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Despite λ-calculus is now three quarters of a century old, no formula counting λ-terms has been proposed yet, and the combinatorics of λ-calculus is considered a hard problem. The difficulty lies in the fact that the recursive expression of the numbers of terms of size n with at most m free variables contains the number of terms of size n -1 with at most m + 1 variables. This leads to complex recurrences that cannot be handled by classical analytic methods. Here based on de Bruijn indices (another presentation of λ-calculus) we propose several results on counting untyped lambda terms, i.e., on telling how many terms belong to such or such class, according to the size of the terms and/or to the number of free variables. We extend the results to normal forms.

Introduction

This paper presents several results on counting untyped lambda terms, i.e., on telling how many terms belong to such or such class, according to the size of the terms and/or to the number of free variables. In addition to the inherent interest of these results from the mathematical point of view, we expect that a knowledge on the distribution of terms will improve the implementation of reduction [START_REF] Pa | Testing an optimising compiler by generating random lambda terms[END_REF] and that results on asymptotic distributions of terms will give a better insight of the lambda calculus. For counting more easily lambda terms we adopt de Bruijn indices that are a well-known coding of bound variables by natural numbers. First we give recurrence formulas for the number of terms (and of normal forms) of size n containing at most m distinct free variables. These recurrence formulas are not familiar in combinatorics and not amenable to a classical analytic treatment by generating functions. In this paper, we examine the formulas for terms and normal forms when n is fixed and m varies, which are polynomials. We give the expressions of the first coefficients of those polynomials since an expression for the generic coefficients seems out of reach and no regularity appears. However this shows that these expressions are clearly connected to Catalan numbers C n which count the number of binary trees having n internal nodes. If we would find an explicit expression for the last coefficients of the polynomials, this would be an explicit expression for the closed terms. In the last section, we give formulas for the generating functions showing the difficulty of a mathematical treatment. The results presented here are a milestone in describing probabilistic properties of lambda terms with answers to questions like: How does a random lambda term look like? How does a random normal form look like? How to generate a random lambda term (a random normal form)?

Related works

Previous works on counting lambda terms were by O. Bodini et al. [START_REF] Bodini | Lambda-terms of bounded unary height[END_REF], R. David et al. [START_REF] David | Asymptotically almost all λ-terms are strongly normalizing[END_REF] and J. Wang [START_REF] Wang | Generating random lambda calculus terms[END_REF]. Related works are on counting types and/or counting tautologies [START_REF] Zaionc | Probability distribution for simple tautologies[END_REF][START_REF] Fournier | Classical and intuitionistic logic are asymptotically identical[END_REF][START_REF] David | Counting proofs in propositional logic[END_REF][START_REF] Fournier | Tautologies over implication with negative literals[END_REF]. Complexity of rewriting was studied by Choppy et al. [START_REF] Choppy | Complexity analysis of term-rewriting systems[END_REF].

2 Untyped lambda terms with de Bruijn indices I am dedicating this book to N. G. "Dick" de Bruijn, because his influence can be felt on every page. Ever since the 1960s he has been my chief mentor, the main person who would answer my question when I was stuck on a problem that I had not been taught how to solve. Donald Knuth in preface of [START_REF] Knuth | Selected Papers on Analysis of Algorithms[END_REF] The λ-calculus [START_REF] Henk | The Lambda-Calculus, its syntax and semantics[END_REF] is a logic formalism to describe functions, for instance, the function f → (x → f (f (x)), which takes a function f and applies it twice. For historical reason, this function is written λ f.λ x.f (f x), which contains the two variables f and x, bounded by λ.

In this paper we represent terms by de Bruijn indices [START_REF] Govert De Bruijn | Lambda calculus with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem[END_REF], this means that variables are represented by numbers 1, 2, ..., m, ..., where an index, for instance k, is the number of λ's, above the location of the index and below the λ that binds the variable, in a representation of λ-terms by trees. For instance, the term with variables λx.λy.x y is represented by the term with de Bruijn indices λλ21. The variable x is bound by the head λ. Above the occurrence of x, there are two λ's, therefore x is represented by 2 and from the occurrence of y, we count just the λ that binds y; so y is represented by 1. In what follows we will call terms, the untyped terms1 with de Bruijn indices. A term is either an index or, an abstraction or an application, hence the recursive definition:

T ::= N | λT | T T
and terms with indices up to m, i.e., with indices in I(m) = {1, 2, ..., m}:

