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On counting untyped lambda terms

Pierre Lescanne

University of Lyon, ENS de Lyon,

46 allée d’Italie, 69364 Lyon, France

Abstract

Despite λ-calculus is now three quarters of a century old, no for-
mula counting λ-terms has been proposed yet, and the combinatorics of
λ-calculus is considered a hard problem. The difficulty lies in the fact
that the recursive expression of the numbers of terms of size n with at
most m free variables contains the number of terms of size n− 1 with at
most m + 1 variables. This leads to complex recurrences that cannot be
handled by classical analytic methods. Here based on de Bruijn indices
(another presentation of λ-calculus) we propose several results on count-
ing untyped lambda terms, i.e., on telling how many terms belong to such
or such class, according to the size of the terms and/or to the number of
free variables. We extend the results to normal forms.

Keywords Combinatorics, lambda calculus, functional programming, ran-
domization, Catalan numbers

1 Introduction

This paper presents several results on counting untyped lambda terms, i.e., on
telling how many terms belong to such or such class, according to the size of
the terms and/or to the number of free variables. In addition to the inherent
interest of these results from the mathematical point of view, we expect that
a knowledge on the distribution of terms will improve the implementation of
reduction [12] and that results on asymptotic distributions of terms will give a
better insight of the lambda calculus. For counting more easily lambda terms we
adopt de Bruijn indices that are a well-known coding of bound variables by nat-
ural numbers. First we give recurrence formulas for the number of terms (and
of normal forms) of size n containing at most m distinct free variables. These
recurrence formulas are not familiar in combinatorics and not amenable to a
classical analytic treatment by generating functions. In this paper, we examine
the formulas for terms and normal forms when n is fixed and m varies, which
are polynomials. We give the expressions of the first coefficients of those poly-
nomials since an expression for the generic coefficients seems out of reach and no
regularity appears. However this shows that these expressions are clearly con-
nected to Catalan numbers Cn which count the number of binary trees having



n internal nodes. If we would find an explicit expression for the last coefficients
of the polynomials, this would be an explicit expression for the closed terms. In
the last section, we give formulas for the generating functions showing the diffi-
culty of a mathematical treatment. The results presented here are a milestone
in describing probabilistic properties of lambda terms with answers to questions
like: How does a random lambda term look like? How does a random normal
form look like? How to generate a random lambda term (a random normal
form)?

Related works

Previous works on counting lambda terms were by O. Bodini et al. [2], R. David
et al. [4] and J. Wang [13]. Related works are on counting types and/or counting
tautologies [14, 8, 5, 9]. Complexity of rewriting was studied by Choppy et al. [3].

2 Untyped lambda terms with de Bruijn indices

I am dedicating this book to N. G. “Dick” de Bruijn, because
his influence can be felt on every page. Ever since the 1960s he
has been my chief mentor, the main person who would answer my
question when I was stuck on a problem that I had not been taught
how to solve.

Donald Knuth in preface of [10]

The λ-calculus [1] is a logic formalism to describe functions, for instance,
the function f 7→ (x 7→ f(f(x)), which takes a function f and applies it twice.
For historical reason, this function is written λ f.λ x.f(fx), which contains the
two variables f and x, bounded by λ.

In this paper we represent terms by de Bruijn indices [6], this means that
variables are represented by numbers 1, 2, ...,m, ..., where an index, for in-
stance k, is the number of λ’s, above the location of the index and below the λ
that binds the variable, in a representation of λ-terms by trees. For instance,
the term with variables λx.λy.x y is represented by the term with de Bruijn
indices λλ21. The variable x is bound by the head λ. Above the occurrence
of x, there are two λ’s, therefore x is represented by 2 and from the occurrence
of y, we count just the λ that binds y; so y is represented by 1. In what follows
we will call terms, the untyped terms1 with de Bruijn indices. A term is either
an index or, an abstraction or an application, hence the recursive definition:

T ::= N | λT | T T

and terms with indices up to m, i.e., with indices in I(m) = {1, 2, ...,m}:

Tm ::= I(m) | λTm+1 | Tm Tm.
1Roughly speaking, typed terms are terms consistent with properties of the domain and

the codomain of the function they represent.
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Let us define a few functions on terms. To give the connection between λ-
terms with de Bruijn indices and standard λ-terms with explicit variables, let
us define two functions: Λ2db and db2Λ. Each function uses a list of variables.2

In addition, the function Λ2db (from standard lambda λ-terms to de Bruijn
terms) needs a function index which returns the position of the given variable
in the list3

Λ2db(lv, x) = index(lv, x)
Λ2db(lv, λx.M) = λ(Λ2db(x :: lv,M))
Λ2db(lv,M1M2) = Λ2db(lv,M1) Λ2db(lv,M2)

The function db2Λ (from de Bruijn terms to standard λ-terms) use a list lv with
a function nth (nth(lv, k) returns the kth variable of the list lv).

db2Λ(lv, k) = nth(lv, k)
db2Λ(lv, λt) = λx.db2Λ(x :: lv, t) where x is a fresh variable x /∈ lv
db2Λ(lv, t1 t2) = db2Λ(lv, t1) db2Λ(lv, t2)

Applying Λ2db on a empty list and a standard closed term returns a term in
T0. Reciprocally applying db2Λ on an empty list and a term in T0 returns a
standard closed λ-term. The function size defines the size of a term. It assigns
a size 1 to indices (in other words to variables):

size(k) = 1

size(λt) = size(t) + 1

size(t1 t2) = size(t1) + size(t2).

A head λ of a term t is a λ that occurs on the top of the term t or recursively
on the top of the term below the head λ. We are interested by the number of
head λ’s given by the function ♯head λ:

♯head λ(k) = 0

♯head λ(λt) = ♯head λ(t) + 1

♯head λ(t1 t2) = 0.

