
HAL Id: ensl-00565293
https://ens-lyon.hal.science/ensl-00565293v1

Preprint submitted on 11 Feb 2011 (v1), last revised 15 Feb 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trend Filtering via Empirical Mode Decompositions
Azadeh Moghtaderi, Patrick Flandrin, Pierre Borgnat

To cite this version:
Azadeh Moghtaderi, Patrick Flandrin, Pierre Borgnat. Trend Filtering via Empirical Mode Decom-
positions. 2011. �ensl-00565293v1�

https://ens-lyon.hal.science/ensl-00565293v1
https://hal.archives-ouvertes.fr


Trend Filtering via Empirical Mode Decompositions

Azadeh Moghtaderia,∗, Patrick Flandrinb, Pierre Borgnatb

aDepartment of Mathematics and Statistics, Queen’s University

Kingston, Ontario, Canada K7L 3N6
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Abstract

The present work is concerned with the problem of extracting low-frequency
trend from a given time series. To solve this problem, the authors develop a
nonparametric technique called empirical mode decomposition (EMD) trend
filtering. A key assumption is that the trend is representable as the sum of
intrinsic mode functions produced by the EMD. Based on an empirical analy-
sis of the EMD, the authors propose an automatic procedure for selecting the
requisite intrinsic mode functions. To illustrate the effectiveness of the tech-
nique, the authors apply it to simulated time series containing different types
of trend, as well as real-world data collected from an environmental study
(atmospheric carbon dioxide levels at Mauna Loa Observatory) and from a
large-scale bicycle rental service (rental numbers of Grand Lyon Vélo’v).

Keywords: Empirical mode decomposition, trend filtering, adaptive data
analysis, monthly mean carbon dioxide cycle, seasonality

1. Introduction

Many real-world time series exhibit a “composite” behavior, in the sense
that such a time series can be decomposed into a superposition of two “com-
ponents.” Typically one of these components can be classified as “trend,”
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while the other component is classified as “fluctuation.” (Note that the word
“residual” is sometimes used instead of “fluctuation.” In this paper, however,
the term residual will be used in the context of empirical mode decompo-
sition; see Section 2.) The problem of effecting such a decomposition, and
classifying the resulting components as trend or fluctuation, is called the
trend filtering problem (or trend estimation problem). Solving this problem
is desirable, since an analysis of the trend component of a time series can
often yield valuable information, e.g., for prediction. An obvious initial bar-
rier to solving the trend filtering problem is that the terms “decomposition,”
“trend,” and “fluctuation” are context-dependent. Indeed, given a time series
generated by a particular physical system, it may be clear (based on physical
intuition) how to solve the trend filtering problem. In the absence of physical
intuition, it may still be possible to solve the trend filtering problem, pro-
vided one makes an ad hoc definition of trend; see (Alexandrov et al., 2008).
Such definitions may require extra assumptions concerning the nature of the
time series.

A common ad hoc definition of trend is that of a “long-term change in
the mean” (Chatfield, 1996; Alexandrov et al., 2008). This definition can
lead to approaches which attempt to turn the trend filtering problem into
one of regression. For example, it may be reasonable to assume that the
time series has a trend component described by a low-degree polynomial.
The coefficients of this polynomial can then be estimated by a standard
polynomial regression; we again refer to (Alexandrov et al., 2008) for a more
comprehensive discussion. Other approaches exist which do not impose such
a strict model on the trend. For instance, nonparametric trend filtering
assumes that the fluctuation possesses generic stationarity properties, and
that the trend can be found by an ad hoc smoothing operation applied to
the entire time series, e.g., using the Henderson filter (Henderson, 1916) or the
Hodrick–Prescott filter (Hodrick and Prescott, 1997). Yet another possibility
is to interpret the trend estimation problem in the frequency-domain sense—
for instance, one can assume the trend is represented by a particular set of
low-frequency (possibly polynomials or unit root) oscillations. This turns the
trend filtering problem into a bona fide filtering problem. Viewed in this way,
it may be profitable to use Wiener–Kolmogorov filtering (Pollock, 2006) to
solve the trend filtering problem. Finally, it is worthwhile to mention that
generalized “trend cycles,” defined as a “short-term trend [that] generally
includes cyclical fluctuations,” have also been studied (Alexandrov et al.,
2008). Deciding if a trend cycle should be considered as trend (e.g., in any of
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the above senses) depends on the application and of course the observation
scale.

In this paper, we introduce a novel approach to solving the trend filtering
problem. We call this approach empirical mode decomposition trend filtering.
It is philosophically similar to the “low-frequency approach” described in the
preceding paragraph. Indeed, empirical mode decomposition trend filtering
is based on the following definition: Trend is that component of a time series
which is “slowly varying” in the sense that it is represented by the “slow-
est” intrinsic mode functions produced by the empirical mode decomposition
(EMD). Recall (Huang et al., 1998) that the EMD is an algorithm which de-
composes a time series into a finite additive superposition of “intrinsic mode
functions,” or IMFs. The IMFs are computed in an iterative fashion—each
iteration produces an IMF which is “rapidly varying” relative to the residual
time series. Thus our decomposition into components is effected by the EMD.
The remaining question is “Which of the IMFs produced by the EMD should
be deemed the slowest?” It is precisely this question which is addressed by
EMD trend filtering. In particular, we attempt to answer this question by ex-
amining certain properties of the IMFs’ energies and zero crossing numbers;
these properties were first reported in (Flandrin et al., 2004b; Rilling et al.,
2005). We give evidence which supports the fact that certain changes in these
properties characterize the tipping point between trend and fluctuation.

It must be mentioned that the use of the EMD to solve the trend filtering
problem has already been proposed in the literature. However, such work has
either relied on an a priori model for the fluctuation (Flandrin et al., 2004a),
or has considered the trend as being the final residual time series produced
by the EMD (Wu et al., 2007). In a sense, using the EMD to solve the
trend filtering problem shares common features with singular-spectrum anal-

ysis applied to the same problem (Vautard and Ghil, 1989; Ghil and Vautard,
1992; Vautard et al., 1991). This is because the SSA also effects a decomposi-
tion into oscillatory components. Like the EMD-based method proposed by
Wu et al. (2007), a possible approach to solving the trend estimation prob-
lem using SSA is to identify the trend as the lowest-frequency oscillatory
component. Other possibilities are to look for oscillatory components with
prescribed smoothness or monotonicity properties; see (Alexandrov et al.,
2008).

The rest of the paper is organized as follows. In Section 2, we briefly
review some background material concerning the EMD. In Section 3 we state
what trend means in the context of this paper. In Section 4, we describe the
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details of EMD trend filtering. The performance of EMD trend filtering is
demonstrated in Sections 5 and 6 through analyses of simulated and real-
world time series. Finally, we make concluding remarks in Section 7.

2. The Empirical Mode Decomposition

The empirical mode decomposition (EMD) is an algorithm which decom-
poses a time series into a finite additive superposition of oscillatory compo-
nents, each of which is called an intrinsic mode function (IMF); see (Huang
et al., 1998). The EMD does not rely on any technical assumptions concern-
ing the nature of the time series; note that this includes modelling assump-
tions. The basic idea is that IMFs are computed subject to two requirements:
First, the number of local extrema and number of zero crossings of each IMF
vary by at most one. Second, the mean of the upper and lower envelopes of
each IMF should be identically equal to zero, where the envelopes are com-
puted by means of a fixed interpolation scheme. (In the numerical results
presented in this paper, we have confined ourselves to the use of cubic spline
interpolation.) The IMFs are computed by means of an iterative scheme.
This scheme however depends on a stopping criterion which guarantees that
the requirements above are satisfied within a given tolerance while at the
same time each extracted IMF is meaningful in both its amplitude and fre-
quency modulations; we again refer to (Huang et al., 1998) for details.

To make this intuitive description more precise, let X = {Xt}t≥0 be a
(real, discrete-time, stochastic) process, and let X = (X0, X1, . . . , XN−1) be
a realization of X. (These assumptions illustrate a notational convention
that is used throughout the rest of the paper, namely that time series of
length N are written in bold typeface and are regarded as elements of the
Euclidean space R

N .) As an initialization step, set i = 1 and ρ0 = X . The
EMD computes the IMFs of X using the following algorithm.