T m ::= I(m) | λT m+1 | T m T m .
Let us define a few functions on terms. To give the connection between λterms with de Bruijn indices and standard λ-terms with explicit variables, let us define two functions: Λ2db and db2Λ. Each function uses a list of variables. 2 In addition, the function Λ2db (from standard lambda λ-terms to de Bruijn terms) needs a function index which returns the position of the given variable in the list 3

Λ2db(lv, x) = index(lv, x) Λ2db(lv, λx.M ) = λ(Λ2db(x :: lv, M )) Λ2db(lv, M 1 M 2 ) = Λ2db(lv, M 1 ) Λ2db(lv, M 2 )
The function db2Λ (from de Bruijn terms to standard λ-terms) use a list lv with a function nth (nth(lv, k) returns the k th variable of the list lv).

db2Λ(lv, k) = nth(lv, k) db2Λ(lv, λt) = λx.db2Λ(x :: lv, t) where x is a fresh variable x / ∈ lv db2Λ(lv, t 1 t 2 ) = db2Λ(lv, t 1 ) db2Λ(lv, t 2 )
Applying Λ2db on a empty list and a standard closed term returns a term in T 0 . Reciprocally applying db2Λ on an empty list and a term in T 0 returns a standard closed λ-term. The function size defines the size of a term. It assigns a size 1 to indices (in other words to variables):

size(k) = 1 size(λt) = size(t) + 1 size(t 1 t 2 ) = size(t 1 ) + size(t 2 ).
A head λ of a term t is a λ that occurs on the top of the term t or recursively on the top of the term below the head λ. We are interested by the number of head λ's given by the function ♯head λ:

♯head λ(k) = 0 ♯head λ(λt) = ♯head λ(t) + 1 ♯head λ(t 1 t 2 ) = 0.
Let us call T n,m , the set of terms of size n, with at most m de Bruijn indices, i.e., with indices in I(m) = {1, 2, ..., m}. We can write, using @ as the application symbol, 4

T n+1,m = λT n,m+1 ⊎ n k=0 T n-k,m @T k,m .
2 The position of the variable in the list is another view of the de Bruijn index.

3 index(x :: lv, x) = 1, index(x :: lv, y) = index(lv, y) + 1 where x = y. We assume there is no failure. In other words, when we invoke index(l, z), we assume that z belongs to l. 4 We write t 1 @t 2 instead of t 1 t 2 to make explicit the presence of the binary operator application.

3

Moreover terms of size 1 are only made of de Bruijn indices, therefore

T 1,m = I(m).
There is no term of size 0:

T 0,m = ∅.
From this we get:

T n+1,m = T n,m+1 + n k=0 T n-k,m .T k,m T 1,m = m T 0,m = 0
T n,0 is the set of closed terms (terms with no non bound indices) of size n. Notice that

T n+1,m = T n,m+1 + n-1 k=1 T n-k,m .T k,m
Let us illustrate this result by the array of closed terms up to size 5: The equation that defines T n,m allows us to compute it, since it relies on entities T i,j where either i < n or j < m. Figure 1 is a table of the first values of T n,m up to T 18,7 . We are mostly interested by the sequence of sizes of the closed terms, namely T n,0 , in other words the first column of the table.

n terms T n,0 1 none 0 2 λ1 1 3 λλ1,

Terms with explicit variables

The values of T n,0 correspond to sequence A135501 (see http://www.research. att.com/ ~nudges/sequences/A135501) due to Christophe Raffalli, which is defined as the number of closed lambda-terms of size n. His recurrence formula for those numbers is more complex. Actually he counts the number of lambdaterms with exactly m free variables. Raffalli considers the values of the double sequence f n,m , which is up to α-conversion the number of λ-terms of size n with exactly m free variables, whereas T n,m is the number of λ-terms with at most m free variables. On closed terms (terms with no free variable, that correspond to the case m = 0) the number of terms with exactly m free variables (Raffalli's) coincides with the number of terms with at most m free variables (ours). T n,m and f n,m coincide for m = 0 which means T n,0 = f n,0 .

f 1,1 = 1 f 0,m = 0 f n,m = 0 if m > 2n -1 f n,m = f n-1,m + f n-1,m+1 + n-2 p=1 m c=0 m-c l=0 m c m -c l f p,l+c f n-p-1,m-l .
3 Bounding the T n,0 's

Here we give a rough lower bound of the T n,0 's. We can show easily that Motzkin numbers 5 are a lower bound of the T n,0 's. More precisely we get the following proposition.