Let us call Tn,m, the set of terms of size n, with at most m de Bruijn
indices, i.e., with indices in I(m) = {1, 2, ...,m}. We can write, using @ as the
application symbol,4

Tn+1,m = λTn,m+1 ⊎
n
⊎

k=0

Tn−k,m@Tk,m.

2The position of the variable in the list is another view of the de Bruijn index.
3
index(x :: lv, x) = 1, index(x :: lv, y) = index(lv, y) + 1 where x 6= y. We assume there is

no failure. In other words, when we invoke index(l, z), we assume that z belongs to l.
4We write t1@t2 instead of t1 t2 to make explicit the presence of the binary operator

application.
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Moreover terms of size 1 are only made of de Bruijn indices, therefore

T1,m = I(m).

There is no term of size 0:

T0,m = ∅.

From this we get:

Tn+1,m = Tn,m+1 +

n
∑

k=0

Tn−k,m.Tk,m

T1,m = m

T0,m = 0

Tn,0 is the set of closed terms (terms with no non bound indices) of size n.
Notice that

Tn+1,m = Tn,m+1 +

n−1
∑

k=1

Tn−k,m.Tk,m

Let us illustrate this result by the array of closed terms up to size 5:

n terms Tn,0

1 none 0
2 λ1 1
3 λλ1, λλ2, 2
4 λλλ1, λλλ2, λλλ3, λ(1.1) 4
5 λλλλ1, λλλλ2, λλλλ3, λλλλ4, λλ(1.1), λλ(1.2), λλ(2.1), λλ(2.2), 13

λ(1.λ1), λ(1.λ2), λ((λ1).1), λ((λ2).1), λ1.λ1

The equation that defines Tn,m allows us to compute it, since it relies on
entities Ti,j where either i < n or j < m. Figure 1 is a table of the first values
of Tn,m up to T18,7. We are mostly interested by the sequence of sizes of the
closed terms, namely Tn,0, in other words the first column of the table.

Terms with explicit variables

The values of Tn,0 correspond to sequence A135501 (see http://www.research.
att.com/~nudges/sequences/A135501) due to Christophe Raffalli, which is de-
fined as the number of closed lambda-terms of size n. His recurrence formula
for those numbers is more complex. Actually he counts the number of lambda-
terms with exactly m free variables. Raffalli considers the values of the double
sequence fn,m, which is up to α-conversion the number of λ-terms of size n with
exactly m free variables, whereas Tn,m is the number of λ-terms with at most m
free variables. On closed terms (terms with no free variable, that correspond to
the case m = 0) the number of terms with exactly m free variables (Raffalli’s)
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coincides with the number of terms with at most m free variables (ours). Tn,m
and fn,m coincide for m = 0 which means Tn,0 = fn,0.

f1,1 = 1

f0,m = 0

fn,m = 0 if m > 2n− 1

fn,m = fn−1,m + fn−1,m+1 +

n−2
∑

p=1

m
∑

c=0

m−c
∑

l=0

(

m

c

)(

m− c

l

)

fp,l+cfn−p−1,m−l.

3 Bounding the Tn,0’s

Here we give a rough lower bound of the Tn,0’s. We can show easily that Motzkin
numbers5 are a lower bound of the Tn,0’s. More precisely we get the following
proposition.

Proposition 1 If Mn are the Motzkin numbers, Mn < Tn+1,0.

Proof: There is a one-to-one correspondance between unary-binary
trees and lambda terms of the form λM in which all the indices
are 1. Hence the results, since Motzkin numbers count unary-binary
trees. �

We conclude that the asymptotic behavior of the Tn,0’s are at least 3n since

the Motzkin numbers are asymptotically equivalent to
√

3
4πn3 3n ([7], Exam-

ple VI.3). Noticed that David et al. [4] have exhibited a lower bound and a
upper bound, but they give size 0 to variables (or de Bruijn’s indices). Their
size function, which we write sizeD to distinguish from ours, is:

sizeD(k) = 0

sizeD(λt) = sizeD(t) + 1

sizeD(t1 t2) = sizeD(t1) + sizeD(t2).

sizeD differs from size by the fact that sizeD is 0 on variables or indices. In other
words, David et al. consider the following induction, for the number Dn,m of
terms on size n with at most m free variables and variables sized as 0:

D0,m = m

Dn+1,m = Dn,m+1 +

n
∑

k=0

Dn−k,m.Dk,m

5Motzkin numbers Mn count the number of unary-binary trees of size n.
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Proposition 2 (David et al.) For any ε ∈ (0, 4), one has6

(

(4 − ε)n

ln(n)

)n− n

ln(n)

. Dn,0 .

(

(12 + ε)n

ln(n)

)n− n

3 ln(n)

.

4 The functions m 7→ Tn,m

In this section, we study in more detail the Tn,m’s. We assume the reader
familiar with generating functions. Otherwise he is advised to the read the
reference book Analytic Combinatorics, by Ph. Flajolet and R. Sedgewick [7].

