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Abstract

In recent years, important progress has been made in the field of two-dimensional

statistical physics. One of the most striking achievement is probably the proof of

conformal invariance of percolation. This theorem, together with the introduction of

the so-called Schramm-Loewner Evolution and techniques developed over the years

in percolation, allow to describe the critical and near-critical regime of percolation

very precisely.

Note to the reader. Many lecture notes [39] and books [5, 13, 14] already exist on this subject. The
present notes are not intended to provide a general exposition but to gather what was explained during
a course given by the two authors at the 2011 Florence Summer School, and to provide a few additional
details. Most proofs are omitted, since they are given in a very satisfying fashion in other places (we refer
to such places where needed). Still, we present a few proofs, which are either quite short and naturally
included in the text, or done in a non-standard manner. We include an extended bibliography to which
the avid reader is advised to refer.



1 Introduction

The model of percolation was introduced by Broadbent and Hammersley in 1950 [7].
For p ∈ (0, 1), (site) percolation on the triangular lattice T is a random coloring of
sites, each site being open with probability p and closed otherwise, independently of the
other sites. Site percolation on the triangular lattice can be seen as a model on faces of
the hexagonal lattice (via duality): each face being open with probability p and closed
otherwise, independently of the other faces. In these notes, we will work only with this
model and will denote the measure by Pp. For general background on percolation, we
refer the reader to the books of Grimmett [13] and Kesten [18].

We will be interested in the connectivity properties of the model. Two faces a and
b of the hexagonal lattice are connected (denoted by a ↔ b) if there exists a path of
adjacent open faces starting at a and ending at b. If there exists a path of adjacent closed
faces starting at a and ending at b, we write a

⋆
↔ b. A cluster is a maximal connected

component of open faces.
It is classical that there exists pc ∈ (0, 1) –called the critical point– such that for

p < pc, there exists almost surely no infinite cluster, while for p > pc, there exists almost
surely a unique one. Since the model is invariant under translations, the definition of
pc can be expressed in terms of the probability θ(p) := Pp(0 ↔ ∞) that the origin is
in an infinite cluster: when p < pc, θ(p) = 0 while for p > pc, θ(p) > 0. The aim of
these lectures is the following result, that we attribute to several contributors (in the
chronological order):

Theorem 1.1 (Kesten, Schramm, Lawler, Werner, Smirnov). For the (face) percolation
on the hexagonal lattice, pc = 1/2 and for p ց 1/2

θ(p) = (p− 1/2)5/36+o(1).

The two first lectures will study crossing probabilities (the probability to have an
open path connecting two boundary arcs of a domain) when the parameter p equals 1/2:
we will present the Russo-Seymour-Welsh theory and the Cardy-Smirnov formula. The
latter, sometimes referred to as conformal invariance of critical percolation, will allow
us to describe the scaling limit of interfaces. This fundamental fact is the crucial step
in the computation of so-called critical exponents. We will not give any details of the
computation of the critical exponents, yet we will discuss some of their applications. In
the fourth lecture, we will leave percolation with parameter 1/2 to study its dependence in
p. We will prove that p = 1/2 is the critical parameter of site percolation on the triangular
lattice. The techniques that we use will allow us to study near-critical percolation, and to
derive Kesten scaling relations. This last fact, which is the last step towards Theorem 1.1,
will take us the last lecture. We will finish by giving several open questions and conjectures
related to percolation.

Notation and basic properties. Except otherwise stated, H is the hexagonal lattice
with mesh-size 1, centered such that the origin 0 is the center of one of the faces, and
rotated so that iR is an axis of symmetry for H. We will often use complex coordinates to
specify the position of a point. In particular, a face will be indexed by its center (which
corresponds to the vertex in the triangular dual lattice). Rectangles [a, b]× [c, d] are the
set of faces such that eiπ/3n+m with n ∈ [a, b] and m ∈ [c, d].
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Figure 1: Cluster density with respect to p. Non-trivial facts in this picture include
pc = 1/2, θ(pc) = 0 and the behavior near the critical point. We do not investigate
properties such as continuity of the cluster density away from pc, concavity above pc and
other known facts.

We will denote by up ≍ vp if there exist two constants A,B not depending on p such
that Aup ≤ vp ≤ Bup for all p.

We will harness the FKG inequality and the monotonicity of percolation a few times.
We recall these two facts now. An event is called increasing if it is preserved by addition
of open faces, see Section 2.2 of [13] (a typical example is the existence of an open path
from one set to another). Recall that p < p′ implies that Pp(A) ≤ Pp′(A). Moreover, for
every p ∈ [0, 1] and A,B two increasing events,

Pp(A)Pp(B) ≤ Pp(A ∩ B) (FKG inequality).

2 Crossing probabilities at p = 1/2

In this section, fix p = 1/2.

2.1 Russo-Seymour-Welsh theory

Define the ball Bn := {x ∈ H : dH(x, 0) ≤ n} (dH(·, ·) is the graph distance, so that balls
have hexagonal shapes) and the annulus An = B3n \ Bn. Let En be the event that there
exists an open circuit of adjacent faces in An that surrounds the origin.

Theorem 2.1 (Russo [30], Seymour-Welsh [31]). There exists C such that for every
n > 0,

P1/2(En) ≥ C > 0.

Russo-Seymour-Welsh Theorem (RSW for short) had a great impact on two-dimensional
percolation and more generally statistical physics. We will use it extensively in the notes.
Though, this property is typical of p = 1/2: it is natural to expect that the probability
of this event goes to 0 (resp. 1) below pc (resp. above) since percolation looks like a big
sea of closed faces with small islands of open faces in the middle (resp. the opposite).
Making this vague statement rigorous is not completely elementary and is the object of
Theorem 5.1.

We present one of the many proofs of RSW (this one is inspired by a proof due to
Smirnov, and available in french in [40]).
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Figure 2: The dark grey area is the set of faces which are discovered after conditioning
on {Γ = γ}. The white area is Ωγ .

Proof. Step 1: Let n > 0 and index the edges of Bn as in Fig. 2. Consider the event
that ℓ1 is connected by an open path to ℓ3∪ℓ4. The complement of this event is that ℓ2 is
connected by a closed path to ℓ5∪ ℓ6. Using the symmetry between closed and open faces
and the invariance under the rotation of angle π/3, we find that P1/2(ℓ1 ↔ ℓ3∪ ℓ4) = 1/2.
In fact, we also have that P1/2(ℓ1 ↔ ℓ4) ≥ 1/8. Indeed, either this is true or P1/2(ℓ1 ↔
ℓ3) ≥ 1/2− 1/8. But in this case, using FKG,

P1/2(ℓ1 ↔ ℓ4) ≥ P1/2(ℓ1 ↔ ℓ3)P1/2(ℓ2 ↔ ℓ4) ≥ (3/8)2 ≥ 1/8. (2.1)

This shows that crossing a rotationally symmetric shape is not hard. The difficult step
is to prove that one can cross a thin shape in the long direction.