Proposition 1 If M n are the Motzkin numbers, M n < T n+1,0 .

Proof: There is a one-to-one correspondance between unary-binary trees and lambda terms of the form λM in which all the indices are 1. Hence the results, since Motzkin numbers count unary-binary trees.

We conclude that the asymptotic behavior of the T n,0 's are at least 3 n since the Motzkin numbers are asymptotically equivalent to

3 4πn 3 3 n ([7],
Example VI.3). Noticed that David et al. [START_REF] David | Asymptotically almost all λ-terms are strongly normalizing[END_REF] have exhibited a lower bound and a upper bound, but they give size 0 to variables (or de Bruijn's indices). Their size function, which we write size D to distinguish from ours, is:

size D (k) = 0 size D (λt) = size D (t) + 1 size D (t 1 t 2 ) = size D (t 1 ) + size D (t 2 ).
size D differs from size by the fact that size D is 0 on variables or indices. In other words, David et al. consider the following induction, for the number D n,m of terms on size n with at most m free variables and variables sized as 0:

D 0,m = m D n+1,m = D n,m+1 + n k=0 D n-k,m .D k,m
5 Motzkin numbers Mn count the number of unary-binary trees of size n.

Proposition 2 (David et al.) For any ε ∈ (0, 4), one has6 

(4 -ε)n ln(n) n-n ln(n) D n,0 (12 + ε)n ln(n) n-n 3 ln(n)
.
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The functions m → T n,m

In this section, we study in more detail the T n,m 's. We assume the reader familiar with generating functions. Otherwise he is advised to the read the reference book Analytic Combinatorics, by Ph. Flajolet and R. Sedgewick [START_REF] Flajolet | Analytic Combinatorics[END_REF].

Due to properties of the generating function (see Section 6) we are not able to give a simple expression for the function n → T n,m , so we focus on the function m → T n,m . These functions are polynomials P T n , defined recursively as follows:

P T 0 (m) = 0 (1) 
P T 1 (m) = m (2) 
P T n+1 (m) = P T n (m + 1) + n-1 k=1 P T k (m) P T n-k (m). ( 3 
)
See Figure 2 for the first 18 polynomials. The table below gives the coefficients of the polynomials P T n up to 16. The degrees of those polynomials increase two by two and we can describe their leading coefficients, their second leading coefficients and the third leading coefficients of the odd polynomials.

n\m i m 8 m 7 m 6 m 5 m 4 m 3 m 2 m 1 1 0 2 1 3 1 2 4 
Proposition 3 deg(P T 2p-1 ) = deg(P T 2p ) = p.
Proof: This is true for P T 1 = m and P T 2 = m+1 which have degree 1. Assume the property true up to p. Note that all the coefficients of the P T n 's are positive. In

P T n (m + 1) + n-1 k=1 P T k (m) P T n-k (m),
the degree of P T n+1 (m) comes from the P T k (m) P T n-k (m)'s. Indeed, par induction the degree of P T n (m + 1) is (n -1) ÷ 2 + 1 which is smaller than n ÷ 2 + 1, therefore we can consider that P T n (m + 1) does not contribute to the degree of P T n+1 (m). Consider the degree of P T k (m) P T n-k (m) according to the parity of n and k. n = 2p + 1 and k = 2h -1. In this case, p ≥ h ≥ 1 and the degree of P T 2h-1 (m) is h and the degree of

P T 2p+1-2h+1 (m) is p -h + 1, hence the degree of P T 2h-1 (m) P T 2p+1-2h+1 (m) is p + 1. n = 2p + 1 and k = 2h.
In this case, p ≥ h ≥ 1 and the degree of P T 2h (m) is h and the degree of

P T 2p+1-2h (m) is p -h + 1, hence the degree of P T 2h (m) P T 2p+1-2h (m) is p + 1. n = 2p and k = 2h -1.
In this case, p + 1 ≥ h ≥ 1 and the degree of P T 2h-1 (m) is h and the degree of

P T 2p-2h+1 (m) is p -h + 1, hence the degree of P T 2h-1 (m) P T 2p-2h+1 (m) is p + 1. n = 2p
and k = 2h. In this case, p + 1 ≥ h ≥ 1 and the degree of P T 2h (m) is h and the degree of

P T 2p-2h (m) is p -h, hence the de- gree of P T 2h (m) P T 2p-2h (m) is p. These products P T 2h (m) P T 2p-2h (m) do not contribute to the degree of P T 2p+1 (m).
In what follows, for short, we write θ 2q+1 and θ 2q the leading coefficients of P T 2q+1 (m) and P T 2q (m), τ 2q+1 and τ 2q the second leading coefficients of P T 2q+1 (m) and P T 2q (m), and δ 2q+1 the third leading coefficients of P T 2q+1 (m). We also write, as usual, C n the n th Catalan number.

