
HAL Id: ensl-00575673
https://ens-lyon.hal.science/ensl-00575673v1

Submitted on 11 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Univariate and bivariate integral roots certificates based
on Hensel’s lifting

Érik Martin-Dorel

To cite this version:
Érik Martin-Dorel. Univariate and bivariate integral roots certificates based on Hensel’s lifting. 2011.
�ensl-00575673�

https://ens-lyon.hal.science/ensl-00575673v1
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon

Unité Mixte de Recherche CNRS – ENSL – INRIA – UCBL no 5668

Univariate and Bivariate Integral Roots

Certificates Based on Hensel’s Lifting

Érik Martin-Dorel
École Normale Supérieure de Lyon, Arénaire,
LIP (UMR 5668 CNRS, ENSL, INRIA, UCBL)
46 allée d’Italie, 69364 Lyon Cedex 07, France
erik.martin-dorel@ens-lyon.org

March 2011

Research Report No 2011-1

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Univariate and Bivariate Integral Roots

Certificates Based on Hensel’s Lifting

Érik Martin-Dorel

École Normale Supérieure de Lyon, Arénaire,

LIP (UMR 5668 CNRS, ENSL, INRIA, UCBL)

46 allée d’Italie, 69364 Lyon Cedex 07, France

erik.martin-dorel@ens-lyon.org

March 2011

Abstract

If it is quite easy to check a given integer is a root of a given polynomial with
integer coefficients, verifying we know all the integral roots of a polynomial re-
quires a different approach. In both univariate and bivariate cases, we introduce
a type of integral roots certificates and the corresponding checker specification,
based on Hensel’s lifting. We provide a formalization of this iterative algorithm
from which we deduce a formal proof of the correctness of the checkers, with
the help of the Coq proof assistant along with the SSReflect extension. The
ultimate goal of this work is to provide a component that will be involved in a
complete certification chain for solving the Table Maker’s Dilemma in an exact
way.

Keywords: Coq formal proofs, certifying algorithm,
Hensel’s lifting, integral roots, polynomials

Résumé

S’il est aisé de vérifier qu’un entier donné est racine d’un polynôme donné à
coefficients entiers, vérifier que l’on connaît toutes les racines entières d’un po-
lynôme requiert une approche différente. Dans le cas univarié comme bivarié,
nous introduisons un type de certificats de racines entières et la spécification
du vérifieur correspondant, dont le principe repose sur le relèvement de Hen-
sel. Nous proposons une formalisation de cet algorithme itératif duquel nous
déduisons une preuve formelle de correction des vérifieurs (univarié et bivarié),
avec l’aide de l’assistant de preuves Coq muni de l’extension SSReflect. Le
but ultime de ce travail est de fournir un composant qui sera partie intégrante
d’une chaîne de certification complète pour la résolution exacte du dilemme du
fabricant de tables.∗

Mots-clés: Preuves formelles Coq, algorithme certifiant,
relèvement de Hensel, racines entières, polynômes

∗Ce travail est soutenu par le projet TaMaDi de l’ANR.

Integral Roots Certificates Based on Hensel’s Lifting 3

1 Introduction and Motivations

The newly revised IEEE 754–2008 standard for floating-point (FP) arithmetic
recommends that some mathematical functions (exp, log, x 7→ 2x, . . .) should
be correctly rounded (roughly speaking, the system must always return the FP
number nearest to the exact mathematical result of the operation). Requiring
correctly rounded functions has a number of advantages: among them, it greatly
improves the portability of numerical software and it allows one to design algo-
rithms and formal proofs of software that use this requirement. To be able to
design fast programs for correctly rounded functions, we must address a prob-
lem called the Table Maker’s Dilemma (TMD) [15, chap. 12]. We need to locate,
for each considered function f and for each considered FP format and rounding
mode, the hardest-to-round (HR) points, that is, in rounding-to-nearest, what
are the FP numbers x such that f(x) is closest to the exact middle of two con-
secutive FP numbers. The naive method of finding these points (evaluating the
function with large precision at each FP number) is far too impractical.

Two different algorithms have been designed to find these HR points:

– the Lefèvre algorithm — based on a variant of the Euclidean GCD al-
gorithm — which made it possible to obtain HR cases in binary double-
precision arithmetic [11,14];

– the Stehlé–Lefèvre–Zimmermann (SLZ) algorithm — based on the lattice
basis reduction algorithm LLL [12] — which has a better asymptotic com-
plexity [19,17] and might allow to get HR cases in double-extended-precision.

The processes that generate these HR points are based on complex and very
long calculations (years of cumulated CPU time) that inevitably cast some doubt
on the correctness of their results. In the French ANR project entitled TaMaDi,
we thus undertake to fully reconsider the methods used to get HR points, with
a special focus on their formal validation (by enabling our programs to generate
certificates that guarantee the validity of their results).

As regards the SLZ algorithm, the LLL part is the most time consuming
part of the overall algorithm so that we can treat the LLL calls as an oracle and
log its results in a certificate, the verification of which no longer implies LLL
calls. This has the clear benefit of avoiding to have to deal with LLL formally.
Still, this approach has to be validated, we need to design “good” certificates
that are of reasonable size and can be easily checked, with the goal to provide
a fully verified checker for these certificates, in a similar way to what was done
for primality certificates in [7,6,21].