(1) Identify the local maxima and local minima of ρi−1.

(2) Together with the chosen interpolation scheme, use the maxima and
minima from step (1) to compute the upper and lower envelopes of ρi−1.

(3) Determine the local trend, denoted Qi, as the mean of the upper and
lower envelopes from step (2).

(4) Compute the local fluctuation, denoted h = X − Qi.

(5) If h is not an IMF, in the sense that it does not satisfy the two require-
ments described in the beginning of this section, then increment i and
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go to step (1) with ρi−1 = h. (Huang et al. (1998) call this the sifting

process; it is this process which depends on the stopping criterion.)

(6) If h is an IMF, in the sense that it satisfies the two requirements described
at the beginning of this section, then the ith intrinsic mode function of
X is M

i = h, and the ith residual is ρi = X − M
i. Increment i, then

go to step (1).

The algorithm halts when the ith residual has no further oscillations, in
the sense that it has no local maxima or local minima. We denote by I the
largest index for which Mi is defined. Then

X =
I∑

i=1

Mi + ρI . (1)

In this decomposition, M1 through MI can be thought of as containing
a “spectrum” of local oscillations in X , with the shortest-period (highest
frequency) oscillations represented in M1 and the longest-period (lowest
frequency) oscillations represented in MI . The computational complexity
of the algorithm depends on X , the chosen interpolation scheme, and the
stopping criterion. However, the algorithm usually halts in a reasonably
small number of steps. For example, it is known (Flandrin et al., 2004a) that
if X is a broadband process (a broadband process includes a relatively wide
range (or band) of frequencies), then the decomposition produced by the
EMD has an almost dyadic filter-bank structure, typically with I ≈ log2 N .
Moreover, it is known that the sifting process typically halts after some tens
of iterations (Huang et al., 1998).

3. Trend in EMD

As discussed in Section 1, the term “trend” is meaningless and has to be
made more precise in order to be useful. In this section we state what we
mean by trend in this paper and in the context of EMD trend filtering. To
begin with, let us introduce some notation.

Let Y = (Y0, Y1, . . . , YN−1) be a realization of a process Y = {Yt}t≥0,
and let C = (C0, C1, . . . , CN−1) ∈ R

n be a trend component. Assume also
that Y is a broadband process with a continuous spectrum. From Y and
C we may form two new time series: The first is Y + C, the additive mix

of Y and C; the second is CY , the multiplicative mix of Y and C. (Here
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the multiplication is being performed componentwise.) In either case, we say
that Y is fluctuation of the mix. Now let X be the additive or multiplicative
mix of Y and C. The question we wish to answer is: “Solely given X as
data, under what conditions should it be possible to accurately estimate C

from X ?” To do so, we must constrain the trend and fluctuation of the mix
in some fashion. We take the following pragmatic approach that is based on
properties of EMD.

Recall that in EMD the successive IMFs are oscillations going from high
frequency to low frequency, and that this property is valid locally in time
(there is not necessarily a global separation of spectrum of successive IMFs)
(Huang et al., 1998). A loose “definition” of a trend in this paper is that
C is locally slowly varying as compared to Y . Hence, a pragmatic way of
satisfying this is that the trend should be obtained as the sum of the last few
IMFs and the residual extracted from X .

Let us now turn the attention to some properties of fluctuation of the mix
which can also define (in contrast) the trend. First, and in agreement with
Flandrin et al. (2004b) and Wu and Huang (2004), the mean frequency of
the successive IMFs of broadband processes decrease, similarly to constant-
Q filter-banks, with a factor near 2. This will be the first criterion studied
in Section 4.1 by estimating the mean frequency from the number of zero
crossings of IMFs. Second, the finding of Rilling et al. (2005) is that the
“energy” of the IMFs of broadband processes decreases as the index of the
IMFs increases. This has been first reported and demonstrated in Rilling
et al. (2005) for fractional Gaussian noise processes (Embrechts and Maejima,
2002) (fractional Gaussian noise processes are convenient models for generic
broadband processes), and we will provide more discussion in Section 4.2 for
the validity of this characteristics. An explicit assumption in our work is
that the fluctuation Y contaminating the trend C have such energy profile.
In particular, situations where the spectrum of Y experiences a substantial
energy increase downwards low frequencies (e.g., processes with near unit-
root behavior) are not considered in this paper.

In the presence of a trend, the prescription used in this paper is that
the IMF index which shows a rupture in the two properties described above,
explains how to separate the trend from the fluctuation. It follows from
this prescription that a trend in the present work is neither restricted to
be monotonic, nor some polynomial function, nor to have a (time-averaged)
spectrum well separated from the one of the fluctuation. Also, the trend can
have some oscillations while in Wu et al. (2007), only the residual of EMD
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was deemed a trend, hence constraining it to have no oscillations at all.
In the following two sections, we will describe in more details the proper-

ties discussed above and their abilities in separation of the trend and fluctu-
ation of a mix.

4. EMD Trend Filtering

Let X be the additive mix of Y and C, where these entities are given as
in the previous section. As described there, our goal is to accurately estimate
C from X . This section is devoted to describing EMD trend filtering which
can be used to obtain such an estimate.

The following notation and terminology will be employed throughout this
section. Let Mi be the IMFs of X , where 1 ≤ i ≤ I, and let i∗ be such that

Ci∗ =
I∑

i=i∗

Mi + ρI (2)

is the best approximation to C in the Euclidean metric. We call i∗ the best

index and Ci∗ the best approximation of C. Clearly, estimating C is equivalent
to estimating the best index. If î∗ is an estimate of i∗, then we denote by

Ĉi∗ =

I∑

i=bi∗

M
i + ρI (3)

the corresponding estimate of C. Note that if the mix is multiplicative and
the elements of C are positive, then the situation reduces to the additive case.
Indeed, one can take logarithms to obtain log |X | = log C + log |Y |, where
the logarithm and absolute value functions are being applied elementwise.

EMD trend filtering, described over the course of the next three subsec-
tions, actually consists of three approaches to estimating i∗. These are called,
respectively, the ratio, energy, and energy-ratio approaches.

4.1. Ratio approach

In this subsection we describe the first approach to estimating i∗, which
is based on an empirical property of the zero crossing numbers of IMFs.

To describe this property, we need to establish some additional notation.
For a given time series, we denote the zero crossing number of its ith IMF
by Z i, and define Ri = Z i−1/Zi for i ≥ 2. (This is well-defined since Z i ≥ 1;
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see Section 2.) Of course, Ri depends fundamentally on the given time series;
since the particular time series is always clear from context, we suppress this
dependence. We call Ri the ith ratio of the zero crossing numbers (ith RZCN).
It has been observed by Flandrin et al. (2004b) and Wu and Huang (2004)
that if the time series under study is a realization of a generic broadband
process, the approximation Ri ≈ 2 holds.

This observation is also supported by the following data. We considered
20 broadband processes of the following types: 17 fractional Gaussian noise
processes with Hurst exponents in the range H = 0.1, 0.15, 0.2, . . . , 0.9, two
stationary AR(2) processes, and a nonstationary AR(2) process with time-
dependent coefficients. For each process in the collection, we carried out
the following procedure: We simulated B = 10000 realizations of length
N = 2000, then computed the IMFs of each realization along with their
zero crossing numbers. Denoting the ith RZCN of its bth realization by Ri,b,
where 2 ≤ i ≤ Ib, and setting ~Rb = (R2,b R3,b · · · RIb,b), we then computed

the empirical distribution of the elements of ~R = (~R1 ~R2 · · · ~RB). The same
procedure was also applied to the log-transformed version of each process in
the collection.

