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Abstract

The present work is concerned with the problem of extracting low-frequency
trend from a given time series. To solve this problem, the authors develop a
nonparametric technique called empirical mode decomposition (EMD) trend
filtering. A key assumption is that the trend is representable as the sum of
intrinsic mode functions produced by the EMD. Based on an empirical analy-
sis of the EMD, the authors propose an automatic procedure for selecting the
requisite intrinsic mode functions. To illustrate the effectiveness of the tech-
nique, the authors apply it to simulated time series containing different types
of trend, as well as real-world data collected from an environmental study
(atmospheric carbon dioxide levels at Mauna Loa Observatory) and from a
large-scale bicycle rental service (rental numbers of Grand Lyon Vélo’v).

Keywords: Empirical mode decomposition, trend filtering, adaptive data
analysis, monthly mean carbon dioxide cycle, seasonality

1. Introduction

Many real-world time series exhibit a “composite” behavior, in the sense
that such a time series can be decomposed into a superposition of two “com-
ponents.” Typically one of these components can be classified as “trend,”
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while the other component is classified as “fluctuation.” (Note that the word
“residual” is sometimes used instead of “fluctuation.” In this paper, however,
the term residual will be used in the context of empirical mode decompo-
sition; see Section 2.) The problem of effecting such a decomposition, and
classifying the resulting components as trend or fluctuation, is called the
trend filtering problem (or trend estimation problem). Solving this problem
is desirable, since an analysis of the trend component of a time series can
often yield valuable information, e.g., for prediction. An obvious initial bar-
rier to solving the trend filtering problem is that the terms “decomposition,”
“trend,” and “fluctuation” are context-dependent. Indeed, given a time series
generated by a particular physical system, it may be clear (based on physical
intuition) how to solve the trend filtering problem. In the absence of physical
intuition, it may still be possible to solve the trend filtering problem, pro-
vided one makes an ad hoc definition of trend; see (Alexandrov et al., 2008).
Such definitions may require extra assumptions concerning the nature of the
time series.

A common ad hoc definition of trend is that of a “long-term change in
the mean” (Chatfield, 1996; Alexandrov et al., 2008). This definition can
lead to approaches which attempt to turn the trend filtering problem into
one of regression. For example, it may be reasonable to assume that the
time series has a trend component described by a low-degree polynomial.
The coefficients of this polynomial can then be estimated by a standard
polynomial regression; we again refer to (Alexandrov et al., 2008) for a more
comprehensive discussion. Other approaches exist which do not impose such
a strict model on the trend. For instance, nonparametric trend filtering
assumes that the fluctuation possesses generic stationarity properties, and
that the trend can be found by an ad hoc smoothing operation applied to
the entire time series, e.g., using the Henderson filter (Henderson, 1916) or the
Hodrick–Prescott filter (Hodrick and Prescott, 1997). Yet another possibility
is to interpret the trend estimation problem in the frequency-domain sense—
for instance, one can assume the trend is represented by a particular set of
low-frequency (possibly polynomials or unit root) oscillations. This turns the
trend filtering problem into a bona fide filtering problem. Viewed in this way,
it may be profitable to use Wiener–Kolmogorov filtering (Pollock, 2006) to
solve the trend filtering problem. Finally, it is worthwhile to mention that
generalized “trend cycles,” defined as a “short-term trend [that] generally
includes cyclical fluctuations,” have also been studied (Alexandrov et al.,
2008). Deciding if a trend cycle should be considered as trend (e.g., in any of
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the above senses) depends on the application and of course the observation
scale.

In this paper, we introduce a novel approach to solving the trend filtering
problem. We call this approach empirical mode decomposition trend filtering.
It is philosophically similar to the “low-frequency approach” described in the
preceding paragraph. Indeed, empirical mode decomposition trend filtering
is based on the following definition: Trend is that component of a time series
which is “slowly varying” in the sense that it is represented by the “slow-
est” intrinsic mode functions produced by the empirical mode decomposition
(EMD). Recall (Huang et al., 1998) that the EMD is an algorithm which de-
composes a time series into a finite additive superposition of “intrinsic mode
functions,” or IMFs. The IMFs are computed in an iterative fashion—each
iteration produces an IMF which is “rapidly varying” relative to the residual
time series. Thus our decomposition into components is effected by the EMD.
The remaining question is “Which of the IMFs produced by the EMD should
be deemed the slowest?” It is precisely this question which is addressed by
EMD trend filtering. In particular, we attempt to answer this question by ex-
amining certain properties of the IMFs’ energies and zero crossing numbers;
these properties were first reported in (Flandrin et al., 2004b; Rilling et al.,
2005). We give evidence which supports the fact that certain changes in these
properties characterize the tipping point between trend and fluctuation.

It must be mentioned that the use of the EMD to solve the trend filtering
problem has already been proposed in the literature. However, such work has
either relied on an a priori model for the fluctuation (Flandrin et al., 2004a),
or has considered the trend as being the final residual time series produced
by the EMD (Wu et al., 2007). In a sense, using the EMD to solve the
trend filtering problem shares common features with singular-spectrum anal-

ysis applied to the same problem (Vautard and Ghil, 1989; Ghil and Vautard,
1992; Vautard et al., 1991). This is because the SSA also effects a decomposi-
tion into oscillatory components. Like the EMD-based method proposed by
Wu et al. (2007), a possible approach to solving the trend estimation prob-
lem using SSA is to identify the trend as the lowest-frequency oscillatory
component. Other possibilities are to look for oscillatory components with
prescribed smoothness or monotonicity properties; see (Alexandrov et al.,
2008).

The rest of the paper is organized as follows. In Section 2, we briefly
review some background material concerning the EMD. In Section 3 we state
what trend means in the context of this paper. In Section 4, we describe the
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details of EMD trend filtering. The performance of EMD trend filtering is
demonstrated in Sections 5, 6 and 7 through analyses of simulated and real-
world time series. The concluding remarks are made in Section 8. Finally,
the extension of the EMD trend filtering method to multiplicative models is
provided in the Appendix.

2. The Empirical Mode Decomposition

The empirical mode decomposition (EMD) is an algorithm which decom-
poses a time series into a finite additive superposition of oscillatory compo-
nents, each of which is called an intrinsic mode function (IMF); see (Huang
et al., 1998). The EMD does not rely on any technical assumptions concern-
ing the nature of the time series; note that this includes modelling assump-
tions. The basic idea is that IMFs are computed subject to two requirements:
First, the number of local extrema and number of zero crossings of each IMF
vary by at most one. Second, the mean of the upper and lower envelopes of
each IMF should be identically equal to zero, where the envelopes are com-
puted by means of a fixed interpolation scheme. (In the numerical results
presented in this paper, we have confined ourselves to the use of cubic spline
interpolation.) The IMFs are computed by means of an iterative scheme.
This scheme however depends on a stopping criterion which guarantees that
the requirements above are satisfied within a given tolerance while at the
same time each extracted IMF is meaningful in both its amplitude and fre-
quency modulations; we again refer to (Huang et al., 1998) for details.

