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TRANSPORT PROPERTIES OF A CHAIN OF ANHARMONIC

OSCILLATORS WITH RANDOM FLIP OF VELOCITIES

CÉDRIC BERNARDIN AND STEFANO OLLA

Abstract. We consider the stationary states of a chain of n anharmonic cou-
pled oscillators, whose deterministic hamiltonian dynamics is perturbed by
random independent sign change of the velocities (a random mechanism that
conserve energy). The extremities are coupled to thermostats at different tem-
perature Tℓ and Tr and subject to constant forces τℓ and τr . If the forces differ
τℓ 6= τr the center of mass of the system will move of a speed Vs inducing a ten-
sion gradient inside the system. Our aim is to see the influence of the tension
gradient on the thermal conductivity. We investigate the entropy production
properties of the stationary states, and we prove the existence of the Onsager
matrix defined by Green-kubo formulas (linear response). We also prove some
explicit bounds on the thermal conductivity, depending on the temperature.

1. Introduction

Chains of anharmonic oscillators have been used as simple non-linear microscopic
models for the study of thermal conductivity. When coupled at the extremities to
thermostats at different temperatures, they have been the natural set-up, numeri-
cally and theoretically, for the macroscopic Fourier law [3]. When the interaction is
anharmonic and a pinning potential is present, the thermal conductivity is expected
to be finite and generally depending on the temperature. In fact a pinning potential
destroys translation invariance of the system (i.e. the conservation of momentum),
and temperature is the only parameter for equilibrium states, corresponding to the
energy conservation. If the chain is unpinned, equilibrium states are parameterized
also by the tension, and we would expect a dependence of the thermal conductivity
also on this parameter. On the other hand in the unpinned case, we expect typically
a divergence of the thermal conductivity with the size of the system.

We study here a stochastic perturbation of the dynamics of the anharmonic
unpinned oscillators, such that energy is conserved but not momentum, but still
the equilibrium measures are parameterized by temperature and tension. This
stochastic perturbation is extremely simple: each particle waits independently an
exponentially distributed time interval and then flips the sign of its velocity.

Furthermore, in order to produce a stationary state with a profile of tension
and of temperature, we apply at the extremities unequal forces, and thermostats at
different temperatures. In the corresponding stationary state the system will have
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a constant energy current Js and a velocity Vs. These quantities are related, at the
first order, to the gradients of temperature and tension by the Onsager matrix, that
turns out to be diagonal. In fact Vs can be computed explicitely and is independent
of the gradient of temperature (in fact it is independent of the anharmonicity).

While it is straightforward to show that Vs is proportional to the inverse of
the size of the system, we are not able to prove the same for Js (i.e. Fourier’s
law). Only in the harmonic case we are able to show this property, by explicit
calculations (cf Section 7), together with the stationary flux of energy exchanged
with the thermostats. A closer look to these formulas reveals that, by properly
doing work on the system through the tension applied at the boundaries, we can
push energy into the hot reservoir, but it is impossible to extract energy from
the cold reservoir. In other words, the system can act as a heater, but not as a
refrigerator.

In Section 3 we study the entropy production of the stationary state. In fact we
relate what is known as entropy production to the time derivative of the entropy of
a nonstationary state, in the following sense. Let µt a non stationary state of the
system at time t. Since we are dealing with a system with stochastic thermostats, µt
has a density with respect to the Lebesgue measure and it can be defined its entropy
H(µt). Computing the time derivative of H(µt), we find that it is composed by two
terms: the entropy rate of change of the thermostats and of the noise mechanism,
that is always positive, and a term that is usually called, up to a sign change, the
entropy production of the system in the state µt. If we start with the stationary
state µss, then obviously the time derivative of the entropy is zero, and the entropy
production of the system equals the entropy rate of change of the thermostats and
the noise, i.e. is positive. We prove that it is strictly positive unless we are in
the equilibrium state with same temperature and forces at the boundaries. We
actually work with a local Gibbs measure as reference measure, but computations
are similar.

2. Mathematical formulation and main results

2.1. The model. We denote by q1, . . . , qn the absolute positions of the particles,
and by p1, . . . , pn the corresponding momenta (particles mass is set equal to 1).
The relevant coordinates are the interparticle distances rx = qx−qx−1, x = 2, . . . , n.
Thus, the state space of our system is given by Ωn = R

n−1×R
n and we shall denote

a typical configuration (r2, . . . , rn, p1, . . . , pn) by ω = (r, p) ∈ Ωn. Between the
particles there is an anharmonic spring with potential V (rx), and the corresponding
hamiltonian dynamics is perturbed by independent random flips of the sign of the
velocities. Furthermore on the boundary particles 1 and n there are acting Langevin
thermostats at different temperature Tℓ and Tr, and two external constant forces
τℓ and τr.

The generator of the dynamics is given by

L = Aτℓ,τr + γS + γℓB1,Tℓ
+ γrBn,Tr

where Aτℓ,τr is the Liouville operator, Bj,T the generator of the Langevin bath at
temperature T acting on the j–th particle and S the generator of the noise. The
strength of noise and thermostats are regulated by γ, γℓ and γr. The Liouville
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operator is defined by

Aτℓ,τr =

n
∑

x=2

(px − px−1) ∂rx +

n−1
∑

x=2

(V ′(rx+1)− V ′(rx)) ∂px

− (τℓ − V ′(r2)) ∂p1 + (τr − V ′(rn)) ∂pn .

(2.1)

The generators of the thermostats are given by

Bj,T = T∂2pj − pj∂pj . (2.2)

The noise corresponds to independent velocity change of sign, i.e.

(Sf)(ω) =
n−1
∑

x=2

(f(ωx)− f(ω)) , f : Ωn → R. (2.3)

Here, the configuration ωx (resp. px) is the configuration obtained from ω (resp.
p) by flipping the momentum of particle x, i.e. ωx = (r, px) with (px)z = pz, z 6=
x, (px)x = −px.

In order to have a well defined process with good ergodic properties, we assume
that V is a smooth even potential satisfying the following assumptions:

(A) There exist positive constants k ≥ 2 and ak > 0 such that

lim
λ→+∞

λ−kV (λx) = ak|x|k, lim
λ→+∞

λ1−kV ′(λx) = k.ak|x|k−1sign(x).

(B) For any q ∈ R, there exists m = m(q) ≥ 2 such that V (m)(q) 6= 0.

Here sign(x) denotes the sign of x and V (m) the mth derivative of V . Many of the
results in the following should be valid for more general potentials V , but this go
beyond the porpouse of this article.

We shall denote by (ω(t))t≥0 the Markov process generated by L, and by (Tt)t≥0

the corresponding semigroup, i.e. for any bounded function f : Ωn → R, and any
ω ∈ Ωn,

(Ttf)(ω) = Eω [f(ω(t))] .

The energy of atom x is defined by

E1 =
p21
2
, Ex =

p2x
2
+ V (rx), x = 2, . . . , n.

For any positive constant θ we define the Lyapunov function Wθ by

Wθ(ω) = exp

(

θ

n
∑

x=1

Ex
)

, ω ∈ Ωn,

and the corresponding weighted Banach space (Bθ, ‖ · ‖θ):

Bθ =

{

f : Ωn → R continuous , ‖f‖θ = sup
ω

|f(ω)|
Wθ(ω)

< +∞
}

.

In Section 8 is proved the following proposition:

Proposition 1. Assume that V satisfies (A). Then, if θ is sufficiently small,
the semigroup (Tt)t≥0 can be extended to a strongly Feller continuous semigroup
on Bθ with a probability transition that is absolutely continuous with respect to the
Lebesgue measure. Moreover, there exists a unique invariant probability measure µss
for (Tt)t≥0 and it is absolutely continuous with respect to the Lebesgue measure.
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Remark 1. We believe that the density of µss is smooth. The actual proof would
require a delicate reworking of Hörmander theorem.

When we are at equilibrium, i.e. Tℓ = Tr = T , τℓ = τr = τ , the generator L is
denoted by Leq.. A simple computation shows that the Gibbs measure µnτ,T with
density w.r.t. the Lebesgue measure on Ωn given by

gnτ,T (r, p) =
n
∏

x=1

e−β(Ex−τrx)

Z(τβ, β)
, β = T−1,

is invariant for Leq.. In the formula above we have introduced r1 = 0 to avoid
annoying notations. In fact, it is easy to check that Aτ,τ is antisymmetric in
L
2(µnτ,T ) and that S,Bj,T , j = 1, n, are symmetric.

Let ∇ be the discrete gradient defined, for any function u : Z → R, by (∇u)(x) =
u(x+ 1)− u(x). The local conservation of energy is expressed by the microscopic
continuity equation

L(Ex) = −∇jx−1,x, x = 1, . . . , n,

where the energy current jx,x+1 from site x to site x+ 1 is given by

j0,1 = −τℓp1 + γℓ(Tℓ − p21),

jn,n+1 = −τrpn − γr(Tr − p2n),

jx,x+1 = −pxV ′(rx+1), x = 1, . . . , n− 1.

(2.4)

The energy current j0,1 (and similarly for jn,n+1) is composed of two terms: the
term −τℓp1 corresponds to the work done on the first particle by the linear force
and the term γℓ(Tℓ − p21) is the heat current due to the left reservoir.

We shall denote by 〈·〉ss the expectation with respect to the steady state. Let
Vs be the velocity of the center of mass of the system and Js be the average energy
current, which are defined by

Vs = 〈px〉ss and Js = 〈jx,x+1〉ss.
Observe that we are in Lagrangian coordinates and that Js is really the inter-

particle exchange of energy, that does not take into account the trivial energy flux
of the Eulerian coordinates due to the center of mass movement.