The output of the LLL algorithm contains pairs of bivariate polynomials with
integer coefficients, so that we must solve the systems

P (x, y) = 0,

Q(x, y) = 0,

|x| 6 A and |y| 6 B,

for each (P, Q, A, B) that is produced by LLL (P, Q ∈ Z[X, Y] and x, y, A, B ∈ Z).

4 Érik Martin-Dorel

As mentioned in [18], there are several ways to solve this “root-finding step”
of SLZ, including Hensel’s lifting. But rather than just proving formally this
root-finding algorithm, we introduce a type of integral roots certificates and the
corresponding checker specification, based on Hensel’s lifting, which thus leads
to a certifying algorithm as defined in [13].

In this paper, we present a formalization within the Coq proof assistant
[1,20,9] along with the SSReflect extension [4,5] of both univariate and bivari-
ate Hensel’s lifting with a uniqueness property from which we deduce a formal
proof of the correctness of the integral-roots-certificates checkers.

Organization of the paper. In the upcoming Section 2 we briefly present the
use of Hensel’s lifting to find the integral roots of a univariate polynomial. In
Section 3 we give pen-and-paper sketches of the main proofs related to Hensel’s
lifting in both univariate and bivariate cases, in order to highlight the required
concepts for the formalization. Section 4 is devoted to the Coq formalization
itself, namely a description of the Coq mechanized formal background that is
common to both univariate and bivariate cases, followed by the presentation of
our univariate, then bivariate integral-roots certificates with the corresponding
certificate checkers. In Section 5 we discuss the advantages of the approach to
design certifying algorithms we have followed, then we draw some conclusions in
Section 6.

Notations. We summarize below the mathematical notations used in the sequel.

– Z denotes the set of signed integers;
– N denotes the set of nonnegative integers;
– P denotes the set of prime numbers;
– B denotes the set of booleans, that is B := {true, false};
– Ja, bK (for a 6 b in Z) denotes the set of all integers k such that a 6 k 6 b;

in other words, Ja, bK = Z ∩ [a, b];
– Ja, bJ (for a 6 b in Z) denotes the set Z ∩ [a, b[= {k ∈ Z | a 6 k < b};
– a mod n denotes the remainder of a modulo n, taken in J0, nJ;
– a ≡ b (mod n) states the modular equality between a and b; in other words,

a ≡ b (mod n) ⇐⇒ a mod n = b mod n.
– Z[X] denotes the ring of univariate polynomials with coefficients in Z;
– Z[X, Y] denotes the ring of bivariate polynomials on Z, which can be viewed

as the ring (Z[Y]) [X].

2 An overview of Hensel’s lifting in the univariate case

The origin of Hensel’s lifting is deeply linked to the introduction of the p-adic
numbers by Kurt Hensel [8], so that it is also called the p-adic Newton iteration
[2], though in this work we will focus on statements that are fully expressed in
(modular arithmetic on) Z.

Integral Roots Certificates Based on Hensel’s Lifting 5

2.1 A uniqueness property on the modular roots of P ∈ Z[X]

We briefly present the functioning of Hensel’s lifting through the following lemma,
which is actually a key result of the formalization at stake.

Lemma 1. Let P ∈ Z[X] and p ∈ P that satisfies

∀z ∈ Z, P (z) ≡ 0 (mod p) =⇒ P ′(z) 6≡ 0 (mod p), (1)

where P ′ is the derivative of the polynomial P . If x ∈ Z is such that

P (x) ≡ 0 (mod p2m

) (2)

for a given m ∈ N, then for

u0 := x mod p, (3)

the sequence (uk) defined by the recurrence relation

∀k ∈ J0, mJ uk+1 := uk −
P (uk)

P ′(uk)
mod p2k+1

(4)

satisfies:

∀k ∈ J0, mK , uk = x mod p2k

. (5)

Remark 1. Note that Lemma 1 gives a necessary condition on each root of P ∈

Z[X] modulo p2k

depending on the value of the considered root modulo p. It is
somehow a uniqueness result, whereas usual results about Hensel’s lifting such
as the correctness theorem we can find in [2, p. 264] are existence results. We
will see in Sections 4.2 and 4.3 that we specifically need this uniqueness property
to prove our main theorems that deal with integral roots.

2.2 A simple bound on the univariate integral roots

We can prove the following lemma that provides more information on a possible
choice of bound.

Lemma 2. For any P ∈ Z[X], if we write P in the form
∑d

i=ν aiX
i ∈ Z[X]

with aν 6= 0, we have ∀z ∈ Z, P (z) = 0 ⇒ |z| 6 |aν |. Therefore B = |aν | =
∣

∣amin{k : ak 6=0}

∣

∣ is a bound on the integral roots of P .

Consequently, we can either take the generic bound given by the previous
simple lemma, or choose a different bound, notably when we just want to deal
with the subset of integral roots that are bounded by a specific B > 0.

6 Érik Martin-Dorel

2.3 The final doubling trick

If we can iterate Hensel’s lifting (4) as many times as desired, in practice we can
stop as soon as the considered power of p becomes greater than twice the chosen
bound B on the integral roots. We explain below why this reasoning is valid.

Assuming we stop the iteration at rank k, we have the following state:

∃k ∈ N,

M := p2k

M > 2 · B

uk = x (mod M)

0 6 uk < M

|x| 6 B

Thanks to the presence of the coefficient 2 above, the intervals [0, B] and
[M −B, M [are disjoint, which facilitate the computation of x from uk , as shown
by Figure 1. More precisely, we can prove the following disjunction:

x > 0 ∧ x = uk ∧ uk 6 B
∨

x < 0 ∧ x = uk − M ∧ uk > M − B,

which enables us to decide which is the sought value of x from a single test on
uk . For instance, we can just do

x =

{

uk if uk 6 B

uk − M if uk > B

to compute x.