To make this intuitive description more precise, let X = {Xt}t≥0 be a
(real, discrete-time, stochastic) process, and let X = (X0, X1, . . . , XN−1) be
a realization of X. (These assumptions illustrate a notational convention
that is used throughout the rest of the paper, namely that time series of
length N are written in bold typeface and are regarded as elements of the
Euclidean space R

N .) As an initialization step, set i = 1 and ρ0 = X . The
EMD computes the IMFs of X using the following algorithm.

(1) Identify the local maxima and local minima of ρi−1.

(2) Together with the chosen interpolation scheme, use the maxima and
minima from step (1) to compute the upper and lower envelopes of ρi−1.

(3) Determine the local trend, denoted Qi, as the mean of the upper and
lower envelopes from step (2).

(4) Compute the local fluctuation, denoted h = X − Qi.
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(5) If h is not an IMF, in the sense that it does not satisfy the two require-
ments described in the beginning of this section, then increment i and
go to step (1) with ρi−1 = h. (Huang et al. (1998) call this the sifting

process ; it is this process which depends on the stopping criterion.)

(6) If h is an IMF, in the sense that it satisfies the two requirements described
at the beginning of this section, then the ith intrinsic mode function of
X is Mi = h, and the ith residual is ρi = X − Mi. Increment i, then
go to step (1).

The algorithm halts when the ith residual has no further oscillations, in
the sense that it has no local maxima or local minima. We denote by I the
largest index for which Mi is defined. Then

X =
I∑

i=1

Mi + ρI . (1)

In this decomposition, M1 through MI can be thought of as containing
a “spectrum” of local oscillations in X , with the shortest-period (highest
frequency) oscillations represented in M1 and the longest-period (lowest
frequency) oscillations represented in MI . The computational complexity
of the algorithm depends on X , the chosen interpolation scheme, and the
stopping criterion. However, the algorithm usually halts in a reasonably
small number of steps. For example, it is known (Flandrin et al., 2004a) that
if X is a broadband process (a broadband process includes a relatively wide
range (or band) of frequencies), then the decomposition produced by the
EMD has an almost dyadic filter-bank structure, typically with I ≈ log2 N .
Moreover, it is known that the sifting process typically halts after some tens
of iterations (Huang et al., 1998).

3. Trend in EMD

As discussed in Section 1, the term “trend” is meaningless and has to be
made more precise in order to be useful. In this section we state what we
mean by trend in this paper and in the context of EMD trend filtering. To
begin with, let us introduce some notation.

Let Y = (Y0, Y1, . . . , YN−1) be a realization of a process Y = {Yt}t≥0,
and let C = (C0, C1, . . . , CN−1) ∈ R

n be a trend component. Assume also
that Y is a broadband process with a continuous spectrum. From Y and
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C we may form two new time series: The first is Y + C, the additive mix

of Y and C; the second is CY , the multiplicative mix of Y and C. (Here
the multiplication is being performed componentwise.) In either case, we say
that Y is fluctuation of the mix. Now let X be the additive or multiplicative
mix of Y and C. The question we wish to answer is: “Solely given X as
data, under what conditions should it be possible to accurately estimate C

from X ?” To do so, we must constrain the trend and fluctuation of the mix
in some fashion. We take the following pragmatic approach that is based on
properties of EMD.

Recall that in EMD, the successive IMFs are oscillations going from high
frequency to low frequency, and that this property is valid locally in time
(there is not necessarily a global separation of spectrum of successive IMFs)
(Huang et al., 1998). A loose “definition” of a trend in this paper is that
C is locally slowly varying as compared to Y . Hence, a pragmatic way of
satisfying this is that the trend should be obtained as the sum of the last few
IMFs and the residual extracted from X .

Let us now turn the attention to some properties of fluctuation of the mix
which can also define (in contrast) the trend. First, and in agreement with
Flandrin et al. (2004b) and Wu and Huang (2004), the mean frequency of
the successive IMFs of broadband processes decrease, similarly to constant-
Q filter-banks, with a factor near 2. This will be the first criterion studied
in Section 4.1 by estimating the mean frequency from the number of zero
crossings of IMFs. Second, the finding of Rilling et al. (2005) is that the
“energy” of the IMFs of many broadband processes decreases as the index of
the IMFs increases. This has been first reported and demonstrated in Rilling
et al. (2005) for fractional Gaussian noise (fGn) processes (Embrechts and
Maejima, 2002) which are convenient models for generic broadband processes.
We will provide more discussion in Section 4.2 for the validity of these char-
acteristics. An explicit assumption in our work is that the fluctuation Y

contaminating the trend C have such energy profile. This does not exclude
situations with a substantial energy increase downwards low frequencies, as
is the case for fGns with Hurst exponent H > 1/2. Indeed the decreasing
energy condition does not apply directly to the broadband processes, but to
their IMFs. In practice, given the previously mentioned dyadic structure for
the IMF spectra, processes Y with power spectra diverging as f−α at the
zero frequency are admissible provided that α < 1.

In the presence of a trend, the prescription used in this paper is that
the IMF index which shows a rupture in the two properties described above
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separates the trend from the fluctuation. It follows from this prescription
that a trend in the present work is neither restricted to be monotonic nor to
be some polynomial functions. The trend in this work can however contain
oscillations while in Wu et al. (2007) only the residual of EMD was deemed
a trend, hence constraining it to have no oscillations at all.

In the following two sections, we will describe in details the properties
discussed above and their abilities in separating trend and fluctuation.

4. EMD Trend Filtering

Let X be the additive mix of Y and C, where these entities are given as
in the previous section. As described there, our goal is to accurately estimate
C from X . This section is devoted to describing EMD trend filtering which
can be used to obtain such an estimate.

The following notation and terminology will be employed throughout this
section. Let Mi be the IMFs of X , where 1 ≤ i ≤ I, and let i∗ be such that

Ci∗ =
I∑

i=i∗

Mi + ρI (2)

is the best approximation to C in the Euclidean metric. We call i∗ the best

index and Ci∗ the best approximation of C. Estimating C is equivalent to

estimating the best index. If î∗ is an estimate of i∗, then we denote by Ĉi∗

the corresponding estimate of C.
EMD trend filtering, described over the course of the next three subsec-

tions, actually consists of three approaches to estimating i∗. These are called,
respectively, the ratio, energy, and energy-ratio approaches.

The extension of the trend filtering method to multiplicative mixes in-
cluding all simulations can be found in the Appendix.

4.1. Ratio approach

In this subsection we describe the first approach to estimate i∗, which is
based on an empirical property of the zero crossing numbers of IMFs.