We define five generating functions.

Od(z) = ∞ i=0 θ 2i+1 z i Ev(z) = ∞ i=0 θ 2i z i Sod(z) = ∞ i=0 τ 2i+1 z i Sev(z) = ∞ i=0 τ 2i z i T od(z) = ∞ i=0 δ 2i+1 z i .
Proposition 4 The leading coefficients of P T 2q+1 are 1 q+1 2q q , i.e., the Catalan numbers C q .

Proof: From Equation (3) and the last two steps of the proof of Proposition 3, we deduce the following relation :

θ 2q+1 = q-1 h=0 θ 2h+1 θ 2q-2h-1 for q ≥ 1 θ 1 = 1.
which says that the leading coefficient of an odd polynomial comes only from the leading coefficients in the products of odd polynomials. We get:

Od(z) = 1 + z Od(z) 2 .
which shows that

Od(z) = 1 - √ 1 -4z 2z .
and Od(z) = C(z), the generating function of the Catalan numbers.

Proposition 5 The leading coefficients of P T 2q are 2q-1 q , for q ≥ 1.

Proof: Without lost of generality, we assume that θ 0 = 0. From Equation (3), we get, for q ≥ 1,

θ 2q+2 = θ 2q+1 + 2q+1 k=0 θ k θ 2q+1-k = θ 2q+1 + q h=0 θ 2h θ 2q+1-2h + q h=0 θ 2h+1 θ 2q-2h = θ 2q+1 + 2 q h=0 θ 2h θ 2q-2h+1 .
which says that the leading coefficient of an even polynomial comes from the leading coefficient of the preceding odd polynomial and of the products of the leading coefficients of the products of the smaller polynomials. We get:

Ev(z) = zOd(z) + 2 zEv(z)Od(z), hence 
Ev(z) = zOd(z) 1 -2zOd(z) = 1 - √ 1 -4z 2 √ 1 -4z = √ 1 -4z 2(1 -4z) - 1 2
which is the generating function of the sequence 2q-1 q .

Proposition 6 The second leading coefficients of P T 2q+1 are (2q -1) 2(q-1) q-1 .

Proof: From the proof of Proposition 3, we see that the monomial of second highest degree of P 2q+1 is made as the sum:

• of the monomial of highest degree of P 2q ,

• of the products of the monomials of highest degree from the P i 's with even indices and

• the products of monomials of highest degree with monomials of second highest degree from the P i 's with odd indices.

We get for q ≥ 1:

τ 2q+1 = θ 2q + q h=0 θ 2h θ 2q-2h + q-1 h=0 θ 2h+1 τ 2q-2h-1 + q-1 h=0 τ 2h+1 θ 2q-2h-1 .
We notice that τ 1 = 0. Therefore we get:

Sod(z) = Ev(z) + Ev(z) 2 + 2zOd(z) Sod(z).
Then

Sod(z) = Ev(z) + Ev(z) 2 1 -2zOd(z) = z √ 1 -4z(1 -4z) = z √ 1 -4z (1 -4z) 2
which is the generating function of (2q -1) 2(q-1) q-1 .

Proposition 7

The second leading coefficients of P T 2q are τ 0 = 0, τ 1 = 1, τ 2 = 5 and for q ≥ 3,

τ 2q = 4 q-1 + 2(2q -5)(2q -3)(2q -1) 3(q -2) 2(q -3) q -3 . 
Proof: From Equation (3),we get

   τ 2q+2 = (q + 1)θ 2q+1 + τ 2q+1 +2 q i=1 θ 2i-1 τ 2q-2i+2 + 2 q i=1 θ 2i τ 2q-2i+1 τ 0 = 0
The second leading coefficient of an even polynomial P T 2m+2 is made of four components:

• the coefficient of degree q in θ 2q+1 (m+1) q+1 , namely (q + 1)θ 2q+1 ,

• the coefficient of degree q in τ 2q+1 (m + 1) q , namely τ 2q+1 ,

• the sum of the products of the leading coefficients of the odd polynomials and the second leading coefficients of the even polynomials (this occurs twice, once in product P 2i-1 (m) P 2q-2i+2 (m) and once in product P 2i (m) P 2q-2i+1 (m)),

• the sum of the products of the leading coefficients of the even polynomials and the second leading coefficients of the odd polynomials (twice).