Due to properties of the generating function (see Section 6) we are not able to
give a simple expression for the function n 7→ Tn,m, so we focus on the function
m 7→ Tn,m. These functions are polynomials PT

n , defined recursively as follows:

PT
0 (m) = 0 (1)

PT
1 (m) = m (2)

PT
n+1(m) = PT

n (m+ 1) +

n−1
∑

k=1

PT
k (m)PT

n−k(m). (3)

See Figure 2 for the first 18 polynomials. The table below gives the coefficients
of the polynomials PT

n up to 16.

n\mi
m

8
m

7
m

6
m

5
m

4
m

3
m

2
m 1

1 1 0

2 1 1

3 1 1 2

4 3 5 4

5 2 6 17 13

6 10 26 49 42

7 5 30 111 179 139

8 35 134 405 683 506

9 14 140 652 1658 2629 1915

10 126 676 2812 7122 10725 7558

11 42 630 3610 12760 30783 45195 31092

12 462 3334 17670 60240 138033 196355 132170

13 132 2772 19218 87850 285982 635178 880379 580466

14 1716 16108 104034 449290 1390246 2991438 4052459 2624545

15 429 12012 99386 560854 2308173 6895122 14436365 19144575 12190623

16 6435 76444 584878 3076878 12039895 34815210 71170791 92631835 58083923

The degrees of those polynomials increase two by two and we can describe
their leading coefficients, their second leading coefficients and the third leading
coefficients of the odd polynomials.

Proposition 3 deg(PT
2p−1) = deg(PT

2p) = p.

Proof: This is true for PT
1 = m and PT

2 = m+1 which have degree 1.
Assume the property true up to p. Note that all the coefficients of
the PT

n ’s are positive. In

PT
n (m+ 1) +

n−1
∑

k=1

PT
k (m)PT

n−k(m),

6f . g iff there exists a function h : N → R such that h ∼ g and there exists N ∈ N such
that f(n) ≥ h(n) for n ≥ N .
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the degree of PT
n+1(m) comes from the PT

k (m)PT
n−k(m)’s. Indeed,

par induction the degree of PT
n (m + 1) is (n − 1) ÷ 2 + 1 which is

smaller than n ÷ 2 + 1, therefore we can consider that PT
n (m + 1)

does not contribute to the degree of PT
n+1(m). Consider the degree

of PT
k (m)PT

n−k(m) according to the parity of n and k.

n = 2p+ 1 and k = 2h− 1. In this case, p ≥ h ≥ 1 and the degree
of PT

2h−1(m) is h and the degree of PT
2p+1−2h+1(m) is p−h+ 1,

hence the degree of PT
2h−1(m)PT

2p+1−2h+1(m) is p+ 1.

n = 2p+ 1 and k = 2h. In this case, p ≥ h ≥ 1 and the degree of
PT
2h(m) is h and the degree of PT

2p+1−2h(m) is p− h+ 1, hence

the degree of PT
2h(m)PT

2p+1−2h(m) is p+ 1.

n = 2p and k = 2h− 1. In this case, p+ 1 ≥ h ≥ 1 and the degree
of PT

2h−1(m) is h and the degree of PT
2p−2h+1(m) is p − h + 1,

hence the degree of PT
2h−1(m)PT

2p−2h+1(m) is p+ 1.

n = 2p and k = 2h. In this case, p + 1 ≥ h ≥ 1 and the degree of
PT
2h(m) is h and the degree of PT

2p−2h(m) is p−h, hence the de-

gree of PT
2h(m)PT

2p−2h(m) is p. These products PT
2h(m)PT

2p−2h(m)

do not contribute to the degree of PT
2p+1(m).

�

In what follows, for short, we write θ2q+1 and θ2q the leading coefficients of
PT
2q+1(m) and PT

2q(m), τ2q+1 and τ2q the second leading coefficients of PT
2q+1(m)

and PT
2q(m), and δ2q+1 the third leading coefficients of PT

2q+1(m). We also write,

as usual, Cn the nth Catalan number.
We define five generating functions.

Od(z) =

∞
∑

i=0

θ2i+1z
i Ev(z) =

∞
∑

i=0

θ2iz
i

Sod(z) =
∞
∑

i=0

τ2i+1z
i Sev(z) =

∞
∑

i=0

τ2iz
i

T od(z) =

∞
∑

i=0

δ2i+1z
i.

Proposition 4 The leading coefficients of PT
2q+1 are 1

q+1

(

2q
q

)

, i.e., the Catalan
numbers Cq.

Proof: From Equation (3) and the last two steps of the proof of
Proposition 3, we deduce the following relation :

θ2q+1 =

q−1
∑

h=0

θ2h+1 θ2q−2h−1 for q ≥ 1

θ1 = 1.
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which says that the leading coefficient of an odd polynomial comes
only from the leading coefficients in the products of odd polynomials.
We get:

Od(z) = 1 + zOd(z)2.

which shows that

Od(z) =
1 −

√
1 − 4z

2z
.

and Od(z) = C(z), the generating function of the Catalan numbers.
�

Proposition 5 The leading coefficients of PT
2q are

(

2q−1
q

)

, for q ≥ 1.

Proof: Without lost of generality, we assume that θ0 = 0. From
Equation (3), we get, for q ≥ 1,

θ2q+2 = θ2q+1 +

2q+1
∑

k=0

θk θ2q+1−k

= θ2q+1 +

q
∑

h=0

θ2h θ2q+1−2h +

q
∑

h=0

θ2h+1 θ2q−2h

= θ2q+1 + 2

q
∑

h=0

θ2h θ2q−2h+1.

which says that the leading coefficient of an even polynomial comes
from the leading coefficient of the preceding odd polynomial and of
the products of the leading coefficients of the products of the smaller
polynomials. We get:

Ev(z) = zOd(z) + 2 zEv(z)Od(z),

hence

Ev(z) =
zOd(z)

1 − 2zOd(z)
=

1 −
√

1 − 4z

2
√

1 − 4z
=

√
1 − 4z

2(1 − 4z)
− 1

2

which is the generating function of the sequence
(

2q−1
q

)

. �

Proposition 6 The second leading coefficients of PT
2q+1 are (2q − 1)

(

2(q−1)
q−1

)

.

