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On counting untyped lambda terms

Pierre Lescanne

University of Lyon, ENS de Lyon,

46 allée d’Italie, 69364 Lyon, France

Abstract

We present several results on counting untyped lambda terms, i.e., on
telling how many terms belong to such or such class, according to the size
of the terms and/or to the number of free variables.

1 Introduction

This paper presents several results on counting untyped lambda terms, i.e., on
telling how many terms belong to such or such class, according to the size of the
terms and/or to the number of free variables. In particular, it gives results on the
distribution of terms according to their number of free variables and explores
properties of these distributions, especially through generating functions. In
addition to the inherent interest of these results from the mathematical point
of view, we expect that a knowledge on the distribution of terms will improve
the implementation of reduction and that results on asymptotic distributions of
terms will give a better insight of the lambda calculus. We show strong evidence
for the claim that when the numberm of free variables tends to infinity, the ratio
“number of normal forms of size n over number of terms of size n” decreases
and tends to 1, meaning that when m grows, more and more terms are normal
forms. The results presented here are a milestone in describing probabilistic
properties of lambda terms with answers to questions like: How does a random
lambda term looks like? How does a random normal form look like? How to
generate a random lambda term (a random normal form)?

Related works

Previous works on counting lambda terms were by O. Bodini et al. [2], R. David
et al. [3] and J. Wang [11]. Related works are on counting types and/or counting
tautologies [12, 8, 4, 9].



2 Untyped lambda terms with de Bruijn indices

I am dedicating this book to N. G. “Dick” de Bruijn, because
his influence can be felt on every page. Ever since the 1960s he
has been my chief mentor, the main person who would answer my
question when I was stuck on a problem that I had not been taught
how to solve.

Donald Knuth in preface of [10]

The λ-calculus [1] is a logic formalism to describe fonctions, for instance, the
function f 7→ (x 7→ f(f(x)), which takes a fonction f and applies it twice. For
historical reason, this function is written λ f.λ x.f(fx), which contains the two
variables f and x, bounded by λ.

In this paper we represent terms by De Bruijn indices [6], this means that
variables are represented by numbers 1, 2, ...,m, ..., where an index, for in-
stance k, is the number of λ, above the location of the index and below the λ
that binds the variable, in a representation of λ-terms by trees. For instance,
the term with variables λx.λy.x y is represented by the term with de Bruijn
indices λλ21. The variable x is bound by the top λ. Above the occurrence
of x, there are two λ’s, therefore x is represented by 2 and from the occurrence
of y, one counts just the λ that binds y; so y is represented by 1. In what
follows we will call terms, the untyped terms1 with de Bruijn indices. Let us
call Tn,m, the set of terms of size n, with m de Bruijn indices, i.e., with indices
in I(m) = {1, 2, ...,m}. A term in Tn,m, is either a de Bruijn index or an ab-
straction on a term with m+ 1 indices i.e., a term in Tn,m+1 or an application
of a term in Tn,m on a term in Tn,m. We can write, using @ as the application
symbol,

Tn+1,m = I(m) ⊎ λTn,m+1 ⊎
n
⊎

k=0

Tn−k,m@Tk,m.

Moreover terms of size 1 are only made of de Bruijn indices, therefore

T1,m = I(m).

From this one gets:

Tn+1,m = Tn,m+1 +

n
∑

k=0

Tn−k,m.Tk,m

T1,m = m

T0,m = 0

Tn,0 is the set of closed terms (terms with no non bound indices). Notice that

Tn+1,m = Tn,m+1 +

n−1
∑

k=1

Tn−k,m.Tk,m

1Roughly speaking, typed terms are terms consistent with properties of the domain and
the codomain of the function they represent.
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Let us illustrate this result by the array of closed terms up to size 5:

n terms Tn,0

1 none 0
2 λ1 1
3 λλ1, λλ2, 2
4 λλλ1, λλλ2, λλλ3, λ(1.1) 4
5 λλλλ1, λλλλ2, λλλλ3, λλλλ4, λλ(1.1), λλ(1.2), λλ(2.1), λλ(2.2), 13

λ(1.λ1), λ(1.λ2), λ((λ1).1), λ((λ2).1), λ1.λ1

The equation that defines Tn,m allows us to compute it, since it relies on entities
Ti,j where either i < n or j < m. Figure 1 is a table of the first values of Tn,m

up to T18,7. We are mostly interested by the sequence of sizes of the closed
terms, namely Tn,0, in other words the first column of the table. The values of
Tn,0 correspond to sequence A135501 (see http://www.research.att.com/

