing circuit performance.

In order to address the inefficiencies of these tools regarding

synthesis of pipelined (fixed or FP) circuits, we present an

automation tool chain implemented in the Bee research com-

piler [8], and which uses FloPoCo [16], an open-source tool

for FPGA-specific arithmetic-core generation, and advanced

code transformation techniques for finding scheduling which

minimize pipeline stalling, therefore maximizing throughput.

III. FLOPOCO - A TOOL FOR GENERATING

COMPUTATIONAL KERNELS

Two of the main factors defining the quality of an arith-

metic operator on FPGAs are its frequency and its size. The

frequency is determined by the length of the critical path –

largest combinatorial delay between two register levels. Faster

circuits can be obtained by iteratively inserting register levels

in order to reduce the critical path delay. Consequently, there

is a strong connection between the circuit frequency and its

size.

Unlike other core generators [3], [4], FloPoCo takes the

target frequency f as a parameter. As a consequence, com-

plex designs can easily be assembled from subcomponents

generated for frequency f . In addition, the FloPoCo operators
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are also optimized for several target FPGAs (most chips from

Altera and Xilinx), making it easy to retarget even complex

designs to new FPGAs.

However, FloPoCo is more than a generator of frequency-

optimized standard FP operators. It also provides:

• operators allowing custom precisions. In a micropro-

cessor, if one needs a precision of 10bits for some

computation it makes sense using single-precision (8-

bit exponent, 23-bit fraction) for this computation. In an

FPGA one should use custom operators (10-bit fraction),

yielding smaller operators and therefore being able to

pack more in parallel.

• specialized operators such as: squarers, faithful multipli-

ers1, FPGA-specific FP accumulators [18].

• elementary functions such as: square-root [15], logarithm

[14], exponential [17] which are implemented in software

in microprocessors and are therefore slow.

• dedicated architectures for coarser operators which have

to be implemented in software in processors, for example

X2 + Y 2 + Z2, and others. [16].

Part of the recipe for obtaining good FPGA accelerations for

complex applications is: (a) use FPGA-specific operators, for

example those provided by FloPoCo (b) exploit the applica-

tion parallelism by instantiating several computational kernels

working in parallel (c) generate an application-specific finite

state machine (FSM) which keeps the computational kernels

as busy as possible.

In the following sections we present an automatic approach

for generating computational-kernel specific FSMs. Figure 1

presents the automation datapath.

IV. EFFICIENT HARDWARE GENERATION

This section presents the main contribution of this paper.

Given an input program written in C and a pipelined FloPoCo

operator, we show how to generate an equivalent hardware

accelerator using cleverly the operator. This process is divided

into two steps. First, we reorder the execution of the program

to keep the operator busy. Then, we generate the VHDL code

to control the operator. Section IV-A defines the required

terminology, then Section IV-B explains our method on two

important examples. Finally, Sections IV-C and IV-D present

the two steps of our method.

1have and error of 1ulp, while standard multipliers have 0.5ulp, but consume
much less resources



A. Background

Iteration domains. A perfect loop nest is an imbrication

of for loops where each level contains either a single for

loop or a single assignment S. A typical example is the

matrix multiply kernel given in figure 2(a). Writing ~i1, ...
~in the loop counters, the vector ~i = (~i1, ...,~in) is called an

iteration vector. The set of iteration vectors ~i reached during

an execution of the kernel is called an iteration domain (see

figure 2(b)). The execution instance of S at the iteration ~i

is called an operation and is denoted by the couple (S,~i).
As there is a single assignment in the loop nest, we can

forget S and say “iteration” for “operation”. The ability to

produce program analysis at the operation level rather than at

assignment level is a key point of our automation method.

We assume loop bounds and array indices to be an affine

expression of the surrounding loop counters. Under these

restrictions, the iteration domain I is an invariant polytope.

This property makes possible to design a program analysis by

means of integer linear programming (ILP) techniques.

Dependence vectors. A data dependence is uniform if it

occurs from the iteration ~i to the iteration ~i + ~d for every

valid iterations ~i and ~i + ~d. In this case, we can represent the

data dependence with the vector ~d that we call a dependence

vector. When array indices are themselves uniform (e.g. a[i-

1]) all the dependencies are uniform. In the following, we will

restrict to this case and we will denote by D = {~d1, . . . ~dp}
the set of dependence vectors. Many numerical kernels fit or

can be restructured to fit in this model [10]. This particularly

includes stencil operations which are widely used in signal

processing.