From the above induction, Sev fulfils the following functional equation:

Sev(z) = zOd(z)+z 2 Od ′ (z)+zSod(z)+2zOd(z)Sev(z)+2zEv(z)Sod(z). Therefore Sev(z) = zOd(z) + z 2 Od ′ (z) + zSod(z) + 2zEv(z)Sod(z) √ 1 -4z = (1 - √ 1 -4z) 2 √ 1 -4z + z 1 -4z - 1 - √ 1 -4z 2 √ 1 -4z + z 2 (1 -4z) 2 + z(1 - √ 1 -4z) (1 -4z) 2 √ 1 -4z = z 1 -4z + z 2 (1 -4z) 2 + z 2 (1 - √ 1 -4z) (1 -4z) 2 √ 1 -4z = ∞ q=1 4 q-1 z q + ∞ q=2 (q -1)4 q-2 z q + ∞ q=3 2a q-3 z q
where (a n ) n∈N is sequence A029887 of the On-Line Encyclopedia of Integer Sequences whose value is:

(2n + 1)(2n + 3)(2n + 5) 3 C n -(n + 2)2 2n+1 .
Hence

Sev(z) = ∞ q=1 4 q-1 z q + ∞ q=3 2(2q -5)(2q -3)(2q -1) 3 C q-3 z q = z 1 -4z + z 2 (1 -4z) 2 √ 1 -4z .
Proposition 8 The third leading coefficients of P T 2q+1 are q 2 2q-1 + q(q -1)(q -2) 120 2q q + (q + 1)q(q -1) 120 2(q + 1) q + 1 .

Proof: Since deg(P T 2n ) = deg(P T 2n+1 ) -1, the third coefficient is the sum of seven items:

• the second coefficient of θ 2q (m + 1) q , namely qθ 2q ,

• the first coefficient of (m + 1) q-1 , namely τ 2q ,

• the sum of products of leading coefficients and second leading coefficients for even polynomials (twice),

• the sum of leading coefficients and third leading coefficients for odd polynomials (twice), • the sum of second leading coefficients with second leading coefficients.

The formula for δ 2q+1 is:

δ 2q+1 = q θ 2q + τ 2q + q i=0 τ 2i θ 2q-2i + q i=0 θ 2i τ 2q-2i + q-1 i=0 θ 2i+1 δ 2q-2i-1 + q-1 i=0 δ 2i+1 θ 2q-2i-1 + q-1 i=0 τ 2i+1 τ 2q-2i-1 ,
which give the following equation on generating functions:

T od(z) = z Ev ′ (z) + Sev(z) + 2zEv(z)Sev(z) + 2z Od(z)T od(z) + z Sev(z) 2 .
which yields:

T od(z) = z Ev ′ (z) + Sev(z) + 2zEv(z)Sev(z) + z Sev(z) 2 1 -2z Od(z) = 1 √ 1 -4z z (1 -4z) √ 1 -4z + z 1 -4z + z 2 (1 -4z) 2 √ 1 -4z + 1 - √ 1 -4z √ 1 -4z z 1 -4z + z 2 (1 -4z) 2 √ 1 -4z + z 3 (1 -4z) 3 = 2z (1 -4z) 2 + z 2 + z 3 (1 -4z) 3 √ 1 -4z .
The first part corresponds to sequence A002699 which expression is q 2 2q-1 . 1/(1 -4z) 3 √ 1 -4z corresponds to sequence A144395. Therefore the second part yields the expression q(q -1)(q -2) 120 2q q + (q + 1)q(q -1) 120 2(q + 1) q + 1 .

Hence typically if we pose

τ 2q = 4 q-1 + 2(2q -5)(2q -3)(2q -1) 3 C q-3
δ 2q+1 = q 2 2q-1 + (q + 1)q(q -1)(q -2) 120 C q + (q + 2)(q + 1)q(q -1) 120 C q+1

we have in general:

P T 2q (m) = (2q -1)C q-1 m q + τ 2q m q-1 + . . . + T 2q,0 P T 2q+1 (m) = C q m q+1 + 2q(2q -1) 2 C q-1 m q + δ 2q+1 m q-1 + . . . + T 2q+1,0
showing the prominent role of Catalan numbers. The relations for the other coefficients are more convoluted 7 and have not been computed.