Step 2: Now consider the “rectangle” Rn = Bn ∪ (Bn − 2ni) and index its edges as
in Fig. 2. For a path γ from ℓ1 to ℓ4, define the domain Ωγ to be the faces of Rn strictly
on the right of γ ∪ σ(γ), where σ is the symmetry with respect to ℓ1. Once again, the

complement of {ℓ4 ∪ γ ↔ ℓ10 ∪ ℓ11 in Ωγ} is {ℓ9 ∪ σ(γ)
⋆
↔ ℓ2 ∪ ℓ3 in Ωγ}. Using the

switching of colors and the symmetry with respect to ℓ1, we deduce that the probability
of the former is 1/21.

If E := {ℓ1 ↔ ℓ4} occurs, set Γ to be the left-most crossing between ℓ1 and ℓ4. For a
given path γ from ℓ1 to ℓ4, the event {Γ = γ} is measurable only in terms of faces to the
left of γ. In particular, conditionally to {Γ = γ}, the configuration in Ωγ is a percolation
configuration, so that

P1/2

(

(ℓ4 ∪ γ) ↔ (ℓ10 ∪ ℓ11) in Ωγ | Γ = γ
)

= 1/2.

1Actually is it slightly larger since the face of γ ∩ ℓ1 is open.
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Figure 3: Six “rectangles” which, when crossed, ensure the existence of a circuit in the
annulus.

Therefore, we find

P1/2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11)
)

= P1/2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11) , E
)

=
∑

γ

P1/2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11) , Γ = γ
)

≥
∑

γ

P1/2

(

(ℓ4 ∪ γ) ↔ (ℓ10 ∪ ℓ11) in Ωγ , Γ = γ
)

≥
∑

γ

1

2
P1/2(Γ = γ) =

1

2
P1/2(E) =

1

16
.

Step 3: Invoking the FKG inequality, we obtain

P1/2(ℓ4 ↔ ℓ9) ≥ P1/2

(

ℓ4 ↔ (ℓ10 ∪ ℓ11)
)

P1/2

(

(ℓ2 ∪ ℓ3) ↔ ℓ9
)

≥
1

162
.

Assuming that the six rectangles described in Fig. 3 are crossed (in the sense that there
are paths between opposite short edges), we obtain the result using FKG a last time.

The first corollary of RSW is the following lower bound on pc (historically, this result
was first proved this way; a modern and robust argument due to Zhang implies this result
very easily, see Section 11 of [13]).

Corollary 2.2 (Russo [30]). We have θ(1/2) = 0; in particular, pc ≥ 1/2.

Proof. We prove that 0 is almost surely not connected by a closed path to infinity (it is
the same probability for an open path). Let N > 0. The origin being connected to ∂B3N

by a closed path implies that for every n < N , E c
3n occurs. Therefore,

P1/2(0
⋆
↔ ∂B3N ) ≤ P1/2

(

⋂

n<N

E c
3n

)

≤
∏

n<N

P1/2 (E
c
3n) ≤ (1− C)N . (2.2)

In the second inequality, we have used independence between percolation in different
annuli. In particular, it converges to 0 when N goes to infinity, implying θ(1/2) = 0. The
definition of pc implies pc ≥ 1/2.
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In general, we are interested in crossing probabilities for more general shapes. More
precisely, we wish to let the size of the graph go to infinity, but keeping the same global
shape. A natural way to do this is to shrink the lattice instead of looking at bigger and
bigger scales. This is called taking scaling limits.

Consider a topological rectangle (Ω, A, B, C,D), i.e. a smooth, bounded simply con-
nected domain Ω 6= C with four distinct points A, B, C and D on the boundary, indexed
in counter-clockwise order. For δ > 0, we will be interested in percolation on Ωδ := Ω∩δH.
The graph Ωδ should be seen as a discretization of Ω at scale δ. Let Aδ, Bδ, Cδ and Dδ be
the vertices of ∂Ωδ that are closest to A, B, C and D respectively. Let Cδ(Ω, A, B, C,D)
be the event that there is an open path in Ωδ, between the intervals AδBδ and CδDδ of
its boundary. We call such a path a crossing, and the event a crossing event. Sometimes,
we will say that the rectangle is crossed if there exists a crossing.

With a slight abuse of notation, we will denote the percolation of parameter 1/2 on δH
by P1/2 (even though the measure is the push-forward of P1/2 by the homothety x 7→ δx).

Corollary 2.3. Let (Ω, a, b, c, d) be a topological rectangle. There exist C1, C2 > 0 such
that for every δ > 0,

0 < C1 ≤ P1/2

(

Cδ(Ω, A, B, C,D)
)

≤ C2 < 1.

A

B

C

D

Ω

Figure 4: Paths of annuli linking two edges of a topological rectangle. If each of these
annuli contains a circuit disconnecting the interior from the exterior boundary, we obtain
an open path connecting the two edges.

Proof. It is sufficient to prove the lower bound. Indeed, the upper bound is a consequence
of the following fact: since the complement of Cδ(Ω, A, B, C,D) is the existence of a closed
circuit from BδCδ to DδAδ, it has same probability as Cδ(Ω, B, C,D,A). Therefore, if this
probability is bounded from below, the probability of Cδ(Ω, A, B, C,D) will be bounded
from above.

Fix ε > 0 independent of δ > 0. For a hexagon h of radius ε > 0, we set h̃ to be the
hexagon with the same center and radius 3ε. Now, consider a collection h1, . . . , hk of
hexagons of radius ε satisfying the following conditions:

• h1 intersects AB and hk intersects CD,
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• h̃1, . . . , h̃k are not intersecting BC nor DA,

• hi are adjacent.

Let Eδ
i the event that there is an open circuit in Ωδ ∩ (h̃i \ hi) surrounding Ωδ ∩ hi.

By construction, if each Eδ
i occurs, there is a path from AB to CD, see Fig. 4. Using

Theorem 2.1, the probability is bounded from below by Ck uniformly in δ.

In particular, we deduce that long rectangles are crossed in the long direction with
probability bounded away from 0 as δ → 0. This result is the classical formulation of
RSW.

We finish with a property of percolation with parameter 1/2: connectivity properties
decay as power laws:

Corollary 2.4. There exist α, β > 0 such that for every n > 0,

n−α ≤ P1/2(0 ↔ ∂Bn) ≤ n−β.

Proof. The existence of β is given by (2.2). For the lower bound, use the following
construction: define Rn := [0, 2n]× [0, 2n+1] if n is odd, and Rn := [0, 2n+1]× [0, 2n] if it
is even. Set Fn to be the event that Rn is crossed in the “long” direction. Corollary 2.3
implies the existence of C > 0 such that P1/2(Fn) ≥ C for every n > 0. We have

P1/2(0 ↔ ∂B3N ) ≥ P1/2

(

⋂

n<N

Fn

)

≥
∏

n<N

P1/2(Fn) ≥ CN .

This yields the existence of α.