Schedules and affine hyperplanes. A schedule is a function

θ which maps each point of I to its execution date. Usually, it

is convenient to represent execution dates by integral vectors

ordered by the lexicographic order: θ : I → N
q. We consider

linear schedules θ(~i) = U~i where U is an integral matrix.

If there is a dependence from an iteration ~i to an iteration
~j, then ~i must be executed before ~j: θ(~i) ≪ θ(~j). With

uniform dependencies, this gives U ~d ≫ 0 for each dependence

vector ~d ∈ D. Each line ~φ of U can be seen as the normal

vector to an affine hyperplane H~φ
, the iteration domain being

scanned by translating the hyperplanes H~φ
in the lexicographic

ordering. An hyperplane H~φ
satisfies a dependence vector ~d if

by “sliding” H~φ
in the direction of ~φ, the source ~i is touched

before the target ~i + ~d for each ~i, that is if ~φ.~d > 0. We

say that H~φ
preserves the dependence ~d if ~φ.~d ≥ 0 for each

dependence vector ~d. In that case, the source and the target can

be touched at the same iteration. ~d must then be solved by a

subsequent hyperplane. We can always find an hyperplane H~τ

satisfying all the dependencies. Any translation of H~τ touch

in I a subset of iterations which can be executed in parallel.

In the literature, H~τ is usually refereed as parallel hyperplane.

Loop tiling. With loop tiling, the iteration domain of a loop

nest is partitioned into parallelogram tiles, which are executed

atomically. A first tile is executed, then another tile, and so on.

For a loop nest of depth n, this requires to generate a loop nest

of depth 2n, the first n inter-tile loops describing the different

tiles and the next n intra-tile loops scanning the current tile.

A tile band is the 3D set of iterations described by the last

inter tile loop, for a given value of the outer inter tile loops. A

tile slice is the 2D set of iterations described by the last two

intra-tile loops for a given value of outer loops. See figure

2 for an illustration on the matrix multiply example. We can

specify a loop tiling for a perfect loop nest of depth n with a

collection of affine hyperplanes (H1, . . . ,Hn). The vector ~φk

is the normal to the hyperplane Hk and the vectors ~φ1, . . . , ~φn

are supposed to be linearly independent. Then, the iteration

domain of the loop nest can be tiled with regular translations

of the hyperplanes keeping the same distance ℓk between two

translation of the same hyperplane Hk. The iterations executed

in a tile follow the hyperplanes in the lexicographic order, it

can be view as “tiling of the tile” with ℓk = 1 for each k.

A tiling H = (H1, . . . ,Hn) is valid if each normal vector ~φk

preserves all the dependencies: ~φk.~d ≥ 0 for each dependence

vector ~d. As the hyperplanes Hk are linearly independent,

all the dependencies will be satisfied. The tiling H can be

represented by a matrix UH whose lines are ~φ1, . . . ~φn. As the

intra-tile execution order must follow the direction of the tiling

hyperplanes, U also specifies the execution order for each tile.

Dependence distance. The distance of a dependence ~d at

the iteration~i is the number of iterations executed between the

source iteration ~i and the target iteration ~i + ~d. Dependence

distances are sometimes called reuse distances because both

source and target access the same memory element, It is easy

to see that in a full tile, the distance for a given dependence
~d does not depend on the source iteration ~i (see figure 3(b)).

Thus, we can write it ∆(~d). However, the program schedule

can strongly impact the dependence distance. In the following,

the dependence distances will allows us dimension the pipeline

of the operator.

B. Motivating examples

In this section we illustrate the feasibility of our approach

on two examples. The first example is the matrix-matrix

multiplication, that has one uniform data dependency that

propagates along one axis. The second example is the Jacobi

1D algorithm. It is more complicated because it has three

uniform data dependencies with different distances.