We have the simple relation between these two quantities

Js = −τℓVs + γℓ(Tℓ − 〈p21〉ss), Js = −τrVs − γr(Tr − 〈p2n〉ss). (2.5)

The value of Vs can be determined exactly and is independent of the non-
linearities present in the system. It follows that the tension profile, defined by
τx = 〈V ′(rx)〉ss, is linear.
Lemma 1. The velocity Vs of the center of mass is given by

Vs =
τr − τℓ

2γ(n− 2) + γℓ + γr
(2.6)

and the tension profile is linear:

τx =
2γ(x− 2) + γℓ

2γ(n− 2) + γℓ + γr
(τr − τℓ) + τℓ, (2.7)

that implies
lim
n→∞

τ[nu] = τℓ + (τr − τℓ)u, u ∈ [0, 1]. (2.8)
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Proof. We have










L(px) = (V ′(rx+1)− V ′(rx))− 2γpx, x = 2, . . . , n− 1,

L(p1) = V ′(r2)− τl − γℓp1,

L(pn) = τr − V ′(rn)− γrpn.

(2.9)

The first line of (2.9) implies

2(n− 2)γVs =
n−1
∑

x=2

{τx+1 − τx} = τn − τ2.

The two last lines of (2.9) give

τ2 − τℓ − γℓVs = 0, −τn + τr − γrVs = 0,

and we get easily the value of Vs.
To obtain the expression of the tension profile we observe that (2.9) gives a

discrete difference equation which can be solved exactly since we have the value of
Vs = 〈px〉ss. �

For purely deterministic chain (γ = 0), the velocity Vs is of order 1, while the

tension profile is flat at the value (γℓ + γr)
−1 [γℓτr + γrτℓ]. The first effect of the

noise is to make Vs of order n−1 and to give a normal tension profile.
An immediate consequence of (2.6) is that the mean velocity is independent of

the temperatures. Consequently, by Onsager symmetry, we expect that the thermal
conductivity at the first order is independent of τr−τl, i.e. that the Onsager matrix
is diagonal. We actually prove this in Section 4 as well as the existence of the
thermal conductivity by Green-Kubo formula (see Section 5).

In the next section we prove that the entropy production Σ(µss) of the stationary
state is strictly positive if Tℓ 6= Tr or τr 6= τl, and is given by

Σ (µss) =

(

1

Tr
− 1

Tℓ

)

Js +

(

τr

Tr
− τℓ

Tℓ

)

Vs.

In Section 6 we prove upper and lower bounds for the thermal conductivity, in
terms of the temperature.

In Section 7 we show that for harmonic interactions, a Fourier’s law holds and
in particular we can compute the conductivity explicitely:

lim
n→∞

nJs =
1

4γ

{

(Tℓ − Tr) + (τ2ℓ − τ2r )
}

. (2.10)

Furthemore in this case can be computed explicitely the energy currents between
the thermostats and the system (cf. (7.9)), and prove that the stationary state can
increase the energy of the hottest thermostat, but not lower the energy of the cold
one.

The existence and uniqueness of the stationary state is proven in the last Section
8.

3. Entropy production

Let βx (resp. τx), x = 2, . . . , n, be the linear interpolation profile between
T−1
ℓ = T−1 (resp. τℓ = τ) and T−1

r = (T + δT )−1 (resp. τr = τ − δτ). We also
define β1 = T−1.
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We use now as reference probability measure the Gibbs local equilibrium state
µlg(dr, dp) = g(r, p) dr2 . . . drn dp1 . . . dpn with

g(r, p) =

n
∏

x=1

e−βx(Ex−τxrx)

Z(τxβx, βx)
. (3.1)

Let µt = µlgTt be the law at time t of the process starting from f0 · µlg and

µ̄[s,s+t] = t−1
∫ s+t

s
µydy be the time averaged law of the process on [s, s+ t]. The

density of µt with respect to µlg is denoted by ft. This is a solution, in the sense
of the distributions, of the Fokker-Planck equation

∂tft = L̃∗ft

where L̃∗ is the adjoint of L in L
2(µlg).

The operators B1,Tℓ
,Bn,Tr and S are symmetric with respect to µlg while the

adjoint of the Liouville operator is

A∗
τℓ,τr

= −Aτℓ,τr + σ (3.2)

where

σ =
n−1
∑

x=1

(βx+1 − βx) jx,x+1 +
n−1
∑

x=2

(βx+1τx+1 − βxτx) px.

Hence we get

L̃∗ = −Aτℓ,τr + γS + γℓB1,Tℓ
+ γrBn,Tr + σ,

L+ L̃∗ = 2γS + 2γℓB1,Tℓ
+ 2γrBn,Tr + σ.

(3.3)

We shall denote the relative entropy of a probability measure µ with respect to
a probability measure ν by H(µ|ν). This is defined by

H(µ|ν) = sup
ψ

{∫

ψdµ− log

(∫

eψdν

)}

(3.4)

where the supremum is carried over bounded measurable functions ψ. If dµ
dν = f

exists and log f is µ-integrable, we have

H(µ|ν) =
∫

dµ log f.

So we can call

H(t) =

∫

ft log ftdµlg

the entropy of the system at time t. We choose µlg as a reference measure to
estimate the entropy but a similar consideration could be performed by replacing
µlg by the Lebesgue measure.

3.1. The smooth case. We first give an informal argument to estimate the en-
tropy production, which relies on smoothness properties of the density fss (resp.



OSCILLATORS CHAIN WITH RANDOM FLIP OF VELOCITIES 7

ft) of µss (resp. µt) with respect to µlg. We have

d

dt
H(t) =

∫

∂tft log ft dµlg + ∂t

(∫

ft dµlg

)

=

∫

(

L̃∗ft

)

log ft dµlg =

∫

ft

(

L̃ log ft

)

dµlg

=

∫

Aτℓ,τrft dµlg +

∫

ft [γS + γℓB1,Tℓ
+ γrBn,Tr ] (log ft) dµlg

=

∫

σft dµlg +

∫

ft [γS + γℓB1,Tℓ
+ γrBn,Tr ] (log ft) dµlg

(3.5)

where we used (3.2) in the last equality. The first term on the right-hand side is the
entropy production of the hamiltonian part of the dynamics, in the (non-stationary)
state ft,

Σ(µt) = −
∫

σftdµlg,

while the second term corresponds, up to the sign, to the entropy production due
to the thermostats and the flipping noise. Notice that this second term is always
positive.

If we start the system from the stationary state, ft = fss for all t, and the
left-hand side in (3.5) is equal to zero. Thus, in the stationary state, we have

Σ(µss) = −
∫

fss [γS + γℓB1,Tℓ
+ γrBn,Tr ] (log fss) dµlg.

By explicit calculation we have

Σ(µss) = γℓTℓ

∫

(∂p1fss)
2

fss
dµlg + γrTr

∫

(∂pnfss)
2

fss
dµlg

+
γ

2

n−1
∑

x=2

∫

[fss(ω
x)− fss(ω)] [log fss(ω

x)− log fss(ω)] dµlg(ω),

so that the entropy production of the stationary state is clearly non-negative. In
fact, it is strictly positive if the temperatures Tℓ and Tr are different (see below).

3.2. The non-smooth case. Since we cannot prove that the density fss is smooth,
we have to proceed in a different way.

The entropy production Σ(α) of the probability measure α is given by

Σ(α) =

∫

σ(ω) dα(ω). (3.6)

The Dirichlet form D(α) of a probability measure α with respect to the generator
γS + γℓB1,Tℓ

+ γrBn,Tr is defined by

D(α) = sup
ψ

{

−
∫

(2γS + 2γℓB1,Tℓ
+ 2γrBn,Tr)ψ

ψ
dα

}

where the supremum is carried over smooth functions ψ bounded below by a positive
constant and which are constant at infinity. It is easy to check that D is a positive
convex and lower semicontinuous functional.

We first estimate the change of entropy.
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Proposition 2. The relative entropy H(µt|µlg) is finite for every positive time t,
and, for any s, t ≥ 0, we have

H(µt+s|µlg)−H(µs|µlg) ≤ −t D(µ̄[s,s+t]) + t Σ(µ̄[s,s+t])

Proof. Let us prove the claim for s = 0, the general case being similar. In Section 8
we prove that the semigroup (Tt)t≥0 is such that the transition probabilities have a
positive density qt(·, ·) with respect to the local equilibrium state µlg. It follows that
if ν = ψ · µlg is a probability measure on Ωn absolutely continuous with respect to
µlg then νTt is also absolutely continuous w.r.t. µlg with a density that we denote
by ψt. In fact, ψt is given by

ψt(ω
′) =

∫

qt(ω, ω
′)ψ(ω)g(ω)dω.

Formally, ψt is solution of the Fokker-Planck equation

∂tψt = L̃∗ψt, ψ0 = ψ.

If σ was bounded, the solution ψt to this equation would be given by the
Feynman-Kac formula

ψt(ω) = Eω

[

ψ(ω̂(t)) e
∫ t
0
σ(ω̂(s))ds

]

(3.7)

where (ω̂(t))t≥0 is the Feller process generated by −Aτℓ,τr +γS+γℓB1,Tℓ
+γrBn,Tr .

We claim that there exists t0 > 0 such that (3.7) makes sense if t ≤ t0 and ψ
is bounded. It could be also possible to show the validity of (3.7) for any time by
assuming that Tr − Tℓ, τr − τℓ are sufficiently small (see [6]).

Observe there exists a constant c0 := c0(Tℓ, Tr, τℓ, τr) such that for any θ > 0,

eθ|σ(ω)| ≤Wc0θ(ω).