The event {0 ↔ ∂Bn} is call the one-arm event, meaning that there exists an open
path (an arm) from 0 to the boundary of the box. More generally, for j ≥ 1, fix a
sequence σ of colors (“open” O or “closed” C) of length j. For n < N , define Aj,σ(n,N)
to be the event that there are j disjoint paths from ∂Bn to ∂BN with colors σ1, . . . , σj

when the paths are indexed in counter-clockwise order. For instance, A1,O(n,N) is the
one-arm event corresponding to the existence of a crossing from the inner to the outer
boundary of BN \Bn.

Let us define πj,σ(n,N) = P1/2(Aj,σ(n,N)) and πj,σ(n) = P1/2(Aj,σ(j, n)). It can
be shown following the previous proof that πj,σ(n,N) is between two powers of n/N
uniformly in n and N . It is therefore natural to predict that there exists a critical
exponent αj,σ ∈ (0,∞) such that

πj,σ(n,N) = (n/N)−αj,σ+on/N (1).

We mention that when j = 5 and σ = OCOOC, it is possible to compute the critical
exponent explicitly using only RSW. This is an example of universal exponent. We state
it as a proposition, and refer to [21, 28] for a proof.

Proposition 2.5 (Kesten-Sidoravicius-Zhang). Fix j = 5 and σ = OCOOC, for every
n > 0, π5,OCOOC(k, n) ≍ (k/n)2.

Note that the result is in fact stronger. Assume that one has RSW below scale n with
a uniform lower bound ε > 0 on the probability to see a circuit in an annulus, then there
exists Aε and Bε such that

Aε(k/n)
2 ≤ π5,OCOOC(k, n) ≤ Bε(k/n)

2.
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Morality. RSW allows to prove that connectivity properties decay polynomially fast at
criticality. In general, RSW is not sufficient to compute αj,σ or even to guarantee its
existence. One needs to understand deeply the behavior of the scaling limit (the limit
when the meshsize δ goes to 0) of percolation. The main step towards this understanding
is the proof that crossing probabilities actually converge. This is the subject of the next
section.

The fact that critical exponents are not implied by RSW is not surprising. Actually,
RSW is a very general feature of two-dimensional statistical models with continuous
phase transition (even though we know how to prove it in very few cases). Somehow,
it is equivalent to the fact that there are scaling limits along subsequences. Note that
for different models, critical exponents can be completely different, which reminds us
that RSW is not sufficient (except for the universal exponents, which are universal by
definition). On the other hand, it can seem surprising that proving the convergence of
crossing probabilities is sufficient. . .

3 The Cardy-Smirnov formula

In 1994, Langlands, Poulliot and Saint-Aubin [23] published a number of numerics in
favor of conformal invariance of crossing probabilities in the scaling limit (the idea of
looking at interfaces and crossings is apparently due to Aizenman). They checked that
taking different rectangles, the probability of Cδ(Ω, A, B, C,D) converges when δ goes to
0 towards a limit which is the same if (Ω, A, B, C,D) and (Ω′, A′, B′, C ′, D′) are image of
each other by a conformal map. The paper [23], while only numerical, attracted many
mathematicians to the domain. The same year, Cardy [9] proposed an explicit formula
for the limit of crossing probabilities. Finally, in 2001, Smirnov proved Cardy’s formula
rigorously.

Theorem 3.1 (Smirnov [33]). The probability of the event Cδ(Ω, A, B, C,D) has a limit
f(Ω, A, B, C,D) as δ goes to 0. Moreover, the limit is conformally invariant, in the
following sense: If Φ is a conformal map from Ω to another simply connected domain
Ω′ = Φ(Ω), and extends continuously to ∂Ω, then

f(Ω, A, B, C,D) = f(Φ(Ω),Φ(A),Φ(B),Φ(C),Φ(D)).

The proof of this theorem is very well (and very shortly) exposed in the original paper
[33]. It has been rewritten in a number of places including [5, 14, 40]. We provide the
proof that we used in the lecture (in particular with the same notations), which is mainly
inspired by [33] and [3].

As will appear naturally in the proof and was first pointed to by Carleson, f has a
most simple expression in the case where Ω itself is an equilateral triangle with vertices A,
B and C, and the fourth point D is on the interval (CA). In this case, f(Ω, A, B, C,D)
equals |CD|/|CA|. By conformal invariance, this gives the value of f for every confor-
mal rectangle, since Riemann mapping Theorem yields that any topological rectangle is
conformal to one of these topological rectangles.

Proof. For every vertex z in Ωδ \ ∂Ωδ, we define EA,δ(z) to be the event that there exists
a simple path of open faces in Ωδ, separating Aδ and z from Bδ and Cδ — and EB,δ(z),
EC,δ(z) similarly, with obvious circular permutations of the letters. Let HA,δ(z) (resp.
HB,δ(z), HC,δ(z)) be the probability of EA,δ(z) (resp. EB,δ(z), EC,δ(z)).
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e
⋆

Figure 5: Picture of the event EA,δ(z). We also depicted one oriented edge e with its
associated edge e⋆. The graph Hδ is drawn with solid lines while its dual Tδ is drawn
with dotted lines.

The proof runs into three steps, the second one being the most important:

• First, we prove that (HA,δ, HB,δ, HC,δ)δ>0 is a precompact family of functions (with
variable z).

• Second, introducing the following two sequences of functions defined by

Hδ(z) := HA,δ(z) + τHB,δ(z) + τ 2HC,δ(z) Sδ(z) = HA,δ(z) +HB,δ(z) +HC,δ(z),

we show that any subsequential limits h and s of these sequences are holomorphic.
Here, τ = ei2π/3. In order to prove this statement, we use Morera’s theorem and we
study discrete integrals.

• Third, we use boundary conditions to identify the possible h and s, and thus guaran-
tee the possible subsequential limit of (HA,δ, HB,δ, HC,δ)δ>0 to be unique. A byprod-
uct of the proof is the exact computation of the limit of h and s, and thus of the
limits of (HA,δ), (HB,δ) and (HC,δ).

Then, making the additional remark that EC,δ(Dδ) is the event Cδ(Ω, A, B, C,D), this
will conclude the proof of Theorem 3.1.

Precompactness. Using RSW (Theorem 2.1) in concentric annuli2, we obtain the
following: There are two positive constants K and ε such that, for every δ > 0 and any
two points z and z′ in Ωδ up to the boundary of the domain, yet at distance ε away from
A, B and C,

|HA,δ(z
′)−HA,δ(z)| 6 K |z′ − z|

ε
(3.1)

and a similar bound for HB,δ and HC,δ. Hence, if we suitably extend these functions
continuously to Ω, we obtain a family of uniformly Hölder maps from Ω to [0, 1]. The
family is then relatively compact with respect to uniform convergence, and it is hence
possible to extract a subsequence (HA,δn, HB,δn, HC,δn)n>0, with δn → 0, which converges
uniformly to a triple of Hölder maps (hA, hB, hC) from Ω to [0, 1]. From now on, we set
h = hA+ τhB + τ 2hC and s = hA+hB +hC (they are the limits of (Hδn)n>0 and (Sδn)n>0

respectively).