1) Matrix-matrix multiplication: The original code is given

in Figure 2(a). The iteration domain is the set integral points

lying into a cube of size N, as shown in Figure 2(b). Each

point of the iteration domain represents an execution of the

assignment S with the corresponding values for the loop

counters i, j and k. Essentially, the computation boils down

to apply sequentially a multiply and accumulate operation

(x, y, z) 7→ x + y ∗ z that we want to compute with a

specialized FloPoCo operator (Fig. 4(a)). It consists of a

pipelined multiplier with ℓ pipeline stages that multiplies the

elements of matrices a and b. In order to eliminate the step

initializing c, the constant value is propagated inside loop k. In

other words, for k = 0 the multiplication result is added with a

constant value 0 (the delayed control signal S is 0). The same



1 typedef float fl ;

2 void mmm(fl∗ a, fl∗ b, fl∗ c, int N) {
3 int i , j , k;

4 for ( i = 0; j < N; j++)

5 for ( j = 0; i < N; i++){
6 for (k = 0; k < N; k++)

7 c[ i ][ j ] = c[ i ][ j ] + a[ i ][k]∗b[k][ j ]; // S

8 }
9 }

(a)

pipeline size (m)

step 0

step 1

step 2

step N-1

H2

~τ

H1

N-1

N-1

tile band
...

0 J
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j

tile slice

k
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Fig. 2. Matrix-matrix multiplication: (a) C code, (b) iteration domain with
tiling

multiplication result is accumulated via the feedback loop in

the proper element of the c matrix (when the delayed select

line is 1). This result is ready to be reused via the feedback

line m cycles later (m is the adder pipeline depth).

There is a unique data dependency carried by the loop k,

which can be expressed as a vector ~d = (0, 0, 1) (Fig. 2(b)).

The sequential execution of the original code would not exploit

at all the pipeline, and will cause a stall of m-1 cycles for each

iteration of the loop k due to operator pipelining (ex. between

(0, 0, 0) and (0, 0, 1)).

Now, let us consider the affine hyperplane H~τ with ~τ =
(0, 0, 1), which satisfies the data dependency ~d and describes a

parallel execution front. Each integral point on this hyperplane

could be executed in parallel, independently, so it is possible

to insert in the arithmetic operator pipeline one computa-

tion every cycle. For instance, at iteration (i=0,j=0,k=0): x

= c[0][0]=0, y = a[0][0], z = b[0][0]. Then, at iteration

(i=0,j=1,k=0): x = c[0][1]=0, y = a[0][0], z = b[0][1]. In this

case, the data reuse distance will be N-1, which is normally

much larger than the pipeline latency m of the adder, and

therefore requiring storing temporally between reuse. To avoid

this, we have to transform the program in such a way that:

between the definition of a variable at iteration ~i and its use

at iteration ~i + ~d there are exactly m cycles, i.e. ∆(~d) = m.

The method consists on applying tiling techniques to reduce

data reuse distance (Fig. 2(b)). First, as previously presented,

we find a parallel hyperplane H~τ (here ~τ = (0, 0, 1)). Then,

we complete it into a valid tiling by choosing hyperplanes H1

and H2 (here, the normal vectors are (1, 0, 0) and (0, 1, 0)),
H = (H1,H2,H~τ ). The final tiled loop nest will have the

six nested loops: three inter-tile loops I, J, K iterating over

the tiles, and three intra-tile loops ii, jj, kk iterating into the

current tile of coordinate (I,J,K).

1 typedef float fl ;

2 void jacobi1d ( fl a[T][N]){
3 fl b[T][N];

4 int i , t ;

5 for ( t = 0; t < T; t++){
6 for ( i = 1; i < N−1; i++)

7 a[ t ][ i ] = (a[ t−1][i−1] +

8 a[ t−1][i] + a[ t−1][i+1]) /3;

9 }}
(a)
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Fig. 3. Jacobi 1D computation: (a) source code, (b) domain with tiling

For each value of the outermost loop counters (I,J,K,ii),

the loops on jj and kk iterate into a tile slice. Figure 2(b)

depicts the tile slice for (I=0,J=0,K=0,ii=0). We schedule each

tile slice to execute consecutive iterations on the parallel

front. Therefore, the main iteration vector can be expressed

as (I,J,K,ii,kk,jj).

We select the width of the tile size to be equal to pipeline

size m. This ensures that the result produced by the adder is

required immediately at its input. Thus, it can be fed imme-

diately without any temporary buffering using the feedback

connection. The execution order presented above permits to

obtain a circuit that computes a temporary value of c each

cycle and stores the temporary data inside the pipeline registers

of the arithmetic operators, without any temporary storage

buffer.