−M −B 0 B M

M − B

x (sought) ∈

uk (known) ∈

s 7→ s − M

Fig. 1. How to deduce x from uk

Integral Roots Certificates Based on Hensel’s Lifting 7

2.4 Example of use

Let us consider the polynomial P (X) := X2 − X − 42 ∈ Z[X], whose roots are
−6 and 7. Its derivative is P ′(X) = 2 · X − 1. Using Lemma 2, let us choose
B = 42 as a bound. If we consider the small prime number p = 2, we can see at
once that the roots of P modulo 2 are 0 and 1, and that the hypothesis (1) is
fulfilled for both roots modulo p = 2. From u0 = 0, we compute:

u1 = u0 − P (u0)/P ′(u0) mod 221

= 0 + 42/(−1) mod 4 = 2;

u2 = u1 − P (u1)/P ′(u1) mod 222

= 2 + 40/3 mod 16 = 10;

u3 = u2 − P (u2)/P ′(u2) mod 223

= 10 − 48/19 mod 256 = 250,

then we stop since 256 > 2×B and the obtained root is 250−256 = −6, following
the reasoning of Section 2.3. Likewise, from u0 = 1, we compute three iterations:

u1 = u0 − P (u0)/P ′(u0) mod 221

= 1 + 42/1 mod 4 = 3;

u2 = u1 − P (u1)/P ′(u1) mod 222

= 1 + 36/5 mod 16 = 7;

u3 = u2 − P (u2)/P ′(u2) mod 223

= 7 − 0/13 mod 256 = 7,

and the obtained root is 7.
We notice we have found all the roots in Z of the considered univariate

polynomial P , namely −6 and 7. In the sequel, we will thus focus on the formal
certification of results of this kind, for both univariate and bivariate polynomials.

3 Pen-and-paper proofs

Before focusing on aspects strongly related to Coq, we present the pen-and-paper
proofs that helped us to carry out the formalization at stake.

3.1 Pen-and-paper sketch of the proof of Lemma 1

Let us assume all the hypotheses of the theorem hold for P ∈ Z[X], p ∈ P,
x ∈ Z, and (uk) which is defined by (3) and (4). To shorten most of the following

formulas, we will denote x mod p2k

by xk for all integer k.
We want to show (5), that is to say, ∀k ∈ N, k 6 m ⇒ uk = xk. We prove it

by induction on k:
• First, we can notice that p = p20

, therefore (3) means that u0 = x0, which
proves the base case.

• The inductive case amounts to showing that for a given integer k < m
satisfying uk = xk, we have uk+1 = xk+1.

To start with, we can write xk = x mod p2k

=
[

x mod p2k+1
]

mod p2k

=

xk+1 mod p2k

, which implies xk+1 ≡ xk (mod p2k

), hence

∃λ ∈ Z, xk+1 = xk + λp2k

.

8 Érik Martin-Dorel

We can now apply Taylor’s theorem for the polynomial P at point xk+1 :

P (xk+1) = P (xk) + λp2k

P ′(xk) +

deg P
∑

j=2

(

λp2k

)j

j!
P (j)(xk).

The first member of this equality is zero modulo p2k+1

, since

P (xk+1) = P (x mod p2k+1

) ≡ P (x) = 0 (mod p2k+1

).

As for the last member, we can notice that

∀j > 2,
(

λp2k
)j

=

[

λj ·
(

p2k
)j−2

]

· p2k+1

and
P (j)(xk)

j!
∈ Z.

Thus all terms in the summation (for j > 2) are zero modulo p2k+1

. Consequently,
Taylor’s formula becomes:

0 ≡ P (xk) + λp2k

P ′(xk) + 0 (mod p2k+1

).

Furthermore, we have P (xk) ≡ 0 (mod p), hence by (1), P ′(xk) 6≡ 0 (mod p),

and consequently P ′(xk) 6≡ 0 (mod p2k+1

), which allows us to write:

λp2k

≡ −
P (xk)

P ′(xk)
(mod p2k+1

),

Now replacing λp2k

with xk+1 − xk and using the induction hypothesis leads to

xk+1 ≡ uk −
P (uk)

P ′(uk)
(mod p2k+1

).

Then we recognize the definition (4), which means that we have proved that

xk+1 mod p2k+1

= uk+1,

that is, thanks to the idempotence of modulo, xk+1 = uk+1. ⊓⊔

3.2 Statement of the uniqueness lemma in the bivariate case

Lemma 3. Let P1, P2 be two bivariate polynomials with integer coefficients, and

let p be a prime that satisfies:

∀z, t ∈ Z, P1(z, t) ≡ 0 ≡ P2(z, t) (mod p) =⇒ JP1,P2
(z, t) 6≡ 0 (mod p).

(6)
If (x, y) ∈ Z

2 is such that

P1(x, y) ≡ P2(x, y) ≡ 0 (mod p2m

) (7)

Integral Roots Certificates Based on Hensel’s Lifting 9

for a given m ∈ N, then for

(

u0

v0

)

:=

(

x mod p
y mod p

)

, (8)

the sequence (uk, vk)k defined by the recurrence relation

∀k ∈ J0, mJ ,

(

uk+1

vk+1

)

:=

(

uk

vk

)

−

[

JP1,P2
(uk, vk)

]−1(
P1(uk, vk)
P2(uk, vk)

)

mod p2k+1

(9)
satisfies:

∀k ∈ J0, mK ,

(

uk

vk

)

=

(

x mod p2k

y mod p2k

)

. (10)

3.3 Pen-and-paper sketch of the proof of Lemma 3

Let us assume all the hypotheses of the theorem hold for P1, P2 ∈ Z[X, Y], p ∈ P,
x, y ∈ Z, and (uk) , (vk) which are defined in (8) and (9) by mutual recurrence.