2Note that if two points z, z′ are surrounded by an open (or a closed) circuit, then HA,δ(z
′) = HA,δ(z).
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Holomorphicity of h and s. To prove that h is holomorphic, one can try to prove that
Hδn is a sequence of (almost) discrete holomorphic functions, where one needs to specify
what is meant by discrete holomorphic. In our case, it will be that discrete contour
integrals vanish3. We refer to [36] for more details on discrete holomorphicity and its
connections to statistical physics.

Consider a simple, closed, smooth curve γ contained in Ω. For every δ > 0, let γδ be
a discretization4 of γ contained in Ωδ, i.e. a finite chain (γδ(k))06k6Nδ

of pairwise distinct
vertices of Tδ = δH⋆, ordered in the positive direction, such that for every index k, γδ(k)
and γδ(k+1) are nearest neighbors, and chosen in such a way that the Hausdorff distance
between γδ and δ goes to 0 with δ. Notice that Nδ can be taken of order δ−1, which we
shall assume from now on.

The discrete curve γδ surrounds a finite family of triangular faces of Tδ, which we shall
denote by Int(γδ). An oriented edge e ∈ Tδ belongs to γδ if it is of the form γδ(k)γδ(k+1)
(we set e ∈ γδ). It belongs to Int(γδ) if it is inside γδ (we write e ∈ Int(γδ)).

Define the discrete integral Iδγ(H) of Hδ (and similarly Iδγ(S) for Sδ) along γδ by

Iδγ(H) :=

Nδ
∑

k=0

Hδ(γδ(k)) +Hδ(γδ(k + 1))

2
(γδ(k + 1)− γδ(k)).

Our goal is to prove that Iδγ(H) and Iδγ(S) converge to 0 when δ goes to 0. Since
along the sequence (δn), they also converge to

∮

γ
h(z)dz and

∮

γ
s(z)dz, it will imply that

h and s are holomorphic via Morera Theorem (recall that γ is arbitrary and h and s are
continuous as uniform limits of continuous functions).

For an edge e ∈ Tδ, define e⋆ to be the rotation by π/2 of e (it is an edge of Ωδ). For
every oriented edge e = xy ∈ Tδ, set

PA,δ(e) = P1/2

(

EA,δ(y) \ EA,δ(x)
)

,

and similarly PB and PC .

Lemma 3.2. For any smooth γ, we have when δ goes to 0,

Iδγ(H) =
∑

e⊂Int(γδ)

e⋆
[

PA(e) + τPB(e) + τ 2PC(e)
]

+ o(1) (3.2)

Iδγ(S) =
∑

e⊂Int(γδ)

e⋆
[

PA(e) + τ 2PB(e) + τ 4PC(e)
]

+ o(1) (3.3)

Proof. We treat the case of Hδ. For every oriented edge e = xy in Tδ, define the following
notations:

Hδ(e) :=
Hδ(x) +Hδ(y)

2
, ∂eHδ := Hδ(y)−Hδ(x).

3Recall that Morera’s theorem (see e.g. [22]) yields that for any a simply connected domain Ω of the
complex plane, and any f : Ω → C continuous, f is holomorphic if, and only if, for every simple, closed,
smooth curve γ contained in Ω, the integral of f along γ vanishes. Therefore, the previous definition is
a relevant discretization of this definition.

4discrete contours are often defined on the dual graph. In our case, it is a triangular lattice.
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If f is a (triangular) face of Tδ, let ∂f be its oriented boundary, seen as a set of oriented
edges. With these notations, we get the following identity:

Iδγ(H) =
∑

e∈γδ

eHδ(e) =
∑

f∈Int(γδ)

∑

e∈∂f

eHδ(e). (3.4)

Indeed, in the last equality, each boundary term is obtained exactly once with the correct
sign, and each interior term appears twice with opposite signs. The sum of eHδ(e) around
f can be rewritten in the following fashion:

∑

e∈∂f

eHδ(e) =
∑

e=xy∈∂f

(

x+ y

2
− f

)

∂eHδ.

Putting this quantity in the sum (3.4), the term ∂eHδ = Hδ(y) − Hδ(x) appears twice
notice for x, y nearest neighbors bordered by two triangles in γδ, and the factors (x+y)/2
cancel between the two occurrences, leaving only the difference between the centers of
the faces, i.e. the dual edge of xy. Therefore,

Iδγ(H) =
1

2

∑

e⊂Int(γδ)

e⋆∂eHδ + o(1). (3.5)

In the previous equality, we used the fact that the total contribution of the boundary
goes to 0 with δ. Indeed, e⋆ is of order δ, and

∂eHδ = PA,δ(e)− PA,δ(−e) + τ(PB,δ(e)− PB,δ(−e)) + τ 2(PC,δ(e)− PC,δ(−e)) (3.6)

so that RSW gives a bound of δ1+ε for e⋆∂eHδ. Since there are roughly δ−1 boundary
terms, we obtain that the boundary contributes for at most δε.

Replacing in (3.5) ∂Hδ by its expression (3.6), and re-indexing the sum to obtain each
oriented edge in exactly one term, we get the require equality.

Lemma 3.3 (Smirnov [33]). For every edge e of Ωδ, we have the following identities:

PA,δ(e1) = PB,δ(e2) = PC,δ(e3),

where e1, e2, e3 are three edges emanating from a vertex x.

Even though we include the proof for completeness, we refer the reader to [33] for the
(elementary, but very clever) proof of this result. The proof extends to site-percolation
with parameter 1/2 on any planar triangulation.

Proof. Index the three faces around x by a, b and c, and the vertices by y, z and t as
depicted in Fig. 6. We see events as subsets of {Open,Closed}|Ωδ|.

Let us prove that PA,δ(e1) = PB,δ(e2). The event EA,δ(y) \ EA,δ(x) occurs if and only
if there are open paths from AB to a and from AC to c, and a closed path from BC to b.

Consider the interface Γ between the open cluster connected to AC and the closed
cluster connected to BC, starting at C up to the first time it hits x (it will do it if and
only if there exist an open path from AB to a and a closed path from AC to c). Fix a
deterministic path from C to x, the event {Γ = γ} depends only on faces adjacent to γ
(we denote the space of such faces γ). Now, on {Γ = γ}, there exists a bijection between
configurations with an open path from a to AB and configurations with a closed path
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Figure 6: The dark grey and the white hexagons are the hexagons on Γ, Γ being in black.

from a to AB (by symmetry between open and closed edges in the domain Ωδ \ γ). This
is true for any γ, hence there is a bijection between the event

EA,δ(y) \ EA,δ(x) =
⋃

γ

{Γ = γ} ∩ {a ↔ AB in Ωδ \ γ}

and
E :=

⋃

γ

{Γ = γ} ∩ {a
⋆
↔ AB in Ωδ \ γ}.