By the bound (8.3) of Section 8, if θ is sufficiently small, then

sup
t≥0

Eω [Wc0θ(ω̂(t))] ≤ C(Wc0θ(ω) + 1) (3.8)

for a positive constant C(c0, θ). In fact, it is proved for (ω(t))t≥0 but the proof is
the same for (ω̂(t))t≥0. If t0 > 0 is sufficiently small, we have

Eω

[

e
∫

t
0
σ(ω(s))ds

]

≤ 1

t

∫ t

0

Eω

(

et|σ(ω̂(s))|
)

ds

≤ sup
s≤t0

Eω

(

et0|σ(ω̂(s))|
)

≤ sup
s≤t0

Eω [Wc0t0(ω̂(s))]

≤ C′(t0) [Wc0t0(ω) + 1]

which proves the claim. Moreover, since (ω̂(t))t≥0 defines a strongly continuous
semigroup with generator −Aτℓ,τr + γS + γℓB1,Tℓ

+ γrBn,Tr , we have

lim
h→0

ψh − ψ0

h
= L̃∗ψ0 (3.9)

if ψ0 is a smooth positive function constant at infinity.
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Observe now that if P,Q are two probability measures and φ is a density function
w.r.t. Q then

H(P |Q) = H(P |φ ·Q) +

∫

logφdP.

We fix a time 0 < h < t0 sufficiently small. For any probability measure α such
that H(α|µlg) < +∞, and any positive smooth function ψ bounded bellow by a
positive constant and constant at infinity, we have

H(αTh|µlg)−H(α|µlg) = H(αTh|ψτ · µlg) +
∫

log(ψh) d(αTh)−H(α|µlg)

= H(αTh|(ψ · µlg)Th)−H(α|µlg) +
∫

log(ψh)d(αTh)

≤ H(α|(ψ · µlg))−H(α|µlg) +
∫

Th (log(ψh)) dα

≤ H(α|(ψ · µlg))−H(α|µlg) +
∫

log (Thψh) dα

= −
∫

logψ dα+

∫

log (Thψh) dα,

where we used H(αTh|βTh) ≤ H(α|β), β = ψ.µlg, in the first inequality and Jensen
inequality in the second one. We write now (Thψh)/ψ = (Thψh − ψ)/ψ+ 1 and we
use the trivial inequality log(1 + η) ≤ η to get

H(αTh|µlg)−H(α|µlg) ≤
∫

Thψh − ψ

ψ
dα.

This shows in particular that H(αTh|µlg) < +∞. By (3.9), we have

Thψh − ψ = Th(ψh − ψ) + (Thψ − ψ) = h(L+ L̃∗)ψ + hε(h, ψ)

where the remainder term ε(h, ψ) vanishes as h goes to 0.
Fix a positive time t and let m be a positive integer sufficiently large. We define

h = t/m and we have

H(αTt|µlg)−H(α|µlg) =
m−1
∑

i=0

{

H(αT(i+1)h|µlg)−H(αTih|µlg)
}

≤
t

m

m−1
∑

i=0

∫

[

(L+ L̃∗)ψ
]

ψ
d(αTih) + tε(h, ψ).

As m goes to infinity, the Riemann sum converges to

∫ t

0

ds

∫

[

(L+ L̃∗)ψ
]

ψ
d(αTs)

and the remainder term vanishes. Taking the infimum over functions ψ and α = µlg,
we get

H(µt|µlg) ≤ t inf
ψ







∫

[

(L+ L̃∗)ψ
]

ψ
dµ̄[0,t]







.

By using (3.3), this concludes the proof.
�
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We recall that in the stationary state, 〈jx,x+1〉ss = Js and 〈px〉ss = Vs are
independent of x.

Theorem 1. The entropy production of the stationary state

Σ (µss) =

(

1

Tr
− 1

Tℓ

)

Js +

(

τr

Tr
− τℓ

Tℓ

)

Vs

is strictly positive. If τℓ = τr it implies that the energy flow goes from the hot
reservoir to the cold reservoir.

Proof. Since the entropy is positive it follows that

0 ≤ D(µ̄[0,t]) ≤ Σ(µ̄[0,t]). (3.10)

In the last section is proved the convergence as t goes to infinity of µ̄[0,t] to the
stationary state. Therefore, the entropy production is non-negative

Σ(µss) ≥ 0.

If it is equal to zero then, by (3.10), we have

lim
t→∞

D(µ̄[0,t]) = 0

and by the lower semicontinuity of D, we have

D(µss) = 0.

Recall that since µss is the stationary state, we have
∫

(LF )(ω) dµss(ω) = 0 (3.11)

for any compactly supported smooth function F . We claim now that
∫

(GF ) (ω) dµss(ω) = 0 (3.12)

for G equal to B1,Tℓ
,Bn,Tr ,S.

Indeed, since D(µss) = 0, we have that for any smooth function ψ bounded by
bellow and constant at infinity,

−
∫

(2γS + 2γℓB1,Tℓ
+ 2γrBn,Tr)ψ

ψ
dµss ≤ 0. (3.13)

Let us apply this with ψ(ω) := ψ1(p1). Since S,Bn,Tr does not act on p1, it
follows that the Dirichlet form with respect to B1,Tℓ

of the marginal µ1
ss of p1,

sup
ψ1

{

−
∫ B1,Tℓ

ψ1

ψ1
dµ1

ss

}

,

is negative, and hence equal to zero. It is well known that it implies µ1
ss is the

centered Gaussian law with variance Tℓ (see [5]), and we get (3.12) for G = B1,Tℓ
.

We similarly prove (3.12) for G = Bn,Tr . By applying (3.13) with a function ψ(ω) :=
ψ̄(p2, . . . , pn−1), we get that the Dirichlet form of the marginal µ̄ss of (p2, . . . , pn−1)
with respect to S,

D̄(µ̄ss) = sup
ψ̄

{

−
∫ Sψ̄

ψ̄
dµ̄ss

}

,
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is negative, and hence equal to zero. Let f̄ss be the density of µ̄ss with respect to
the Lebesgue measure. It is easy to show that

D̄(µ̄ss) =
1

2

∫

Rn−2

[

√

f̄ss(px)−
√

f̄ss(p)

]2

dp2 . . . dpn−1.

It follows that µ̄ss is invariant by any flip p → px, x = 2, . . . , n − 1, and this
concludes the proof of (3.12).

By (3.11) and (3.12), we get that for any smooth compactly supported function
F ,

∫

(Aτℓ,τrF ) (ω) dµss(ω) = 0,

and consequently that
∫

(L0F ) (ω) dµss(ω) = 0,

where

L0 = Aτℓ,τr + γℓB1,Tℓ
+ γrBn,Tr (3.14)

is the generator of the deterministic chains in contact with the two heat baths.
Thus, µss is equal to the (unique) invariant probability measure νss of the process
generated by L0. By using a similar argument to [6], one can show that

Σ(νss) = 0

implies Tℓ = Tr. Hence, if Tℓ 6= Tr, the entropy production of the stationary state
µss is strictly positive.

�

From the equality Js = 〈j0,1〉ss = 〈jn,n+1〉ss we get

γℓ〈p21〉ss + γr〈p2n〉ss = γℓTℓ + γrTr +
(τr − τℓ)

2

2γ(n− 2) + γℓ + γr
.

This shows there exists a constant C depending on the parameters of the model
(Tℓ, Tr, τℓ, τr, γℓ, γr) but not on n such that

〈p21〉ss ≤ C, 〈p2n〉ss ≤ C. (3.15)

It is expected there exists a positive constant C independent of the size n such
that 〈Ex〉ss ≤ C for any x = 1, . . . , n. Unfortunately, apart from the harmonic case
discussed in Section 7, we do not know how to prove such a bound.

4. Conductivity: Linear response

In this section, the discussion is kept at some informal level of mathematical
rigor. We shall denote by f̃ss the derivative of the stationary state µss with respect
to the local equilibrium state µlg. It is solution, in the sense of the distributions,
of the equation

L̃∗ f̃ss = 0. (4.1)
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We assume that Tr = T + δT, Tℓ = T and τr = τ − δτ, τℓ = τ with δT, δτ small.
Recall (3.3). At first order in δT and δτ , we have

L̃∗ = −Aτℓ,τr + γS + B1,T + Bn,T+δT

− δT

T 2n

n−1
∑

x=1

(jx,x+1 + τpx)−
δτ

nT

n−1
∑

x=1

px + o(δT, δτ)

= −Aτℓ,τr + γS + B1,Tℓ
+ Bn,Tr

− δT

T 2n

n−1
∑

x=1

(jx,x+1 + τpx)−
δτ

nT

n−1
∑

x=1

px + γrδT∂
2
pn + o(δT, δτ)

= L∗
eq. + γrδT∂

2
pn − δτ∂pn − δT

T 2n

n−1
∑

x=1

(jx,x+1 + τpx) +
δτ

nT

n−1
∑

x=1

px + o(δT, δτ)

where L∗
eq. = −Aτ,τ + γS + γℓB1,T + γrBn,T is the adjoint in L

2(µnτ,T ) of

Leq. = Aτ,τ + γS + γℓB1,T + γrBn,T . (4.2)

We now expand f̃ss at the linear order in δT and δτ :

f̃ss = 1+ ũ δT + ṽ δτ + o(δT, δτ) (4.3)

and we get that ũ and ṽ are solution of

L∗
eq.ũ =

1

T 2n

n−1
∑

x=1

(jx,x+1 + τpx) ,

L∗
eq. ṽ =

1

nT

n−1
∑

x=1

px.

(4.4)

We can now compute the average energy current at the first order in δT and δτ
in the thermodynamic limit n→ ∞.