Let us first establish some additional notation. For a given time series,
the zero crossing number of its ith IMF is denoted by Zi, and let us define
Ri = Zi−1/Zi for i ≥ 2. (This is well-defined since Zi ≥ 1; see Section 2.)
Of course, Ri depends fundamentally on the given time series; since the par-
ticular time series is always clear from context, we suppress this dependence.
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Figure 1: Empirical distribution of the elements of ~R for broadband data: Com-
puted for 10000 realizations of 20 broadband processes in the collection. Each line of
different type and color associates with a broadband process in the collection.

We call Ri the ith ratio of the zero crossing numbers (ith RZCN). It has been
observed by Flandrin et al. (2004b) and Wu and Huang (2004) that if the
time series under study is a realization of a generic broadband process, the
approximation Ri ≈ 2 holds.

Let us first support this observation. We considered 20 broadband pro-
cesses of the following types: 17 fGn processes with H = 0.1, 0.15, 0.2, . . . , 0.9,
two stationary AR(2) processes, and a nonstationary AR(2) process with
time-dependent coefficients. For each process in the collection, we simu-
lated B = 10000 realizations of length N = 2000, then computed the IMFs
of each realization along with their zero crossing numbers. Denoting the
ith RZCN of its bth realization by Ri,b, where 2 ≤ i ≤ Ib, and setting
~Rb = (R2,b R3,b · · · RIb,b), we then computed the empirical distribution of

the elements of ~R = (~R1 ~R2 · · · ~RB). Fig. 1 displays this empirical distri-
bution, and supports the contention that Ri ≈ 2. In fact, this distribution is
approximately Gaussian with mean 2. Furthermore, it is evident from Fig. 1
that apart from the expected peak at 2, we also observe several smaller but
visible peaks at higher values. These peaks appear to be due to the presence
of high-order IMFs; indeed, these slowly oscillating modes have small zero
crossing numbers. Because RZCNs are calculated as the ratio of two integers,
if the numerator is a small number, then the distribution of the elements of
~R will have peaks at integer or rational values such as 2, 5/2, 3, 4/3, etc.
Hence, RZCNs with integer or rational values for small denominators have
slightly higher expected probabilities than neighbouring values.

Generically, the approximation Ri ≈ 2 fails for i near the best index i∗.
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Figure 2: Empirical distribution of the elements of ~R for additive mixes: Left:
Computed for additive mixes obtained by adding C

3 from Fig. 5 and realizations of
broadband processes in the collection. Right: Computed for detrended additive mixes.

This observation is supported by the following data. For each broadband
process in the collection and using its realizations, we constructed 10000
additive mixes, using C3 (displayed in Fig. 5) as a trend. We then computed

the IMFs of each mix along with their RZCNs and set ~Rb and ~R as described
earlier. The left-hand plot in Fig. 2 displays the empirical distribution
of the elements of ~R for additive mixes, and supports the contention that
Ri ≈ 2 fails. In fact this empirical distribution is non-Gaussian as its side
peaks grows taller in comparison with the distribution shown in Fig. 1. The
problem however is that it is not yet clear whether Ri ≈ 2 fails around i∗.
To clarify this, we proceeded with further simulations. For each broadband
process in the collection, we used the IMFs obtained for each mix and used
the knowledge of C3 to evaluate the best index i∗ (see Section 5 for details.)
For each mix, we then computed the best approximation of the fluctuation

by eliminating those IMFs whose indices are greater than or equal to i∗ (we

call this detrending the mix.) We set ~Rb and ~R for the remaining IMFs and

computed the empirical distribution of the elements of ~R. This distribution,
shown in the right-hand plot in Fig. 2, is Gaussian with mean 2 as was the
case in Fig. 1. We therefore conclude that Ri ≈ 2 fails around i∗.

Based on what we described above, we propose to estimate i∗ by choosing
î∗ to be the smallest index i for which Ri is “significantly different from 2”.
We refer to this as the ratio approach. The results of our simulations for
broadband processes suggest that in order to conclude whether or not Ri is
“significantly different from 2”, a common threshold test can be used. For
0 ≤ p ≤ 100, we therefore compute p% and (100 − p)% significance level of
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the empirical distribution shown in Fig. 1 as the left threshold and the right

threshold respectively. At the end, any RZCN outside of the appropriate
right and left thresholds is considered significantly different from 2.

A weakness of the ratio approach is that, since selection of the left and
right thresholds is based on empirical results, it is always possible that for a
given p, the smallest i for which Ri appears significantly different from 2 is
a false detection. In Section 5, we will discuss how to select an optimum p.

4.2. Energy approach

In this subsection we describe the second approach to estimate i∗, which
is based on an empirical property of the so-called “energy” of the IMFs.

To describe this property, we need to establish some additional notation.
Let {Zt}t≥0 be an arbitrary process. For a given time series which is a
realization of {Zt}, we define the energy of its ith IMF, denoted Gi, by

Gi ,

N−1∑

t=0

|Mi
t|

2, 1 ≤ i ≤ I.

Assume now that we have B different time series obtained from {Zt}. Given
the bth time series, 1 ≤ b ≤ B, if Gi,b denotes the energy of its ith IMF, the
averaged energy of its ith IMF is defined by Gi , 1

B

∑B

b=1 Gi,b.
It is shown in Rilling et al. (2005) that if the time series under study are

realizations of a generic broadband process, then Gi is a decreasing sequence
in i. This results were obtained by studying fGn processes. This observation
is also supported by the following data. Recall the broadband processes and
their realizations from Section 4.1. We computed the IMFs of each realization
along with Gi,b and Gi. Fig. 3 displays log2 Gi for 20 broadband processes
in the collection. The result of this simulation supports the idea that Gi is a
decreasing sequence in i when computed for broadband data.

Our key observation is that, generically, Gi increases for i near the best
index i∗. This observation is supported by the following data. Recall the
additive mixes obtained in Section 4.1. We computed the IMFs of each
mix along with Gi,b and for each broadband process in the collection, we
computed Gi. The left-hand plot in Fig. 4 displays log2 Gi computed for
additive mixes. For each broadband process in the collection, we observe
that Gi increases at some i but we cannot yet determine whether or not it
has occurred around i∗. To clarify this, we detrended each mix as described
in Section 4.1 and then recomputed Gi,b using the remaining IMFs. For each
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Gi: Computed for 10000 realizations of 20 broadband processes in the
collection.
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Gi: Left: Computed for additive mixes. Right: Computed for detrended
additive mixes and displayed only up to i = 5.

broadband process in the collection, we then computed Gi and observed that
Gi increases at the best index i∗. The right-hand plot in Fig. 4 displays
log2 Gi computed for detrended additive mixes only up to i = 5. This is
because for some examples, i∗ > 5 but for the majority i∗ = 5.

Based on the above discussion, identifying the smallest index i ≥ 2 such
that Gi > Gi−1 evaluates î∗. This approach is called the energy approach.

As for the ratio approach, one could think of looking for significant in-
creases which would be based on some statistical information about the dis-
persion of energy of each IMF. This viewpoint has been considered first for
white Gaussian noise in Huang et al. (2003) and further generalized in Flan-
drin and Gonçalves (2004) and Flandrin et al. (2004a), even in a detrending
perspective. The limitation however is that the associated confidence inter-
vals depend strongly on some prior knowledge about the spectra of broadband
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processes. This is the main reason that we do not follow such direction, as
we are interested in a procedure which is not model-dependent.