Note that EB,δ(z) \ EB,δ(x) is the image of E after switching the colors, so that it is
in bijection with it. This part is the key step of the lemma, and is sometimes called
color-switching trick. Since P1/2 is simply the uniform measure on configurations, we
obtain PA,δ(e1) = P (E) = PB,δ(e2).

We are now in a position to prove that Iδγ(H) and Iδγ(S) converge to 0. From Lem-
mata 3.2 and 3.3, we obtain by reindexing the sum

Iδγ(H) =
∑

e⊂γδ

(e⋆ + τ(τ.e)⋆ + τ 2(τ 2.e)⋆)PA(e) + o(1) = o(1)

using that
e⋆ + τ(τ.e)⋆ + τ 2(τ 2.e)⋆ = 0. (3.7)

Similarly, for s:

Iδγ(S) =
∑

e⊂γδ

(e⋆ + (τ.e)⋆ + (τ 2.e)⋆)PA(e) + o(1) = o(1).

Here, we have used
e⋆ + (τ.e)⋆ + (τ 2.e)⋆ = 0. (3.8)

This concludes the proof of the holomorphicity of h and s.
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Identification of s and h via boundary conditions. Let us start with s. Since s
is holomorphic and real-valued, it must be constant. It is easy to see from the boundary
conditions (near a corner for instance) that it is equal to 1. Now, consider h. Since h is
holomorphic, it is sufficient to identify enough boundary conditions to specify it uniquely.

Let z ∈ Ω. Since hA(z)+hB(z)+hC(z) = 1, h(z) is a barycenter of 1, τ and τ 2 and it
belongs to the triangle with vertices 1, τ and τ 2. Furthermore, if z is on the boundary of
Ωδ lying between B and C, hA(z) = 0 (using RSW), and thus hB(z) + hC(z) = 1 (since
s = 1). Hence, h(z) lies on the interval [τ, τ 2] of the complex plane. Besides, h(B) = τ
and h(C) = τ 2, so h induces a continuous map from the boundary interval [BC] of Ω
onto [τ, τ ]. By RSW yet again, h is one-to-one on this boundary interval. Similarly, h
induces a bijection between the boundary interval [AB] (resp. [CA]) of Ω and the complex
interval [1, τ ] (resp. [τ 2, 1]), so putting the pieces together we see that h is a holomorphic
map from Ω to the triangle with vertices at 1, τ and τ 2 which extends continuously to Ω̄
and induces a continuous bijection between ∂Ω and the boundary of the triangle.

From standard results of complex analysis (“principle of corresponding boundaries”,
cf. for instance Theorem 4.3 in [22]), this implies that h is actually a conformal map from
Ω to the interior of the same triangle. But we know that h maps A (resp. B, C) to 1
(resp. τ , τ 2), and this determines it uniquely. In other words, there is only one possible
limit for the triple (HA, HB, HC) as δ goes to 0, which gives conformal invariance for free
and concludes the proof of Theorem 3.1.

As a corollary of the proof, we get a nice expression for hA: If ΦΩ,A,B,C is the conformal
map from Ω to the triangle mapping A, B and C as previously (which means of course
that ΦΩ,A,B,C = h) then

HA,δ(z) →
2ℜe(ΦΩ,A,B,C(z)) + 1

3
.

If Ω is the equilateral triangle itself, then h is the identity map and we obtain Cardy’s
formula in Carleson’s form: if D ∈ [CA] then

f(Ω, A, B, C,D) =
|CD|

|AB|
.

It is also to be noted that (3.7) actually characterizes the triangular lattice (and
therefore its dual the hexagonal one). So, it seems that the triangular lattice is the
only one (apart from trivial modifications of it) in which a fully combinatorial proof of
the holomorphicity of h is possible. On the other hand, the holomorphicity of s and
therefore the fact that it equals 1 relies only on (3.8), which is true for any triangulation
where RSW holds. This seems to be a fundamental property of critical two-dimensional
percolation (and might be the key to understanding universality in this particular, limited
case, though this is hardly even speculative). As of this time, no direct, combinatorial
proof of this fact seems to be known.

Morality. The Cardy-Smirnov formula provides a precise understanding of crossing prob-
abilities for critical percolation. In fact, these crossing probabilities allow to describe the
interface of the model, as well as the critical exponents. We do so in the next section.
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4 Scaling limit and arm exponents

A natural question at this point is the exact amount of information contained in Theo-
rem 3.1; is it enough to derive precise results about the geometry of critical percolation
clusters, for instance? It turns out that it is indeed the case, and in fact the full struc-
ture of the percolation scaling limit can be recovered from it through Schramm-Loewner
Evolution (SLE for short); but this is quite indirect, and one of the aims of these lectures
is to investigate what can be obtained without SLE.

Scaling limit of the hull. Consider once again a bounded, simply connected domain Ω
in the plane, with three marked points A, B and C, and discretized as above at mesh size
δ (which we will omit from the notation when it doesn’t lead to confusion); let Γδ be the
exploration path defined as follows, see the picture on the cover. Assume all the hexagons
on the arc AC are open, while all the hexagons on the arc BC are closed. Then, Γδ is
the unique interface lying on H separating the open cluster of AC of the closed cluster
of BC. The complement of Γδ in Ω is composed of finitely many connected components.
Set UA and UB to be the connected components containing A and B respectively. Let
Kδ := Γδ \ (KA ∪ KB). Kδ is a (relatively) compact, simply connected random set
separating A from B, and whose complement has exactly two connected components —
we call such a set a hull5. The Cardy-Smirnov formula allows us to prove the following:

Theorem 4.1. As δ → 0, Kδ converges in distribution to a random hull K̃ in Ω.

Proof. Let EA, EB be two disjoint connected compact sets containing A and B respec-
tively such that Ω \ (EA ∪EB) is still simply connected and contains C. The probability
that Kδ is disjoint from EA ∪ EB can be written in terms of Cardy’s formula. Indeed,
the latter gives the law of the hitting point in a the topological triangle ABC (in the
equilateral triangle of side length 1, it is uniform since the probability to hit on the left
of D is equal to AD, and one can use conformal invariance to deduce the law in any
domain). Now, the probability that Kδ is disjoint from EA ∪EB is the probability to hit
AB in the domain Ω \ (EA ∪ EB) before hitting ∂EA ∪ ∂EB . But since we know the law
of the hitting point on AB ∪ ∂EA ∪ ∂EB, the probability is determined.

Now, RSW allows to show that the boundary of Kδ is fairly regular (in particular
Hölder continuous uniformly in δ). An inclusion-exclusion argument and a continuity
argument then show that the probability that Kδ avoids a union of compact sets E1, . . . ,
Ek also converge. The data of all such probabilities characterizes the distribution of a
random continuous hull.

While this proof is quite clever, it is not very constructive and says very little about
the geometry of K̃. Nevertheless, the limit is determined by “crossing probabilities”. If
one can exhibit a continuous hull with same crossing probabilities, the result will follow.
This hull has to be conformally invariant, therefore reflected Brownian motion comes
naturally to mind, since it is well known that it is conformally invariant. Giving a precise
meaning to the construction requires some background in stochastic analysis, so we keep
it deliberately informal.