Before, we need to introduce some notations. Let Ω = ∩α>0Ωα where Ωα is
the Banach space composed of configurations ω = (r, p) ∈ (R × R)Z such that
the norm ‖ω‖α defined by ‖ω‖2α =

∑

x∈Z
e−α|x|

[

p2x + r2x
]

is finite. We equip Ω
with the topology induced by these norms. If the potential V is such that V ′′ ≤ C
then one can prove that the infinite dynamics is well defined for any initial condition
belonging to Ω and in particular on a set of initial conditions of full probability with
respect to any infinite volume Gibbs measure µτ,T with temperature T and pressure
τ ([2], [8]). As in the finite dimensional case, for any configuration ω = (r, p) ∈ Ω,
the configuration ωx = (r, px) is obtained from ω by flipping the momentum of
particle x. We shall denote by Ck0 (Ω) the space composed of compactly supported
local functions on Ω which are differentiable up to order k, k ≥ 1. The generator
of the infinite dynamics is given by L = A+ γS where, for any f ∈ C1

0 (Ω),

(Af)(ω) =
∑

x∈Z

[(px − px−1) ∂rxf + (V ′(rx+1)− V ′(rx)) ∂pxf ] (ω),

(Sf)(ω) =
∑

x∈Z

[f(ωx)− f(ω)] .

We denote by θx : Ω → Ω the shift by x: for any η ∈ Ω, (θxη)z = ηx+z; for any
g : Ω → R, (θxg)(η) = g(ηxη). Let Hτ,T be the completion w.r.t. the semi-inner
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product ≪ ·, · ≫ defined for local functions f, g : Ω → R, by

≪ f, g ≫=
∑

x∈Z

{µτ,T (fθxg)− µτ,T (f)µτ,T (g)} . (4.5)

Observe that in Hτ,T every discrete gradient θ1f − f is equal to zero.

Let Ĵs and V̂s be the limiting average energy current and velocity:

J̃s = lim
n→∞

n〈j0,1〉ss, V̂s = lim
n→∞

n〈p0〉ss, (4.6)

and define Ĵs = J̃s + τV̂s. We expect that as n goes to infinity and, at first order
in δT and δτ ,

(

Ĵs
V̂s

)

= − κ(T, τ)

(

δT
δτ

)

with

κ(T, τ) =

(

κe κe,r

κr,e κr

)

the thermal conductivity matrix. By (4.4), we get that in the thermodynamic limit
n→ ∞,

κe = T−2 ≪ j0,1 + τp0 , (−L)−1 (j0,1 + τp0) ≫,

κe,r = −T−1 ≪ p0 , (−L)−1 (j0,1 + τp0) ≫,
(4.7)

and

κr = T−1 ≪ p0 , (−L)−1 (p0) ≫,

κr,e = −T−2 ≪ j0,1 + τp0 , (−L)−1 (p0) ≫ .
(4.8)

The argument above is formal. In fact even proving the existence of the transport
coefficients defined by (4.7), (4.8) is a non-trivial task. It can be made rigorous for

V̂s since we have the exact expression of Vs. From Lemma 1, we have, even if δτ, δT
are not small,

V̂s = −
δτ

2γ

If the formal expansion can be made rigorous, the quantities κr, κr,e, defined by
(4.8), shall satisfy

κr = (2γ)−1, κr,e = 0. (4.9)

In Theorem 2 we show that the transport coefficients defined in (4.7), (4.8) exist.
In Proposition 3 we prove (4.9) and the Onsager relations

κr,e = κe,r (= 0). (4.10)

Consequently, if δT and δτ are small and of the same order, the system can not
be used as a refrigerator or a boiler: at the first order, a gradient of tension does
not contribute to the energy current. The argument above says nothing about the
possibility to realize a heater or a refrigerator if δτ is not of the same order as δT .
For the harmonic chain, we will see in Section 7 that it is possible to get a heater
if δτ is of order

√
δT .
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5. Existence of the Green-Kubo formula

To simplify notations we denote Hτ,T by H (defined in Section 4). We assume
that the unbounded operator L with domain D(L) is the generator of a strongly
continuous positive semigroup on H and that the set C1

0 (Ω) forms a dense subset of
D(L). Similarly, we assume that S (resp. A) with domain denoted by D(S) (resp.
D(A)) is the generator of a strongly continuous positive semigroup on H and that
C1

0 (Ω) forms a dense subset of D(S) (resp. D(A)). We have D(L) ⊂ D(S)∩D(A).
The generator L has the decomposition A+γS in its antisymmetric and symmetric
part in H. These assumptions can be proved without difficulty in the case V ′′

uniformly bounded ([2], [8]). They should be true for more general potentials but
proofs should be quite technical (see [7]).

Let χ be the set of functions ξ : Z → N a.s. equal to zero. For a given ξ ∈ χ we
denote by Hξ(p) the polynomial function

Hξ(p) =
∏

x∈Z

hξx(px)

where (hn)n≥0 are the normalized Hermite polynomials w.r.t. the centered one
dimensional Gaussian measure with variance T . It is well known that (Hξ)ξ∈χ
forms an orthonormal basis of the Hilbert space composed of square integrable
functions with respect to the product centered Gaussian measures with variance T .
It follows that every functions f ∈ H can be decomposed in the form

f(r, p) =
∑

ξ∈χ

F (ξ, r)Hξ(p).

Let Ha (resp. Hs) be the set of functions f : Ω → R antisymmetric (resp.
symmetric) in p, i.e. f(r, p) = −f(r,−p) (resp. f(r, p) = f(r,−p)) for every config-
uration (r, p) ∈ Ω. For example, the functions j0,1, p0 and every linear combination
of them are antisymmetric in p.

Since the Hermite polynomial hn is even if n is even and odd otherwise, the
space Ha (resp. Hs) coincides with the set of functions f =

∑

ξ∈χ1
F (ξ, r)Hξ (resp.

f =
∑

ξ∈χ0
F (ξ, r)Hξ) where

χ1 = {ξ ∈ χ ; |ξ| is odd} , χ0 = {ξ ∈ χ ; |ξ| is even}
with |ξ| =∑x ξx.

The system is conservative and does not have a spectral gap but we have a
similar property for the antisymmetric functions.

Lemma 2. The noise operator S lets Ha and Hs invariant. For any function
f ∈ D(S) ∩Ha we have

2 ≪ f, f ≫ ≤ ≪ f,−Sf ≫ . (5.1)

Moreover, for any local function f ∈ Ha, there exists a local function h ∈ Ha such
that

Sh = f.

Proof. Let f be a local function belonging to H with decomposition given by

f =
∑

ξ∈χ

F (ξ, r)Hξ(p).
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For ξ ∈ χ we note W (ξ) the number defined by W (ξ) = |{x ∈ Z ; ξx ≥ 1 is odd }|.
Observe that W (ξ) ≥ 1 as soon as ξ ∈ χ1. We have

S(f) = −2
∑

ξ∈χ

W (ξ)F (ξ, r)Hξ(p) (5.2)

because S(hn(px)) = ((−1)n− 1)hn(px). This shows that Ha and Hs are invariant
by S.

Observe that for any centered local functions f and g,

≪ f, g ≫= lim
k→∞

µτ,T





1√
2k + 1

∑

|x|≤k

θxf ,
1√

2k + 1

∑

|x|≤k

θxg





and that S(θxf) = θx(Sf). Thus, the proof of (5.1) is reduced to show that if
f ∈ Ha then

2µτ,T (f
2) ≤ µτ,T ((−Sf)f).

Since f ∈ Ha, we have F (ξ, r) = 0 if ξ /∈ χ1. By (5.2) we have to prove

2
∑

ξ∈χ1

µτ,T (F
2(ξ, r)) ≤ 2

∑

ξ∈χ1

W (ξ)µτ,T (F
2(ξ, r))

which is valid since W (ξ) ≥ 1 as soon as ξ ∈ χ1.
The second claim of the proposition follows from (5.2) by taking h given by

h(r, p) =
∑

ξ∈χ1

H(ξ, r)Hξ(p), H(ξ, r) = (−2W (ξ))−1F (ξ, r).

�

Theorem 2. Let f, g ∈ Ha. Then, the limit

σ(f, g) = lim
λ→0

≪ f , (λ − L)−1 g ≫

exists and σ(f, g) = σ(g, f).

Proof. We introduce the H1 norm corresponding to the symmetric part S of L

‖u‖21 =≪ u, (−S)u≫
and H1 the Hilbert space obtained by the completion of H w.r.t. this norm. The
corresponding scalar product is denoted by ≪ ·, · ≫1.

By density of local functions in H we can assume that f, g are local functions.
Let uλ be the solution of the resolvent equation

λuλ − Luλ = g. (5.3)

We multiply (5.3) by uλ and integrate w.r.t. ≪ ·, · ≫ and we get

λ≪ uλ, uλ ≫ +γ‖uλ‖21 =≪ uλ, g ≫ .

Since g ∈ Ha we have by lemma 2 there exists a local function h ∈ Ha such that
Sh = g. By Schwarz inequality, we have

‖uλ‖21 ≤ C2γ−1

and

λ≪ uλ, uλ ≫≤ C2γ−1.
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Since (uλ)λ is a bounded sequence in H1, we can extract a weakly converging
subsequence in H1. We continue to denote this subsequence by (uλ)λ and we
denote by u0 the limit.

Let uλ(p, r) = usλ(p, r) + uaλ(p, r) be the decomposition of uλ in its symmetric
and antisymmetric part in the p’s. Since g is antisymmetric in the p’s, we have
that ≪ uλ, g ≫=≪ uaλ, g ≫. Furthermore S preserves the parity in p (see lemma
2) while it is inverted by A. We have the following decomposition

λusλ − γSusλ − Auaλ = 0,

µuaµ − γSuaµ − Ausµ = g.

We multiply the first equality by usµ and the second by uaλ and we use the
antisymmetry of A. We get

≪ uaλ, g ≫= µ≪ uaµ, u
a
λ ≫ +λ≪ usλ, u

s
µ ≫ +γ ≪ uλ, (−S)uµ ≫ .