A limitation with the energy approach is that one is often given a single
time series to use for trend estimation. Computation of energy based on only
one time series may cause an increase in Gi when i 6= i∗.

4.3. Energy-ratio approach

To overcome limitations of the previous approaches, we introduce the last
and most important approach to estimate i∗. As described, the energy and
ratio approaches are confronted with possible false detections of the smallest
index which does not associate with the trend. Since the criteria proposed by
the energy and ratio approaches to evaluate î∗ are independent, the number
of false detections can be reduced by combining these two approaches.

To be more precise, for each 2 ≤ i ≤ I, we compute each index i such
that Gi > Gi−1. For a fixed p, we also evaluate every index i where Ri is
significantly different from 2. We then evaluate î∗ to be the smallest common
index in both approaches. This approach is called the energy-ratio approach.

5. Performance Evaluation of the EMD Trend Filtering; Evalua-

tion of an optimum p

We follow two main goals in this section. The first goal is to evaluate
the overall performance of the EMD trend filtering. The second goal is to
empirically evaluate an optimum p which can improve the performance of the
energy-ratio approach in comparison with the energy and ratio approaches.
In order to do so, we use 10 simulated examples including 6 additive and 4
multiplicative mixes such that

X k =






Ck + Yk, 1 ≤ k ≤ 3
CkYk, 4 ≤ k ≤ 6
(Ck−3 − 1) + Yk−3, k = 7
Ck−3 + Yk−3, 8 ≤ k ≤ 9
(Ck−9 + 1)Yk−9, k = 10.

(3)

In order to construct the above mixes, we use the following.
Let Y k = {Y k

t }t≥0, 1 ≤ k ≤ 6, be 6 generic broadband processes such
that for 1 ≤ k ≤ 2, we have

Y 1
t = 0.8Y 1

t−1 − 0.4Y 1
t−2 + ζt, and

Y 2
t = 0.2Y 2

t−1 + 0.5Y 2
t−2 + ξt,
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Figure 5: Trends used in simulated examples: C
k for 1 ≤ k ≤ 6.

where {ζt} and {ξt} are two independent white noise processes with variance
104, and for 3 ≤ k ≤ 6, we have 4 fGn processes with Hurst exponents 0.7,
0.5, 0.15, and 0.75 respectively. Let Yk = (Y k

0 , Y k
1 , . . . , Y k

N−1) be a realization
of Y k. Now, let us assume that Ck = (Ck

0 , Ck
1 , . . . , Ck

N−1), 1 ≤ k ≤ 6, are 6
trends where for 1 ≤ k ≤ 4, we have 4 randomly constructed trends using
peacewise linear and cubic spline techniques and for 5 ≤ k ≤ 6, we have

C5
t = 2 − e

−(t−1000)2

2×4002 , and

C6
t = 1.5 + cos(2πfst), fs = 0.002.

Fig. 5 displays Ck for 1 ≤ k ≤ 6 when N = 2000.
For each k, we created B = 10000 realizations of length N = 2000 of Y k

and constructed the mixes for each realization following Eq. (3). We denote
the bth realization of the kth example by bk. In order to achieve the goals
described earlier in this section, we started with the following computations.
We applied EMD to X bk (or log |X bk | for multiplicative mixes) in order to

extract its IMFs. Denote I, Mi, and ρI by Ibk , Mibk , and ρIbk respectively.
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For each i† ∈ {1, 2, . . . , Ibk}, we computed

C
bk

i†
=

Ibk∑

i=i†

Mibk + ρIbk , (4)

and the Euclidean distance (ED) between Ck and C
bk

i†
, denoted Ebk

i†
. The best

index i∗ is that i† which results in minimum Ebk

i†
, denoted Ebk

i∗
. Clearly, C

bk

i∗

is the best approximation of Ck.
Let Y

bk

i∗
= X bk − C

bk

i∗
. Here Y

bk

i∗
is the best approximation of the fluc-

tuation Ybk . We computed the Euclidean norm (EN) of Y
bk

i∗
and Ybk and

denoted them by EYbk

i∗
and EYbk respectively.

We then estimated Ck using three different trend filtering methods. The
methods we used are the Hodrick–Prescott (HP) filter (Hodrick and Prescott,
1997), the singular-spectrum analysis (SSA) (Vautard et al., 1991) and the
EMD trend filtering using ratio, energy and energy-ratio approaches. We de-

noted the trend estimates obtained above by Ĉ
bk

m where the letter m indicates
the type of trend filtering. For simplicity, we selected m to be r, g, and gr
to refer to the ratio, energy, and energy-ratio approaches respectively. Since
the ratio and energy-ratio approaches are dependent on p, we denoted the

estimates for these methods by Ĉ
bk,p

m . After all, we computed the ED between
Ck and each trend estimate and denoted them by Ebk

m (or Ebk,p
m .)

For each k, we then averaged all the ENs and EDs computed above over

B realizations and denoted them by E
k

m (or E
k,p

m ). In this paper, in order to

obtain E
k

hp, we used two free parameters of 105 and 5× 105, for E
k

ssa, we used

the window lengths of 100 and 200, and for E
k,p

r and E
k,p

gr , we used 27 fixed
p where 0 ≤ p ≤ 45. Tables 1, 2, 3, and 4 report all the averaged EDs and
ENs computed using these parameters.

To evaluate the performance of the EMD trend filtering which was the first
goal in this section, we make two attempts. The first attempt is to compare
the best approximation of Ck obtained from the EMD trend filtering with
estimates obtained from the HP filter and the SSA. In order to do so, for
each k, we compared the reported EDs from the second column of Table 1
with those from the third to sixth columns. Since these EDs are comparable,
we conclude that the EMD trend filtering performs similarly to the HP filter
and the SSA. Note that since both HP filter and the SSA are dependent
on free parameters, the quality of their performance can vary in comparison
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k E
k

i∗
E

k

hp E
k

hp E
k

ssa E
k

ssa E
Y

k

i∗
E

Y
k

1 0.822 0.840 0.697 0.818 0.627 5.475 5.493
2 0.887 0.930 0.785 0.920 0.729 2.854 2.922
3 0.642 0.655 0.581 0.652 0.542 2.334 2.398
4 4.808 6.014 4.898 3.924 3.070 49.73 49.63
5 4.803 6.396 5.212 4.144 2.863 49.75 49.65
6 8.513 7.315 6.123 6.265 13.75 49.45 49.61
7 0.752 0.898 0.733 0.871 0.624 7.392 7.400
8 0.631 0.393 0.286 1.651 0.211 17.32 17.31
9 4.594 4.314 3.850 4.273 3.715 12.47 13.18
10 6.369 7.028 5.732 3.924 3.070 49.84 49.66

Table 1: Performance evaluation of the EMD trend filtering: For 1 ≤ k ≤ 10, the
second to sixth columns report the average over B of the EDs between Ck and respectively
C

bk

i∗
, C

bk

hp with free parameter 105, C
bk

hp with free parameter 5×105, Cbk

ssa with window length

100, and finally Cbk

ssa with window length 200. The last two columns are the average over
B of the ENs of Y

bk

i∗
and Y

bk respectively.

with the EMD trend filtering. This is clear from the reported EDs in Table 1.
The second but also necessary attempt we make is to compare the fluctuation
of each mix with the best approximation of the fluctuation. This is done by
comparing the averaged ENs reported in the last two columns of Table 1.
The fact that these two columns are comparable is an indication that the
EMD trend filtering is a well-performed method in estimating the trend.