Proposition 4.2. Assume that the boundary of Ω is smooth. Let (Xt) be a Brownian
motion in Ω̄, started from C and reflected on the boundary of Ω, with a reflexion angle

5there is no fixed convention on what is exactly meant by that word in the literature, but something

with nice topology that touches the boundary of a domain is often a good enough approximation.
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of π/3 pointing towards C along the boundary arcs CA and BC; let τ be the first hitting
time of the arc AB by X, and let X̃ be the hull determined by X[0,τ ]. Then, the random

hulls K̃ and X̃ have the same distribution.

Scaling limit of interfaces. A question that is perhaps even more natural is whether
the exploration path has a scaling limit. Convergence of the exploration path would give
a very precise description of cluster boundaries, while the boundary of K is harder to
describe from the microscopic configuration. There is such a limit:

Theorem 4.3 (Smirnov). As δ → 0, Γ converges in distribution to the trace of an SLE6

process in Ω, started from C and stopped when first hitting the arc AB.

A natural approach to proving this theorem is the following. Draw a disk of radius
ε centered at C, and follow the exploration until it exits the disk. From the previous
theorem, if δ goes to 0 while keeping ε fixed, the outer shape of this curve converges in
distribution. Let z1 be the point at which it exits the disk; draw a second disk of radius ε,
centered at z1, and continue the exploration until it exits the second disk. Again, its outer
shape converges in distribution. Iterating the construction, one gets an approximation of
Γ by a chain of balls of radius ε, with explicit distribution, and finally letting ε go to 0
gives the wanted result.

Also note that the hull defined by SLE(6) is the same that the hull defined by a
Brownian motion reflected with an angle π/3 (thank to Proposition 4.2). One nice con-
sequence of this is the fact that all three have the same boundary geometry; for instance,
their boundary is almost surely of Hausdorff dimension 4/3 — that is actually one of the
shortest ways to the determination of the dimension of the Brownian frontier.

Arm exponents. It is easy to show, using a color-switching argument very similar to
the one harnessed in Lemma 3.3, that αj,σ depends only on the length of the sequence, as
long as we consider polychromatic sequences. From now on, we set αj to be the exponent
for polychromatic sequences of length j. By extension, we set α1 to be the exponent of
the one-arm event.

Theorem 4.4 (Werner-Smirnov [37]). α1 =
5

48
and αj =

j2 − 1

12
for j > 1.

The proof of this is heavily based on the use of Schramm-Loewner Evolution [25, 26,
27]; we refer the reader to existing literature on the topic (for instance the lecture notes
[38, 39]), and rather focus on relations between these exponents and geometric features
of critical percoation clusters.

Fractal properties of critical percolation. These arm exponents can be used to
measure the size (Hausdorff dimension) of various sets describing percolation clusters. A
set S is said to be fractal of dimension dS if the density of points in S within a box of size
n decays as n−xS , with xS = 2− dS in two dimensions. The codimension xS is related to
arm exponents in many cases:

• The 1-arm exponent is related to the existence of long connections, from the center
of a box to its boundary. It will thus measure the size of big clusters, like the
incipient infinite cluster (IIC) as defined by Kesten [19], which scales as n2−5/48 =
n91/48.
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• The monochromatic 2-arm exponent describes the size of the backbone of a cluster.
The fact that this backbone is much thinner than the cluster itself was used by
Kesten [19] to prove that the random walk on the IIC is subdiffusive (while it
has been proved to converge toward a Brownian Motion on a supercritical infinite
cluster).

• The polychromatic 2-arm exponent is related to the boundaries (hulls) of big clus-
ters, which are thus of fractal dimension 2− α2 = 7/4.

• The 3-arm exponent concerns the external (accessible) perimeter of a cluster, which
is the accessible part of the boundary: one excludes fjords which are connected to the
exterior only by 1-site wide passages. The dimension of this frontier is 2−α3 = 4/3.
These last two exponents can be observed on random interfaces, numerically and
in real-life experiments as well (see [10, 32] for instance).

• The 4-arm exponent with alternating colors counts the pivotal sites (see the next
section for more information). Its dimension is 2 − α4 = 3/4. This exponent is
crucial is the study of noise-sensitivity of percolation.

Morality. The understanding of the critical phase is now very sharp. But what about
the off-critical phase? More precisely, what happens if p goes to 1/2 when the size of the
graph goes to infinity? We first deal with the case of fixed p in the next section, and then
with the case of p → 1/2 in Section 6.

5 The critical point of percolation

We now arrive to a milestone of modern probability, Kesten’s ′pc = 1/2′-Theorem. It
was proved in the case of bond-percolation on the square lattice, but the same argument
applies to face-percolation on the hexagonal lattice.

Theorem 5.1 (Kesten [18]). The critical value of percolation on the hexagonal lattice is
1/2.

The rough philosophy of the proof is the following:

• First, exhibit a property at p = 1/2, which should be witness of the critical phase.

• Second, prove that the property holds only at p = 1/2, identifying 1/2 to be the
only possible value for the critical point.

The property “identifying” the critical value is RSW. To prove that it holds only for
p = 1/2, we show that the crossing probabilities go to 0 as δ → 0 whenever p < 1/2,
while they go to 1 whenever p > 1/2.

In order to prove this fact, we consider a more general question. We aim to understand
the behaviour of the function p 7→ Pp(A) for a non-trivial increasing event A depending
on faces of a subgraph of the hexagonal lattice (think of this event as being a crossing
event). This increasing function is equal to 0 at p = 0 and to 1 at p = 1, and we are
interested in the range of p for which its value is between ε and 1− ε for some positive ε
(this range is usually referred to as a window). Under mild conditions on A, the window
will be narrow for large graphs, and its width can be bounded above in terms of the size
of the underlying graph, which is known as a sharp threshold behaviour.
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In lattice models such as percolation, the study of p 7→ Pp(A) harnesses a differential
equality known as Russo’s formula:

Proposition 5.2 (Russo [30], Section 2.3 of [13]). Let p ∈ (0, 1) and A an increasing
event depending on a finite set of faces F , then

d

dp
Pp(A) =

∑

f∈F

Pp(f pivotal for A),

where f is pivotal for A if A occurs when f is open, and does not if f is closed.

If the typical number of pivotal faces is sufficiently large, for instance when the prob-
ability of A is not close to 0 nor 1, the window is necessarily narrow. There has been
an extensive study of the largest probability to be pivotal. We present one of the most
striking result on the subject:

Theorem 5.3 (Kahn, Kalai, Linial [16], see also [11, 12, 17]). Let ε > 0; there exists a
constant c = c(ε) ∈ (0,∞) such that the following holds. Consider a percolation model
on a graph G with |F | denoting the number of faces of G. For every p ∈ [ε, 1 − ε] and
every increasing event A, there exists f ∈ F such that

Pp(f pivotal for A) ≥ cPp(A)
(

1− Pp(A)
) log |F |

|F |
.