Figure 1 displays the empirical distributions of the elements of ~R, and
supports the contention that Ri ≈ 2. In fact, these distributions appear to be
approximately Gaussian with mean 2. Furthermore, it is evident from Figure
1 (particularly the left-hand plot) that apart from the expected peak at 2, we
also observe several smaller but visible peaks at higher values. These peaks
appear to be due to the presence of high-order IMFs; indeed, these slowly
oscillating modes have small zero crossing numbers. Because RZCNs are cal-
culated as the ratio of two integers, if the numerator is a small number, then
the distribution of the elements of ~R will have peaks at integer or rational
values such as 2, 5/2, 3, 4/3, etc. Hence, RZCNs with integer or rational val-
ues for small denominators have slightly higher expected probabilities than
neighbouring values.

Our key observation is that, generically, the approximation Ri ≈ 2 fails
for i near the best index i∗. This observation is supported by the following
data. For each broadband process in the collection and using its realizations,
we constructed 10000 additive and 10000 multiplicative mixes. Here the
trend of the additive mix is assumed to be C4, displayed in Figure 5, while
the trend of the multiplicative mix is assumed to be 1+C4; this ensures that
the logarithms are defined. We computed the IMFs of each mix along with
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Figure 1: Empirical distribution of the elements of ~R computed for broadband
processes: The left-hand plot displays the empirical distribution of the elements of ~R, for
each broadband process in the collection. Different processes are represented by different
line types and colors. The right-hand plot is similar, but concerns the log-transformed
versions of each broadband process in the collection.

their RZCNs and took two approaches. For the first approach, we set ~R and
computed the empirical distribution of its elements for both additive and
multiplicative mixes shown in the top plots in Figure 2. These plots indicate
that the empirical distribution of the elements of ~R for both additive and
multiplicative mixes are non-Gaussian as the side peaks in both distributions
grow taller in comparison with the empirical distributions displayed in Figure
1. Clearly at this point we can conclude that the approximation Ri ≈ 2 fails
but it is not yet clear whether it fails at or around the best index i∗ or
any other index. To clarify this, we proceeded to the second approach. For
the second approach we used the IMFs obtained for each additive mix (resp.
multiplicative mix) and used the knowledge of C4 (resp. log(1 + C4)) to
evaluate the best index i∗ (details on how one can evaluate i∗ is described
in an algorithm in Section 5.) Using the knowledge of i∗, we then evaluated
the fluctuation of each mix by eliminating those IMFs whose indices are
greater than or equal to i∗. We call this detrending the mix and refer to
the fluctuation obtained from detredning as the best approximation of the

fluctuation. For all the mixes, we now use the RZCNs of the remaining
IMFs in order to set ~R. The bottom plots in Figure 2 display the empirical
distributions of the elements of ~R computed for the best approximation of
the fluctuations. We can see that after detrending the mixes, the empirical
distribution of the elements of ~R appears to be strongly Gaussian with mean
2 as was the case with broadband processes. This result indicates that what
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Figure 2: Empirical distribution of the elements of ~R computed for mixes: The
top-left (resp. top-right) plot displays the empirical distribution of the elements of ~R for
additive mixes (resp. multiplicative mixes) obtained from 20 broadband processes in the
collection. The bottom-left (resp. bottom-right) plot displays the empirical distribution of

the elements of ~R for the best approximation of the fluctuations obtained after detrending
the additive mixes (resp. multiplicative mixes). Different processes in the collection are
represented by different line types and colors.

makes the empirical distribution of the elements of ~R to be non-Gaussian, is
the existing trends in the mixes.

Finally, using the result of our simulation, we estimate i∗ by choosing
î∗ to be the smallest index i for which Ri is significantly different from 2.
We refer to this as the ratio approach. The results of our simulations for
broadband processes suggest that a common threshold test could be used
to conclude whether or not Ri is significantly different from 2. For 0 ≤
p ≤ 100, we therefore compute p% and (100 − p)% significance level of
the empirical distributions from Figure 1 as the left threshold and the right

threshold respectively. Table 1 reports the averaged left and right thresholds
computed for a few different values of p and for both distributions shown in
Figure 1. At the end, any RZCN which is outside of the appropriate right
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p Tl Tr Tlog
l Tlog

r p Tl Tr Tlog
l Tlog

r

1 1.503 4.976 1.507 3.532 18 1.905 2.305 1.849 2.199
3 1.671 3.809 1.665 3.024 19 1.911 2.283 1.854 2.181
5 1.738 3.043 1.723 2.703 20 1.918 2.259 1.859 2.169
7 1.783 3.000 1.754 2.520 21 1.925 2.244 1.864 2.154
8 1.801 2.924 1.771 2.500 22 1.931 2.225 1.869 2.140
9 1.816 2.737 1.783 2.462 23 1.936 2.212 1.874 2.127
10 1.830 2.645 1.794 2.412 24 1.941 2.199 1.878 2.114
11 1.842 2.266 1.801 2.365 25 1.946 2.185 1.883 2.103
12 1.854 2.520 1.810 2.337 26 1.950 2.173 1.887 2.094
13 1.864 2.480 1.818 2.312 27 1.954 2.162 1.891 2.086
14 1.873 2.445 1.826 2.279 28 1.959 2.153 1.896 2.079
15 1.882 2.400 1.832 2.254 29 1.963 2.144 1.899 2.071
16 1.890 2.368 1.837 2.234 30 1.966 2.136 1.904 2.063
17 1.898 2.334 1.843 2.209 31 1.970 2.129 1.908 2.055

Table 1: The left and right thresholds for different values of p: Tl and Tr (resp.

Tlog
l and Tlog

r ) are the left and right thresholds associated with p% and (100− p)% signif-
icance level of the empirical distribution shown in the left-hand (resp. right-hand) plot in
Figure 1.

and left thresholds is considered significantly different from 2.
The problem with the ratio approach is that, since selection of the left and

right thresholds is entirely based on empirical results, it is always possible
that for a given p, the smallest i for which Ri appears significantly different
from 2 is a false detection. In Section 5, we will use extended simulations to
decide on the “best” p.

4.2. Energy approach

In this subsection we describe the second approach to estimating i∗, which
is based on an empirical property of the so-called “energy” of the IMFs.

To describe this property, we need to establish some additional notation.
Let {Zt}t≥0 be an arbitrary process. For a given time series which is a
realization of {Zt}, we define the energy of its ith IMF, denoted Gi, by

Gi ,

N−1∑

t=0

|Mi
t|

2, 1 ≤ i ≤ I.

Assume now that we have B different time series obtained from {Zt}. Given
the bth time series, 1 ≤ b ≤ B, if Gi,b denotes the energy of its ith IMF, the
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Figure 3: log
2

Gi for broadband processes: The left-hand plot displays log2 Gi for
each broadband process in the collection. Different processes are represented by different
line types and colors. The right-hand plot is similar, but concerns the log-transformed
versions of each broadband process in the collection.

averaged energy of its ith IMF is defined by

Gi ,
1

B

B∑

b=1

Gi,b. (4)

It is shown in Rilling et al. (2005) that if the time series under study are
realizations of a generic broadband process, then Gi is a decreasing sequence
in i. The authors in Rilling et al. (2005) concluded this by studying fractional
Gaussian noise processes. This observation is also supported by the following
data. We considered the same 20 broadband processes introduced in Section
4.1. For each process in the collection, we simulated B = 10000 realizations
of length N = 2000, and computed the IMFs for each realization along with
Gi,b and Gi. Figure 3 displays log2 Gi for 20 broadband processes and their
log-transformed versions respectively. The result of this simulation supports
the idea that the averaged energy of the IMFs of a broadband process is a
decreasing sequence in i.

Our key observation is that, generically, Gi increases for i near the best
index i∗. This observation is supported by the following data. We used the
exact same additive and multiplicative mixes introduced in Section 4.1. For
each mix, we computed its IMFs and the energy of its IMFs and took two
approaches. For the first approach, we computed Gi for the additive and
multiplicative mixes. The top plots in Figure 4 display log2 Gi computed for
additive and multiplicative mixes. The result of this simulation supports the
idea that Gi increase at some i for both additive and multiplicative mixes.
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Figure 4: log
2

Gi for mixes: The top-left (resp. top-right ) plot displays log2 Gi for
additive mixes (resp. multiplicative mixes) obtained from 20 broadband processes in the

collection. The bottom-left (resp. bottom-right) plot displays log2 Gi for the best approx-
imation of the fluctuations obtained after detrending the additive mixes (resp. multiplica-
tive mixes). Different mixes or the best approximation of the fluctuations are represented
by different line types and colors.