Recall the second goal in this section which is to empirically evaluate an
optimum p which makes the energy-ratio approach to perform better than
the energy and ratio approaches. We should note that by using the term
optimum here, we really mean within the given examples.

In order to obtain such p, we used the averaged EDs reported in Tables 2,
3 and 4. Comparing the values reported in Tables 2 and 3 shows that for ma-
jority of p and k, the averaged EDs associated with the energy-ratio approach
are smaller than those for the ratio approach. This means that the energy-
ratio approach performs better than the ratio approach regardless of p. As
a result, selection of p should only depend on how the energy-ratio approach
compares with the energy approach. We therefore compare the averaged EDs
reported in Table 3 with those reported in Table 4. For each k, we select the

smallest p in Table 3 such that E
k,p

gr < E
k

g and denote it by pk
1. We display

E
k,pk

1

gr in bold in Table 3 and we have pk
1 ∈ {11, 5, 10, 1, 3, 11, 16, 1, 13, 9}.

For each k, we observe that for p > pk
1, E

k,p

gr varies (mostly decreases) until
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p E
1,p

r E
2,p

r E
3,p

r E
4,p

r E
5,p

r E
6,p

r E
7,p

r E
8,p

r E
9,p

r E
10,p

r

1 5.346 5.819 3.441 5.421 6.350 21.62 1.524 0.655 21.43 9.033
3 2.987 3.400 1.807 5.457 5.877 17.44 1.092 0.663 10.86 8.262
5 1.709 1.618 0.917 6.037 6.115 13.20 1.020 0.863 6.927 7.972
7 1.694 1.601 0.916 7.206 7.185 11.72 1.083 1.237 6.847 8.607
8 1.474 1.341 0.838 8.150 8.031 12.31 1.109 1.514 6.558 9.297
9 1.379 1.137 0.770 9.142 8.805 12.29 1.137 1.792 5.977 9.913
10 1.366 1.101 0.759 10.18 9.822 12.76 1.191 2.101 5.752 10.73
11 1.336 1.065 0.750 10.94 10.63 12.99 1.253 2.419 5.550 11.50
12 1.371 1.068 0.760 11.88 11.54 13.73 1.335 2.766 5.506 12.37
13 1.412 1.067 0.770 12.88 12.59 14.45 1.404 3.122 5.456 13.28
14 1.453 1.078 0.782 13.84 13.62 15.23 1.491 3.482 5.463 14.16
15 1.513 1.091 0.797 14.72 14.58 15.94 1.577 3.815 5.465 14.95
16 1.574 1.112 0.814 15.44 15.35 16.54 1.671 9.125 5.508 15.61
17 1.639 1.156 0.837 16.37 16.32 17.35 1.772 4.438 5.559 16.63
18 1.706 1.211 0.858 17.24 17.14 18.08 1.884 4.739 5.629 17.43
19 1.772 1.277 0.880 18.10 18.02 18.94 1.986 5.019 5.720 18.26
20 1.856 1.379 0.912 18.74 18.75 19.65 2.097 5.314 5.832 18.98
22 2.011 1.580 0.983 20.31 20.43 21.25 2.319 5.861 6.135 20.72
24 2.174 1.763 1.059 21.91 22.08 22.97 2.503 6.264 6.535 22.49
26 2.375 1.943 1.156 23.48 23.67 31.54 2.695 6.599 7.083 24.26
28 2.597 2.076 1.258 24.98 25.33 26.15 2.907 6.931 7.639 25.85
30 2.812 2.178 1.350 26.50 26.97 27.76 3.111 7.195 8.149 27.58
32 3.012 2.246 1.436 27.90 28.47 29.30 3.317 7.422 8.594 29.15
34 3.201 2.295 1.511 29.11 29.75 30.62 3.518 7.643 8.965 30.50
35 3.300 2.315 1.546 29.71 30.46 31.37 3.624 7.736 9.158 31.27
40 3.694 2.384 1.695 32.73 33.70 34.41 4.145 8.220 9.892 34.54
45 3.979 2.426 1.794 34.23 35.19 35.81 4.573 8.564 10.34 36.21

Table 2: Averaged EDs for ratio approach: For each k and for 27 selected fixed

1 ≤ p ≤ 45, this table reports the average over B of the EDs between C
k and Ĉ

bk,p

r .
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p E
1,p

gr E
2,p

gr E
3,p

gr E
4,p

gr E
5,p

gr E
6,p

gr E
7,p

gr E
8,p

gr E
9,p

gr E
10,p

gr

1 3.377 4.346 2.500 5.429 6.359 21.59 1.222 0.654 21.42 9.101
3 2.275 3.174 1.729 5.300 5.729 17.44 1.086 0.633 10.89 8.353
5 1.483 1.584 0.921 5.204 5.229 12.99 0.993 0.633 6.930 7.636
7 1.482 1.582 0.920 5.231 5.246 10.89 0.992 0.633∗ 6.846 7.423
8 1.328 1.355 0.832 5.238 5.252 10.89 0.963 0.634 6.528 7.429
9 1.209 1.137 0.751 5.202∗ 5.103∗ 10.16 0.927 0.634 5.897 7.178

10 1.141 1.092 0.724 5.228 5.133 9.909 0.912 0.635 5.621 7.162
11 1.071 1.047 0.702 5.250 5.173 9.511 0.893 0.635 5.370 7.132
12 1.045 1.037 0.697 5.266 5.191 9.444 0.890 0.636 5.265 7.146
13 1.032 1.024 0.691 5.288 5.229 9.330 0.875 0.636 5.158 7.078∗