Proof: From the proof of Proposition 3, we see that the monomial
of second highest degree of P2q+1 is made as the sum:

• of the monomial of highest degree of P2q,

• of the products of the monomials of highest degree from the
Pi’s with even indices and

8



• the products of monomials of highest degree with monomials
of second highest degree from the Pi’s with odd indices.

We get for q ≥ 1:

τ2q+1 = θ2q +

q
∑

h=0

θ2hθ2q−2h +

q−1
∑

h=0

θ2h+1τ2q−2h−1 +

q−1
∑

h=0

τ2h+1θ2q−2h−1.

We notice that τ1 = 0. Therefore we get:

Sod(z) = Ev(z) + Ev(z)2 + 2zOd(z)Sod(z).

Then

Sod(z) =
Ev(z) + Ev(z)2

1 − 2zOd(z)
=

z√
1 − 4z(1 − 4z)

=
z
√

1 − 4z

(1 − 4z)2

which is the generating function of (2q − 1)
(

2(q−1)
q−1

)

. �

Proposition 7 The second leading coefficients of PT
2q are τ0 = 0, τ1 = 1, τ2 = 5

and for q ≥ 3,

τ2q = 4q−1 +
2(2q − 5)(2q − 3)(2q − 1)

3(q − 2)

(

2(q − 3)

q − 3

)

.

Proof: From Equation (3),we get







τ2q+2 = (q + 1)θ2q+1 + τ2q+1

+2
∑q

i=1 θ2i−1τ2q−2i+2 + 2
∑q

i=1 θ2iτ2q−2i+1

τ0 = 0

The second leading coefficient of an even polynomial PT
2m+2 is made

of four components:

• the coefficient of degree q in θ2q+1(m+1)q+1, namely (q + 1)θ2q+1,

• the coefficient of degree q in τ2q+1(m+ 1)q, namely τ2q+1,

• the sum of the products of the leading coefficients of the odd
polynomials and the second leading coefficients of the even
polynomials (this occurs twice, once in product P2i−1(m)P2q−2i+2(m)
and once in product P2i(m)P2q−2i+1(m)),

• the sum of the products of the leading coefficients of the even
polynomials and the second leading coefficients of the odd poly-
nomials (twice).

From the above induction, Sev fulfils the following functional
equation:

Sev(z) = zOd(z)+z2Od′(z)+zSod(z)+2zOd(z)Sev(z)+2zEv(z)Sod(z).

9



Therefore

Sev(z) =
zOd(z) + z2Od′(z) + zSod(z) + 2zEv(z)Sod(z)√

1 − 4z

=
(1 −

√
1 − 4z)

2
√

1 − 4z

+
z

1 − 4z
− 1 −

(√
1 − 4z

)

2
√

1 − 4z

+
z2

(1 − 4z)2

+
z(1 −

√
1 − 4z)

(1 − 4z)2
√

1 − 4z

=
z

1 − 4z
+

z2

(1 − 4z)2
+

z2(1 −
√

1 − 4z)

(1 − 4z)2
√

1 − 4z

=

∞
∑

q=1

4q−1zq +

∞
∑

q=2

(q − 1)4q−2zq +

∞
∑

q=3

2aq−3z
q

where (an)n∈N is sequence A029887 of the On-Line Encyclopedia of
Integer Sequences whose value is:

(2n+ 1)(2n+ 3)(2n+ 5)

3
Cn − (n+ 2)22n+1.

Hence

Sev(z) =

∞
∑

q=1

4q−1zq +

∞
∑

q=3

2(2q − 5)(2q − 3)(2q − 1)

3
Cq−3z

q

=
z

1 − 4z
+

z2

(1 − 4z)2
√

1 − 4z
.

�

Proposition 8 The third leading coefficients of PT
2q+1 are

q 22q−1 +
q(q − 1)(q − 2)

120

(

2q

q

)

+
(q + 1)q(q − 1)

120

(

2(q + 1)

q + 1

)

.

Proof: Since deg(PT
2n) = deg(PT

2n+1)− 1, the third coefficient is the
sum of seven items:

• the second coefficient of θ2q (m+ 1)q, namely qθ2q,

• the first coefficient of (m+ 1)q−1, namely τ2q,

• the sum of products of leading coefficients and second leading
coefficients for even polynomials (twice),

10



• the sum of leading coefficients and third leading coefficients for
odd polynomials (twice),

• the sum of second leading coefficients with second leading co-
efficients.

The formula for δ2q+1 is:

δ2q+1 = q θ2q + τ2q +

q
∑

i=0

τ2iθ2q−2i +

q
∑

i=0

θ2iτ2q−2i +

q−1
∑

i=0

θ2i+1δ2q−2i−1 +

q−1
∑

i=0

δ2i+1θ2q−2i−1 +

q−1
∑

i=0

τ2i+1τ2q−2i−1,

which give the following equation on generating functions:

T od(z) = z Ev′(z) + Sev(z) + 2zEv(z)Sev(z) +

2zOd(z)T od(z) + z Sev(z)2.

which yields:

T od(z) =
z Ev′(z) + Sev(z) + 2zEv(z)Sev(z) + z Sev(z)2

1 − 2zOd(z)

=
1√

1 − 4z

(

z

(1 − 4z)
√

1 − 4z
+

z

1 − 4z
+

z2

(1 − 4z)2
√

1 − 4z
+

1 −
√

1 − 4z√
1 − 4z

(

z

1 − 4z
+

z2

(1 − 4z)2
√

1 − 4z

)

+

z3

(1 − 4z)3

)

=
2z

(1 − 4z)2
+

z2 + z3

(1 − 4z)3
√

1 − 4z
.

The first part corresponds to sequence A002699 which expression
is q 22q−1. 1/(1 − 4z)3

√
1 − 4z corresponds to sequence A144395.