~nudges/sequences/A135501) due to Christophe Raffalli, which is the number
of closed lambda-terms of size n. His formula for those numbers is more complex.
He considers the values of the double sequence fn,m. Tn,m and fn,m coincide
for m = 0, i.e., Tn,0 = fn,0.

f1,1 = 1

f0,m = 0

fn,m = 0 if m > 2n− 1

fn,m = fn−1,m + fn−1,m+1 +
n−2
∑

p=1

m
∑

c=0

m−c
∑

l=0

(

c

m

)(

l

m− c

)

fp,l+cfn−p−1,m−l.

He adds

The last term is for the application where c is the number of common

variables in both subterms. fn,m can be computed only using fn′,m′

with n′ < n and m′ ≤ m+ n− n′.

Notice that he deals only with sequence Tn,0, whereas we consider the values
for any value of m, from which we can expect to extract interesting informa-
tions. The main interesting statement we can draw from this is that considering
lambda terms with explicit variables or considering lambda terms with de Bruijn
indices makes no difference, at least when no β-reduction is taken into account.
We feel that considering lambda terms with de Bruijn indices makes the task
easier and produces more results.

3 The functions m 7→ Tn,m

Due to properties of the generating function (see Section 5) we are not able to
give a simple expression for the function n 7→ Tn,m, so we focus on the function
m 7→ Tn,m. These functions are polynomial PT

n , defined recursively as follows:
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PT
0 (m) = 0 (1)

PT
1 (m) = m (2)

PT
n+1(m) = PT

n (m+ 1) +

n−1
∑

k=1

PT
k (m)PT

n−k(m). (3)

See Figure 2 for the first 18 polynomials. The degrees of those polynomials
increase two by two and we can describe their leading coefficients and the second
leading coefficients of the odd polynomials.

Proposition 1 deg(PT
2p−1) = deg(PT

2p) = p.

Proof: This is true for PT
1 = m and PT

2 = m+1 which have degree 1.
Assume the property true up to p. Note that all the coefficients of
the PT

n ’s are positive. In

PT
n (m+ 1) +

n−1
∑

k=1

PT
k PT

n−k,

the degree of PT
n+1(m) comes from the PT

k PT
n−k’s. Indeed, par in-

duction the degree of PT
n (m+1) is n÷2 which is less than (n+1)÷2,

therefore one can consider that PT
n (m + 1) does not contribute to

the degree of PT
n+1(m). Consider the degree of PT

k PT
n−k according

to the parity of n and k.

n = 2p+ 1 and k = 2h− 1. In this case, p ≥ h ≥ 1 and the degree
of PT

2h−1 is h and the degree of PT
2p+1−2h+1 is p− h+ 1, hence

the degree of PT
2h−1 P

T
2p+1−2h+1 is p+ 1.

n = 2p+ 1 and k = 2h. In this case, p ≥ h ≥ 1 and the degree of
PT
2h is h and the degree of PT

2p+1−2h is p − h + 1, hence the

degree of PT
2h P

T
2p+1−2h is p+ 1.

n = 2p and k = 2h− 1. In this case, p+ 1 ≥ h ≥ 1 and the degree
of PT

2h−1 is h and the degree of PT
2p−2h+1 is p−h+1, hence the

degree of PT
2h−1 P

T
2p+2−2h+1 is p+ 1.

n = 2p and k = 2h. In this case, p + 1 ≥ h ≥ 1 and the degree of
PT
2h is h and the degree of PT

2p−2h is p− h, hence the degree of

PT
2h P

T
2p−2h is p. These products PT

2h P
T
2p−2h do not contribute

to the degree of PT
2p+1.

�

In what follows, for short, we write θ2q+1 and θ2q the leading coefficients of
PT
2q+1 and PT

2q.

Proposition 2 The leading coefficients of PT
2q+1 are 1

q+1

(

2q
q

)

, i.e., the Catalan
numbers.
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Proof: From Equation 3 and the last two steps of the proof of
Proposition 1, we deduce the following relation:

θ2q+1 =

q
∑

h=0

θ2h−1 θ2q−2h+1

Let us set

Od(z) =

∞
∑

i=0

θ2i+1z
i.