However, this result does not provide any information on whether or not
these increases have occurred at or around the best index i∗. To show this
we proceeded to the second approach. For the second approach, we computed
Gi for the best approximation of the fluctuations obtained after detrending
the mixes as described in Section 4.1. The bottom plots in Figure 4 display
log2 Gi, computed for the best approximation of the fluctuations. The result
of this simulation supports the idea that Gi increases at the best index i∗.
This is clear from the comparison between the top and bottom plots of Figure
4.

Based on the above discussion, identifying the smallest index i ≥ 2 such
that Gi > Gi−1 evaluates î∗. This approach is called the energy approach.
As for the ratio approach, one could think of looking for significant increases
which would be based on some statistical information about the dispersion
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of energy of each IMF. This viewpoint has been considered first for white
Gaussian noise in Huang et al. (2003) and further generalized in Flandrin
and Gonçalves (2004) and Flandrin et al. (2004a), even in a detrending per-
spective. The limitation however is that the confidence intervals associated
with this approach depend strongly on some prior knowledge about the spec-
tra of broadband processes. This is mainly the reason for which we do not
follow such direction, as we are merely interested in a procedure which is
model-free.

The limitation with the energy approach is that one is often given a
single time series to use in the trend estimation procedure. Clearly, the
energy approach in this case is to identify the smallest index i ≥ 2 such that
Gi > Gi−1. Computation of energy, based on only one realization, may cause
false increases in Gi at indices which do not associate with trend.

4.3. Energy-ratio approach

In this section, we introduce the last and most important approach to
estimating i∗.

As we described in the previous two sections, the energy and ratio ap-
proaches are confronted with possible false detections of the smallest index
which does not associate with the trend. Since the criteria proposed by the
energy approach and ratio approach to evaluate î∗ are independent, the num-
ber of false detections can be reduced by combining these two approaches.

To be more precise, for each 2 ≤ i ≤ I, we compute each index i such
that Gi > Gi−1. We also evaluate every index i where Ri is significantly
different from 2. We then evaluate î∗ to be the smallest common index in
both approaches. This approach is called the energy-ratio approach. In the
next section, we demonstrate the overall performance of this approach in
comparison with the other two.

5. Performance Evaluation of the EMD Trend Filtering; Evalua-

tion of the best p

We follow two main goals in this section. The first goal is to evaluate
the overall performance of the EMD trend filtering. The second goal is to
empirically evaluate the best p using which we can improve the performance
of the energy-ratio approach by reducing the number of false detections in
the energy and ratio approaches.
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In order to do the above, we constructed 10 simulated examples structured
as follows. Let Y k = {Y k

t }t≥0, 1 ≤ k ≤ 6, be 6 generic broadband processes
where for k = {1, 4, 5, 6}, Y k are fractional Gaussian noise processes with
Hurst exponents 0.5, 0.7, 0.15, and 0.75 respectively and for k = {2, 3},

Y 2
t = 0.8Y 2

t−1 − 0.4Y 2
t−2 + ζt, and

Y 3
t = 0.2Y 3

t−1 + 0.5Y 3
t−2 + ξt,

where {ζt} and {ξt} are two independent white noise processes with variance
104. Let Y

k = (Y k
0 , Y k

1 , . . . , Y k
N−1) be a realization of Y k. Now, let us

assume that Ck = (Ck
0 , Ck

1 , . . . , Ck
N−1), 1 ≤ k ≤ 6, are 6 trends where for

k = {1, 2, 3, 4}, Ck are randomly constructed trends using peacewise linear
and cubic spline techniques and for k = {5, 6}

C5
t = 2 − e

−(t−1000)2

2×4002 , and

C6
t = 1.5 + cos(2πfst), fs = 0.002.

Figure 5 displays Ck for 1 ≤ k ≤ 6 and for N = 2000.
We constructed 6 additive mix and 4 multiplicative mix X k, 1 ≤ k ≤ 10,

such that

X k =






Ck + Yk, 1 ≤ k ≤ 6
(1 + Ck−6)Yk−6, 7 ≤ k ≤ 8

Ck−4Yk−4, 9 ≤ k ≤ 10.

(5)

For each k, we created B = 10000 realizations of length N = 2000 of Y k

and constructed the mixes appropriately using Eq. (5). In the following we
denote the bth realization of the kth example by bk.

Recall from earlier that the first goal in this section is to evaluate the
overall performance of the EMD trend filtering. In order to achieve such
goal, we first proceed with the following algorithm and make a discussion
afterwards.

1. Apply EMD to X bk in order to extract its IMFs. Denote I, Mi, and

ρI by Ibk , Mibk , and ρIbk respectively.

2. Use knowledge of Ck and compute the Euclidean distance

ECbk

i†
,

(
N−1∑

t=0

∣∣∣Ck
t − Cbk

t,i†

∣∣∣
2

)1/2

, (6)
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Figure 5: Trends used in simulated examples: C
k for 1 ≤ k ≤ 6 are six trends used

in simulated examples 1 to 10

where C
bk

i†
= (Cbk

0,i†
, Cbk

1,i†
, . . . , Cbk

N−1,i†
) is

C
bk

i†
=

Ibk∑

i=i†

Mibk + ρIbk , i† ∈ {1, 2, . . . , Ibk}.

3. The best index i∗ is that i† which results in minimum ECbk

i†
, denoted

ECbk

i∗ . Clearly, C
bk

i∗ is the best approximation of Ck.

4. Compute the Euclidean norm

EYbk

i∗ ,

(
N−1∑

t=0

∣∣∣Ybk

t,i∗

∣∣∣
2

)1/2

, (7)

where Y
bk

i∗
= X bk − C

bk

i∗
is the best approximation of Ybk .

5. Compute the Euclidean norm of the fluctuation Ybk by

EYbk =

(
N−1∑

t=0

∣∣∣Ybk

t

∣∣∣
2

)1/2

.
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6. Apply the Hodrick–Prescott (H-P) filter (Hodrick and Prescott, 1997)

to X bk to estimate Ck, denoted Ĉ
bk

hp. Compute the Euclidean distance

between Ck and Ĉ
bk

hp and denote it by E
bC

bk

hp .

7. Apply the singular-spectrum analysis (SSA) (Vautard et al., 1991) to

X bk to estimate Ck, denoted Ĉ
bk

ssa. Compute the Euclidean distance

between C
k and Ĉ

bk

ssa and denote it by E
bC

bk

ssa .

Note that the above algorithm is designed for examples with additive mixes.
The extension of this algorithm to examples with multiplicative mixes via
log-transformation is straight forward.

For each k, we now average ECbk

i∗ , EYbk

i∗ , EYbk , E
bC

bk

hp , and E
bC

bk

ssa and denote

them, in order, by E
Ck

i∗ , E
Yk

i∗ , E
Yk

, E
bC

k

hp , and E
bC

k

ssa. Table 2 reports all these
averaged Euclidean distances/norms.