We consider the sequences (xk) and (yk) of the modular residues of the root
(x, y):

∀k ∈ N,

(

xk

yk

)

:=

(

x mod p2k

y mod p2k

)

.

We want to show (10), that is to say, ∀k ∈ N, k 6 m ⇒ (uk, vk) = (xk, yk).
We prove it by induction on k:

• First, we notice that p = p20

, therefore (8) means that (u0, v0) = (x0, y0),
which proves the base case.

• The inductive case amounts to showing that for a given integer k < m
satisfying (uk, vk) = (xk, yk), we have (uk+1, vk+1) = (xk+1, yk+1).

We write again xk = x mod p2k

= [x mod p2k+1

] mod p2k

= xk+1 mod p2k

,

which implies xk+1 ≡ xk (mod p2k

), hence

∃λ ∈ Z, xk+1 = xk + λp2k

.

Likewise, we obtain:

∃µ ∈ Z, yk+1 = yk + µp2k

.

Now we can apply Taylor’s theorem to each bivariate polynomial Pl (l = 1, 2):

Pl(xk+1, yk+1) =
∑

i,j∈N

1

i!j!

[

∂i+j

∂Xi∂Y j
Pl

]

(xk, yk) ·
(

λp2k
)i (

µp2k
)j

.

The first member of this equality is zero modulo p2k+1

, since

Pl(xk+1, yk+1) = Pl(x mod p2k+1

, y mod p2k+1

) ≡ Pl(x, y) = 0 (mod p2k+1

).

10 Érik Martin-Dorel

Concerning the second member, we can notice that

∀i, j ∈ N, i + j > 2 =⇒
(

λp2k
)i (

µp2k
)j

=

[

λiµj
(

p2k
)i+j−2

]

· p2k+1

and
1

i!j!

[

∂i+j

∂Xi∂Y j
Pl

]

(xk, yk) ∈ Z,

therefore all terms in the summation such that i + j > 2 are zero modulo p2k+1

.
As a result, Taylor’s formula becomes

0 ≡ Pl(xk, yk) + λp2k

∂XPl(xk, yk) + µp2k

∂Y Pl(xk, yk) + 0 (mod p2k+1

). (11)

Note that combining both formulas for l = 1, 2, we obtain the following
matrix equation:

(

0
0

)

=

(

P1(xk, yk)
P2(xk, yk)

)

+

[

JP1,P2
(xk, yk)

]

(

λp2k

µp2k

)

mod p2k+1

.

where the modulo operation is applied coordinatewise.
Furthermore, we have P1(xk, yk) ≡ 0 ≡ P2(xk, yk) (mod p), hence by (6),

JP1,P2
(xk, yk) 6≡ 0 (mod p), and consequently JP1,P2

(xk, yk) 6≡ 0 (mod p2k+1

),
which allows us to write

−

[

JP1,P2
(xk, yk)

]−1

p2k+1

(

P1(xk, yk)
P2(xk, yk)

)

≡

(

λp2k

µp2k

)

(mod p2k+1

).

Then, we use the induction hypothesis (xk, yk) = (uk, vk) after replacing λp2k

with xk+1 − xk (resp. µp2k

with yk+1 − yk), and we obtain

(

uk

vk

)

−

[

JP1,P2
(uk, vk)

]−1(
P1(uk, vk)
P2(uk, vk)

)

≡

(

xk+1

yk+1

)

(mod p2k+1

).

We eventually recognize the definition (9), which means we have proved that

(

uk+1

vk+1

)

=

(

xk+1

yk+1

)

mod p2k+1

,

that is, thanks to the idempotence of the modulo, (uk+1, vk+1) = (xk+1, yk+1).
⊓⊔

4 Coq formalization

4.1 Formal background for Hensel’s lifting

In this section we present the various choices we have made to undertake this
formalization, along with some new support results that are common to both
univariate and bivariate cases.

Integral Roots Certificates Based on Hensel’s Lifting 11

The SSReflect extension. The Small-scale-reflection (SSReflect) extension
of Coq was first used to carry out the formalization of the Four-Colour Theorem
[3]. It consists of an extension of the Coq proof language as well as a set of Coq

libraries developed upon this extension.
We chose to use the SSReflect extension for both its tactic facilities and

the Coq libraries it provides. In particular, we extensively used the following
libraries that supply most of the key concepts involved in our formalization:

ssrnat for boolean comparison predicates on the type nat of natural numbers,
with the usual operations including exponentiation;

prime for the primality predicate prime : nat -> bool;
div for the divisibility predicate dvdn : nat -> nat -> bool and the modulo

modn : nat -> nat -> nat on which it is based;
zmodp for the ExtendedGCD-based modular inversion in Z/qZ (where q will be

instantiated by p2k

);
poly for the ring of univariate polynomials, with the polynomial evaluation,

formal derivatives, and Taylor’s theorem for univariate polynomials;

We also needed the bivariate version of Taylor’s theorem that Laurent Théry
proved in the theory bipoly mainly based on poly.