14 1.007 1.024 0.686 5.322 5.270 9.236 0.875 0.637 5.088 7.088
15 0.976 1.020∗ 0.681 5.348 5.300 9.172 0.871 0.638 5.008 7.097
16 0.955 1.026 0.680 5.369 5.317 9.054 0.857 0.639 4.962 7.099
17 0.952 1.052 0.679 5.398 5.356 9.022 0.856 0.640 4.916 7.109
18 0.925 1.085 0.677 5.414 5.389 8.999 0.853 0.642 4.887 7.096
19 0.916 1.135 0.677∗ 5.433 5.412 8.982 0.847 0.642 4.878 7.120
20 0.909 1.217 0.679 5.447 5.429 8.967 0.846 0.643 4.866 7.123
22 0.906 1.370 0.681 5.491 5.484 8.949 0.842 0.645 4.862∗ 7.141
24 0.899∗ 1.516 0.685 5.523 5.537 8.919 0.835∗ 0.647 4.873 7.170
26 0.904 1.668 0.690 5.550 5.578 9.013∗ 0.836 0.648 4.901 7.211
28 0.920 1.790 0.695 5.584 5.620 8.922 0.838 0.649 4.938 7.244
30 0.933 1.880 0.698 5.616 5.666 8.937 0.839 0.650 4.957 7.281
32 0.948 1.957 0.702 5.632 5.684 8.944 0.839 0.651 4.980 7.302
34 0.963 2.013 0.707 5.661 5.724 8.939 0.839 0.652 5.006 7.341
35 0.974 2.036 0.709 5.672 5.736 8.948 0.840 0.652 5.018 7.348
40 1.009 2.124 0.718 5.715 5.793 8.968 0.834 0.656 5.950 7.385
45 1.039 2.177 0.726 5.779 5.860 8.969 0.835 0.657 5.160 7.389

Table 3: Averaged EDs for energy-ratio approach: For each k and for 27 selected

fixed 1 ≤ p ≤ 45, this table reports the average over B of the EDs between C
k and Ĉ

bk,p

gr .

For each k, the bold averaged EDs associate with the smallest p where E
k,p

gr < E
k

g and the
averaged EDs marked with ∗ are the minimum EDs. The selection is based on four digit
decimal points.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

E
k

g 1.072 2.220 0.734 5.813 5.906 9.590 0.863 0.659 5.223 7.419

Table 4: Averaged EDs for energy approach: For each k, this table reports the

average over B of the EDs between C
k and Ĉ

bk

g .

17



it reaches its minimum (denoted pk
2 and marked with a star in Table 3) and

increases again but it does not exceed E
k

g (at least for maximum p = 45.)
This observation indicates that first of all, an optimum p is not unique as
it depends strongly on the type of example. Second, there is a wide range
of p values which make the energy-ratio approach to perform better that
the energy approach. We therefore select an optimum p, denoted p∗ to be
such that p∗ > maxk pk

1 and also p∗ < maxk pk
2. We therefore can select any

16 < p∗ < 26. In this paper, we use p∗ = 18.

6. Simulated Examples

In this section, we demonstrate the performance of the energy-ratio ap-
proach in estimating i∗ via two simulated examples. The examples we use
here are the additive mix X 1 and the multiplicative mix X 5 introduced in
Section 5 for further analysis.

The notation used in this section is exactly the same as in Section 5 except
that since we only work with one time series of each mix, we replace bk in the
notation with k. For the ratio and energy-ratio approaches, we use p∗ = 18.

6.1. Simulated example 1

Recall Y 1 and C1 from Section 5. Let Y1 = {Y 1
0 , Y 1

1 , . . . , Y 1
N−1} be a

realization of Y 1. Set the additive mix X 1 = Y1 + C1 for N = 2000. We
apply EMD to X 1 and extract its IMFs and obtain I = 10.

Using the IMFs obtained for X 1, we first compute C1
i†

for 1 ≤ i† ≤ 10

as in Eq. (4). We then compute the EDs between C1 and C1
i†
, denoted E1

i†
,

and the EDs between X 1 and C1
i†
, denoted EY1

i†
. These are reported in the

first two rows of Table 5. Based on these reported values, we can see that
since i† = 8 results in minimum E1

i†
, we conclude that i∗ = 8. An additional

support for this selection is that EY1

8 is the closest value to the EN of Y1

which is 5.493. We now want to compare the performance of the ratio, energy
and energy-ratio approaches in estimating i∗.

Looking at the energy of the IMFs of X 1, we observe that the IMF indices
for which Gi > Gi−1 are i = {6, 8, 9, 10}. Based on the energy approach, we
evaluate î∗ = 6 which is the smallest observed index in this case. Looking at
the RZCN of each IMF on the other hand, we observe that the IMF indices
for which Ri is significantly different from 2 are i = {4, 5, 7, 8, 9, 10}. Based
on the ratio approach, we evaluate î∗ = 4. Finally, the energy-ratio approach
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i† 1 2 3 4 5 6 7 8 9 10 11
E1

i†
5.49 4.38 3.21 2.19 1.57 1.2 0.69 0.63 3.80 9.75 -

EY
1

i†
2.1e-15 3.32 4.64 5.17 5.32 5.38 5.48 5.50 6.61 11.2 -

E5
i†

47.4 36.6 27.9 19.7 14.2 10.4 8.25 5.05 3.68 2.49 10.4

EY
5

i†
7.5e-14 34.8 40.3 43.9 45.5 46.4 46.9 47.2 47.2 47.2 48.7

Table 5: Search for i∗ in examples 1 and 2: The first two rows are associated with
X

1, where 1 ≤ i† ≤ 10. The last two rows are associated with X
5, where 1 ≤ i† ≤ 11.
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Figure 6: EMD trend filtering for simulated example 1: Top left: The energy
approach. The small circles are log2 Gi for 1 ≤ i ≤ 10 and the small triangles mark
those indices i ≥ 2 where Gi > Gi−1. Bottom left: The ratio approach. The small
circles are log2 Ri for 2 ≤ i ≤ 10 and the small triangles mark those indices i where Ri is
significantly different from 2. The dashed lines are the averaged left and right thresholds

of the distribution shown in Fig. 1 when p∗ = 18. Top right: X
1 vs. Ĉ

1

gr. Bottom right:

C
1 (dashed line) vs. Ĉ

1

gr (solid line).

evaluates î∗ = 8 as the smallest common IMF index between the energy and
ratio approaches.

It is clear from above that the energy-ratio approach has performed ex-
cellently in estimating i∗ by eliminating the false detections in the ratio and
energy approaches. Fig. 6 displays the energy and ratio approaches together
with the estimated trend using î∗.

6.2. Simulated example 2

Recall Y 5 and C5 from Section 5. Let Y5 = {Y 5
0 , Y 5

1 , . . . , Y 5
N−1} be a

realization of Y 5. Set the multiplicative mix X 5 = C5Y5 for N = 2000. We
apply EMD to log |X 5| and extract its IMFs and obtain I = 11.
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Figure 7: EMD trend filtering for simulated example 2: Top left: The energy
approach. Bottom left: The ratio approach. The dashed lines are the averaged left and
right thresholds of the distribution shown in the left-hand plot in Fig. 12 when p∗ = 18.

Top right: log |X 5| vs. log Ĉ
5
. Bottom right: log C

5 (dashed line) vs. log Ĉ
5

(solid line).