The parameters used for the H-P filter are 105 and 5 × 105 (associated
with the second and third columns of Table 2 respectively) and the window
lengths used for the SSA are 100 and 200 (associated with the fourth and fifth
columns of Table 2 respectively). To evaluate the performance of the EMD
trend filtering, we make the following discussion. The first column of Table 2
reports the average of the Euclidean distances between Ck and the bkth best
approximation of Ck for different values of k. Looking solely at these values,
we cannot say anything about the performance of the EMD trend filtering
unless we make some type of comparisons. The first attempt we make is to
compare the best approximation of Ck obtained from EMD trend filtering
with the estimates obtained from H-P filter and the SSA. This is done by
comparing the first column of Table 2 with the second to fifth columns for
each k. It is clear from the reported values that all three trend filtering
methods are comparable since their reported averaged Euclidean distances
are comparable. We should note however that both H-P filter and SSA are
dependent on free parameters. The value of the free parameter in either
method can change the performance of the trend filtering in comparison
with EMD trend filtering. This is clear where i.e., the majority of the values
reported in the second column of Table 2 are larger than those from the
first column of Table 2 whereas this situation reverses for the third column
of Table 2. A similar case is applied for the SSA. The second attempt is
an alternative way to determine the performance of EMD trend filtering by
comparing the fluctuation of each mix, Ybk , with the best approximation of
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k E
Ck

i∗
E

bC
k

hp E
bC

k

hp E
bC

k

ssa E
bC

k

ssa E
Yk

i∗
E

Yk

1 0.752 0.898 0.733 0.871 0.624 7.392 7.400
2 0.822 0.840 0.697 0.818 0.627 5.475 5.493
3 0.887 0.930 0.785 0.920 0.729 2.854 2.922
4 0.642 0.655 0.581 0.652 0.542 2.334 2.398
5 0.631 0.393 0.286 1.651 0.211 17.32 17.31
6 4.594 4.314 3.850 4.273 3.715 12.47 13.18
7 4.808 6.014 4.898 3.924 3.070 49.73 49.63
8 6.369 7.028 5.732 3.924 3.070 49.84 49.66
9 4.803 6.396 5.212 4.144 2.863 49.75 49.65
10 8.513 7.315 6.123 6.265 13.75 49.45 49.61

Table 2: Average Euclidean distances/norms computed for three trend filtering
methods: For each k, the first column of this table reports the averaged Euclidean
distances between Ck and the bkth best approximation of Ck. The second and third
columns report the averaged Euclidean distances between Ck and Ĉ

bk

hp using parameters

105 and 5×105 respectively. The fourth and fifth columns of this table report the averaged
Euclidean distances between Ck and Ĉbk

ssa using window lengths 100 and 200 respectively.
The sixth column is the averaged Euclidean norms of the best approximation of Y

bk and
the seventh column is the averaged Euclidean norms of the fluctuation Y

bk .

Ybk . This is done by comparing the averaged Euclidean norms reported in
the sixth and seventh columns of Table 2. The fact that the Euclidean norms
from column 6 can be compared well with those in the seventh column is an
indication that the EMD trend filtering has performed well.

Recall now that the second goal is to empirically evaluate the best p in
order to obtain the best estimate of i∗. In order to achieve this goal, we first
proceed with the following algorithm and make a discussion afterwards.

• Apply EMD to X bk in order to extract its IMFs. Denote I, Mi, and

ρI by Ibk , Mibk , and ρIbk respectively.

• Estimate the best index, î∗, using the energy approach and compute
an estimate of Ck by

Ĉ
bk

g =

Ibk∑

i=bi∗

Mibk + ρIbk . (8)

• Fix the value p in the interval 0 ≤ p ≤ 100 and estimate the best index,
î∗, using the ratio approach and the energy-ratio approach. Compute
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the estimates of C
k using ratio and energy-ratio approaches by Ĉ

bk,p

r

and Ĉ
bk,p

gr , respectively.

• Compute the Euclidean distance between Ck and estimates Ĉ
bk

g , Ĉ
bk,p

r ,

and Ĉ
bk,p

gr and denote them by E
bC

bk

g , E
bC

bk
p

r , and E
bC

bk
p

gr , respectively.

• Compute the Euclidean distance between X bk and estimates Ĉ
bk

g , Ĉ
bk,p

r ,

and Ĉ
bk,p

gr and denote them by E
bY

bk

g , E
bY

bk
p

r , and E
bY

bk
p

gr , respectively.

Similarly to the previous algorithm, the above algorithm is designed for the
examples with additive mixes. The extension to examples with multiplicative
mixes via log-transformation is straight forward.

For each k, we now average E
bC

bk

g , E
bC

bk
p

r , E
bC

bk
p

gr , E
bY

bk

g , E
bY

bk
p

r , and E
bY

bk
p

gr de-

noted, in order, by E
bC

k

g , E
bC

k

p

r , E
bC

k

p

gr , E
bY

k

g , E
bY

k

p

r , and E
bY

k

p

gr .
Tables 3 and 4 report the averaged Euclidean distances for the ratio

and energy-ratio approaches respectively when using 22 values of p for each
example. In order to evaluate the best p, one may think of selecting p so
that it associates with the minimum averaged Euclidean distances reported
in Tables 3 and 4. Looking at the reported values in Table 3, we can see
that the minimum averaged Euclidean distances in examples 1 to 10 are
obtained when p = (5, 11, 11, 11, 1, 13, 1, 5, 3, 7). A similar search in Table
4 gives p = (24, 24, 15, 18, 5, 22, 9, 13, 9, 24). Clearly, this thought cannot be
used since the values of p associated with the minimum Euclidean distances
appear to be strongly dependent on the estimation approach and also the
type of example. In the following, we make an argument using which we
can evaluate the best p. Note that we make this evaluation for additive and
multiplicative mixes independently.

• One of the main discussions in this paper is that the energy-ratio ap-
proach should reduce the false detections in the energy and ratio ap-
proaches. The reported values in Tables 3 and 4 show that for all
values of p, except for a few, all examples show a smaller averaged
Euclidean distance for the energy-ratio approach than for the ratio ap-
proach. This mainly means that the energy-ratio approach reduces
the false detections of the ratio approach regardless of p. In order for
the energy-ratio approach to reduce the false detections of the energy
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p E
bC

1

p

r E
bC

2

p

r E
bC

3

p

r E
bC

4

p

r E
bC

5

p

r E
bC

6

p

r E
bC

7

p

r E
bC

8

p

r E
bC

9

p

r E
bC

10

p

r

1 1.524 5.346 5.819 3.441 0.655 21.43 5.421 9.033 6.350 21.62
3 1.092 2.987 3.400 1.807 0.663 10.86 5.457 8.262 5.877 17.44
5 1.020 1.709 1.618 0.917 0.863 6.927 6.037 7.972 6.115 13.20
7 1.083 1.694 1.601 0.916 1.237 6.847 7.206 8.607 7.185 11.72
8 1.109 1.474 1.341 0.838 1.514 6.558 8.150 9.297 8.031 12.31
9 1.137 1.379 1.137 0.770 1.792 5.977 9.142 9.913 8.805 12.29

10 1.191 1.366 1.101 0.759 2.101 5.752 10.18 10.73 9.822 12.76
11 1.253 1.336 1.065 0.750 2.419 5.550 10.94 11.50 10.63 12.99
12 1.335 1.371 1.068 0.760 2.766 5.506 11.88 12.37 11.54 13.73
13 1.404 1.412 1.067 0.770 3.122 5.456 12.88 13.28 12.59 14.45
14 1.491 1.453 1.078 0.782 3.482 5.463 13.84 14.16 13.62 15.23
15 1.577 1.513 1.091 0.797 3.815 5.465 14.72 14.95 14.58 15.94
16 1.671 1.574 1.112 0.814 9.125 5.508 15.44 15.61 15.35 16.54
17 1.772 1.639 1.156 0.837 4.438 5.559 16.37 16.63 16.32 17.35
18 1.884 1.706 1.211 0.858 4.739 5.629 17.24 17.43 17.14 18.08
19 1.986 1.772 1.277 0.880 5.019 5.720 18.10 18.26 18.02 18.94
20 2.097 1.856 1.379 0.912 5.314 5.832 18.74 18.98 18.75 19.65
22 2.319 2.011 1.580 0.983 5.861 6.135 20.31 20.72 20.43 21.25
24 2.503 2.174 1.763 1.059 6.264 6.535 21.91 22.49 22.08 22.97
26 2.695 2.375 1.943 1.156 6.599 7.083 23.48 24.26 23.67 31.54
28 2.907 2.597 2.076 1.258 6.931 7.639 24.98 25.85 25.33 26.15
30 3.111 2.812 2.178 1.350 7.195 8.149 26.50 27.58 26.97 27.76