Therefore the second part yields the expression

q(q − 1)(q − 2)

120

(

2q

q

)

+
(q + 1)q(q − 1)

120

(

2(q + 1)

q + 1

)

.

�

Hence typically if we pose

τ2q = 4q−1 +
2(2q − 5)(2q − 3)(2q − 1)

3
Cq−3

δ2q+1 = q 22q−1 +
(q + 1)q(q − 1)(q − 2)

120
Cq +

(q + 2)(q + 1)q(q − 1)

120
Cq+1

11



we have in general:

PT
2q(m) = (2q − 1)Cq−1m

q + τ2qm
q−1 + . . .+ T2q,0

PT
2q+1(m) = Cqm

q+1 +
2q(2q − 1)

2
Cq−1m

q + δ2q+1m
q−1 + . . .+ T2q+1,0

showing the prominent role of Catalan numbers. The relations for the other
coefficients are more convoluted7 and have not been computed.

It should be interesting to study the connection with the derivatives of the
generating function C(z) of the Catalan numbers [11].

5 Normal forms

Normal forms are important in λ-calculus. They are terms containing no sub-
term of the form (λt1) t2. We study in detail the expression giving the number
of normal forms of size n with at most m variables. Let us call Fm the set of
normal forms with {1, ..,m} de Bruijn indices and Gm the sets of normal forms
with no head λ and de Bruijn indices in {1, ..,m}. The combinatorial structure
equations are

Gm = I(m) ⊎ Gm@Fm

Fm = λFm+1 ⊎ Gm

Let Gn,m be the number of normal forms of size n with no head λ and with de
Bruijn indices in I(m) and let Fn,m be the number of normal forms of size n
with de Bruijn indices in I(m). The relations between Gn,m and Fn,m are

G0,m = 0

G1,m = m

Gn+1,m =

n
∑

k=0

Gn−k,mFk,m

F0,m = 0

F1,m = m = G1,m

Fn+1,m = Fn,m+1 +Gn+1,m

whereas the relations between generating functions are

Gm(z) = mz + z Gm(z)Fm(z)

Fm(z) = z Fm+1(z) +Gm(z).

The coefficients Fn,m are given in Figure 3.

7Like τ2q and δ2q+1, they correspond to non studied sequences according to the On-Line

Encyclopedia of Integer Sequences.
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The functions m 7→ Fn,m

Like for m 7→ Tn,m, the functions m 7→ Fn,m are polynomials of degree (n−1)÷
2 + 1, which we write PNF

n and which we give in Figure 4. The coefficients of
polynomials PNF

n enjoy properties somewhat similar to those proved for poly-
nomials PT

n . In this section, we write Pn(m) the polynomial PNF
n (m), Qn(m)

the polynomial associated with Gn,m, ϕn the leading coefficient of Pn, ϕn the
leading coefficient of Qn, ψn the second leading coefficient of Pn and ψn the
second leading coefficient of Qn. We have the equations

Pn+1(m) = Pn(m+ 1) +Qn+1(m) (4)

Qn+1(m) =
n
∑

k=0

Qn−k(m)Pk(m) (5)

Proposition 9 deg(P2p−1) = deg(P2p) = deg(Q2p−1) = deg(Q2p) = p.

Proof: Here also the coefficients are positive. The degree of Pn is
the degree of Qn by (4). One notices that deg P0 = deg Q0 = 0 and
deg P1 = deg Q1 = 1. The general step can be mimicked from this
of Proposition 3. �

We define eight generating functions:

Fev(z) =

∞
∑

i=0

ϕ2iz
i Fev(z) =

∞
∑

i=0

ϕ2iz
i

Fod(z) =

∞
∑

i=0

ϕ2i+1z
i Fod(z) =

∞
∑

i=0

ϕ2i+1z
i

SFev(z) =

∞
∑

i=0

ψ2iz
i SFev(z) =

∞
∑

i=0

ψ2iz
i

SFod(z) =

∞
∑

i=0

ψ2i+1z
i SFod(z) =

∞
∑

i=0

ψ2i+1z
i

Proposition 10 The leading coefficients of PNF
2q+1 are Catalan numbers.

Proof: We see easily that ϕ2q+1 = ϕ2q+1 by (4). By (5), we see
that

ϕ2q+1 =

q−1
∑

h=0

ϕ2q+1ϕ2q−2h−1

ϕ1 = ϕ1 = 1.

Hence the result Fod(z) = Fod(z) = C(z) (see proof of Proposi-
tion 4). �
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Proposition 11 The leading coefficients of the PNF
n ’s for n even, are PNF

0 = 0,
PNF
2 = 1 and PNF

2q+4 = 2
(

2q+1
q

)

, i.e., PNF
2q+4 = 2PT

2q+2.

Proof: From Equations (4) and (5),we get:

ϕ2(q+1) = ϕ2q+1 + ϕ2(q+1)

ϕ2(q+1) =

q
∑

i=0

ϕ2q+1−2iϕ2i +

q
∑

i=0

ϕ2q−2iϕ2i+1

Hence

Fev(z) = zFod(z) + Fev(z)

Fev(z) = zFod(z)Fev(z) + zFev(z)Fod(z)

from which we get

Fev(z) =
zFod(z)Fev(z)

1 − zFod(z)
(6)

then

Fev(z) = zFod(z) +
zFod(z)Fev(z)

1 − zFod(z)

and

Fev(z)−zFod(z)Fev(z) = zFod(z)−z2Fod(z)2+zFod(z)Fev(z)

and

Fev(z) =
zFod(z) − z2Fod(z)2

1 − 2zFod(z)

=
z√

1 − 4z
=

z
√

1 − 4z

1 − 4z

=
z

1 − 2zC(z)
.