Since uaλ ∈ Ha ∩ D(L) we have by Lemma 2 that

2 ≪ uaλ, u
a
λ ≫≤ ‖uaλ‖21 = ‖uλ‖21 − ‖usλ‖21 ≤ C2γ−1.

Remark that uaλ and usλ converge weakly in H1 respectively to ua0 and to us0. We
first take the limit as λ→ 0 and then as µ→ 0 and we obtain

≪ u0, g ≫= γ ≪ u0, (−S)u0 ≫ .

On the other hand, since Sh = g for a local function h ∈ Ha we have

≪ u0, g ≫= − ≪ u0, h≫1= − lim
λ→0

≪ uλ, h≫1= lim
λ→0

≪ uλ, g ≫

= lim
λ→0

[λ≪ uλ, uλ ≫ + ≪ uλ, (−A)uλ ≫ +γ ≪ uλ, (−S)uλ ≫]

= lim
λ→0

[λ≪ uλ, uλ ≫ +γ ≪ uλ, (−S)uλ ≫]

≥ lim
λ→0

λ≪ uλ, uλ ≫ +γ ≪ u0, (−S)u0 ≫

where the last inequality follows from the weak convergence in H1 of (uλ)λ to u0.
It implies

lim
λ→0

λ≪ uλ, uλ ≫= 0

so that uλ converges strongly to u0 in H1. Uniqueness of the limit follows by a
standard argument.

Since f ∈ Ha we have Sh = f for some local function h ∈ Ha. It follows that

lim
λ→0

≪ f, uλ ≫= − lim
λ→0

≪ h, uλ ≫1= − ≪ h, u0 ≫1=≪ f, ua0 ≫ .

To show that σ(f, g) = σ(g, f) observe that

σ(g, f) = lim
λ→0

≪ (λ− L
∗)−1g, f ≫ (5.4)

where the adjoint L∗ of L in H is given by L∗ = −A+γS. We repeat the argument
above with L replaced by L

∗ . It is easy to see that the solution vλ of the resolvent
equation (λ− L∗)vλ = g satisfies vaλ = uaλ, v

s
λ = −usλ. It follows that

≪ vλ, f ≫=≪ vaλ, f ≫=≪ uaλ, f ≫=≪ uλ, f ≫ .

Taking the limit λ→ 0 we get σ(g, f) = σ(f, g). �

Proposition 3. The Onsager relation κe,r = κr,e = 0 holds in the following sense:

σ(j0,1 + τp0, p0) = σ(p0, j0,1 + τp0) = 0.
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Proof. We have

(λ− L)(p0) = (V ′(r0)− V ′(r1)) + (2γ + λ)p0.

Since every discrete gradient θ1u− u is equal to zero in H we get

σ(j0,1 + τp0, p0) = lim
λ→0

1

λ+ 2γ
≪ j0,1 + τp0, p0 ≫

= lim
λ→0

1

λ+ 2γ
µτ,T ((−p0V ′(r1) + τp0)p0)

=
− τT + τT

2γ
= 0

because µτ,T (p
2
0) = T, µτ,T (V

′(r1)) = τ . �

6. Temperature dependance of the conductivity

The exact value of the conductivity is in general out of reach and even an estimate
in terms of the parameters of the model, temperature and pressure, is difficult. The
only tractable case is the harmonic chain with interacting potential V (r) = ar2/2.
In this case an explicit formula is available:

κe(T, τ) = κharma =
a

2γ
.

The fact that the conductivity is independent of the temperature (and the pres-
sure) is due to the linear interactions. For general anharmonic chain we expect a
non-trivial temperature dependance. The aim of this section is to establish rigorous
lower and upper bounds on κ giving some insight on its behavior with respect to
the temperature. In the rest of this section, to simplify, we assume that pressure τ
is equal to 0 and we note κ(T ) for κe(T, 0).

The usual assumptions on V are

V (r) ∼0 ar
2, a > 0, V (r) ∼∞ A|r|α, α ≥ 2, A > 0.

From a more general point of view it makes sense to consider situations where
the potential V satisfies a = 0 or α < 2.

To get upper and lower bounds for the Green-Kubo formula a general approach
is to use variational formula. We introduce H1,λ and H−1,λ norms defined for any
smooth local function f by

‖f‖2±1,λ =≪ f, (λ− γS)±1f ≫ .

We have (see e.g. [11]):

≪ g, (λ− L)−1g ≫ = sup
f

{

2 ≪ f, g ≫ −‖f‖21,λ − ‖Af‖2−1,λ

}

= inf
f

{

‖g + Af‖2−1,λ + ‖f‖21,λ
}

,
(6.1)

where the supremum (resp. infimum) is taken over a dense subset of D(L). The
function g we are interested in is g = j0,1. Formula (6.1) is valid as soon as the
operator L = A+γS is the generator of a strongly continuous Markov process in H
with A (resp. S) being the antisymmetric (resp. symmetric) part of L. This can be
easily proved if V growths at most quadratically at infinity but it should be valid
for a more general class of potentials. In this section we assume that potential V is
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such that (6.1) is valid and that the Green-Kubo formula converges, i.e. that the
conditions of Section 5 are fulfilled. Moreover we assume that V (r) > 0 if r 6= 0.

6.1. Upper bounds for generic anharmonic chains. In the sequel, Var(f)
denotes the variance of the function f with respect to the probability measure
µ0,T .

Proposition 4. We have the following upper bound on the conductivity

κ(T ) ≤ 1

4γT
Var(V ′(r0)). (6.2)

Proof. Take the function f = −V (r1)/2 in the second variational formula of (6.1).
We have

j0,1 + Af = −p0V ′(r1)−
1

2
(p1 − p0)V

′(r1)

= −
1

2
p0(V

′(r1) + V ′(r0)) +
1

2
(p0V

′(r0)− p1V
′(r1))

= −
1

2
p0(V

′(r1) + V ′(r0))

because gradient terms in H are equal to 0.
Observe now that

(λ − γS)−1 [p0(V
′(r1) + V ′(r0))] = (λ+ 2γ)−1 [p0(V

′(r1) + V ′(r0))]

so that

‖j0,1 + Af‖2−1,λ =
1

2

T

λ+ 2γ
Var(V ′(r0)).

Moreover
‖f‖21,λ = λ≪ f, f ≫= λVar(V (r0)).

By taking the limit λ→ 0 we get

κ(T ) ≤ 1

4γT
Var(V ′(r0)).

�

Corollary 1. We have the following upper bounds on the conductivity:

• High temperature regime: Assume that the smooth nonnegative poten-
tial V satisfies:

– V (r) = V (−r)
– V (r) = Arα +W (r), r ≥ 1, α > 1,

with A a positive constant and W a smooth function such that ‖W‖∞ +
‖W ′‖∞ < +∞.

Then, there exists a constant C > 0 such that in the high temperature
regime T → ∞,

κ(T ) ≤
C

T 2/α−1
.

In particular, κ(T ) converges to 0 as T goes to infinity in the subhar-
monic regime at infinity (1 < α < 2).

• Low temperature regime: Assume that the smooth nonnegative potential
V satisfies:

– V (r) = V (−r)
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– V (r) ∼ Arδ, r → 0, δ ≥ 2
– V (r) = Brα +W (r), r ≥ 1, α > 0,

with A,B positive constants and W a smooth function such that ‖W‖∞ +
‖W ′‖∞ < +∞.

Then, there exists a constant C > 0 such that in the low temperature
regime T → 0,

κ(T ) ≤ CT 1−2/δ. (6.3)

In particular, κ(T ) converges to 0 as T goes to 0 in the superharmonic regime
at origin (δ > 2).

Proof. Consider first the high temperature regime. It is easy to show that

Z(T ) =

∫ ∞

−∞

dre−V (r)/T ∼ 2

(∫ ∞

0

e−As
α

ds

)

T 1/α.

To estimate Var(V ′(r0)) we write

Var(V ′(r0)) =
2

Z(T )

{∫ 1

0

(V ′(r))2e−V (r)/Tdr +

∫ ∞

1

(Aαrα−1 +W ′(r))2e−V (r)/Tdr

}

=
2

Z(T )

{

A2α2

∫ ∞

1

r2α−2e−V (r)/Tdr + 2Aα

∫ ∞

1

rα−1W ′(r)e−V (r)/Tdr

+

∫ 1

0

(V ′(r))2e−V (r)/Tdr +

∫ ∞

1

(W ′(r))2e−V (r)/Tdr

}

.

With the change of variables s = r/T 1/α and the fact

e−V (r)/T = e−Ar
α/T (1 +O(T−1)), uniformly for r ≥ 1,

one gets
∫ ∞

1

r2α−2e−V (r)/Tdr ∼ T 2−1/α

∫ ∞

T−1/α

s2α−2e−As
α

ds

∼ T 2−1/α

∫ ∞

0

s2α−2e−As
α

ds

and
∫ ∞

1

W ′(r)rα−1e−V (r)/Tdr = O(T ).

Moreover we have
∫ ∞

1

(W ′(r))2e−V (r)/Tdr = O(T 1/α)

and the remaining term
∫ 1

0 (V
′(r))2e−V (r)/Tdr is of order O(1). The result follows.