2) Jacobi 1D: The kernel is given in Figure 3(a)). This is a

standard stencil computation with two nested loops. This ex-

ample is more complex because the set of dependence vectors

D contain several dependencies D = { ~d1 = (−1, 1), ~d2 =
(0, 1), ~d3 = (1, 1)} (Fig. 3(b)). We apply the same tiling

method as in previous example. First, we chose a valid parallel

hyperplane. With the normal vector ~τ = (2, 1), H~τ satisfies

all the data dependencies of D. Then, we complete H~τ with

a valid tiling hyperplane H1. Here, H1 can be chosen with

the normal vector (1, 0). By analogy with the matrix multiply

example, we write (T,I,ii,tt) the iteration domain of the result-

ing tiled loops. Figure 3(b) shows the consecutive tile slices

with T=0. The resulting schedule is valid because it respects

the data dependencies of D. The data produced at iteration

x must be available 5 iterations later via the dependence ~d1,

9 iterations later via dependency ~d2 and 13 iterations later

via the dependence ~d3. Notice that the dependence distances

are the same for any point of the iteration domain, as the

dependencies are uniform. In hardware, this translate to add

delay shift registers at the operator output and connect this

output to the operator input via feedback lines, after data

dependency distances levels ℓ0, ℓ1 and ℓ2 (see Fig. 3(b)).

Once again, the intermediate value are kept in the pipeline,

no additional storage is needed on a slice.
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Fig. 4. Computational kernels generated using FloPoCo

As the tiling hyperplanes are not parallel to the original

axis, some tiles in the borders are not full parallelograms (see

left and right triangle from Fig. 3(b)). Inside these tiles, the

dependence vectors are not longer constant. To overcome this

issue, we extend the iteration domain with virtual iteration

points where the pipelined operator will compute dummy data.

This data is discarded at the border between the real and

extended iteration domains (propagate iterations, when i = 0
and i = N − 1). For the border cases, the correctly delayed

data is fed via line Q (oS=1).

The two next sections formalize the ideas presented in-

tuitively on motivating examples and presents an algorithm

in two steps to translate a loop kernel written in C into

an hardware accelerator using pipelined operators efficiently.

Section IV-C explains how to get the tiling. Then, section

IV-D explains how to generate the control FSM respecting

the schedule induced by the loop tiling.

C. Step 1: Scheduling the Kernel

The key idea is to tile the program in such a way that the

distance associated to each dependence is constant. Then, it

would be always possible to reproduce the solution described

for the Jacobi 1D example.

The only issue is to ensure that the minimum dependence

distance is equal to the pipeline depth of the FloPoCo operator.

The idea presented on the motivating examples is to force

the last intra-tile inner loop Lpar to be parallel. This way,

for a fixed value of the outer loop counters, there will be

no dependence among iterations of Lpar. The dependencies

will all be carried by the outer-loop, and then, the dependence

distances will be fully customizable by playing with the tile

size associated to the loop enclosing immediately Lpar, Lit.

This amounts to find a parallel hyperplane H~τ (step a),

and to complete with others hyperplanes forming a valid

tiling (step b): H1, . . . ,Hn−1, assuming the depth of the loop

kernel is n. Now, it is easy to see that the hyperplane H~τ

should be the (n-1)-th hyperplane (implemented by Lit), any

hyperplane Hi being the last one (implemented by Lpar).

Roughly speaking, Lit pushes H~τ , and Lpar traverses the

current 1D section of H~τ .

It remains in step c to compute the actual dependence

distances as an affine function of tile sizes. Then, it is possible

to compute the tile size, given a fixed FloPoCo operator

pipeline depth. If several dependencies exist, the minimum

dependence distance gives the pipeline depth of the operators,

and the other distances gives the number of extra shift registers

to be added to the operator to keep the results within the

operator pipeline, as seen with the Jacobi 1D example. These

three steps are described thereafter.

Step a. Find a parallel hyperplane H~τ

This can be done with a simple integer linear pro-

gram (ILP). Here are the constraints:

• ~τ must satisfy every dependence: ~τ · ~d > 0 for

each dependence vector ~d ∈ D.

• ~τ must reduce the dependence distances.