Hence Fev(z) is the generating function of the sequence ϕ0 = 0,
ϕ2 = 1 and ϕ2q+4 = 2

(

2q+1
q

)

. �

Corollary 1 Fev(z) = 1−2z−
√
1−4z

2
√
1−4z

Proof:

Fev(z) = Fev(z) − zC(z)

=
z√

1 − 4z
− 1 −

√
1 − 4z

2
= z2C′(z).

�
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Proposition 12 The second leading coefficients of the PNF
2q+1’s are ψ0 = 0,

ψ3 = 1 and ψ2q+5 = (q + 3)
(

2q+1
q

)

.

Proof: From the proof of Proposition 9,

ψ2q+1 = ϕ2q + ψ2q+1

ψ1 = 0

ψ2q+3 =

q+1
∑

i=0

ϕ2iϕ2q−2i +

q
∑

i=0

ψ2i+1ϕ2q−2i+1 +

q
∑

i=0

ψ2i+1ϕ2q−2i+1,

from which we get

SFod(z) = Fev(z) + SFod(z)

SFod(z) = Fev(z)Fev(z) + z SFod(z)Fod(z) + z SFod(z)Fod(z).

Then we get

SFod(z)(1 − zFod(z)) = Fev(z)Fev(z) + zSFod(z)Fod(z).

We know that 1 − zFod(z) = 1 − zC(z) = 1/C(z), then

SFod(z) =
z√

1 − 4z
z2C′(z)C(z) + z SFod(z)C(z)2

and

SFod(z) = Fev(z) +
z3C(z)C′(z)√

1 − 4z
+ zSFod(z)C(z)2.

We know 1 − z C(z)2 = C(z)
√

1 − 4z, then

SFod(z) =

(

z√
1 − 4z

+
z3C(z)C′(z)√

1 − 4z

)

1

C(z)
√

1 − 4z

=
z

C(z) (1 − 4z)
+
z3 C′(z)

1 − 4z

=
z2

(1 − 4z)
√

1 − 4z
+

z√
1 − 4z

.

which is the generating function of the sequence 0, 1 followed by
(q + 3)

(

2q+1
q

)

. �

Corollary 2 SFod(z) = z2

(1−4z)
√
1−4z

Proof:

SFod(z) = SFod(z) −Fev(z) =
z2

(1 − 4z)
√

1 − 4z
.

Notice that SFod(z) = zSod(z). �
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Proposition 13 The second leading coefficients of the PNF
2q ’s are ψ0 = 0,

ψ2 = 1, ψ4 = 4, ψ6 = 15 and for q ≥ 4

ψ2q =

(

2q − 3

q − 2

)

+ 22q−3 + (q − 2)

(

2q − 2

q − 2

)

+

2

(

2q − 5

q − 3

)

+
(q − 3)(q − 2)

3

(

2q − 5

q − 3

)

.

Proof: We have

ψ2q+2 = (q + 1)ϕ2q+1 + ψ2q+1 + ψ2q+2

ψ2q+2 =

q
∑

i=1

ψ2i−1ϕ2q−2i+2 +

q
∑

i=1

ϕ2i−1ψ2q−2i+2 +

q
∑

i=1

ϕ2i−1ψ2q−2i+2 +

q
∑

i=1

ψ2i−1ϕ2q−2i+2.

This gives the equations on generic functions.

SFev(z) = zFod(z) + z2Fod′(z) + zSFod(z) + SFev(z)

SFev(z) = zSFod(z)Fev(z) + zFod(z)SFev(z) +

zSFev(z)Fod(z) + zFev(z)SFod(z).

Hence

SFev(z) =
zSFod(z)Fev(z) + zSFev(z)Fod(z) + zFev(z)SFod(z)

1 − zC(z)

which yields

SFev(z) = Fod(z) + z2Fod′(z) + zSFod(z) +

C(z)(zSFod(z)Fev(z) + zFev(z)SFod(z))

zC(z)SFev(z)Fod(z).

and

SFev(z) =
Fod(z) + z2Fod′(z) + zSFod(z)

1 − zC(z)2
+

zC(z)SFod(z)Fev(z) + zC(z)Fev(z)SFod(z)

1 − zC(z)2

=
z√

1 − 4z
+

z2C′(z)

C(z)
√

1 − 4z
+

z

C(z)
√

1 − 4z

(

z2

(1 − 4z)
√

1 − 4z
+

z√
1 − 4z

)

+

(

z√
1 − 4z

− 1 −
√

1 − 4z

2

)(

z2

(1 − 4z)2
+

z2

1 − 4z

)

+

z4

(1 − 4z)2
√

1 − 4z
.
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Notice that

z2C′(z)

C(z)
√

1 − 4z
=

z

2(1 − 4z)
− z

2
√

1 − 4z
.

and

z

C(z)
√

1 − 4z

(

z2

(1 − 4z)
√

1 − 4z
+

z√
1 − 4z

)

+

(

z√
1 − 4z

− 1 −
√

1 − 4z

2

)(

z2

(1 − 4z)2
+

z2

1 − 4z

)

=
2z3√

1 − 4z(1 − 4z)
+

z2√
1 − 4z

+

z4√
1 − 4z(1 − 4z)2

Hence

SFev(z) =
z

2
√

1 − 4z
+

z

2(1 − 4z)
+

2z3√
1 − 4z(1 − 4z)

+
z2√

1 − 4z
+

2z4√
1 − 4z(1 − 4z)2

We summarize the result in the following table.

gen. fonct. coefficients up to why?
z

2
√
1−4z

(

2q−3
q−2

)

q ≥ 2 Proposition 11
z

2(1−4z) 22q−3 q ≥ 2
2z3

√
1−4z(1−4z)

(q − 2)
(

2q−2
q−2

)

q ≥ 2

z2
√
1−4z

2
(

2q−5
q−3

)

q ≥ 3
2z4

√
1−4z(1−4z)2

(q−3)(q−2)
3

(

2q−5
q−3

)

q ≥ 4 A002802

Hence we have for q ≥ 4:

ψq =

(

2q − 3

q − 2

)

+ 22q−3 + (q − 2)

(

2q − 2

q − 2

)

+

2

(

2q − 5

q − 3

)

+
(q − 3)(q − 2)

3

(

2q − 5

q − 3

)

.