In fact we have seen that

Var(V ′(r0)) ∼ C∞T
2−2/α, C∞ = A2α2

∫∞

0 s2α−2e−As
α

ds
∫∞

0
e−Asαds

. (6.4)

Consider now the superharmonic regime at origin and T small. It is easy to show
that

Z(T ) =

∫ ∞

−∞

dre−V (r)/T ∼ 2

(∫ ∞

0

e−As
δ

ds

)

T 1/δ,
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because, taking into account the asymptotic behavior of V at infinity, the part to
the integral corresponding to r ≥ 1 is exponentially small in 1/T . Observe now
that
∫ ∞

1

(V ′(r))2e−V (r)/Tdr = O
(

T 1/α

∫ ∞

T−1/α

(V ′(sT 1/α))2e−Bs
α

ds

)

= O(e−B/(2T )),

and
∫ 1

0

(V ′(r))2e−V (r)/Tdr = T 1/δ

∫ T−1/δ

0

(V ′(sT 1/δ))2e−V (sT 1/δ)ds

∼
(

A2δ2
∫ ∞

0

dse−s
δ

s2(δ−1)ds

)

T 2−1/δ.

One gets (6.3). On the way we have seen that, as T → 0,

Var(V ′(r0)) ∼ C0T
2−2/δ, C0 = A2δ2

∫∞

0
s2δ−2e−As

δ

ds
∫∞

0
e−Asδds

. (6.5)

�

6.2. Lower bounds for generic anharmonic chains. We are not able to obtain
pertinent lower bounds for the conductivity of the process generated by L = A+γS
except for the exponential interaction (see below). Nevertheless, if we perturb
the chain by the smoother second energy conserving noise S′ considered in [2],[1],
interesting lower bounds are available. Thus, we consider the infinite system with
generator L′ given by

L
′ = A+ γ(S+S

′)

where S′ is defined by

S
′ =

1

2

∑

x∈Z

(px+1∂px − px∂px+1
)2. (6.6)

The noise S+S′ is energy conserving and satisfies (5.1). It is not difficult to adapt
the proof given in Section 5 to show that

σ′(j0,1, j0,1) = lim
λ→0

≪ j0,1, (λ − L
′)−1j0,1 ≫

exists. The disadvantage of S′, contrary to S, is that it does not satisfy (5.1). A
second difference between the noise S and the noise S

′ is that the latter gives a
positive trivial contribution γ to the conductivity, so that the conductivity κ′(T )
corresponding to L′ is

κ′(T ) = γ + T−2σ′(j0,1, j0,1).

The inequality (6.2) is now replaced by

κ′(T )− γ ≤ 1

6γT
Var(V ′(r0)) (6.7)

because
(S+S

′)px = −3px, (S+S
′)(p2x) = ∆p2x. (6.8)

In the harmonic case V (r) = ar2, we get

κ′,harma (T ) = γ +
a

3γ
. (6.9)

With this perturbation we can prove the following proposition
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Proposition 5. Consider the dynamics generated by L′ = A + γ(S+S′). Then,
we have

σ′(j0,1, j0,1) ≥
T 2 [Var(V ′(r0))]

2

6γTVar(V ′(r0)) + 2T 2γ−1Var(V ′′(r0))
.

Proof. We choose the test function

v = −ap0(V ′(r0) + V ′(r1))

with a > 0 we will specify later. We have

Av = ap20 (V
′′(r1)− V ′′(r0)) (6.10)

in H (because in H all gradient terms are equal to 0).
Let Gλ be the solution of the resolvent equation corresponding to the discrete

Laplacian ∆ on Z:

(λ− γ∆)Gλ = δ0.

By (6.8) we have

(λ− γ(S+S
′))−1(Av) = a

∑

z

G(z)p2z (V
′′(r1)− V ′′(r0)) . (6.11)

It follows that

‖Av‖2−1,λ = a2
∑

z,y

Gλ(z)〈p2z(V ′′(r1)− V ′′(r0)) p
2
y(V

′′(ry+1)− V ′′(ry))〉

= a2T 2
∑

z 6=y

Gλ(z)〈(V ′′(r1)− V ′′(r0)) (V
′′(ry+1)− V ′′(ry))〉

+ 3a2T 2
∑

z

Gλ(z)〈(V ′′(r1)− V ′′(r0)) (V
′′(rz+1)− V ′′(rz))〉

= 2a2T 2
∑

z

Gλ(z)〈(V ′′(r1)− V ′′(r0)) (V
′′(rz+1)− V ′′(rz))〉

= −2a2T 2(∆Gλ)(0)Var(V
′′(r0)).

Using again (6.8) we have (recall that the pressure is fixed to 0 so that V ′(r0) is
centered)

‖v‖21,λ = 6a2γTVar(V ′(r0)), ≪ j0,1, v ≫= aTVar(V ′(r0)).

Hence we obtain

σ′(j0,1, j0,1) ≥ 2aTVar(V ′(r0))− a2
{

6γTVar(V ′(r0)) + 2T 2γ−1Var(V ′′(r0))
}

because

lim
λ→0

(∆Gλ)(0) = − lim
λ→0

∫ 1

0

4 sin2(πk)

λ+ 4γ sin2(πk)
dk = −γ−1.

Optimizing over a > 0 we get

σ′(j0,1, j0,1) ≥
T 2 [Var(V ′(r0))]

2

6γTVar(V ′(r0)) + 2T 2γ−1Var(V ′′(r0))

which implies the result. �
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Observe now that by an integration by parts we have

〈V ′′(r0)〉 = T−1Var(V ′(r0)).

It follows that

κ′(T )− γ ≥
{

6γ
T

Var(V ′(r0))
− 2/γ +

2T 2

γ

〈(V ′′(r0))
2〉

[Var(V ′(r0)]2

}−1

. (6.12)

Corollary 2. Consider the dynamics generated by L′ = A + γ(S+S′). We have
the following asymptotics for the conductivity:

• High temperature regime: If the potential V satisfies the assumptions
of corollary 1 with 1 < α < 2 then

κ′(T ) ∼ γ +
C∞

6γ
T (1−2/α), T → ∞,

with C∞ defined in (6.4).
If the potential V satisfies the assumptions of corollary 1 with α > 2 then

CT 1−2/α ≥ κ′(T ) ≥ C−1

with a constant positive constant C := C(α,A) independent of T . In partic-
ular in the superharmonic regime (α > 2) the conductivity does not vanish
as T → ∞.

• Low temperature regime: Assume that the potential V satisfies the
assumptions of corollary 1 with 2 < δ (superharmonic regime at origin).
Then

κ′(T ) ∼ γ +
C0

6γ
T (1−2/δ), T → 0,

with C0 defined in (6.5).

Proof. Let us start with the subharmonic regime α < 2 at infinity and let T → ∞.
We claim that if α > 1 then

T 2 〈(V ′′(r0))
2〉

Var2(V ′(r0))
= o

(

T

Var(V ′(r0))

)

. (6.13)

To prove (6.13) we observe that by (6.4) the term

T

Var(V ′(r0))

is of order T (2/α−1) and that

Z(T )−1

∫ 1

0

(V ′′(r))2e−V (r)/Tdr = O(1).

Hence we are left to estimate
∫ ∞

1

(V ′′(r))2e−V (r)/Tdr = A2[α(α − 1)]2
[∫ ∞

1

drr2α−4e−Ar
α/T

]

(

1 +O(T−1)
)

+ 4Aα(α − 1)

[
∫ ∞

1

drrα−2e−Ar
α/T

]

(

1 +O(T−1)
)

+

∫ ∞

1

dr(W ′′(r))2e−V (r)/T .
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The last term is trivially of order O(Z(T )) = O(T 1/α). In the two other integrals
we perform the change of variables r = T 1/αs. We have
∫ ∞

1

(V ′′(r))2e−V (r)/Tdr = A2[α(α − 1)]2T (2−3/α)

∫ ∞

T−1/α

s2α−4e−As
α (

1 +O(T−1)
)

+ 4Aα(α− 1)T (1−1/α)

∫ ∞

T−1/α

sα−2W ′(T 1/αs)e−As
α (

1 +O(T−1)
)

+O(T 1/α).

Observe that

∫ ∞

T−1/α

s2α−4e−As
α

=











O(1), α > 3/2,

O(log T ), α = 3/2,

O(T−2+3/α), α < 3/2,

and
∫ ∞

T−1/α

sα−2e−As
α

=

{

O(1), α > 1,

O(logT ), α = 1.

It follows that if 1 < α ≤ 2 we have
∫ ∞

1

(V ′′(r))2e−V (r)/Tdr = O(T 1/α) (6.14)

and the claim follows.
In the superharmonic regime α > 2 the computations are similar and the proof

relies on the facts

T

Var(V ′(r0))
∼ C−1

∞ T 2/α−1, T 2 〈(V ′′(r0))
2〉

Var2(V ′(r0))
− 1 ≥ C

where C is a positive constant independent of T . If δ > 2 then similarly,

T 2 〈(V ′′(r0))
2〉

Var2(V ′(r0))
= o

(

T

Var(V ′(r0))

)

(6.15)

as T → 0 and one concludes by (6.5).
�

Remark 2. In the superharmonic regime α > 2 at infinity the upper bound and
lower bounds for the high temperature regime do not coincide. The α = ∞ case
formally corresponds to the Toda lattice studied in the next subsection. For the
latter the upper bound is of order 1. Hence, we conjecture that the upper bound
obtained here is not sharp.

If the potential is a bounded perturbation of the harmonic case then we get

Corollary 3. Assume that the symmetric smooth potential V is such that V (r) =
ar2 + W (r), a > 0, with W,W ′ bounded, such that W ′(0) = W ′′(0) = 0 and
W ′′(r) → 0 as r → ∞. Then

κ′(T ) ∼ γ + κ′,harma (6.16)

as T → 0 or T → ∞, with κ′,harma defined by (6.9).

Proof. Let us start with the high temperature regime T → ∞. Recall that by (6.4)
we have Var(V ′(r0)) ∼ 2aT . Moreover we have

〈(V ′′(r0))
2〉 = 2Z(T )−1

(∫ ∞

0

(2a+W ′′(r))2e−ar
2/Tdr

)

(

1 +O(T−1)
)
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where Z(T ) is given by

Z(T ) =

(

2

∫ ∞

0

e−ar
2/Tdr

)

(

1 +O(T−1)
)

=

√

Ta

2
+O(T−1/2).