Notice that the dependence distance is in-

creasing with the radius between the or-

thogonal of ~τ , ~τ⊥ and a dependence dis-

tance ~d. Notice that the radius (~τ⊥, ~d) is

increasing with the determinant det(~τ⊥, ~d).
Thus, it is sufficient to minimize the quantity

q = max(det(~τ⊥, ~d1), . . . ,det(~τ⊥, ~dp)). So, we

build the constraints q ≥ det(~τ⊥, ~dk) for each

k between 1 and p, which is equivalent to

q ≥ max(det(~τ⊥, ~d1), . . . ,det(~τ⊥, ~dp)).

It remains to find the objective function. We want

to minimize q. Then, for the minimal value of q,

we want to minimize the coordinates of ~τ . This

amounts to look for the lexicographic minima of the

vector (q, ~τ). This can be done with standard ILP

techniques [19]. On the Jacobi1D example, this gives

the following ILP, with ~τ = (x, y):

min≪ (q, x, y)
s.t. y − x > 0 ∧ y > 0 ∧ y > 0 ∧ x + y > 0

q ≥ x − y ∧ q ≥ x + y ∧ q ≥ x

Step b. Find the remaining tiling hyperplanes

Let us assume a nesting depth of n, and let

us assume that p < n tiling hyperplanes H~τ ,

H~φ1

, . . . ,H~φp−1

were already found. We can com-

pute a vector ~u orthogonal to the vector space

spanned by ~τ , ~φ1, . . . , ~φp−1 using the internal inverse

method [11]. Then, the new tiling hyperplane vector
~φp can be built by means of ILP techniques with the

following constraints.

• ~φp must be a valid tiling hyperplane: ~φp.~d ≥ 0

for every dependence vector ~d ∈ D.

• ~φp must be linearly independent to the other

hyperplanes: ~φp.~u 6= 0. Formally, the two cases
~φp.~u > 0 and ~φp.~u < 0 should be investigated.

As we just expect the remaining hyperplanes to



be valid, without any optimality criteria, we can

restrict to the case ~φp.~u > 0 to get a single ILP.

Any solution of this ILP gives a valid tiling hyper-

plane. Starting from H~τ , and applying repeatedly

the process, we get valid loop tiling hyperplanes

H = (H~φ1

, . . . ,H~φn−2

,H~τ ,H~φn−1

) and the corre-

sponding tiling matrix UH. It is possible to add an

objective function to reduce the amount of communi-

cation between tiles. Many approaches give a partial

solution to this problem in the context of automatic

parallelization and high performance computing [11],

[21], [24]. However how to adapt them in our context

is not straightforward and is left for future work.

Step c. Compute the dependence distances

Given a dependence vector ~d and an iteration ~x in a

tile slice the set of iterations ~i executed between ~x

and ~x + ~d is exactly:

D(~x, ~d) = {~i | UH~x ≪ UH
~i ≪ UH(x + ~d)}

Remember that UH, the tiling matrix computed in the

previous step, is also the intra-tile schedule matrix.

By construction, D(~x, ~d) is an integral polyhedron

(conjunction of affine constraints). Then, the depen-

dence distance ∆(~d) is exactly the number of integral

points in D(~x, ~d) (that does not depend on ~x). The

number of integral points in a polyhedron can be

computed with the Ehrhart polynomial method [13]

which is implemented in the polyhedral library [6].

Here, the result is a degree 1 polynomial in the

tile size ℓn−2 associated to the hyperplane Hn−2,

∆(~d) = αℓn−2+β. Then, given a fixed input pipeline

depth δ for the FloPoCo operator, two cases can

arise:

• Either we just have one dependence, D = {~d}.

Then, solve ∆(~d) = δ to obtain the right tile

size ℓn−2.

• Either we have several dependencies, D =
{~d1, . . . , ~dp}. Then, choose the dependence vec-

tors with smallest α, and among them choose

a dependence vector ~dm with a smallest β.

Solve ∆(~dm) = δ to obtain the right tile size

ℓn−2. Replacing ℓn−2 by its actual value gives

the remaining dependence distances ∆(~di) for

i 6= m, that can be sorted by increasing order and

used to add additional registers to the FloPoCo

operator in the way described for the Jacobi 1D

example (see figure 4(b)).