It should be interesting to study the connection with the derivatives of the generating function C(z) of the Catalan numbers [START_REF] Lang | On polynomials related to derivatives of the generative functions of the Catalan numbers[END_REF].

Normal forms

Normal forms are important in λ-calculus. They are terms containing no subterm of the form (λt 1 ) t 2 . We study in detail the expression giving the number of normal forms of size n with at most m variables. Let us call F m the set of normal forms with {1, .., m} de Bruijn indices and G m the sets of normal forms with no head λ and de Bruijn indices in {1, .., m}. The combinatorial structure equations are

G m = I(m) ⊎ G m @F m F m = λ F m+1 ⊎ G m
Let G n,m be the number of normal forms of size n with no head λ and with de Bruijn indices in I(m) and let F n,m be the number of normal forms of size n with de Bruijn indices in I(m). The relations between G n,m and F n,m are

G 0,m = 0 G 1,m = m G n+1,m = n k=0 G n-k,m F k,m F 0,m = 0 F 1,m = m = G 1,m F n+1,m = F n,m+1 + G n+1,m
whereas the relations between generating functions are

G m (z) = m z + z G m (z) F m (z) F m (z) = z F m+1 (z) + G m (z).
The coefficients F n,m are given in Figure 3.

The functions m → F n,m

Like for m → T n,m , the functions m → F n,m are polynomials of degree (n -1) ÷ 2 + 1, which we write P N F n and which we give in Figure 4. The coefficients of polynomials P N F n enjoy properties somewhat similar to those proved for polynomials P T n . In this section, we write P n (m) the polynomial P N F n (m), Q n (m) the polynomial associated with G n,m , ϕ n the leading coefficient of P n , ϕ n the leading coefficient of Q n , ψ n the second leading coefficient of P n and ψ n the second leading coefficient of Q n . We have the equations

P n+1 (m) = P n (m + 1) + Q n+1 (m) (4) 
Q n+1 (m) = n k=0 Q n-k (m)P k (m) (5) 
Proposition 9 deg(P 2p-1 ) = deg(P 2p ) = deg(Q 2p-1 ) = deg(Q 2p ) = p.
Proof: Here also the coefficients are positive. The degree of P n is the degree of Q n by (4). One notices that deg P 0 = deg Q 0 = 0 and

deg P 1 = deg Q 1 = 1.
The general step can be mimicked from this of Proposition 3.

We define eight generating functions:

F ev(z) = ∞ i=0 ϕ 2i z i F ev(z) = ∞ i=0 ϕ 2i z i F od(z) = ∞ i=0 ϕ 2i+1 z i F od(z) = ∞ i=0 ϕ 2i+1 z i SF ev(z) = ∞ i=0 ψ 2i z i SF ev(z) = ∞ i=0 ψ 2i z i SF od(z) = ∞ i=0 ψ 2i+1 z i SF od(z) = ∞ i=0 ψ 2i+1 z i Proposition 10
The leading coefficients of P N F 2q+1 are Catalan numbers.

Proof: We see easily that ϕ 2q+1 = ϕ 2q+1 by (4). By (5), we see that

ϕ 2q+1 = q-1 h=0 ϕ 2q+1 ϕ 2q-2h-1 ϕ 1 = ϕ 1 = 1.
Hence the result F od(z) = F od(z) = C(z) (see proof of Proposition 4).

Proposition 11

The leading coefficients of the P N F n 's for n even, are

P N F 0 = 0, P N F 2 = 1 and P N F 2q+4 = 2 2q+1 q , i.e., P N F 2q+4 = 2P T 2q+2 .
Proof: From Equations ( 4) and ( 5),we get:

ϕ 2(q+1) = ϕ 2q+1 + ϕ 2(q+1) ϕ 2(q+1) = q i=0 ϕ 2q+1-2i ϕ 2i + q i=0 ϕ 2q-2i ϕ 2i+1 Hence F ev(z) = zF od(z) + F ev(z) F ev(z) = zF od(z)F ev(z) + zF ev(z)F od(z)
from which we get

F ev(z) = zF od(z)F ev(z) 1 -zF od(z) (6) 
then

F ev(z) = zF od(z) + zF od(z)F ev(z) 1 -zF od(z)
and

F ev(z)-z F od(z)F ev(z) = z F od(z)-z 2 F od(z) 2 +z F od(z)F ev(z)
and

F ev(z) = zF od(z) -z 2 F od(z) 2 1 -2zF od(z) = z √ 1 -4z = z √ 1 -4z 1 -4z = z 1 -2zC(z)
.