The library on binary integers from the Coq standard library. But we
also needed to handle signed integers since we focus on providing certificates of
integral roots (in Z). We chose to use the library ZArith on signed, binary inte-
gers from the Coq standard library whose type Z is presented below, essentially
for the presence of the modulo operation Zmod : Z -> Z -> Z and for efficiency
reasons, since the arithmetic operations on Z are much more efficient that those
defined on the type nat of Peano, unary integers.

Inductive Z : Set :=

| Z0 : Z

| Zpos : positive -> Z

| Zneg : positive -> Z.

Inductive positive : Set :=

| xI : positive -> positive

| xO : positive -> positive

| xH : positive.

For example, the Coq term Zneg (xO (xO (xI xH))) will represent the negative
number −12, whose absolute value is 1100 in radix 2.

Polynomials with integer coefficients. As regards the definition of polyno-
mials, both poly and bipoly theories deal with polynomials with coefficients
in a type that have to be equipped with a SSReflect decidable-equality ring
structure.

Therefore, to be able to talk about polynomials on Z, we first needed to prove
that Z satisfies the required axioms of the SSReflect algebraic hierarchy. This
is done in our theory ssrz whose first part acts as a wrapper of ZArith to be
used within SSReflect.

Now the terms {poly Z} and {bipoly Z} typecheck so that we can use them
in the sequel to designate univariate and bivariate polynomials on Z.

12 Érik Martin-Dorel

Handling different definitions of the modular reduction. In this section,
we will summarize why we need to use several definitions of the modular reduc-
tion in our formalization. Then we will present some lemmas that allow to move
from one definition of to another.

So far, we have mentioned two different definitions of the “modular reduction”
available in the considered libraries, namely modn on the type nat, and Zmod on
Z. The link between modn and Zmod is provided by a key lemma Z_of_nat_moduli:

Lemma Z_of_nat_moduli :

forall n m : nat, m > 0 ->

Z_of_nat (modn n m) = Zmod (Z_of_nat n) (Z_of_nat m).

Note that these two functions differ if the second argument is zero: (modn 2 0) = 2

whereas (Zmod 2 0) = 0, But it is not that distracting since we just need modular

reduction modulo q = p2k

> p > 2 > 0.
Furthermore, for any fixed second argument q > 2, none of these functions

are homomorphisms, since (m + n) mod q 6= (m mod q) + (n mod q) in the gen-
eral case (unless we add a outermost modulo operation in the right-hand-side).
However, to prove some key results such as the compatibility between the mod-
ulo operation and the polynomial evaluation on {poly Z} as well as {bipoly Z},
we need to apply lemmas that expect a morphism as argument.

Consequently, we need to specify the surjective morphism from Z onto Z/qZ,
even though it is just for proving purposes. For this we use the SSReflect

theory zmodp that provides a finite type ’I_q representing J0, q − 1K for q >
1, which becomes a (nontrivial) ring and is denoted by ’Z_q when q > 2.
More precisely, using the existing surjection inZp from nat onto ’I_q we define
ZtoI : forall q : nat, q >= 2 -> Z -> ’Z_q and we prove it is a ring homo-
morphism for any fixed q > 2.

For this latter proof we use extensively the following simple lemma that relate
ZtoI and Zmod, and whose proof actually relies on Z_of_nat_moduli:

Lemma ZtoI_Zmod : forall (q : nat) (q_gt1 : q >= 2) (z : Z),

Z_of_nat (ZtoI q_gt1 z) = Zmod z (Z_of_nat q).

4.2 Certified integral roots for a univariate polynomial

Insights into the Coq formalization of Lemma 1. Thanks to the material
presented in 4.1, we can define the univariate Hensel’s lifting as a Fixpoint, i.e.
a recursive function, whose decreasing argument is the integer k. Its type can be
displayed after an invocation of the Check command:

univ_hensel_iter :

{poly Z} -> forall p : nat, prime p -> Z -> nat -> Z

Now we can state Lemma 1 in Coq:

Variable P : {poly Z}.

Variable p : nat.

Hypothesis p_prime : prime p.

Integral Roots Certificates Based on Hensel’s Lifting 13

Hypothesis P_roots_mod_p :

forall (z : Z), 0 <= z < Z_of_nat p ->

P.[z] = 0 %[Zmod p] -> (deriv P).[z] <> 0 %[Zmod p].

Variable x : Z.

Variable m : nat.

Hypothesis x_root_m : P.[x] = 0 %[ZmodN p^2^m].

Let xk := fun k : nat => x modN p^2^k.

Let u0 := x modN p.

Let uk := univ_hensel_iter P p_prime u0.

Lemma univ_hensel_lemma :

forall k : nat, k <= m -> uk k = xk k.

Then we have proved this result with the help of a number of arithmetic
lemmas that are gathered in ssrz. Among these auxiliary results there is a
key lemma that asserts the “compatibility” between polynomial evaluation and
modular reduction:

Lemma ZmodN_horner_compat :

forall (q : nat) (z : Z) (P : {poly Z}),

P.[z modN q] = P.[z] %[ZmodN q].

where the notation P.[z] represents the polynomial evaluation (horner P z),
the notation m = n %[ZmodN q] means m modN q = n modN q, and n modN q (with
a big N) is the same thing as n mod (Z_of_nat q) or (Zmod n (Z_of_nat q)).