�
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Recall what we have computed for plain terms :

coefficients generating functions values equivalents

PT
2q+1,q+1 Od(z) 1−

√
1−4z
2z Cq 4q

√

1
πq3

PT
2q+1,q Sod(z) z

(1−4z)
√
1−4z

(2q − 1)
(

2(q−1)
q−1

)

4q 1
2

√

q

π

PT
2q+1,q−1 T od(z)

2z
(1−4z)2 +

z2+z3

(1−4z)3
√
1−4z

q 22q−1 + q(q−1)(q−2)
120

(

2q
q

)

+
(q+1)q(q−1)

120

(

2(q+1)
q+1

) 4q 1
24

√

q5

π

PT
2q,q Ev(z) 4z−1+

√
1−4z

2(1−4z)

(

2q−1
q

)

4q 1
2

√

1
πq

PT
2q,q−1 Sev(z)

z
1−4z+

z2

(1−4z)2
√
1−4z

4q−1+
2(2q−5)(2q−3)(2q−1)

3(q−2)

(

2(q−3)
q−3

) 4q 1
12

√

q3

π

and for normal forms

coefficients generating functions values equivalents

PNF
2q+1,q+1 Fod(z) 1−

√
1−4z
2z Cq 4q

√

1
πq3

PNF
2q+1,q SFod(z) z√

1−4z
+ z2

(1−4z)
√
1−4z

(q + 1)
(

2q−3
q−2

)

4q 1
8

√

q
π

PNF
2q,q Fev(z) z√

1−4z
2
(

2q−3
q−2

)

4q 1
4

√

1
πq

PNF
2q,q−1 SFev(z)

z

2
√
1−4z

+ z
2(1−4z)+

2z3

(1−4z)
√
1−4z

+
z2

√
1−4z

+
2z4

(1−4z)2
√
1−4z

(

2q−3
q−2

)

+ 22q−3+

(q − 2)
(

2q−2
q−2

)

+

2
(

2q−5
q−3

)

+
(q−3)(q−2)

3

(

2q−5
q−3

)

4q 1
96

√

q3

π

We notice that the coefficients of the PNF
n ’s have the same asymptotic be-

havior as the coefficients of PT
n ’s, with a slightly smaller constant, 1/8 or 1/4

for 1/2 and 1/96 for 1/12. Notice, in particular, that the results PNF
2q,q ∼ 1

2 P
T
2q,q

and PNF
2q+1,q ∼ 1

4 P
T
2q+1,q comes from the identities.

2

(

2q − 3

q − 2

)

=
q

2q − 1

(

2q − 1

q

)

(q + 1)

(

2q − 3

q − 2

)

=
q + 1

2(2q − 1)
(2q − 1)

(

2(q − 1)

q − 1

)

.

6 Generating functions for terms

Tn,m is associated with a bivariate generating function (see [7] Section III.1):

T (z, u) =
∑

n,m

Tn,mz
num.

There is no current analytic method to study it. The function:

T 〈m〉(z) =
∞
∑

n=0

Tn,mz
n

18



is called the vertical generating function. It gives the Tn,m’s for each value of m.

Vertical generating functions

We see that

Tn,m+1 = Tn+1,m −
n
∑

k=0

Tn−k,mTk,m.

Hence

T 〈m〉(0) = 0

and

T 〈m+1〉(z) =

∞
∑

n=0

Tn,m+1z
n

=
∞
∑

n=0

Tn+1,mz
n −

∞
∑

n=0

n
∑

k=0

Tn−k,mTk,mz
n

=
T 〈m〉(z)

z
− (T 〈m〉(z))2.

In other words

z(T 〈m〉(z))2 − T 〈m〉(z) + zT 〈m+1〉(z) = 0.

Hence

T 〈m〉(z) =
1 −

√

1 − 4z2T 〈m+1〉(z)

2z
.

Moreover

[z]T 〈m〉(z) =
d T 〈m〉

d z
(0) = m.

We see that T 〈m〉 is defined from T 〈m+1〉. T 〈m〉(z) is difficult to study,
because we have T 〈m〉 defined in term of T 〈m+1〉.

7 Conclusion

We have given several parameters on numbers of untyped lambda terms and
untyped normal forms and proved or conjectured facts about them. On another
direction, it could be worth to study typed lambda terms, whereas we have only
analyzed untyped lambda terms in this paper.
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n\m 0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7 8
3 2 4 8 14 22 32 44 58
4 4 12 26 46 72 104 142 186
5 13 38 87 172 305 498 763 1112
6 42 127 324 693 1294 2187 3432 5089
7 139 464 1261 2890 5831 10684 18169 29126
8 506 1763 5124 12653 27254 52671 93488 155129
9 1915 7008 21709 57070 130863 269260 508513 896634