D. Step 2: Generating the Control FSM

This section explains how to generate the FSM that will con-

trol the pipelined operator according to the schedule computed

in the previous section. A direct hardware generation of loops,

which is usually used, would produce multiple synchronized

Finite State Machines (FSMs), each FSM having an initializa-

tion time (initialize the counters) resulting in an operator stall

on every iteration of the outer loops. We avoid this problem

by using the Boulet-Feautrier algorithm [12] to generate a

single loop that executes one instruction per iterations. The

method takes as input the tiled iteration domain and the

scheduling matrix (UH) and uses ILP techniques to generate

two functions: First and Next. The operations returned by

First represents the first operation to be executed. Then,

the Next function compute the next operation to be executed

given the current operation. The generated code looks like:

1 I := First () ;
2 while(I 6= ⊥) {
3 Execute(I);
4 I := Next(I);
5 }

where Execute(I) is a macro in charge of sending the correct

control signals to compute the iteration I of the tile loop.

The functions First and Next are directly translated into

VHDL if conditions. When these conditions are satisfied, the

corresponding iterators are updated and the control signals are

set.

The signal assignments in the FSM do not take into ac-

count the pipeline level at which the signals are connected.

Therefore, we use additional registers to delay every control

signal with respect to its pipeline depth. This ensures a

correct execution without increasing the complexity of the

state machine.

V. REALITY CHECK

Table I presents synthesis results for both our running

examples, using a large range of precisions, and two different

FPGAs. The results presented confirm that precision selection

plays an important role in determining the maximum number

of operators to be packed on one FPGA. As it can be remarked

from the table, our automation approach is both flexible

(several precisions) and portable (Virtex5 and StratixIII), while

preserving good frequency characteristics.

The generated kernel performance for one computing kernel

is: 0.4 GFLOPs for MMM, and 0.56 GFLOPs for Jacobi, for

a 200 MHz clock frequency. Thanks to the efficient FSM

generated, the pipelined kernels are used with very high

efficiency, more than 99% for matrix-multiply, and more than

94% for Jacobi.

Taking into account the kernel size and operating frequen-

cies we can clearly claim that we may pack tens, even hun-

dreds per FPGA, resulting in significant potential speedups.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel approach using state

of the art code transformation techniques to restructure the pro-

gram in order to use more efficiently pipelined operators. Our

HLS flow starts been implemented in the research compiler

Bee, using FloPoCo to generate specialized pipelined floating

point arithmetic operators. We have applied our method on

two DSP kernels. The obtained circuits have a very high

pipelined operator utilization, high operating frequencies, even



TABLE I
SYNTHESIS RESULTS FOR THE FULL (INCLUDING FSM) MMM AND JACOBI1D CODES. RESULTS OBTAINED USING USING XILINX ISE 11.5 FOR

VIRTEX5, AND QUARTUS 9.0 FOR STRATIXIII

Application FPGA
Precision Latency Frequency Resources

(wE , wF ) (cycles) (MHz) REG (A)LUT DSPs

Matrix-Matrix
Virtex5(-3)

(5,10) 11 277 320 526 1

Multiply
(8,23) 15 281 592 864 2

(10,40) 14 175 978 2098 4

N=128

(11,52) 15 150 1315 2122 8
(15,64) 15 189 1634 4036 8

StratixIII
(5,10) 12 276 399 549 2
(9,36) 12 218 978 2098 4

Jacobi1D Virtex5(-3)
(5,10) 98 255 770 1013

stencil
(8,23) 98 250 1559 1833

N=1024

(15,64) 98 147 3669 4558

StratixIII
(5,10) 98 284 1141 1058
(9,36) 98 261 2883 2266

(15,64) 98 199 4921 3978

for algorithms with tricky data dependencies and operating on

high precision floating point numbers.

It would be interesting to extend our technique to non-

perfect loop nests. This would require more general tiling

techniques as those described in [11]. As for many other

HLS tools, the HLS flow described in this paper focuses

only on optimizing the performances of the computational

part. However, as experience shows, the performance is often

bounded by the availability of data. In future work we plan

to focus on local memory usage optimizations by minimizing

the communication betweeen the tiles. This can be obtained

by chosing a tile orientation to minimize the number of de-

pendencies that crosses the hyperplane. This problem has been

partially solved in the context of HPC [21], [11]. However, it

is unclear how to apply it in our context. Also, we would like

to focus on global memory usage optimizations by adapting

the work presented in [23] to optimize communications with

the outside world in a complete system design. Finally, we

would like to extend the schedule to apply several pipelined

operators in parallel.
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