Hence F ev(z) is the generating function of the sequence ϕ 0 = 0,

ϕ 2 = 1 and ϕ 2q+4 = 2 2q+1 q . Corollary 1 F ev(z) = 1-2z- √ 1-4z 2 √ 1-4z
Proof:

F ev(z) = F ev(z) -zC(z) = z √ 1 -4z - 1 - √ 1 -4z 2 = z 2 C ′ (z).

Proposition 12

The second leading coefficients of the P N F 2q+1 's are ψ 0 = 0, ψ 3 = 1 and ψ 2q+5 = (q + 3) 2q+1 q .

Proof: From the proof of Proposition 9,

ψ 2q+1 = ϕ 2q + ψ 2q+1 ψ 1 = 0 ψ 2q+3 = q+1 i=0 ϕ 2i ϕ 2q-2i + q i=0 ψ 2i+1 ϕ 2q-2i+1 + q i=0 ψ 2i+1 ϕ 2q-2i+1 , from which we get SF od(z) = F ev(z) + SF od(z) SF od(z) = F ev(z)F ev(z) + z SF od(z)F od(z) + z SF od(z)F od(z).
Then we get SF od(z)(1 -zF od(z)) = F ev(z)F ev(z) + zSFod(z)F od(z).

We know that 1 -zF od(z) = 1 -zC(z) = 1/C(z), then

SF od(z) = z √ 1 -4z z 2 C ′ (z)C(z) + z SF od(z)C(z) 2 and SF od(z) = F ev(z) + z 3 C(z)C ′ (z) √ 1 -4z + zSF od(z)C(z) 2 .
We know 1z C(z

) 2 = C(z) √ 1 -4z, then SF od(z) = z √ 1 -4z + z 3 C(z)C ′ (z) √ 1 -4z 1 C(z) √ 1 -4z = z C(z) (1 -4z) + z 3 C ′ (z) 1 -4z = z 2 (1 -4z) √ 1 -4z + z √ 1 -4z .
which is the generating function of the sequence 0, 1 followed by (q + 3)

2q+1 q . Corollary 2 SF od(z) = z 2 (1-4z) √ 1-4z
Proof:

SF od(z) = SF od(z) -F ev(z) = z 2 (1 -4z) √ 1 -4z .
Notice that SF od(z) = zSod(z).

Proposition 13

The second leading coefficients of the P N F 2q 's are ψ 0 = 0, ψ 2 = 1, ψ 4 = 4, ψ 6 = 15 and for q ≥ 4 ψ 2q = 2q -3 q -2 + 2 2q-3 + (q -2) 2q -2 q -2 + 2 2q -5 q -3 + (q -3)(q -2) 3 2q -5 q -3 .

Proof: We have

ψ 2q+2 = (q + 1)ϕ 2q+1 + ψ 2q+1 + ψ 2q+2 ψ 2q+2 = q i=1 ψ 2i-1 ϕ 2q-2i+2 + q i=1 ϕ 2i-1 ψ 2q-2i+2 + q i=1 ϕ 2i-1 ψ 2q-2i+2 + q i=1 ψ 2i-1 ϕ 2q-2i+2 .
This gives the equations on generic functions.

SF ev(z) = zF od(z) + z 2 F od ′ (z) + zSF od(z) + SF ev(z)

SF ev(z) = zSFod(z)F ev(z) + zF od(z)SF ev(z) + zSFev(z)F od(z) + zF ev(z)SFod(z). and

SF ev(z) = F od(z) + z 2 F od ′ (z) + zSF od(z) 1 -zC(z) 2 + zC(z)SF od(z)F ev(z) + zC(z)F ev(z)SF od(z) 1 -zC(z) 2 = z √ 1 -4z + z 2 C ′ (z) C(z) √ 1 -4z + z C(z) √ 1 -4z z 2 (1 -4z) √ 1 -4z + z √ 1 -4z + z √ 1 -4z - 1 - √ 1 -4z 2 z 2 (1 -4z) 2 + z 2 1 -4z + z 4 (1 -4z) 2 √ 1 -4z .
Recall what we have computed for plain terms: coefficients generating functions values equivalents

P T 2q+1,q+1
Od(z)

1- √ 1-4z 2z C q 4 q 1 πq 3 P T 2q+1,q Sod(z) z (1-4z) √ 1-4z
(2q -1) 2(q-1)

q-1 4 q 1 2 q π P T 2q+1,q-1 T od(z) 2z (1-4z) 2 + z 2 +z 3 (1-4z) 3 √ 1-4z
q 2 2q-1 + q(q-1)(q-2) 120 2q q + (q+1)q(q-1) 120 2(q+1) q+1