Similarly to the previous example, we use the IMFs obtained for log |X 5|
to first compute log C5

i†
for 1 ≤ i† ≤ 11. We then compute the EDs between

log C5 and log C5
i†
, denoted E5

i†
, and the EDs between log |X 5| and log C5

i†
,

denoted EY5

i†
. These are reported in the last two rows of Table 5. Based on

these reported values, we can see that since i† = 10 results in minimum E5
i†
,

we conclude that i∗ = 10. An additional support for this selection is that
EY5

10 is the closest to the EN of log |Y5| which is 47.38. We now compare the
performance of the ratio, energy and energy-ratio approaches in obtaining î∗.

Looking at the energy of the IMFs of log |X 5|, we observe that i =
{7, 10, 11}. Based on the energy approach, we evaluate î∗ = 7. Looking at the
RZCN of each IMF on the other hand, we observe that i = {2, 3, 8, 9, 10, 11}.
Based on the ratio approach, we evaluate î∗ = 2. Finally, the energy-ratio
approach evaluates î∗ = 10 as the smallest common IMF index between the
energy and ratio approaches.

It is clear from above that the energy-ratio approach has performed ex-
cellently in estimating i∗ by eliminating the false detections in the ratio and
energy approaches. Fig. 7 displays the energy and ratio approaches together
with the estimated log-trend using î∗.
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Figure 8: Monthly mean CO2 data and the expected annual cycle: Left: Monthly
mean CO2 data from March 1958 to March 2010. Right: Yearly cycles of the detrended
data using the expected trend together with their average (dark black line).

7. Real-World Examples

In this section we demonstrate the performance of the energy-ratio ap-
proach via two real-world examples. The first example is the monthly mean
carbon dioxide (CO2) data from Mauna Loa and the second example is the
Grand Lyon-Vélo’v bicycle rental data from the city of Lyon in France.

7.1. Monthly mean CO2 at Mauna Loa

In this section, we analyze the monthly mean CO2 data collected from
March 1958 to March 2010 and measured at Mauna Loa observatory in
Hawaii (Available via FTP:ftp://ftp.cmdl.noaa.gov/ccg/co2/trends
/co2 mm mlo.txt. The authors have received permission from Dr. Pieter
Tans in order to use this data.) The left-hand plot in Fig. 8 displays the
monthly mean CO2 data at Mauna Loa. After removing the averaged sea-
sonal cycle expected in this data, a trend is obtained. This trend is given at
the URL together with the data, and it will serve as a reference for a compar-
ison with the result from EMD trend filtering. For more information on the
known seasonal cycle and trend calculation see the URL provided above. The
right-hand plot in Fig. 8 displays the one year cycles of the monthly mean
CO2 data after removing the expected trend together with their average. We
call this average the expected annual cycle.

We now use EMD trend filtering for monthly mean CO2 data in order
to estimate its underlying trend. Applying EMD to this data, we obtain
I = 3 and following the energy-ratio approach, we evaluate î∗ = 3. The
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Figure 9: Estimated trend and annual cycle for the monthly mean CO2 data:

Left: Expected trend together with the estimated trend using EMD trend filtering. Since
these two trends look very similar, the smaller plot is made to display only a small portion
of these trends. Right: Yearly cycles of the detrended monthly mean CO2 data using the
estimated trend together with their average (dark black line). The dashed line displays
the difference between the expected and estimated annual cycles.

left-hand plot in Fig. 9 displays the estimated trend plotted together with
the expected trend obtained from removing the seasonal cycle. Since these
two trends look very similar, the smaller plot is made to display only a small
portion of these trends. It is clear that the estimated trend from the EMD
trend filtering is only a smoother version of the expected trend.

After subtracting the estimated trend from the data, we divide the de-
trended data into one year cycles and then average over all cycles to obtain
the estimated annual cycle. The right-hand plot in Fig. 9 displays all the
one year cycles of the monthly mean CO2 data after removing the estimated
trend together with the estimated annual cycle. The dashed line in Fig. 9 dis-
plays the difference between the expected and estimated annual cycles. This
difference confirms the strong similarities between the two annual cycles.

7.2. Grand Lyon-Vélo’v

In this section we analyze the data from Vélo’v, the community shared
bicycle program that started in Lyon in May 2005 (for more information,
see http://www.velov.grandlyon.com.) The program Vélo’v is a major
initiative in public transportation, in which bicycles are proposed to rental
by anyone at fully automated stations in many places all over the city, to be
returned at any other station. Such a community shared system offers both a
new and versatile option of public transportation, and a way to look into the
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Figure 10: Vélo’v raw and detrended data: Left: The raw Vélo’v data together with
the estimated trend using EMD trend filtering. Right: Detrended Vélo’v data.

movements of people across the city. In order to understand the dynamics
of this system, a question is to estimate and model the evolution in time of
the number of rentals made throughout the city (Borgnat et al., 2009). The
left-hand plot in Fig. 10 displays the raw data which is the number of hourly
rentals for two years of activity of the Vélo’v system from December 2005 to
December 2007. (The authors would like to thank JCDecaux for providing
access to this data.)

The number of rentals contains cyclical patterns over the day (e.g., more
activities during the day, mainly at specific rush hours, than during the night)
and the week (e.g., more activities during week-days than week-ends). It also
contains superimposed fluctuations due to external contingencies (e.g., rain
or holidays) and a general multiplicative trend over the months (Borgnat
et al., 2009). We apply EMD trend filtering to this data in order to estimate
the underlying multiplicative trend. We obtain I = 12 and using the energy-
ratio approach we evaluate î∗ = 10 which we use to estimate the trend.
The estimated trend is displayed in the left-hand plot in Fig. 10 where
superimposed over the data.

This trend is meaningful for the data, and can be related to, and ex-
plained by, two effects: (i) the system was expanded in 2005 and 2006 at the
same time it was already in exploitation, hence, there is a long-term increase
of the hourly rentals over the two years of data, (ii) because of seasonal ef-
fects, the use of Vélo’v is smaller during winter, and also during the main
summer holidays; this causes several drops of the trend, during winter and
also summer holidays.
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Figure 11: Weekly detrended Vélo’v data: The weekly cycles of the detrended Vélo’v
data and their average (dark black line).

Using the estimated trend, detrended Vélo’v data are obtained by divid-
ing the number of hourly locations by the estimated trend. This is displayed
in the right-hand plot in Fig. 10. The detrended data is, visually, more
stationary than the raw data. This allows a good estimation of the cyclic
pattern over the week of the number of hourly rentals. Fig. 11 displays the
weekly cycles of the Vélo’v data after removing the estimated trend, and the
average over all the weeks.

The estimate of the average usage of the Vélo’v bicycles as a function of
time in the week, is meaningful in that it reveals the main features of the
Vélo’v activity: during week-days, there are three sharp peaks of rentals in
the morning, noon and the end of the afternoon; during the week-ends, there
are small peaks at noon, and smooth and large peaks during the afternoon.