Specification of our univariate certificates and their checker. If it would
be quite easy to verify the output of an algorithm designed for “finding an

integral root x of P ∈ Z[X]” (by verifying the equality “P (x) = 0” holds),
the problem we consider in this paper, namely “finding all the integral roots of
P ∈ Z[X],” requires a different approach.

We follow the certificate-based approach described in [13]. The idea is to
design a so-called certifying algorithm: for a given input x, one such algorithm
produces the same output (say y) as a traditional algorithm, plus a witness w
that allows us to verify the result. Roughly speaking, the tuple (x, y, w) forms
what we call the certificate. For the particular problem which is at stake (find all
the integral roots of P ∈ Z[X]), we thus need to choose an appropriate type of
certificate C, then to specify a certificate verifier v : C → B and to formally prove
that if v(x, y, w) = true holds, then y is indeed the correct output corresponding
to x.

As regards the kind of certifying algorithm that can be used to solve the
problem at stake, it suffices to have a Hensel’s lifting program that outputs p
and k in addition to the list L of the computed roots corresponding to the given
polynomial P and bound B.

Then, we can store these data in a form of a certificate, which will be easily
checked with our verifier without the need to replay all the iterations of Hensel’s
lifting.

We consider the following Coq Record as the type of our univariate certifi-
cates:

14 Érik Martin-Dorel

Record uniCertif := UniCertif {

uc_P : {poly Z};

uc_B : Z;

uc_p : nat;

uc_k : nat;

uc_L : seq (Z * bool)

}.

In other words, a univariate certificate will be a 5-tuple (P, B, p, k, L). It will
be called “valid” if the following conditions are satisfied:

– P ∈ Z[X];
– p ∈ P;
– replacing the binary integer B ∈ Z with |B| > 0 for the sequel:

– k ∈ N such that p2k

> 2 · B;
– L ∈ (Z × B)ℓ, a list of ℓ pairs (ℓ 6 p) such that,

denoting Lp = {u mod p : ∃b ∈ B, (u, b) ∈ L}, we have:
• ∀s ∈ J0, pJ, s ∈ Lp ⇐⇒ P (s) ≡ 0 (mod p);
• the ℓ elements of Lp are pairwise distinct;

• ∀(u, b) ∈ L,

P ′(u) 6≡ 0 (mod p),

|2 · u| 6 p2k

,

P (u) ≡ 0 (mod p2k

),

b = true ⇐⇒ u ∈ J−B, BK ∧ P (u) = 0.

Remarks on the formal verification of our univariate checker. From
a formal point of view, we have derived our correctness proof of the certificate
verifier specified above by rewriting twice univ_hensel_lemma (corresponding to
Lemma 1). Note that the algorithm univ_hensel_iter has been specified in Coq

above all for proof purposes, as a “witness” of the uniqueness of modular roots.

4.3 Certified integral roots for a pair of bivariate polynomials

Insights into the Coq formalization of Lemma 3. As mentioned in Sec-
tion 3.3, we needed Taylor’s theorem for bivariate polynomials, which is pro-
vided in bipoly. Concerning the definition of the type of bivariate polynomials,
{bipoly Z} is actually a shortcut for {poly {poly Z}}.

We start our “bivariate uniqueness” proof by induction on the integer k. The
base case is solved trivially, while in the inductive case we need to invoke the
bivariate Taylor’s theorem.

Note that to truncate the Taylor expansion in order to retrieve the “first three
terms” involved in (11), we needed to prove an appropriate lemma trunc_biv_sum

that relies on some “sum bookkeeping”, highly facilitated by the bigops SSRe-

flect library.
Finally, we follow the arguments that were presented in a “matrix fashion”

at the end of Section 3.3, working coefficient by coefficient. This is accomplished
with the help of half a dozen lemmas that are linked to Cramer’s rule for 2-by-2
matrices.

Integral Roots Certificates Based on Hensel’s Lifting 15

Specification of our bivariate certificates and their checker. We consider
the following Coq Record as the type of our bivariate certificates:

Record bivCertif := BivCertif {

bc_P : {bipoly Z};

bc_Q : {bipoly Z};

bc_A : Z;

bc_B : Z;

bc_p : nat;

bc_k : nat;

bc_L : seq (Z * Z * bool)

}.

One such certificate (P, Q, A, B, p, k, L) will be valid if the following condi-
tions are satisfied:

– P ∈ Z[X, Y] and Q ∈ Z[X, Y];
– p ∈ P;
– A ∈ N and B ∈ N (same remark than in the univariate case);

– k ∈ N such that p2k

> 2 · A and p2k

> 2 · B;
– L ∈ (Z × Z × B)ℓ s.t., for Lp = {(u mod p, v mod p) : ∃b ∈ B, (u, v, b) ∈ L}:

• the ℓ elements of Lp are pairwise distinct;

• ∀(s, t) ∈ J0, pJ
2
, (s, t) ∈ Lp ⇐⇒ P (s, t) ≡ Q(s, t) ≡ 0 (mod p);

• ∀(u, v, b) ∈ L,

JP1,P2
(u, v) 6≡ 0 (mod p),

|2 · u| 6 p2k

,

|2 · v| 6 p2k

,

P (u, v) ≡ Q(u, v) ≡ 0 (mod p2k

),

b = true ⇐⇒

|u| 6 A,

|v| 6 B,

P (u, v) = Q(u, v) = 0.