Table 3: Averaged Euclidean distances computed for the ratio approach: For
each k and a fixed 1 ≤ p ≤ 30, this table reports the average of the Euclidean distances

between Ck and Ĉ
bk,p

r . The appropriate left and right thresholds for a given p are taken
from Table 1. For each p, the minimum averaged Euclidean distances in examples 1 to 10
are marked in bold.
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p E
bC

1

p

gr E
bC

2

p

gr E
bC

3

p

gr E
bC

4

p

gr E
bC

5

p

gr E
bC

6

p

gr E
bC

7

p

gr E
bC

8

p

gr E
bC

9

p

gr E
bC

10

p

gr

1 1.222 3.377 4.346 2.500 0.654 21.42 5.429 9.101 6.359 21.59
3 1.086 2.275 3.174 1.729 0.633 10.89 5.300 8.353 5.729 17.44
5 0.993 1.483 1.584 0.921 0.633 6.930 5.204 7.636 5.229 12.99
7 0.992 1.482 1.582 0.920 0.633 6.846 5.231 7.423 5.246 10.89
8 0.963 1.328 1.355 0.832 0.634 6.528 5.238 7.429 5.252 10.89
9 0.927 1.209 1.137 0.751 0.634 5.897 5.202 7.178 5.103 10.16

10 0.912 1.141 1.092 0.724 0.635 5.621 5.228 7.162 5.133 9.909
11 0.893 1.071 1.047 0.702 0.635 5.370 5.250 7.132 5.173 9.511
12 0.890 1.045 1.037 0.697 0.636 5.265 5.266 7.146 5.191 9.444
13 0.875 1.032 1.024 0.691 0.636 5.158 5.288 7.078 5.229 9.330
14 0.875 1.007 1.024 0.686 0.637 5.088 5.322 7.088 5.270 9.236
15 0.871 0.976 1.020 0.681 0.638 5.008 5.348 7.099 5.300 9.172
16 0.857 0.955 1.026 0.680 0.639 4.962 5.369 7.097 5.317 9.054
17 0.856 0.952 1.052 0.679 0.640 4.916 5.398 7.109 5.356 9.022
18 0.853 0.925 1.085 0.677 0.642 4.887 5.414 7.096 5.389 8.999
19 0.847 0.916 1.135 0.677 0.642 4.878 5.433 7.120 5.412 8.982
20 0.846 0.909 1.217 0.679 0.643 4.866 5.447 7.123 5.429 8.967
22 0.842 0.906 1.370 0.681 0.645 4.862 5.491 7.141 5.484 8.949
24 0.835 0.899 1.516 0.685 0.647 4.873 5.523 7.170 5.537 8.919
26 0.836 0.904 1.668 0.690 0.648 4.901 5.550 7.211 5.578 9.013
28 0.838 0.920 1.790 0.695 0.649 4.938 5.584 7.244 5.620 8.922
30 0.839 0.933 1.880 0.698 0.650 4.957 5.616 7.281 5.666 8.937

Table 4: Averaged Euclidean distance computed for the energy-ratio approach:
For each k and a fixed 1 ≤ p ≤ 30, this table reports the average of the Euclidean distances

between Ck and Ĉ
bk,p

gr . The appropriate left and right thresholds for a given p are taken
from Table 1. For each p, the minimum averaged Euclidean distances in examples 1 to 10
are marked in bold. The selection of these values is based on the four digit decimal points.
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approach, we select p such that at least on average, the energy-ratio ap-
proach overperforms the energy approach. For this to happen, we have
to select p such that the averaged Euclidean distance for the energy-
ratio approach is smaller than the one for the energy approach (see the
first row of Table 5) for all or majority of the proposed examples. We
observe that for p = 13, 5 out of 6 examples with additive mix have
a Euclidean distance smaller than the one from the energy approach.
This value changes to p = 9 where 3 out of 4 examples with multiplica-
tive mix follow such property. We now have to select the best p to be
larger or equal to these values.

• For a given k, we now compute the absolute difference between the
averaged Euclidean distance reported in the first row of Table 5 and
the averaged Euclidean distances reported in Table 4. For each p, we
then average these differences over all examples with additive or multi-
plicative mixes. We select the best p to be the one associated with the
minimum averaged difference.

Following the above two steps, the best p for the additive and the multiplica-
tive examples are 18 and 16 respectively. We denote the best p by p∗.

Finally using p∗, a comparison between energy, ratio and energy-ratio
approaches is shown in Table 5 by reporting the averaged Euclidean distances

E
bC

k

g , E
bC

k

p∗

r , E
bC

k

p∗

gr , E
bY

k

g , E
bY

k

p∗

r , and E
bY

k

p∗

gr . For all k, the energy-ratio approach
performs better than energy and ratio approaches. This can be concluded in

two ways. The first observation is that E
bC

k

p∗

gr is always smaller than or equal

to E
bC

k

g and E
bC

k

p∗

r . Second observation is that for each k, E
bY

k

p∗

gr is closer to the
averaged Euclidean distance reported in the seventh column of Table 2 than

E
bY

k

p∗

r and E
bY

k

g . The second observation indicates that if we detrend the mixes
using the estimates obtained from the energy-ratio approach, the estimated
fluctuation is comparable with the actual fluctuation.

6. Examples

In this section, we demonstrate the performance of the EMD trend filter-
ing by applying it to two simulated examples and two real-world examples.
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k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

E
bC

k

g 0.853 1.072 2.220 0.734 0.659 5.223 5.813 7.419 5.906 9.590

E
bC

k

p∗

r 1.884 1.706 1.211 0.858 4.739 5.629 15.45 15.61 15.35 16.54

E
bC

k

p∗

gr 0.853 0.925 1.085 0.677 0.642 4.887 5.369 7.097 5.317 9.054

E
bY

k

g 7.383 5.338 1.918 2.297 17.32 12.15 49.72 49.87 49.72 49.34

E
bY

k

p∗

r 7.154 5.230 2.705 2.252 16.86 12.14 47.29 47.45 47.34 47.08

E
bY

k

p∗

gr 7.407 5.503 2.805 2.337 17.32 12.56 49.64 49.73 49.65 49.57

Table 5: Comparison between energy, ratio, and energy-ratio approaches by
means of p∗: This table reports in its first to third rows the average of the Euclidean
distances between Ck and the bkth trend estimates from the energy, ratio and energy-ratio
approaches respectively. The values reported in rows fourth to sixth are the average of the
Euclidean distances between X

bk and the bkth trend estimates from the energy, ratio and
energy-ratio approaches respectively. For the computations using ratio and energy-ratio
approaches we have used p∗ = 18 for examples 1 to 6 and p∗ = 16 for examples 7 to 10.

6.1. Simulated examples

In this section, we recall two of the examples introduced in Section 5 for
further analysis. The examples are X 2 which is an additive mix and X 9

which is a multiplicative mix. We use EMD trend filtering via energy, ratio,
and energy-ratio approaches for both examples to estimate the best index
using each approach.

The notation used in this section is exactly the same as in Section 5 except
that since we only work with one time series of each mix, we replace bk in the
notation with k. For the ratio and energy-ratio approaches, we use p∗ = 18
and p∗ = 16 for the additive and multiplicative mixes respectively.

6.1.1. Simulated example 1

Recall Y 2 and C2 from Section 5. Let Y2 = {Y 2
0 , Y 2

1 , . . . , Y 2
N−1} be a

realization of Y 2 and set the additive mix X 2 = Y2 + C2 for N = 2000. We
apply EMD to X 2 and extract its IMFs and obtain I = 10.