We get:
Od(z) = 1 + zOd(z)2.

which shows that

Od(z) =
1−

√
1− 4z

2z
.

and Od is the generating function of the Catalan numbers. �

Proposition 3 The leading coefficients of PT
2q are

(

2q−1
q

)

.

Proof: Without lost of generality, we assume that θ0 = 0. From
Equation 3, we get

θ2q = θ2q−1 +

2q−1
∑

k=0

θk θ2q−1−k

= θ2q−1 +

q
∑

h=1

θ2h−1 θ2q−2h +

q−1
∑

h=0

θ2h θ2q−1−2h

= θ2q−1 + 2

q−1
∑

h=0

θ2h θ2q−2h−1.

If one sets

Ev(z) =
∞
∑

i=0

θ2iz
i

one gets:
Ev(z) = zOd(z) + 2 zEv(z)Od(z),

hence

Ev(z) = zOd(z)

1− 2zOd(z)
=

1−
√
1− 4z

2
√
1− 4z

which is the generating function of the sequence
(

2q−1
q

)

. �

Proposition 4 The second leading coefficients of PT
2q+1 are (2q − 1)

(

2(q−1)
q−1

)

.
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Proof: Let use write τi the second leading coefficients and

Sod =

∞
∑

i=0

τ2i+1z
i

its generating function. One gets

τ2q+1 = θ2q +

q
∑

h=0

θ2hθ2q−2h +

q
∑

h=0

θ2h−1τ2q−2h+1 +

q
∑

h=0

τ2h−1θ2q−2h+1.

Therefore one gets:

Sod(z) = Ev(z) + z Ev(z)2 + 2zOd(z)Sod(z).

Then

Sod(z) = Od(z)− zOd(z)2

(1− 2zOd(z))3
= (1− 4z)−3/2

which is the generating function of (2q − 1)
(

2(q−1)
q−1

)

. �

Proposition 5 The second leading coefficients of PT
2q are τ0 = 0, τ1 = 1, τ2 = 5

and for q ≥ 3,

τ2q = 4q−1 +
2(2q − 5)(2q − 3)(2q − 1)

3(q − 2)

(

2(q − 3)

q − 3

)

.

Proof: From the equation 3, one gets






τ2q+2 = (q + 1)θ2q+1 + τ2q+1

+2
∑p

i=1 θ2i−1τ2q−2i+2 + 2
∑q

i=1 θ2iτ2q−2i+1

τ0 = 0

Let use call

Sev(z) =
∞
∑

i=0

τ2i+1z
i.

From the above induction, Sev fullfils the following functional equa-
tion:

Sev(z) = zOd(z)+z2Od′(z)+zSod(z)+2zOd(z)Sev(z)+2zEv(z)Sod(z).

Therefore

Sev(z) =
zOd(z) + z2Od′(z) + zSod(z) + 2zEv(z)Sod(z)√

1− 4z

=
(1−

√
1− 4z)

2
√
1− 4z

+
z

1− 4z
− 1−

(√
1− 4z

)

2
√
1− 4z
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+
z2

(1− 4z)2

+
z(1−

√
1− 4z)

(1− 4z)2
√
1− 4z

=
z

1− 4z
+

z2

(1 − 4z)2
+

z(1−
√
1− 4z)

(1 − 4z)2
√
1− 4z

=

∞
∑

q=1

4q−1zq +
∑

q=2

(q − 1)4q−2zq +

∞
∑

q=3

2aq−3

where an is the sequence A029887 of the On-Line Encyclopedia of
Integer Sequences whose value is:

(2n+ 1)(2n+ 3)(2n+ 5)C(n)/3− (n+ 2)22n+1

in which C(n) is the nth Catalan number. Hence

Sev(z) =
∞
∑

q=1

4q−1zq +
∞
∑

q=3

2(2q − 5)(2q − 3)(2q − 1)

3
C(q − 3)zq.

�

Hence typically if one poses

τ2q = 4q−1 +
2(2q − 5)(2q − 3)(2q − 1)

3
C(q − 3)

one has in general:

PT
2q(m) = (2q − 1)C(q − 1)mq + τ2qm

q−1 + . . .+ T2q,0

PT
2q+1(m) = C(q)mq+1 +

2q(2q − 1)

2
C(q − 1)mq + . . .+ T2q+1,0

showing the prominent role of Catalan numbers. The relations for the other
coefficients are more convoluted.2 We did not try to describe their generating
functions, but recall those we have computed:

Od(z) =
1−

√
1− 4z

2z

Ev(z) =
1−

√
1− 4z

2
√
1− 4z

Sod(z) =
1

(1 − 4z)
√
1− 4z

Sev(z) =
z

1− 4z
+

z2

(1 − 4z)2
+

z(1−
√
1− 4z)

(1 − 4z)2
√
1− 4z

2Like τ2q , they correspond to non studied sequences according to the On-Line Encyclopedia

of Integer Sequences
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The table below gives the coefficients of the polynomials PT
n up to 13.

n\mi
m

8
m

7
m

6
m

5
m

4
m

3
m

2
m 1

1 1 0

2 1 1

3 1 1 2

4 3 5 4

5 2 6 17 13

6 10 26 49 42

7 5 30 111 179 139

8 35 134 405 683 506

9 14 140 652 1658 2629 1915

10 126 676 2812 7122 10725 7558

11 42 630 3610 12760 30783 45195 31092

12 462 3334 17670 60240 138033 196355 132170

13 132 2772 19218 87850 285982 635178 880379 580466

14 1716 16108 104034 449290 1390246 2991438 4052459 2624545

15 429 12012 99386 560854 2308173 6895122 14436365 19144575 12190623

16 6435 76444 584878 3076878 12039895 34815210 71170791 92631835 58083923

4 Normal forms

Lest us call Fm the set of normal forms with m de Bruijn indices and Gm the
sets of normal forms with no head λ. The combinatorial structure equations are

Gm = I(m) ⊎ Gm@Fm

Fm = λFm+1 ⊎ Gm

Let Gn,m be the number of normal forms of size n with no head λ and with de
Bruijn indices in I(m) and Fn,m be the number of normal forms of size n with
de Bruijn indices in I(m). The relations between Gn,m and Fn,m are

G1,m = m

Gn+1,m =

n
∑

k=0

Gn−k,mFk,m

F1,m = m = G1,m

Fn+1,m = Fn,m+1 +Gn+1,m

whereas the relations between generating functions are

Gm(z) = mz + z Gm(z)Fm(z)

Fm(z) = z Fm+1(z) +Gm(z).

The coefficients Fn,m are given in Figure 3.

The functions m 7→ Fn,m

Like for m 7→ Tn,m, the functions m 7→ Fn,m are polynomials of degree n+1÷2,
which we write PNF

n and which are given in Figure 4. We can conjecture facts
about the coefficients of polynomials PNF

n somewhat similar to those proved for
polynomials PT

n .

8



• Like for PT
2q+1 the coefficients of PNF

2q+1 are Catalan numbers.

• The coefficients of PNF
2q+2 are 2

(

2q−1
q

)

, i.e., PNF
2q+2 = 2PT

2q.

Once proved, this means that the leading coefficients of PT
n and PNF

n have
asymptotically the same behavior, so this shows the following fact: when the
number m of free variables grows, PT

2q+1(m) ∼ PNF
2q+1(m) and since PT

2q−1 <

PT
2q < PT

2q+1 and PNF
2q−1 < PNF

2q < PNF
2q+1 then, when m grows, the set of normal

forms tends to be the same as the sets of terms and the set of normal forms
tends to be no more negligible.

5 Generating functions for terms

We consider the bivariate generating function for terms which coefficients are
the Tn,m and the vertical generating functions which gives the Tn,m for each
value of m.

The bivariate generating function for terms

Let T (z, u) be the bivariate generating function of Tn,m.

T (0, u) = 0

and

T (z, u) =
∑

n,m≥0

Tn,mznum

= z
∑

m≥0

mum +
∑

n≥1m≥0

Tn−1,m+1z
num + zT 2(z, u)

=
z u

(1− u)2
+

∑

n≥0m≥1

Tn,mzn+1um−1 + zT 2(z, u)

=
z u

(1− u)2
+

z

u
(T (z, u)− T (z, 0)) + zT 2(z, u)

Hence

zuT 2(z, u) + (z − u)T (z, u) +
z u2

(1 − u)2
− zT (z, 0) = 0

and

T (z, u) =
−(z−u)+

√

(z−u)2+4zu( z u2

(1−u)2
−zT (z,0))

2zu .

We notice that
lim
u→0

T (z, u) = T (z, 0).