These boolean conditions are formalized in the form of a Coq boolean func-
tion

biv_check : bivCertif -> bool

Remarks on the formal verification of our bivariate checker. Among the
various fields involved in our bivariate certificate bivCertif, P, Q, A, B represents
the data of the problem, whereas L′ := {(u, v) : (u, v, true) ∈ L} represents the
output of the problem, namely finding the integral roots (x, y) ∈ J−A, AK ×
J−B, BK of (P, Q).

As regards the correctness proof of the bivariate checker, we need to prove
that for all certificate that is accepted by the checker, the output stored in it is
valid.

To be more precise, the list {(u, v) : (u, v, true) ∈ L} can be defined in Coq

in the following manner:

16 Érik Martin-Dorel

Definition bc_roots (bc : bivCertif) := map fst (filter snd (bc_L bc)).

Then, we derive the correctness proof of biv_check that consists of proving
that for all bc : bivCertif such that (biv_check bc) holds, for all (x, y) ∈ Z×Z

we have the equivalence

|x| 6 A ∧ |y| 6 B ∧ P (x, y) = Q(x, y) = 0 ⇐⇒ (x, y) ∈ (bc_roots bc).

5 Discussion on the certificate-based approach

First of all, the SLZ algorithm that is the main application of our work is a very
complex algorithm whose future implementations will certainly have recourse to
approximated calculations as well as nasty code optimizations to save computa-
tion time. It is thereby totally excluded to formally prove the algorithm or its
implementation. Hence the need to follow the certificate-based approach.

Compared to the formal verification of a traditional algorithm (for providing
what we can call a certified algorithm), the certificate-based approach that relies
on a certifying algorithm [13] ensures that the computed result has not been
compromised by any bug. Moreover, with this approach we do not need to verify
the implemented program nor the algorithm itself. This means that we could
even use a “fast-and-dirty program” to do the job, since the result can be easily
checked by the certificate verifier that has been formally proved in Coq. In
compensation the checker itself has to be somewhat efficient since the approach
rely on the individual verification of each result.

6 Conclusion and Future Work

The algorithm of Hensel’s lifting itself has been successfully used in the area
of Computer Arithmetic, in particular [10] and [16] rely on the geometric vari-
ant of Hensel’s lifting (i.e., with the moduli increasing in a geometric way), for
p = 2. In this work, we have introduced some integral roots certificates whose
specification is closely related to the semantics of Hensel’s lifting. Then we have
formally proved in the Coq system the correctness of our certificate checkers:
if a certificate is declared valid by our verifier, we are sure that it describes all
the integral roots of the considered polynomial(s) below the considered bound.
Furthermore, the formal proof of these results relies on a uniqueness property on
the modular roots produced by Hensel’s lifting that is, up to our knowledge, not
very discussed in the literature. Note that the use of Hensel’s lifting is two-fold:
it can be first used to generate “p”, “k” and the corresponding roots, and it is
also used in the form of a simple, non-optimized algorithm defined within Coq

to reason on the uniqueness of the modular roots it produces.
If we naturally started our work with the univariate case before generaliz-

ing to pairs of bivariate polynomials, in the latest stages of the formalization
some global improvement ideas actually came from the bivariate case where the
efficiency of the approach becomes a central concern. For instance, at first it

Integral Roots Certificates Based on Hensel’s Lifting 17

seemed possible to store (with a boolean) the status of all the numbers modulo
p (as in practice p / 17) in the univariate case, however in the bivariate case it
would have forced us to systematically store p2 values, with hundreds of super-
fluous values, for a single certificate. Thus in both univariate and bivariate cases,
we provide an integral-roots certificate that is somewhat compact and can be
quickly checked by a verifier that does not recompute the prime p nor replays all
the iterations of Hensel’s lifting. The code of our library will be available along
with this research report as soon as it is stable.

During the formalization process, we noticed that most of the semantics of
our certificate is carried by the specification of the verifier, and that some slight
changes in this specification can lead to “false-negative,” namely a given certifi-
cate could be wrongly denied by the verifier. We thus envisage to develop some
extra proofs that demonstrate the absence of such situations, even though in the
certificate-approach the most important thing is not to have “false-positive,”
which is asserted by our main correctness lemmas.

As said before, this work is within the scope of “certifying algorithms” as
introduced by [13]. The certifying algorithm we have presented will lead to an
important component that can be plugged into the “root-finding step” of SLZ
[18] to solve the Table Maker’s Dilemma in an exact way. The safety of the result
is ensured at the same time by the formal verification performed by Coq and by
the certificate-based approach that makes it possible to separate the verification
of the result from its (possibly intensive) computation.

Acknowledgements

The author wishes to thank Guillaume Hanrot, Micaela Mayero, Jean-Michel
Muller, Ioana Pasca and Laurent Théry for their precious advice and help.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science, Springer-Verlag (2004), http://www.labri.fr/publications/l3a/2004/

BC04

2. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press (2003)

3. Gonthier, G.: Formal Proof—The Four-Color Theorem. Notices of the American
Mathematical Society 55(11), 1382–1393 (2008), http://www.ams.org/notices/

200811/tx081101382p.pdf

4. Gonthier, G., Mahboubi, A.: A Small Scale Reflection Extension for the
Coq system. Research Report RR-6455, INRIA (2009), http://hal.inria.fr/

inria-00258384

5. Gonthier, G., Roux, S.L.: An Ssreflect Tutorial. Technical Report RT-0367, INRIA
(2009), http://hal.inria.fr/inria-00407778/en/

6. Grégoire, B., Théry, L.: A purely functional library for modular arithmetic and its
application to certifying large prime numbers. In: Furbach, U., Shankar, N. (eds.)