Looking at the energy of the IMFs of X 2, we observe that the IMF indices
for which Gi > Gi−1 are i = {6, 8, 9, 10}. Based on the energy approach, we
evaluate î∗ = 6 which is the smallest observed index in this case. Using î∗ = 6,

we obtain the trend estimate Ĉ
2

g and using the knowledge of C2, we compute

the Euclidean distance E
bC

2

g = 1.197. Looking at the RZCN of each IMF on
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Figure 6: EMD trend filtering for simulated example 1: The top-left plot displays
the energy approach. The small circles are log2 Gi for 1 ≤ i ≤ 10 and the small triangles
mark those indices i ≥ 2 where Gi > Gi−1. Based on only the energy approach, we
evaluate î∗ = 6. The bottom-left plot displays the ratio approach. The small circles are
log2 Ri for 2 ≤ i ≤ 10, the dashed lines are Tl and Tr for p = 18 in Table 1, and the small
triangles mark those indices i where Ri is significantly different from 2. Based on the ratio
approach, we evaluate î∗ = 4. The energy-ratio approach evaluates î∗ = 8 which we use to

estimate C
2. The top-right plot displays X

2 and Ĉ
2

gr while the bottom-right plot displays

C
2 (dashed line) and Ĉ

2

gr (solid line).

the other hand, we observe that the IMF indices for which Ri is significantly
different from two are i = {4, 5, 7, 8, 9, 10}. Based on the ratio approach,
we evaluate î∗ = 4 which is the smallest observed index in this case as well.

Using î∗ = 4, we obtain the trend estimate Ĉ
2

r and using the knowledge of C2,

we compute the Euclidean distance E
bC

2
p∗

r = 2.191. Finally, the energy-ratio
approach evaluates î∗ = 8 as the smallest common IMF index between the

energy and ratio approaches. Using î∗ = 8 we obtain Ĉ
2

gr and by means of C2,

we obtain E
bC

2
p∗

gr = 0.628. Figure 6 displays the energy and ratio approaches
together with the estimated trend using the energy-ratio approach. It is clear
from the above discussion and the left-hand plots in Figure 6 that the energy-
ratio approach outperforms the energy and ratio approaches by eliminating
the false detections in those methods.

In order to determine the performance of the energy-ratio approach in
estimation of the best index we do the following. We first recall Eq. (6)
and compute the Euclidean distances EC2

i†
for each 1 ≤ i† ≤ 10. For all

24



i† EC2

i†
EY2

i†
Elog C5

i†
E

log |Y5|
i†

1 5.493 2.05e-15 47.38 7.47e-14
2 4.381 3.320 36.56 34.81
3 3.214 4.644 27.89 40.34
4 2.191 5.173 19.71 43.90
5 1.575 5.315 14.22 45.47
6 1.197 5.378 10.37 46.41
7 0.691 5.483 8.254 46.90
8 0.628 5.496 5.047 47.17
9 3.800 6.606 3.682 47.18
10 9.746 11.187 2.492 47.24
11 - - 10.41 48.69

Table 6: Search for the best index of X
2 and X

9 : The first and second columns
of this table report the Euclidean distances EC2

i†
and EY2

i†
for simulated example 1 where

1 ≤ i† ≤ 10. The third and fourth columns of this table reports the Euclidean distances

Elog C5

i†
and E

log |Y5|
i†

for simulated example 2 where 1 ≤ i† ≤ 11.

1 ≤ i† ≤ 10, we then compute

EY2

i†
,

(
N−1∑

t=0

∣∣∣X 2
t − C2

t,i†

∣∣∣
2

)1/2

.

Using the mix X 2, we also compute

EY2

=

(
N−1∑

t=0

∣∣X 2
t − C2

t

∣∣2
)1/2

= 5.493.

The Euclidean distances EC2

i†
and EY2

i†
are reported in the first and second

columns of Table 6.
Following the result in the first two columns of Table 6, we can see that

since the index i† = 8 results in the minimum Euclidean distance EC2

i†
, we

then conclude that i∗ = 8. This agrees with what we obtain for î∗ = 8 from
the energy-ratio approach. Also, it is interesting to see that EY2

i†
for i† = 8 is

the closest value to EY2
= 5.493. Putting all the above observations together,

we conclude that EMD trend filtering has performed excellently in estimation
of C2

t .
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6.1.2. Simulated example 2

Recall Y 5 and C5 from Section 5. Let Y5 = {Y 5
0 , Y 5

1 , . . . , Y 5
N−1} be a

realization of Y 5 and set the multiplicative mix X 9 = C5Y5 for N = 2000.
We apply EMD to log |X 9| and extract its IMFs and obtain I = 11.

Looking at the energy of the IMFs of log |X 9|, we observe that the
IMF indices for which Gi > Gi−1 are i = {7, 10, 11}. Based on the en-
ergy approach, we evaluate î∗ = 7 which is the smallest observed index
in this case. Using î∗ = 7, we obtain the log-transformed trend estimate

log Ĉ
5

g and using the knowledge of log C
5, we compute the Euclidean distance

Elog bC
5

g = 8.254. Looking at the RZCN of each IMF on the other hand, we
observe that the IMF indices for which Ri is significantly different from two
are i = {2, 8, 9, 10, 11}. Based on the ratio approach, we evaluate î∗ = 2
which is the smallest observed index in this case as well. Using î∗ = 2, we

obtain the trend estimate log Ĉ
5,p∗

r and using the knowledge of log C5, we

compute the Euclidean distance E
log bC

5
p∗

r = 36.56. Finally, the energy-ratio
approach evaluates î∗ = 10 as the smallest common IMF index between the

energy and ratio approaches. Using î∗ = 10 we obtain log Ĉ
5,p∗

gr and by means

of log C5, we obtain E
log bC

5
p∗

gr = 2.492. Figure 7 displays the energy and ra-
tio approaches together with the estimated log-transformed trend using the
energy-ratio approach. It is clear from the above discussion and the left-hand
plots in Figure 7 that the energy-ratio approach outperforms the energy and
ratio approaches by eliminating the false detections in those methods.

In order to determine the performance of the energy-ratio approach in
estimation of the best index we do the following. We first recall Eq. (6)

and compute the Euclidean distances Elog C5

i†
For each 1 ≤ i† ≤ 11. For all

1 ≤ i† ≤ 11, we then compute

E
log |Y5|
i†

,

(
N−1∑

t=0

∣∣∣log |X 9
t | − log C5

t,i†

∣∣∣
2

)1/2

.

Using the mix log |X 9|, we also compute

Elog |Y5| =

(
N−1∑

t=0

∣∣log |X 9
t | − log C5

t

∣∣2
)1/2

= 47.38.
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Figure 7: EMD trend filtering for simulated example 2: The top left plot displays
the energy approach. The small circles are log2 Gi for 1 ≤ i ≤ 11 and the small triangles
mark those indices i ≥ 2 where Gi > Gi−1. Based on only the energy approach, we
evaluate î∗ = 7. The bottom left plot displays the ratio approach. The small circles are
log2 Ri for 2 ≤ i ≤ 11, the dashed lines are Tlog

l and Tlog
r for p = 16 in Table 1, and the

small triangles mark those indices i where Ri is significantly different from two. Based
on the ratio approach, we evaluate î∗ = 2. The energy-ratio approach evaluates î∗ = 10

which we use to estimate log C
5. The top-right plot displays log |X 9| and log Ĉ

5
while the

bottom right plot displays log C
5 (dashed line) and log Ĉ

5
(solid line).

The Euclidean distances Elog C5

i†
and E

log |Y5|
i†

are reported in the third and
fourth columns of Table 6.

Following the result in the last two columns of Table 6, we can see that

since the index i† = 10 results in the minimum Euclidean distance Elog C5

i†
,

we then conclude that i∗ = 10. This agrees with what we obtain for î∗ = 10

from the energy-ratio approach. Also, it is interesting to see that E
log |Y5|
i†

for i† = 10 is the closest value to Elog |Y5| = 47.38. Putting all the above
observations together, we conclude that EMD trend filtering has performed
excellently in estimation of log C5

t .

6.2. Real-world examples

In this section we introduce two real world examples. The first example
is the monthly mean carbon dioxide (CO2) data from Mauna Loa and the
second example is the Grand Lyon-Vélo’v bicycle rental data from the city
of Lyon in France.