On the other hand we see the presence of T (z, 0) in the lefthand side, which
shows that the equation is not a definition of T but rather an equation which
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characterizes T as a fixed point. Presented like that, the equation is not
amenable to the same treatment as those presented in Flajolet and Sedgewick [7]
and specialists consider it as difficult and no result is known about the asymp-
totic behavior of its coefficient.

Vertical generating functions

We see that

Tn,m+1 = Tn+1,m −
n
∑

k=0

Tn−k,mTk,m.

Hence

T 〈m〉(0) = 0

and

T 〈m+1〉(z) =

∞
∑

n=0

Tn,m+1z
n

=

∞
∑

n=0

Tn+1,mzn −
∞
∑

n=0

n
∑

k=0

Tn−k,mTk,mzn

=
T 〈m〉(z)

z
− (T 〈m〉(z))2

In other words

z(T 〈m〉(z))2 − T 〈m〉(z) + zT 〈m+1〉(z) = 0.

Hence

T 〈m〉(z) =
1−

√

1− 4z2T 〈m+1〉(z)

2z
.

One sees that T 〈m〉 is defined from T 〈m+1〉. Like the bivariate generating
function T (z, u), T 〈m〉(z) is also difficult to study, because we have T 〈m〉 defined
in term of T 〈m+1〉.

6 Conclusion

We have given several parameters on numbers of untyped lambda terms and
untyped normal forms and proved or conjectured facts about them. Further
tracks can lead to compute moments which will allow us to characterize precisely
properties of large random lambda terms which hold with high probability. On
another direction, it could be worth to study typed lambda terms, whereas we
have only analyzed untyped lambda terms in this paper.
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[9] Hervé Fournier, Danièle Gardy, Antoine Genitrini, and Marek Zaionc. Tau-
tologies over implication with negative literals. Math. Log. Q., 56(4):388–
396, 2010.

[10] Donald E. Knuth. Selected Papers on Analysis of Algorithms, volume 102 of
CSLI Lecture Notes. Stanford, California: Center for the Study of Language
and Information, 2000.

[11] Jue Wang. Generating random lambda calculus terms. Technical report,
Citeseer, 2005.

[12] Marek Zaionc. Probability distribution for simple tautologies. Theor. Com-
put. Sci., 355(2):243–260, 2006.

11



n\m 0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7 8
3 2 4 8 14 22 32 44 58
4 4 12 26 46 72 104 142 186
5 13 38 87 172 305 498 763 1112
6 42 127 324 693 1294 2187 3432 5089
7 139 464 1261 2890 5831 10684 18169 29126
8 506 1763 5124 12653 27254 52671 93488 155129
9 1915 7008 21709 57070 130863 269260 508513 896634
10 7558 29019 94840 265129 646458 1406983 2791564 5136885
11 31092 124112 427302 1264362 3262352 7502892 15703602 30429782
12 132170 548264 1977908 6168242 16811366 40776020 89671904 181746638
13 580466 2491977 9384672 30755015 88253310 225197061 520076012 1104714147
14 2624545 11629836 45585471 156409882 471315501 1263116040 3058077451 6789961206
15 12190623 55647539 226272369 810506769 2558249963 7184911623 18208806189 42244969589
16 58083923 272486289 1146515237 4275219191 14098296495 41417170373 109721440529 265618096347
17 283346273 1363838742 5923639803 22933607180 78832280277 241776779298 668513708207 1686996660888
18 1413449148 6968881025 31177380822 125027527671 446961983408 1428444131853 4116538065930 10816530842627

Figure 1: Values of Tn,m up to (18, 7)

1
2



n PT
n (m)