Since

T−1/2

∫ ∞

0

(W ′′(r))je−ar
2/T dr =

∫ ∞

0

(W ′′(s
√
T ))je−as

2

ds

converges to 0 as T → ∞ for j = 1, 2, we get

lim
T→∞

〈(V ′′(r0))
2〉 = 4a2.

Then the result follows by (6.12). We shall prove that the upper bound (6.7) and
the lower bound (6.12) converges to κ′,harma as T goes to 0. We have

Var(V ′(r0)) =

∫

(2ar +W ′(r))2e−(ar2+W (r))/Tdr
∫

e−(ar2+W (r))/Tdr

= T

∫

(2au+ T−1/2W ′(T 1/2u))2e−au
2

e−W (T 1/2u)/T du
∫

e−au2e−W (T 1/2u)/T du

∼ 4a2T

∫

u2e−au
2

du
∫

e−au2du
= 2aT

as T → 0. Similarly we have

〈(V ′′(r0))
2〉 =

∫

(2a+W ′′(r))2e−(ar2+W (r))/Tdr
∫

e−(ar2+W (r))/T dr

=

∫

(2a+W ′(T 1/2u))2e−au
2

e−W (T 1/2u)/T du
∫

e−au2e−W (T 1/2u)/T du

∼ 4a2

as T → 0. Thus, we obtain

lim
T→0

{

6γ
T

Var(V ′(r0))
− 2/γ +

2T 2

γ

〈(V ′′(r0))
2〉

[Var(V ′(r0)]2

}−1

=
a

3γ
(6.17)

and

lim
T→0

1

6γT
Var(V ′(r0)) =

a

3γ
. (6.18)

�

6.3. The Toda lattice. The Toda lattice is the deterministic chain with generator
A and asymmetric potential

V (r) = a(e−r − 1) + ar.

The interest in this model lies in its complete integrability and its high number of
conserved quantities ([12]). We denote these conserved quantities by

∑

x∈Z
θxIk,
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k ≥ 1. Let us just mention the first three ones:

I1 = p0,

I2 =

(

p20
2
+ V (r0)

)

,

I3 =

(

p30
3
− p0

)

+ a(p0 + p1)(e
−r1 − 1).

(6.19)

Remark that the first one corresponds to momentum conservation and the second
one to energy. For an integrable model, ideal conducting behavior is expected with
current correlations decaying to a finite value at long times. To estimate this
limiting value, or at least obtain a lower bound ([14]), Mazur inequality ([9]) is
useful. It relies the long time asymptotic of dynamic correlations functions to the
presence of conservation laws. Let us show how to recover a Tauberian counterpart
of Mazur inequality as a simple consequence of the variational formula (6.1).

In the deterministic case, the variational formula (6.1) is (take γ = 0)

≪ g, (λ− A)−1g ≫= sup
f

{

2 ≪ f, g ≫ −λ≪ f, f ≫ −λ−1 ≪ Af,Af ≫
}

. (6.20)

To get a lower bound a natural idea is to use for f linear combinations of the
conserved quantities I1, . . . , Ik, . . .. The term ≪ Af,Af ≫ is then equal to 0 and
we get

λ−1 ≪ g, g ≫ ≥ ≪ g, (λ− A)−1g ≫ ≥ λ−1 ≪ Pg,Pg ≫ (6.21)

where Pg is the orthogonal projection on the linear space E generated by the
conserved quantities.

Recall that

≪ g, (λ− A)−1g ≫=

∫ ∞

0

dte−λt ≪ etAg, g ≫ (6.22)

where (etA)t≥0 is the semigroup generated by the Liouville operator A.
Thus, if ≪ Pg,Pg ≫> 0, it means, in a Tauberian sense, that ≪ etAg, g ≫

remains of order 1 as t goes to infinity. It is not difficult to see that≪ Pj0,1,Pj0,1 ≫
> 0 and we recover the fact that the Toda lattice is an anomalous conductor: the
conductivity defined by the Green-Kubo formula diverges.

In the presence of the noise, the Toda lattice becomes a normal heat conductor.

Proposition 6. Consider the Toda lattice perturbed by γ(S+S′), then we have

γ +

[

6γ

a
+

2T

γa

]−1

≤ κ′(T ) ≤ γ +
a

6γ
.

Proof. Let Z(T ) =
∫

R
e−V (r)/Tdr. Observe first that

1

aZ(T )

∫

V ′(r)e−V (r)/Tdr = 0.
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Since V ′′(r) = a− V ′(r), by integration by parts, we have
∫

(V ′(r))2e−V (r)/Tdr = −T
∫

V ′(r)
d

dr
(e−V (r)/T )dr

= T

∫

V ′′(r)e−V (r)/Tdr = T

∫

(a− V ′(r))e−V (r)/Tdr

= aTZ(T )

(6.23)

and
〈(V ′′(r0))

2〉 = a2 − 2a〈V ′(r0)〉+ 〈(V ′(r0))
2〉 = a2 + Ta.

We conclude by the upper bound (6.7) and the lower bound (6.12). �

In the same spirit as the ”Tauberian Mazur inequality” (6.21), we can obtain a
lower bound on the conductivity by using elements of E = Span(Ik, k ≥ 1) as test
functions. We get

κ′(T ) ≥ γ + sup
f∈E

{2 ≪ f, j0,1 ≫ −γ ≪ f,−(S+S
′)f ≫} . (6.24)

In the next proposition we investigate the lower bound obtained by taking f ∈
Span(I1, I2, I3). Note that this lower bound is quite different from the previous
lower bound.

Proposition 7. Consider the Toda lattice perturbed by the noise γ(S+S′). Then,
we have

κ′(T )− γ ≥
a2T 2

γ

(

6aT 2 +
25

3
T 3 − 8T 2 + 3T

).

Proof. We have

I3 =

(

p30
3
− p0

)

+ a(p0 + p1)(e
−r1 − 1). (6.25)

We inject the function αI3 (α > 0 will be fixed later) in the variational formula
(6.1) with the infimum. Since AI3 = 0 we get

κ(T )− γ ≥ T−2
{

2α≪ j0,1, I3 ≫ +γα2 [≪ SI3, I3 ≫ + ≪ S
′I3, I3 ≫]

}

We have

2 ≪ j0,1, I3 ≫ = 2a2 ≪ p0(1− e−r1), (p0 + p1)(1 − e−r1) ≫= 2aT 2.

Observe now that
SI3 = −2I3.

Hence ≪ SI3, I3 ≫= −2 ≪ I3, I3 ≫. Using (6.23) we obtain

≪ I3, I3 ≫ = ≪ p30/3− p0, p
3
0/3− p0 ≫

+ a2 ≪ (p0 + p1)(1− e−r1), (p0 + p1)(1 − e−r1) ≫
= µ0,T

{

(p30/3− p0)
2
}

+ 2Ta2µ0,T

[

(1− e−br0)2
]

=

{

5

3
T 3 − 2T 2 + T

}

+ 2aT 2.

We have

S
′I3 = p0 + (p−1 + p1)p0 − p30 − a(p0 + p1)(e

−r1 − 1).
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It follows that

≪ S
′I3, I3 ≫ = −a2 ≪ (p0 + p1)(1− e−r1), (p0 + p1)(1 − e−br1) ≫

+ ≪
(

p30
3
− p0

)

, (p0 − p30 + (p−1 + p1)p0 ≫

= −
(

2T 2a+ 5T 3 − 4T 2 + T
)

.

Putting everything together and optimizing over α we get

κ(T )− γ ≥
a2T 2

γ

(

6aT 2 +
25

3
T 3 − 8T 2 + 3T

).

�

Recall that the lower bound on the conductivity obtained in proposition 5 was
for anharmonic chains perturbed by γ(S+S

′). For the Toda lattice we have also
a lower bound even if the perturbation involves only S.

Proposition 8. Consider the Toda lattice perturbed by the noise γS. We have

κ(T ) ≥ a2T 2

2γ

({

5

3
T 3 − 2T 2 + T

}

+ 2aT 2

).

In particular there exists C > 0 such that

κ(T ) ≥ CT−1, T → ∞,

κ(T ) ≥ CT, T → 0.

Proof. The proof relies on the same arguments and computations of Proposition 7.
�

7. Linear case

In this section we assume that V (r) = r2/2. In the bulk, i.e. for x = 2, . . . , n−2,
we have the so-called microscopic fluctuation-dissipation equation

jx,x+1 = −
1

4γ
∇(p2x + rxrx+1) + L

[

r2x+1

4
+

(px + px+1)rx+1

4γ

]

.

It follows that

Js = 〈j0,1〉ss =
1

n− 3

n−2
∑

x=2

〈jx,x+1〉ss (7.1)

= − 1

4γ

1

n− 3

n−2
∑

x=2

〈

∇
[

p2x + rxrx+1

]〉

ss

=
1

4(n− 3)γ

{

(〈p22〉ss + 〈r2r3〉ss)− (〈p2n−1〉ss + 〈rn−1rn〉ss)
}

.