For each example, we estimate the underlying trend using the EMD trend
filtering.
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Figure 8: Monthly mean CO2 data and the expected annual cycle: The left-hand
plot displays the monthly mean CO2 data from March 1958 to March 2010. The right-
hand plot displays the yearly cycles of the detrended monthly mean CO2 data using the
expected trend together with the expected annual cycle

6.2.1. Monthly mean CO2 at Mauna Loa

In this section, we analyze the monthly mean CO2 data collected from
March 1958 to March 2010 and measured at Mauna Loa observatory in
Hawaii (Available via FTP:ftp://ftp.cmdl.noaa.gov/ccg/co2/trends
/co2 mm mlo.txt. The authors have received permission from Dr. Pieter
Tans in order to use this data.) The left-hand plot in Figure 8 displays the
monthly mean CO2 data at Mauna Loa. After removing the averaged sea-
sonal cycle expected in the monthly mean CO2 data, a trend is obtained.
This trend is given at the URL together with the data, and it will serve as
a reference for a comparison with the result from EMD trend filtering. For
more information on the known seasonal cycle and trend calculation see the
URL provided above. The right-hand plot in Figure 8 displays the one year
cycles of the monthly mean CO2 data after removing the expected trend
together with their average. We call this average the expected annual cycle.

We now use EMD trend filtering for monthly mean CO2 data in order
to estimate its underlying trend. Applying EMD to this data, we obtain
I = 3 and following the energy-ratio approach, we evaluate î∗ = 3. The
left-hand plot in Figure 9 displays the estimated trend plotted together with
the expected trend obtained from removing the seasonal cycle. Since these
two trends look very similar, the smaller plot is made to display only a small
portion of these trends. It is clear that the estimated trend from the EMD
trend filtering is only a smoother version of the expected trend.
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Figure 9: Estimated trend and annual cycle for the monthly mean CO2 data:
The left-hand plot displays the expected trend together with the estimated trend using
EMD trend filtering. The estimated trend is obtained using I = 3 and î∗ = 3. Since
these two trends look very similar, the smaller plot is made to display only a small portion
of these trends. The right-hand plot displays the yearly cycles of the detrended monthly
mean CO2 data using the estimated trend together with the estimated annual cycle. The
dashed line displays the difference between the expected and estimated annual cycles

After subtracting the estimated trend from the data, we divide the de-
trended data into one year cycles and then average over all cycles to obtain
the estimated annual cycle. The right-hand plot in Figure 9 displays all the
one year cycles of the monthly mean CO2 data after removing the estimated
trend together with the estimated annual cycle. The dashed line in Figure
9 displays the difference between the expected and the estimated annual cy-
cles. This difference confirms the strong similarities between the two annual
cycles.

6.2.2. Grand Lyon-Vélo’v

In this section we analyze the data from Vélo’v, the community shared
bicycle program that started in Lyon in May 2005 (For more information,
see http://www.velov.grandlyon.com.) The program Vélo’v is a major
initiative in public transportation, in which bicycles are proposed to rental
by anyone at fully automated stations in many places all over the city, to be
returned at any other station. Such a community shared system offers both a
new and versatile option of public transportation, and a way to look into the
movements of people across the city. In order to understand the dynamics
of this system, a question is to estimate and model the evolution in time of
the number of rentals made throughout the city (Borgnat et al., 2009). The
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Figure 10: Vélo’v raw and detrended data: The left-hand plot displays the raw Vélo’v
data together with the estimated trend using EMD trend filtering. The estimated trend
is obtained using I = 12 and î∗ = 10. The right-hand plot displays the detrended Vélo’v
data by dividing the raw data with the estimated trend

left-hand plot in Figure 10 displays the raw data which is the number of
hourly rentals for two years of activity of the Vélo’v system (from December
2005 to December 2007). (The authors would like to thank JCDecaux for
providing access to this data.)

The number of rentals is both driven by cyclic patterns over the day
(more activity during day, mostly at specific rush hours, than during night)
and the week (more activities during week-days than week-ends) to which
are superimposed fluctuations due to external contingencies (such as rain,
holidays) and a general multiplicative trend over the months (Borgnat et al.,
2009). We apply EMD trend filtering to this data in order to estimate the
underlying multiplicative trend. We obtain I = 12 and using the energy-
ratio approach we evaluate î∗ = 10 which we use to estimate the trend.
The estimated trend is displayed in the left-hand plot in Figure 10 where
superimposed over the raw data.

This trend is meaningful for the data, and can be related to, and explained
by, two effects: (i) the system was expanded in 2005 and 2006 at the same
time it was already in exploitation, hence, there is a long-term increase of
the hourly rentals over the two years of data, (ii) because of seasonal effects,
the use of Vélo’v is smaller during winter, and also during the main summer
holidays; this causes several drops of the trend, during winter times and
during summer holidays.

Using the estimated trend, detrended Vélo’v data are obtained by divid-
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Figure 11: Weekly cycle of detrended Vélo’v data: This figure displays the weekly
detrended Vélo’v data together with its average

ing the number of hourly locations by the estimated trend. This is displayed
in the right-hand plot in Figure 10. The detrended data is, visually, more
stationary than the raw data. This allows a good estimation of the cyclic
pattern over the week of the number of hourly rentals. Figure 11 displays
the weekly cycles of the Vélo’v data after removing the estimated trend, and
the average over all the weeks.

This estimate of the average use of Vélo’v bicycles as a function of the
time of the week, is meaningful in that it reveals the main features of the
Vélo’v activity: during week-days, there are three sharp peaks of use in the
morning, at noon and at the end of the afternoon; during week-end, there is
a small peak at noon, and a smooth and large peak during the afternoon.

Finally, let us note that here the multiplicative trend estimation pro-
cedure was applied to a case where the underlying process that the trend
multiplies to is not actually a broadband process: it is more specifically a
periodic process (with clear periods of one week and one day) with added
fluctuations. Nevertheless, the procedure is able to find the relevant multi-
plicative trend describing the evolutions at the scale of the seasons, and that
is used to detrend the data. This is believed to be due mostly to the fact
that fluctuations have typical periodic scales (one day or one week) which are
much smaller that the typical scale of evolution (several months) of the trend,
making of this scale separation a prerequisite that might be more important
than the existence of a broadband spectrum in a stricter sense.
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7. Conclusion

An automated method has been proposed to filter the trend in a time
series, whose principle is to extract the lowest frequency intrinsic mode func-
tions (IMFs) via empirical mode decomposition (EMD). The core of the
method is to decide which IMFs belong to the trend, on the rationale that a
trend causes both a departure of the ratio of zero crossing numbers from 2,
and an increase of the energy contained in the low-frequency IMFs, as com-
pared to the expected behavior of broadband processes. Combining both
criteria, the procedure was shown to work well on several examples. Also, it
works both for the trend filtering of additive and multiplicative trends. Let
us emphasize that the approach is fully data-driven (as is EMD) and, be-
sides the parameters of the decomposition itself, the trend filtering method
has only one parameter, the level of significance p for the test of estimation of
what is the trend. From the numerical experiments that are reported in this
paper, p = 18 and p = 16 are optimum parameters for relevant estimations of
the additive and multiplicative trends respectively. The method is not based
on a specific model of the data and, once the best p fixed, has no other free
parameter.

Many numerical examples were reported to illustrate the robustness of
this EMD trend filtering and its potential interests have been further illus-
trated on two real-world examples: the CO2 data which displays an additive
trend, and the Vélo’v data which shows a multiplicative trend. In both
cases, filtering of the trends allows us to propose an estimation of the cycle
inside the data (annual cycle for the CO2 data, weekly and daily cycles for
the Vélo’v data) that compares favorably to existing methods both for the
extracted trends and estimated cycles. A strength of the method is that it
works, even if the fluctuations above the trend do not follow exactly a priori
behaviors for the fluctuations that where used to design empirically the test
(displaying for instance oscillatory behaviors more than the assumed broad-
band behavior.) This is related to its character as a fully data-driven and
model-free approach.

A perspective of this work would be to go beyond trend-filtering and
use the same type of approach to group together IMFs obtained by EMD
in several signals describing a trend, then the major cycles, and finally the
rapid fluctuations. This would be an interesting asset for the model-free
decomposition of processes.
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