1 m
2 m+ 1
3 m2 +m+ 2
4 3m2 + 5m+ 4
5 2m3 + 6m2 + 17m+ 13
6 10m3 + 26m2 + 49m+ 42
7 5m4 + 30m3 + 111m2 + 179m+ 139
8 35m4 + 134m3 + 405m2 + 683m+ 506
9 14m5 + 140m4 + 652m3 + 1658m2 + 2629m+ 1915
10 126m5 + 676m4 + 2812m3 + 7122m2 + 10725m+ 7558
11 42m6 + 630m5 + 3610m4 + 12760m3 + 30783m2 + 45195m+ 31092
12 462m6 + 3334m5 + 17670m4 + 60240m3 + 138033m2 + 196355m+ 132170
13 132m7 + 2772m6 + 19218m5 + 87850m4 + 285982m3 + 635178m2 + 880379m+ 580466
14 1716m7 + 16108m6 + 104034m5 + 449290m4 + 1390246m3 + 2991438m2 + 4052459m+ 2624545
15 429m8 + 12012m7 + 99386m6 + 560854m5 + 2308173m4 + 6895122m3 + 14436365m2 + 19144575m+ 12190623
16 6435m8 + 76444m7 + 584878m6 + 3076878m5 + 12039895m4 + 34815210m3 + 71170791m2 + 92631835m+ 58083923
17 1430m9 + 51480m8 + 502384m7 + 3389148m6 + 16925916m5 + 63753310m4 + 179178860m3 + 358339416m2 + 458350525m+ 283346273
18 24310m9 + 357256m8 + 3176112m7 + 19799164m6 + 93981244m5 + 342274990m4 + 938333964m3 + 1840448776m2 + 2317036061m+ 1413449148

Figure 2: The polynomials PT
n for the function m 7→ Tn,m
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n\m 0 1 2 3 4 5 6 7 8

1 0 1 2 3 4 5 6 7 8
2 1 2 3 4 5 6 7 8 9
3 2 4 8 14 22 32 44 58 74
4 4 10 20 34 52 74 100 130 164
5 10 25 58 121 226 385 610 913 1306
6 25 72 185 400 753 1280 2017 3000 4265
7 72 223 614 1497 3244 6347 11418 19189 30512
8 223 728 2195 5716 12863 25688 46723 78980 125951
9 728 2549 8108 22745 56360 125093 253004 473753 832280
10 2549 9254 31253 93734 244997 564854 1173029 2237558 3983189
11 9254 35168 124778 395720 1109222 2770904 6261818 12999728 25130630
12 35168 138606 512898 1720040 5097660 13347978 31308206 66902388 132274680
13 138606 563907 2174894 7645095 23948550 66818531 167837142 384821079 816168830
14 563907 2369982 9459993 34771380 114618495 335857722 880524117 2092596528 4571548155
15 2369982 10231830 42221886 161568762 558056526 1723895502 4785906510 12073186866 28016723742
16 10231830 45381558 192944940 765787548 2764390146 8947158690 25962816408 68135021640 163627733358
17 45381558 206266797 901441688 3701763855 13912595562 47127027713 143678500332 397091138883 1005324501470
18 206266797 959283300 4302919895 18223902654 71123969121 251343711032 799893538635 2302171013970 6046781201429

Figure 3: Values of Fn,m up to (18, 8)
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n PNF
n (m)

1 m
2 m+ 1
3 m2 +m+ 2
4 2m2 + 4m+ 4
5 2m3 + 3m2 + 10m+ 10
6 6m3 + 15m2 + 26m+ 25
7 5m4 + 12m3 + 49m2 + 85m+ 72
8 20m4 + 62m3 + 155m2 + 268m+ 223
9 14m5 + 50m4 + 240m3 + 589m2 + 928m+ 728
10 70m5 + 263m4 + 870m3 + 2146m2 + 3356m+ 2549
11 42m6 + 210m5 + 1153m4 + 3658m3 + 8351m2 + 12500m+ 9254
12 252m6 + 1128m5 + 4658m4 + 14838m3 + 33575m2 + 48987m+ 35168
13 132m7 + 882m6 + 5446m5 + 21198m4 + 63138m3 + 137695m2 + 196810m+ 138606
14 924m7 + 4862m6 + 24086m5 + 93748m4 + 275898m3 + 587814m2 + 818743m+ 563907
15 429m8 + 3696m7 + 25372m6 + 117120m5 + 429435m4 + 1223102m3 + 2558090m2 + 3504604m+ 2369982
16 3432m8 + 20996m7 + 121286m6 + 556920m5 + 2011411m4 + 5601948m3 + 11448828m2 + 15384907m+ 10231830
17 1430m9 + 15444m8 + 116892m7 + 624768m6 + 2717670m5 + 9524196m4 + 26064412m3 + 52459126m2 + 69361301m+ 45381558
18 12870m9 + 90683m8 + 598120m7 + 3162562m6 + 13513606m5 + 46329205m4 + 124109404m3 + 245453736m2 + 319746317m+ 206266797

Figure 4: The polynomials PNF
n for the function m 7→ Fn,m
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