This theorem does not imply that there are always many pivotal points since it deals
only with the maximal probability over all points. It could be that this maximum would
be attained only at one point (for instance for the event that the origin is open). There is
a particularly efficient way (first appeared in [5, 6]) to avoid this problem. In the case of
a translation-invariant event A on a torus with n faces, faces play a symmetric role,
so that the probability to be pivotal is the same for all of them. Proposition 5.2 together
with Theorem 5.3 thus imply for p ∈ (ε, 1− ε),

d

dp
Pp(A) ≥ c

(

Pp(A)(1− Pp(A)
)

log n.

Integrating the previous inequality between two parameters ε < p1 < p2 < 1 − ε, we
obtain

Pp2(A)

1− Pp2(A)
≥

Pp1(A)

1− Pp1(A)
nc(p2−p1).

If we further assume that Pp1(A) stays bounded away from 0 uniformly in n ≥ 1, we can
find c, C > 0 such that

Pp2(A) ≥ 1− Cn−c(p2−p1). (5.1)

Now that the theory is settled, we can prove the fundamental lemma which shows that
RSW fails when p 6= 1/2 (in the sense that crossing probabilities go to 0 when p < 1/2,
and to 1 when p > 1/2). We prove it only for one particular topological rectangle (a
rectangle twice longer than large), and for p > 1/2. The other shapes work the same
way, and the case p < 1/2 follows from duality between open faces for percolation of
parameter p and closed faces for percolation of parameter 1− p.

Lemma 5.4. Let p > 1/2, there exist ε = ε(p) > 0 and c = c(p) > 0 such that for every
n ≥ 1,

Pp

(

[0, n]× [0, 2n] is crossed vertically
)

≥ 1− cn−ε. (5.2)
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T4n

R1 R2 R3 R4

R5 R6 R7 R8

R9 R10 R11 R12

R13 R14 R15 R16

Figure 7: rectangles R1, . . . , R16. They are all translates of R1.

Proof. Consider the torus T4n of size 4n. Let B be the event that there exists a vertical
crossing of a rectangle with dimensions (n/2, 4n) in the torus of size 4n. This event is
invariant under translations and satisfies

P1/2(B) ≥ P1/2

(

[0, n/2]× [0, 4n] is crossed vertically
)

≥ c > 0

uniformly in n. Since B is increasing, we can apply (5.1) to deduce that for p > 1/2,
there exist ε and c such that

Pp(B) ≥ 1− cn−ε. (5.3)

If B holds, one of the 16 rectangles R1, . . . , R16 drawn in Fig. 7 must be crossed from
top to bottom. We denote these events by F1, . . . , F16 — they are translates of the event
that [0, n]× [0, 2n] is crossed horizontally. Using the FKG inequality in the second line,
we find

Pp(B) = 1− Pp(B
c) = 1− Pp

(

16
⋂

i=1

Ac
i

)

≤ 1−

16
∏

i=1

Pp(A
c
i) = 1−

[

1− Pp

(

[0, n]× [0, 2n] is crossed vertically
)]16

.

Plugging (4.2) into the previous inequality, we deduce

Pp ([0, n]× [0, 2n] is crossed vertically) ≥ 1− (cn−ε)1/16.

Proof of Theorem 5.1. The inequality pc ≥ 1/2 was proved in Corollary 2.2. The other
inequality follows from the following reasoning: define rectangles Rn and events Fn as in
the proof of Corollary 2.4. Then, as before,

P1/2(0 ↔ ∞) ≥ P1/2

(

⋂

n≥0

Fn

)

≥
∏

n≥0

P1/2(Fn) ≥
∏

n≥0

(1− c2−εn) > 0,

which implies the claim.
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It is actually possible to prove that there are many pivotal points without the help
of the power-hammer Theorem 5.3. Indeed, a face is pivotal for the event that [0, n]2 is
crossed if and only if there exist four arms of alternating colors emanating from f and
going to the boundary of the box. Therefore, the number of pivotal faces is related to
the number of faces where the four arm event A4,OCOC occurs. Using Theorem 4.4, there
exists of order n2n−5/4 = n3/4 such points. Of course, this reasoning also harnesses a
powerful theorem. It is also possible to prove directly that there are many points with
the four arm events occuring.

Proposition 5.5. There exists α > 0 such that for any k < n,

P1/2

(

A4,OCOC(k, n)
)

≥ (k/n)2−α.

Proof. We know from Proposition 2.5 that

P1/2

(

A5,OCOOC(k, n)
)

≍ (k/n)−2

when k < n. Now, Reimer’s inequality (see [29]) implies

P1/2

(

A4,OCOC(k, n)
)

P1/2

(

A1,O(k, n)
)

≥ P1/2

(

A5,OCOOC(k, n)
)

≍ (k/n)2.

Moreover, π1(k, n) ≥ (k/n)α for every k < n. We deduce

P1/2

(

A4,OCOC(k, n)
)

≥ (k/n)2−α. (5.4)

This shows that there are of order nα pivotal points at p = 1/2. Note that this
result is not sufficient to deduce the theorem, since it holds only at p = 1/2. In fact,
it is possible to prove that it holds as long as crossing probabilities are not too small.
Recently, Smirnov gave an elementary argument showing that there are many pivotal
points (see [40] in french or Section 5.6 of [14] in english).

Morality. We have studied how probabilities of increasing events evolve as functions of p.
If p is fixed and we consider bigger and bigger rectangles (of size n), crossing probabilities
go to 0 whenever p < 1/2. But what happens if (p, n) → (1/2,∞) (this regime is called
the near-critical regime)?

6 The near-critical regime

We now investigate the near-critical regime, when p is close to pc. We develop the notion
of correlation length and use it to deduce exponents for the near-critical regime.

6.1 Correlation length

For ε > 0, define the correlation length for p < 1/2 by

Lp(ε) := inf
{

n > 0 : Pp

(

[0, n]× [0, n] is crossed
)

≤ ε
}

and Lp(ε) = L1−p(ε) for p > 1/2. We will always be considering an arbitrary ε small
enough. For this reason, we fix ε ≪ 1 and drop it from the notation. Note that the
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R̃1 R̃2

R̃3 R̃4

R̃5

R̃6

Figure 8: Rectangles R̃1, . . . , R̃6.

definition itself of Lp(ε) uses the fact that crossing probabilities converge to 0 when
p < 1/2 to guarantee that the infimum is well-defined.

We mention that when p < 1/2,

Pp

(

[0, n]× [0, 2n] is crossed vertically
)

≥ ε6 for all n < Lp, (6.1)

Pp([0, Lp]× [0, 2Lp] is crossed horizontally) ≤ ε1/6. (6.2)

This fact is a consequence of RSW theory (the proof that we presented applies only
at criticality, but others proofs are valid outside of the critical point and relate the
probability to cross rectangles to the probability to cross squares, see e.g. [13, 18]).
Formulæ(6.1) and (6.2) thus imply that the shape in the definition of Lp(ε) does not
really matter.