We first show that this term is O(n−1). Our starting point is (3.15). In the
following C denotes a constant independent of n which can change from line to
line.
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We have

L(p21/2) = −τℓp1 + p1r2 + γℓ(Tℓ − p21), L(r22/2) = p2r2 − p1r2. (7.2)

Since Vs = 〈p1〉ss is O(n−1) (see Lemma 1), by (3.15), we get

|〈p1r2〉ss| ≤ C, |〈p2r2〉ss| ≤ C. (7.3)

We have also

L(p2r2) = (p2 − p1)p2 + (r3 − r2)r2 − 2γp2r2,

L(p1r2) = −γℓp1r2 + (r2 − τℓ)r2 + (p2 − p1)p1.
(7.4)

It follows that

〈p22 + r3r2〉ss = −2γ〈p2r2〉ss + γℓ〈p1r2〉ss + 〈p21〉+ τℓ〈r2〉ss. (7.5)

By (7.3), (3.15) and Lemma 1 we get
∣

∣〈p22 + r3r2〉ss
∣

∣ ≤ C. (7.6)

A similar estimate can be achieved for the term 〈p2n−1〉ss + 〈rn−1rn〉ss and we
obtain that

|Js| ≤ C/n. (7.7)

Theorem 3. Fourier law holds:

lim
n→∞

nJs =
1

4γ

{

(Tℓ − Tr) + (τ2ℓ − τ2r )
}

(7.8)

and we have

Ĵℓ = lim
n→∞

n(〈p21〉ss − Tℓ) =
1

4γγℓ

[

(Tr − Tℓ) + (τℓ − τr)
2
]

,

Ĵr = lim
n→∞

n(Tr − 〈p2n〉ss) =
1

4γγr

[

(Tr − Tℓ)− (τℓ − τr)
2
]

.

(7.9)

It follows that the system can be used as a heater but not as a refrigerator.

Proof. By (7.7) we get that 〈j0,1〉ss → 0 as n→ ∞. Since Vs vanishes as n goes to
infinity we get 〈p21〉ss → Tℓ. By (7.2) it implies that 〈p1r2〉ss and 〈p2r2〉ss go to 0.
By Lemma 1 and (7.5) we have

〈p22 + r3r2〉ss → (Tℓ + τ2ℓ ). (7.10)

Similarly one can prove

〈p2n−1 + rnrn−1〉ss → (Tr + τ2r ). (7.11)

We report in (7.1) and we get Fourier law.

Assume that Tr > Tℓ. The term Ĵℓ (resp. Ĵr) is the macroscopic heat current
from the left reservoir to the system (resp. from the system to the right reservoir).

Whatever the values of τℓ, τr are, Ĵℓ > 0 and we can not realize a refrigerator. But
if (Tr − Tℓ) < (τr − τℓ)

2 then Ĵr < 0 and we realized a heater. �



OSCILLATORS CHAIN WITH RANDOM FLIP OF VELOCITIES 29

8. Existence and uniqueness of the non equilibrium stationary state

The aim of this section is to prove Proposition 1. We recall that Ωn = R
n−1×R

n

is the state space. For any positive θ we define the Lyapunov function Wθ by

Wθ(ω) = exp

(

θ
n
∑

x=1

Ex
)

, ω ∈ Ωn,

and the weighted Banach space

Bθ =

{

f : Ωn → R contiuous , ‖f‖θ = sup
ω

|f(ω)|
Wθ(ω)

< +∞
}

.

Let Fx be the flip operator defined by (Fxf)(ω) = f(ωx) for any f : Ωn → R

and any ω ∈ Ωn. We note (Tt)t≥0 the semigroup generated by L and (T̃t)t≥0 the
semigroup corresponding to L0, defined by (3.14).

The existence and uniqueness of the stationary state can be proved using similar
arguments as in [4], [10]. Nevertheless we are not able to show smoothness results
for the transition probabilities of (Tt)t≥0.

We assume that the potential V satisfies (A). In [4] is investigated the problem

of existence and uniqueness of the stationary state for T̃t in the case τℓ = τr = 0. It
is easy to adapt the proof of [4] when τℓ, τr 6= 0. In this case, without the jumps, we
can apply directly the method of [4] to obtain also the smoothness of the density
w.r.t. the Lebesgue measure.

Proposition 9. Fix θ sufficiently small. The semigroup (T̃t)t≥0 can be extended
to a strongly Feller continuous semigroup on Bθ with a smooth density w.r.t. the
Lebesgue measure. It has a unique invariant probability measure π which has a
smooth density w.r.t. the Lebesgue measure and the semigroup converges exponen-
tially fast to π in Bθ.

A simple computation shows that

LWθ = θWθ

{

τrpn − τℓp1 + Tℓ + Tr + (Tℓθ − 1)p21 + (Trθ − 1)p2n
}

≤ θ

(

Tr + Tℓ +
τ2r

4(1− Trθ)
+

τ2ℓ
4(1− Tℓθ)

)

Wθ

(8.1)

if θ < min(T−1
ℓ , T−1

r ). It follows that for such a choice for θ the semigroup (Tt)t≥0

is well defined on Bθ.
Similarly to Lemma 7.1 in [4] one can show that there exists t0 > 0, constants

bn < +∞, 0 < κn < 1, with limn→∞ κn = 0, and compact sets Kn such that

Tt0Wθ(ω) ≤ κnWθ(ω) + bn1Kn(ω) (8.2)

This is sufficient to apply Theorem 8.9 in [10] and get the existence of a stationary
state.

Let us also mention that (8.2) and (8.1) imply

sup
t≥0

(TtWθ)(ω) ≤ C(Wθ(ω) + 1) (8.3)

for a positive constant C. This is because (8.2) gives for any p ≥ 1 that

(Tpt0Wθ)(ω) ≤ κp1Wθ(ω) +
b1

1− κ1
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and (8.1) gives the existence of a constant c > 0 such that

(TsWθ)(ω) ≤ ecsWθ(ω), 0 ≤ s ≤ t0,

so that, writing Tt = Tt−pt0 ◦ Tpt0 with pt0 ≤ t < pt0 + 1, we obtain (8.3).
We now consider the problem of uniqueness of the steady state.
Let us denote p̃t(ω, ξ)dξ the probability transition corresponding to (T̃t)t≥0 and

pt(ω, dξ) the probability transition corresponding to (Tt)t≥0.
Let σ1 be the stopping time defined as the first time a momentum is flipped.

Observe that σ1 has an exponential law of parameter nγ. For every bounded
measurable function f : Ωn → R, we have

(Ttf)(ω) = Eω [f(ω(t))1σ1<t] + Eω [f(ω(t))1σ1≥t]

= e−γnt
∫

ξ∈Ωn

p̃t(ω, ξ)f(ξ)dξ

+ γ

∫ t

0

dse−γns
n
∑

x=1

∫

ξ∈Ωn

dξ p̃s(ω, ξ)

(∫

ξ′∈Ωn

pt−s(ξ
x, dξ′)f(ξ′)

)

.

(8.4)

We can iterate the argument and we obtain the following formula for pt

pt(ω, dξ) = e−γntp̃t(ω, ξ)+
∞
∑

k=1

γk
n
∑

x1,...,xk=1

[∫ ∞

0

. . .

∫ ∞

0

ds1 . . . dsk+1e
−γn(s1+...+sk+1)1{s1+...+sk≤t<s1+...sk+1}

∫

ξ1,...,ξk∈Ωk
n

p̃s1(ω, ξ1)p̃s2(ξ
x1

1 , ξ2) . . . p̃sk(ξ
xk−1

k−1 , ξk)p̃t−(s1+...sk)(ξ
xk

k , ξ)dξ1 . . . dξk

]

.

This shows that pt(ω, dξ) = pt(ω, ξ)dξ is absolutely continuous with respect to
the Lebesgue measure on Ωn. Therefore, (Tt)t≥0 is strongly irreducible, i.e. for
every t > 0, every ω ∈ Ωn and every open subset O of Ωn,

pt(ω,O) > 0

because T̃t is strongly irreducible.

Lemma 3. The semigroup (Tt)t≥0 is strongly Feller, i.e. it maps bounded measur-
able functions to continuous bounded functions.

Proof. By Proposition 9, the semigroup (T̃t)t≥0 is strongly Feller. It implies (see
e.g. Corollary 2.4 of [13]) that for every t > 0, for all compact sets K ⊂ Ωn, we
have

lim
δ→0

sup
|ω−ω′|≤δ,
ω,ω′∈K

sup
‖u‖∞≤1

∣

∣

∣(T̃tu)(ω)− (T̃tu)(ω
′)
∣

∣

∣ = 0. (8.5)

Let f be a bounded measurable function with ‖f‖∞ ≤ 1. We have to show that,
for any fixed t > 0, Ttf is a continuous bounded function. By (8.4), we have

(Ttf)(ω
′)− (Ttf)(ω) = e−γnt

(

(T̃tf)(ω
′)− (T̃tf)(ω)

)

+ γ

n
∑

x=1

∫ t

0

e−γn(t−s)
{(

T̃t−s ◦ Fx ◦ Ts ◦ f
)

(ω)−
(

T̃t−s ◦ Fx ◦ Ts ◦ f
)

(ω′)
}

ds.

(8.6)
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Observe that the absolute value of the second term on the right hand side is bounded
above by

γ

n
∑

x=1

∫ t

0

e−nγ(t−s) sup
‖g‖∞≤1

∣

∣

∣

(

T̃t−sg
)

(ω)−
(

T̃t−sg
)

(ω′)
∣

∣

∣ ds

because

‖Fx ◦ Ts ◦ f‖∞ = sup
ξ

|Eξx(f(ωs)| ≤ ‖f‖∞ ≤ 1.

By the bounded convergence theorem and (8.5) we have

lim
ω′→ω

( (Ttf)(ω
′)− (Ttf)(ω) ) = 0.

�

These two last properties (irreducibility and strong Feller property) are sufficient
to have uniqueness of the invariant measure µss. To show that the latter has a
density, we observe that for any t > 0, the condition µssTt = Tt means that for any
measurable set A of Ωn we have

µss(A) =

∫

Ωn

dµss(ω)

(∫

Ωn

1A(ξ)pt(ω, ξ)dξ

)

=

∫

Ωn

1A(ξ)

(∫

Ωn

dµss(ω)pt(ω, ξ)

)

dξ

where the second line follows from Fubini theorem.
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