4 q 1 24 q 5 π P T 2q,q Ev(z) 4z-1+ √ 1-4z 2(1-4z) 2q-1 q 4 q 1 2 1 πq P T 2q,q-1 Sev(z) z 1-4z + z 2 (1-4z) 2 √ 1-4z 4 q-1 + 2(2q-5)(2q-3)(2q-1) 3(q-2)
2(q-3) q-3 4 q 1 12 q 3 π and for normal forms coefficients generating functions values equivalents

P N F 2q+1,q+1 F od(z) 1- √ 1-4z 2z C q q 1 πq 3 P N F 2q+1,q SF od(z) z √ 1-4z + z 2 (1-4z) √ 1-4z (q + 1) 2q-3 q-2 q 1 8 q π P N F 2q,q F ev(z) z √ 1-4z 2 2q-3 q-2 q 1 4 1 πq P N F 2q,q-1 SF ev(z) z 2 √ 1-4z + z 2(1-4z) + 2z 3 (1-4z) √ 1-4z + z 2 √ 1-4z + 2z 4 (1-4z) 2 √ 1-4z 2q-3 q-2 + 2 2q-3 + (q -2) 2q-2 q-2 + 2 2q-5 q-3 + (q-3)(q-2) 3 2q-5 q-3 q 1 96 q 3 π
We notice that the coefficients of the P N F n 's have the same asymptotic behavior as the coefficients of P T n 's, with a slightly smaller constant, 1/8 or 1/4 for 1/2 and 1/96 for 1/12. Notice, in particular, that the results P N F 2q,q ∼ 1 2 P T 2q,q and P N F 2q+1,q ∼ 1 4 P T 2q+1,q comes from the identities.

2 2q -3 q -2 = q 2q -1 2q -1 q (q + 1) 2q -3 q -2 = q + 1 2(2q -1) (2q -1) 2(q -1) q -1 .

Generating functions for terms

T n,m is associated with a bivariate generating function (see [START_REF] Flajolet | Analytic Combinatorics[END_REF] Section III.1):

T (z, u) = n,m T n,m z n u m .
There is no current analytic method to study it. The function:

T m (z) = ∞ n=0
T n,m z n is called the vertical generating function. It gives the T n,m 's for each value of m.

Vertical generating functions

We see that

T n,m+1 = T n+1,m - n k=0 T n-k,m T k,m .
Hence T m (0) = 0 and

T m+1 (z) = ∞ n=0 T n,m+1 z n = ∞ n=0 T n+1,m z n - ∞ n=0 n k=0 T n-k,m T k,m z n = T m (z) z -(T m (z)) 2 .
In other words

z(T m (z)) 2 -T m (z) + zT m+1 (z) = 0. Hence T m (z) = 1 -1 -4z 2 T m+1 (z) 2z . Moreover [z]T m (z) = d T m d z (0) = m.
We see that T m is defined from T m+1 . T m (z) is difficult to study, because we have T m defined in term of T m+1 .

Conclusion

We have given several parameters on numbers of untyped lambda terms and untyped normal forms and proved or conjectured facts about them. On another direction, it could be worth to study typed lambda terms, whereas we have only analyzed untyped lambda terms in this paper. 

Hence

  SF ev(z) = zSF od(z)F ev(z) + zSF ev(z)F od(z) + zF ev(z)SFod(z) 1 -zC(z)which yields SF ev(z) = F od(z) + z 2 F od ′ (z) + zSF od(z) + C(z)(zSF od(z)F ev(z) + zF ev(z)SFod(z)) zC(z)SF ev(z)F od(z).
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Roughly speaking, typed terms are terms consistent with properties of the domain and the codomain of the function they represent.

f g iff there exists a function h : N → R such that h ∼ g and there exists N ∈ N such that f (n) ≥ h(n) for n ≥ N .

Like τ 2q and δ 2q+1 , they correspond to non studied sequences according to the On-Line Encyclopedia of Integer Sequences.

Notice that

We summarize the result in the following table.

gen. fonct. coefficients up to why?

(q-3)(q-2) 3

2q-5 q-3 q ≥ 4 A002802

Hence we have for q ≥ 4:

2q -2 q -2 + 2 2q -5 q -3 + (q -3)(q -2) 3 2q -5 q -3 .