10 7558 29019 94840 265129 646458 1406983 2791564 5136885
11 31092 124112 427302 1264362 3262352 7502892 15703602 30429782
12 132170 548264 1977908 6168242 16811366 40776020 89671904 181746638
13 580466 2491977 9384672 30755015 88253310 225197061 520076012 1104714147
14 2624545 11629836 45585471 156409882 471315501 1263116040 3058077451 6789961206
15 12190623 55647539 226272369 810506769 2558249963 7184911623 18208806189 42244969589
16 58083923 272486289 1146515237 4275219191 14098296495 41417170373 109721440529 265618096347
17 283346273 1363838742 5923639803 22933607180 78832280277 241776779298 668513708207 1686996660888
18 1413449148 6968881025 31177380822 125027527671 446961983408 1428444131853 4116538065930 10816530842627

Figure 1: Values of Tn,m up to (18, 7)
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n PT
n (m)

1 m
2 m+ 1
3 m2 +m+ 2
4 3m2 + 5m+ 4
5 2m3 + 6m2 + 17m+ 13
6 10m3 + 26m2 + 49m+ 42
7 5m4 + 30m3 + 111m2 + 179m+ 139
8 35m4 + 134m3 + 405m2 + 683m+ 506
9 14m5 + 140m4 + 652m3 + 1658m2 + 2629m+ 1915

10 126m5 + 676m4 + 2812m3 + 7122m2 + 10725m+ 7558
11 42m6 + 630m5 + 3610m4 + 12760m3 + 30783m2 + 45195m+ 31092
12 462m6 + 3334m5 + 17670m4 + 60240m3 + 138033m2 + 196355m+ 132170
13 132m7 + 2772m6 + 19218m5 + 87850m4 + 285982m3 + 635178m2 + 880379m+ 580466
14 1716m7 + 16108m6 + 104034m5 + 449290m4 + 1390246m3 + 2991438m2 + 4052459m+ 2624545
15 429m8 + 12012m7 + 99386m6 + 560854m5 + 2308173m4 + 6895122m3 + 14436365m2 + 19144575m+ 12190623
16 6435m8 + 76444m7 + 584878m6 + 3076878m5 + 12039895m4 + 34815210m3 + 71170791m2 + 92631835m+ 58083923
17 1430m9 + 51480m8 + 502384m7 + 3389148m6 + 16925916m5 + 63753310m4 + 179178860m3 + 358339416m2 + 458350525m+ 283346273
18 24310m9 + 357256m8 + 3176112m7 + 19799164m6 + 93981244m5 + 342274990m4 + 938333964m3 + 1840448776m2 + 2317036061m+ 1413449148

Figure 2: The polynomials PT
n for the function m 7→ Tn,m
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n\m 0 1 2 3 4 5 6 7 8

1 0 1 2 3 4 5 6 7 8
2 1 2 3 4 5 6 7 8 9
3 2 4 8 14 22 32 44 58 74
4 4 10 20 34 52 74 100 130 164
5 10 25 58 121 226 385 610 913 1306
6 25 72 185 400 753 1280 2017 3000 4265
7 72 223 614 1497 3244 6347 11418 19189 30512
8 223 728 2195 5716 12863 25688 46723 78980 125951
9 728 2549 8108 22745 56360 125093 253004 473753 832280

10 2549 9254 31253 93734 244997 564854 1173029 2237558 3983189
11 9254 35168 124778 395720 1109222 2770904 6261818 12999728 25130630
12 35168 138606 512898 1720040 5097660 13347978 31308206 66902388 132274680
13 138606 563907 2174894 7645095 23948550 66818531 167837142 384821079 816168830
14 563907 2369982 9459993 34771380 114618495 335857722 880524117 2092596528 4571548155
15 2369982 10231830 42221886 161568762 558056526 1723895502 4785906510 12073186866 28016723742
16 10231830 45381558 192944940 765787548 2764390146 8947158690 25962816408 68135021640 163627733358
17 45381558 206266797 901441688 3701763855 13912595562 47127027713 143678500332 397091138883 1005324501470
18 206266797 959283300 4302919895 18223902654 71123969121 251343711032 799893538635 2302171013970 6046781201429

Figure 3: Values of Fn,m up to (18, 8)
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n PNF
n (m)

1 m
2 m+ 1
3 m2 +m+ 2
4 2m2 + 4m+ 4
5 2m3 + 3m2 + 10m+ 10
6 6m3 + 15m2 + 26m+ 25
7 5m4 + 12m3 + 49m2 + 85m+ 72
8 20m4 + 62m3 + 155m2 + 268m+ 223
9 14m5 + 50m4 + 240m3 + 589m2 + 928m+ 728

10 70m5 + 263m4 + 870m3 + 2146m2 + 3356m+ 2549
11 42m6 + 210m5 + 1153m4 + 3658m3 + 8351m2 + 12500m+ 9254
12 252m6 + 1128m5 + 4658m4 + 14838m3 + 33575m2 + 48987m+ 35168
13 132m7 + 882m6 + 5446m5 + 21198m4 + 63138m3 + 137695m2 + 196810m+ 138606
14 924m7 + 4862m6 + 24086m5 + 93748m4 + 275898m3 + 587814m2 + 818743m+ 563907
15 429m8 + 3696m7 + 25372m6 + 117120m5 + 429435m4 + 1223102m3 + 2558090m2 + 3504604m+ 2369982
16 3432m8 + 20996m7 + 121286m6 + 556920m5 + 2011411m4 + 5601948m3 + 11448828m2 + 15384907m+ 10231830
17 1430m9 + 15444m8 + 116892m7 + 624768m6 + 2717670m5 + 9524196m4 + 26064412m3 + 52459126m2 + 69361301m+ 45381558
18 12870m9 + 90683m8 + 598120m7 + 3162562m6 + 13513606m5 + 46329205m4 + 124109404m3 + 245453736m2 + 319746317m+ 206266797

Figure 4: The polynomials PNF
n for the function m 7→ Fn,m
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