http://www.labri.fr/publications/l3a/2004/BC04
http://www.labri.fr/publications/l3a/2004/BC04
http://www.ams.org/notices/200811/tx081101382p.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
http://hal.inria.fr/inria-00258384
http://hal.inria.fr/inria-00258384
http://hal.inria.fr/inria-00407778/en/

18 Érik Martin-Dorel

Automated Reasoning, Lecture Notes in Computer Science, vol. 4130, pp. 423–437.
Springer (2006)

7. Grégoire, B., Théry, L., Werner, B.: A computational approach to Pocklington
certificates in type theory. In: Hagiya, M., Wadler, P. (eds.) Functional and Logic
Programming, Lecture Notes in Computer Science, vol. 3945, pp. 97–113. Springer
(2006)

8. Hensel, K.: Neue Grundlagen der Arithmetik. Journal für die reine und angewandte
Mathematik (Crelle’s Journal) 1904(127), 51–84 (1904), 10.1515/crll.1904.127.51

9. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant: a tutorial: ver-
sion 8.2 (2010), http://coq.inria.fr/distrib/V8.2pl2/files/Tutorial.pdf

10. Kahan, W.: A Test for Correctly Rounded SQRT (May 1996), http://www.cs.

berkeley.edu/~wkahan/SQRTest.ps, Lecture note
11. Lefèvre, V., Muller, J.M.: Worst Cases for Correct Rounding of the Elementary

Functions in Double Precision. In: Burgess, N., Ciminiera, L. (eds.) Proceedings of
the 15th IEEE Symposium on Computer Arithmetic. pp. 111–118. Vail, CO (Jun
2001)

12. Lenstra, A.K., Lenstra, Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 515–534 (1982)

13. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying
Algorithms (June 2010), http://www.mpi-inf.mpg.de/~mehlhorn/ftp/

CertifyingAlgorithms.pdf, to appear in Computer Science Review
14. Muller, J.M.: Elementary Functions, Algorithms and Implementation. Birkhäuser

Boston, MA, 2nd edn. (2006)
15. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,

Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser (2009)

16. Parks, M.: Number-Theoretic Test Generation for Directed Rounding. In: 14th
IEEE Symposium on Computer Arithmetic. pp. 241–248. Adelaide, Australia
(1999)

17. Stehlé, D.: Algorithmique de la réduction des réseaux et application à la recherche
de pires cas pour l’arrondi des fonctions mathématiques. Ph.D. thesis, Université
Nancy 1 Henri Poincaré (Dec 2005)

18. Stehlé, D.: On the Randomness of Bits Generated by Sufficiently Smooth Func-
tions. In: Hess, F., Pauli, S., Pohst, M.E. (eds.) Algorithmic Number Theory, 7th
International Symposium, ANTS-VII, Berlin, Germany, July 23-28, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4076, pp. 257–274. Springer-Verlag
(2006), http://dx.doi.org/10.1007/11792086_19

19. Stehlé, D., Lefèvre, V., Zimmermann, P.: Searching Worst Cases of a One-Variable
Function Using Lattice Reduction. IEEE Transactions on Computers 54(3), 340–
346 (Mar 2005)

20. The Coq Development Team: The Coq Proof Assistant: Reference Manual: version
8.2 (2010), http://coq.inria.fr/distrib/V8.2pl2/files/Reference-Manual.

pdf

21. Théry, L., Hanrot, G.: Primality proving with elliptic curves. In: Schneider, K.,
Brandt, J. (eds.) Theorem Proving in Higher Order Logics, Lecture Notes in Com-
puter Science, vol. 4732, pp. 319–333. Springer (2007)

http://coq.inria.fr/distrib/V8.2pl2/files/Tutorial.pdf
http://www.cs.berkeley.edu/~wkahan/SQRTest.ps
http://www.cs.berkeley.edu/~wkahan/SQRTest.ps
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.pdf
http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.pdf
http://dx.doi.org/10.1007/11792086_19
http://coq.inria.fr/distrib/V8.2pl2/files/Reference-Manual.pdf
http://coq.inria.fr/distrib/V8.2pl2/files/Reference-Manual.pdf

	Univariate and Bivariate Integral Roots Certificates Based on Hensel's Lifting
	1 Introduction and Motivations
	2 An overview of Hensel's lifting in the univariate case
	2.1 A uniqueness property on the modular roots of a polynomial in Z[X]
	2.2 A simple bound on the univariate integral roots
	2.3 The final doubling trick
	2.4 Example of use

	3 Pen-and-paper proofs
	3.1 Pen-and-paper sketch of the proof of Lemma 1
	3.2 Statement of the uniqueness lemma in the bivariate case
	3.3 Pen-and-paper sketch of the proof of Lemma 3

	4 Coq formalization
	4.1 Formal background for Hensel's lifting
	The SSReflect extension.
	The library on binary integers from the Coq standard library.
	Polynomials with integer coefficients.
	Handling different definitions of the modular reduction.

	4.2 Certified integral roots for a univariate polynomial
	Insights into the Coq formalization of Lemma 1.
	Specification of our univariate certificates and their checker.
	Remarks on the formal verification of our univariate checker.

	4.3 Certified integral roots for a pair of bivariate polynomials
	Insights into the Coq formalization of Lemma 3.
	Specification of our bivariate certificates and their checker.
	Remarks on the formal verification of our bivariate checker.

	5 Discussion on the certificate-based approach
	6 Conclusion and Future Work