Finally, let us note that here the multiplicative trend estimation procedure
was applied to a case where the underlying process that the trend multiplies
to is not actually a broadband process: it is more specifically a periodic pro-
cess (with clear periods of one week and one day) with added fluctuation.
Nevertheless, the procedure is able to find the relevant multiplicative trend
describing the evolutions at the scale of the seasons, and that is used to de-
trend the data. This is believed to be due mostly to the fact that fluctuations
have typical periodic scales (one day or one week) which are much smaller
than the typical scale of evolution (several months) of the trend, making of
this scale separation a prerequisite that might be more important than the
existence of a broadband spectrum in a stricter sense.
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8. Conclusion

An automated method has been proposed to filter the trend in a time
series, whose principle is to extract the lowest frequency intrinsic mode func-
tions (IMFs) via empirical mode decomposition (EMD). The core of the
method is to decide which IMFs belong to the trend, on the rationale that a
trend causes both a departure of the ratio of zero crossing numbers from 2,
and an increase of the energy contained in the low-frequency IMFs, as com-
pared to the expected behavior of broadband processes. Combining both
criteria, the procedure was shown to work well on several examples with
additive or multiplicative trends. We emphasize that the approach is fully
data-driven (as is EMD) and, besides the parameters of the decomposition
itself, the EMD trend filtering method has only one free parameter which is
the level of significance p.

Many numerical examples were reported to illustrate the robustness of the
EMD trend filtering and its potential interests have been further illustrated
on two real-world examples: the CO2 data which displays an additive trend,
and the Vélo’v data which shows a multiplicative trend. In both cases, filter-
ing of the trends allows us to propose an estimation of the cycle inside the
data (annual cycle for the CO2 data, weekly and daily cycles for the Vélo’v
data) that compares favorably to existing methods both for the extracted
trends and estimated cycles. A strength of the method is that it works, even
if the fluctuations above the trend do not follow exactly a priori behaviors
for the fluctuation that where used to design empirically the test (displaying
for instance oscillatory behaviors more than the assumed broadband behav-
ior.) This is related to its character as a fully data-driven and model-free
approach.

A perspective of this work would be to go beyond trend-filtering and use
the same type of approach to group together IMFs obtained by EMD in
several signals describing a trend, then the major cycles, and finally the
rapid fluctuation. This would be an interesting asset for the model-free
decomposition of processes.
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Flandrin, P., Rilling, G., Gonçalves, P., 2004b. Empirical mode decomposi-
tion as a filter bank. IEEE Signal Processing Letters 11 (2), 112–114.

Ghil, M., Vautard, R., 1992. Interdecadal oscillations and the warming trend
in global temperature time series. Nature 58, 95–126.

Henderson, R., 1916. Note on graduation by adjusted average. Transactions
on the Actuarial Society of America 17, 43–48.

Hodrick, R. J., Prescott, E. C., 1997. Postwar U.S. business cycles: An
empirical investigation. Journal of Money, Credit, and Banking 29 (1),
1–16.

26



Huang, N. E., Shen, Z., Long, S. R., Wu, M. L., Shih, H. H., Zheng, Q., Yen,
N. C., Tung, C. C., Liu, H. H., 1998. The empirical mode decomposition
and Hilbert spectrum for nonlinear and non-stationary time series analysis.
Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 454, 903–995.

Huang, N. E., Wu, M.-L., Long, S., Shen, S., Qu, W., Gloersen, P., Fan,
K., 2003. A confidence limit for the empirical mode decomposition and
Hilbert spectral analysis. Proceedings of the Royal Society of London A
459 (2037), 2317–2345.

Pollock, D. S. G., 2006. Wiener–Kolmogorov filtering frequency-selective fil-
tering and polynomial regression. Econometric Theory 23, 71–83.
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Appendix. EMD Trend Filtering for Multiplicative Mixes

If the mix is multiplicative and the elements of C are positive, then the
situation reduces to the additive case. Indeed, one can take logarithms to
obtain log |X | = log C+log |Y |, where the logarithm and absolute value func-
tions are being applied elementwise. The main question arising is whether
the properties regarding the energy and ratio of the zero crossing numbers
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Figure 12: Empirical distribution of the elements of ~R and log
2

Gi for log-

transformed broadband data: Computed for 10000 log-transformed realizations of
20 broadband processes in the collection. Each line of different type and color associates
with a broadband process in the collection.

of the IMFs in the additive case are still valid for the multiplicative ones. To
validate such properties, we proceeded by using the same simulations which
were proposed in Sections 4.1 and 4.2 for broadband data and additive mixes.

We first recall 20 broadband processes and their realizations from Section
4.1. We computed the IMFs of the log-transform of the absolute value of
each realization along with their zero crossing numbers and energy. We set
~Rb and Gi,b and then ~R and Gi as described in Sections 4.1 and 4.2. The
left-hand plot in Fig. 12 displays the empirical distribution of the elements
of ~R and it supports the contention that Ri ≈ 2. In fact, this distribution
is approximately Gaussian with mean 2. The right-hand plot of Fig. 12 on
the other hand displays log2 Gi and supports the contention that energy is a
decreasing sequence in i for log-transformed broadband data.

Similar to the additive mixes, the approximation Ri ≈ 2 expects to fail
and also Gi expects to increase for i near the best index i∗. These observa-
tions are supported by the following data. For each broadband process in
the collection and using its realizations, we constructed 10000 multiplicative
mixes, using 1 + C3 (displayed in Fig. 5) as a trend. We then computed

the IMFs of the log-transformed absolute value of each mix and set ~Rb, Gi,b,
~R, and Gi as described earlier. The top left-hand plot in Fig. 13 displays
the empirical distribution of the elements of ~R and the top right-hand plot
displays log2 Gi both for log-transformed multiplicative mixes. Similarly to
Sections 4.1 and 4.2, for each broadband process in the collection, we used
the IMFs obtained for each log-transformed mix and used the knowledge of
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Figure 13: Empirical distribution of the elements of ~R and log
2

Gi for log-

transformed multiplicative mixes: Left: Computed for log-transformed multiplicative
mixes obtained by multiplying 1+C

3 from Fig. 5 and realizations of broadband processes
in the collection. Right: Computed for detrended log-transformed multiplicative mixes.

log C3 to evaluate the best index i∗. We then used i∗ to detrend each log-
transformed mix and recomputed ~Rb, Gi,b, ~R, and Gi for the remaining IMFs.
The bottom left-hand plot in Fig. 13 displays the empirical distribution of
the elements of ~R and the bottom right-hand plot displays log2 Gi both for
detrended log-transformed multiplicative mixes. The comparison between
the left-hand and the right-hand plots in Fig. 13 indicates that Ri ≈ 2 fails
and Gi increases both at the best index i∗.

These simulations altogether validate the fact that, after log-transformation,
multiplicative mixes have properties similar to the additive mixes. Hence, the
energy-ratio approach is expected to operate in a similar way to estimate the
log-transformed trend, with the exception that the left and right thresholds
used for the ratio approach are different. The appropriate left and right
thresholds are now p% and (100 − p)% significance level of the empirical
distribution shown in the left-hand plot in Fig. 12.
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