The correlation length should be understood as the scale at which one starts to see
that p is not critical. Indeed, if one looks at two percolation pictures, one at p = 0.5,
and one at p = 0.47, it would not be necessarily possible to distinguish between them
if the size is not large enough. Yet, when the size of the picture gets bigger and bigger,
connectivity properties start to differ drastically. Another way to formulate the previous
principle is the following: when studying the super or sub-critical percolation, coarse-
graining arguments allow to relate properties of a percolation with parameter p to a
percolation with new parameter p′ much closer to 0 or 1. Usually, by taking the grain N
to be large enough, it is even possible to get p′ in the Peierls regime, in which counting
arguments are sufficient to estimate relevant quantities. Typically, the grain that one
needs to consider at parameter p is of order Lp.

The fact that Lp is well-defined implies exponential decay of correlation in the sub-
critical phase. This important fact distinguishes between the critical phase and the
sub-critical phase: at criticality, probabilities decay according to power laws, while they
decay exponentially fast in the sub-critical phase (see Section 5 of [13] for a classical
exposition). In our case, there is a very quick proof of this statement:

Proposition 6.1. For any p < 1/2, we have

Pp(0 ↔ ∂Bn) ≤ e−n/Lp for all n ≥ Lp.

Proof. Let n > 0 and consider the rectangles R̃1, R̃2, . . . , R̃6 defined as in Fig. 8. These
rectangles have the property that whenever [0, 2n]× [0, 4n] is crossed horizontally, at least
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two of the rectangles R̃i are crossed in the easy direction by disjoint paths. We deduce,
using the BK inequality (see Section 2.3 of [13]), that

Pp

(

[0, 2n]× [0, 4n] is cros. hor.
)

≤ C2
8 Pp

(

[0, n]× [0, 2n] is cros. hor.
)2
.

We easily obtain that for every k ≥ 0,

C2
8Pp

(

[0, 2kn]× [0, 2k+1n] is cros. hor.
)

≤
(

C2
8Pp

(

[0, n]× [0, 2n] is cros. hor.
))2k

.

In particular, if p < 1/2, (6.1) implies that fixing n = Lp,

C2
8Pp

(

[0, n]× [0, 2n] is cros. hor.
)

< C2
8ε

1/6 < 1/e

and the claim follows.

We conclude this section by mentioning that most often, the correlation length is
defined as the “inverse rate” of exponential decay of the connectivity function. More
precisely, since the quantity Pp(0 ↔ nx) is super-multiplicative, the quantity ξp can be
defined by the formula

1

ξp
= lim

n→∞
−
1

n
log Pp(0 ↔ nx).

Then, it is possible to prove that Lp ≍ ξp when p < 1/2 (note that Proposition 6.1 gives
one inequality, see Theorem 3.1 of [28] for the other bound).

6.2 Exponents for the correlation length and the cluster density

Define πp
j,σ(k, n) := Pp(Aj,σ(k, n)) and πj,σ(n) := πj,σ(j, n) for p 6= 1/2. Moreover, π1,O(·)

and π4,OCOC(·) are denoted by π1(·) and π4(·).
The goal of this section is to prove the following scaling relations:

Theorem 6.2 (Kesten [20]). For every p > 1/2, we have

(p− 1/2)L2
pπ4(Lp) ≍ 1 and θ(p) ≍ π1(Lp).

Before giving the proof of Theorem 6.2, we explain how it implies Theorem 1.1. Note
that if π4(n) = n−α4+o(1) and π1(n) = n−α1+o(1), it implies the existence of ν and β such
that Lp = (p− 1/2)−ν+o(1) and θ(p) = (p− 1/2)β+o(1). Moreover, the relations become

(2− α4) ν = 1 and β = α1 ν.

Therefore, α1 = 5/48 and α4 = 5/4 imply ν = 4/3 and β = 5/36. The latter is exactly
the claim of Theorem 1.1.

Proof. We first deal with the first equality. We aim to apply Russo’s formula to the event
A that [0, Lp]

2 is crossed. On the one hand, with the definition of Lp, Pp(A) equals 1− ε.
On the other hand, one can check that P1/2(A) = 1/2. Moreover, a face is pivotal for A
if and only if there are four alternating arms starting from it and going to the boundary
of [0, Lp]

2. Except for points near the boundary, this occurs with Pp′-probability of order
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πp′

4 (Lp) for every p′ ∈ (1/2, p). Therefore, if we neglect the effect of the boundary6, we
obtain

1 ≍ Pp(A)− P1/2(A) ≍

∫ p

1/2

L2
p πp′

4 (Lp) dp
′.

Assume for a moment that πp′

4 (Lp) ≍ π4(Lp) for every p′ ∈ (1/2, p), we obtain

1 ≍ (p− 1/2) L2
p π4(Lp).

We now turn to the second relation. On the one hand, it is straightforward that
θ(p) = Pp(0 ↔ ∞) ≤ Pp(0 ↔ ∂[0, Lp]

2) = πp
1(Lp). On the other hand, Proposition 6.1

together with a construction similar to the lower bound in Proposition 2.4 implies that
there exists c > 0, not depending on p, such that

Pp(∃ a circuit in [0, Lp]
2 \ [0, Lp/2]

2 surrounding the origin and connected to ∞) ≥ c.

Using FKG, we can deduce θ(p) ≥ c Pp(0 ↔ ∂[0, Lp]
2) ≥ c πp

1(Lp). Once again, if one
can prove that πp

1(Lp) ≍ π1(Lp), then we will have proved the theorem.

The previous proof relies on an important assumption (πp
1(Lp) ≍ π1(Lp) and πp′

4 (Lp) ≍
π4(Lp) for p′ ∈ (1/2, p)) that we justify now. As described earlier, below the correlation
length, the picture should be very close to the critical one. In particular, arm-event
probabilities should not vary too much with respect to p. This is the main step in
Kesten’s scaling relations.

Theorem 6.3 (Kesten [20]). For j ≥ 1 and a polychromatic sequence σ, we have
πp
j,σ(n) ≍ πj,σ(n) for every p and n ≤ Lp.

The idea of the proof is to express the logarithmic derivative of p 7→ πp
j,σ in terms of

four-arm events. In order to perform this, we will invoke the following technical lemma:

Lemma 6.4 (Quasi-multiplicativity). For j ≥ 1 and a polychromatic sequence σ, we
have

πp
j,σ(n1, n3) ≍ πp

j,σ(n1, n2) π
p
j,σ(n2, n3)

for every p and every n1 < n2 < n3 < Lp.

It is of note that πp
j,σ(n1, n3) ≤ πp

j,σ(n1, n2)π
p
j,σ(n2, n3) is an obvious inequality. When

j = 1, the other inequality follows from the fact that one can “glue” a path in Bn2
\Bn1

with a path in Bn3
\Bn2

as depicted in Fig. 9, and that this gluing costs only a constant
factor thanks to RSW. This kind of reasoning can be generalized when j > 1 and σ is a
polychromatic sequence, see Proposition 16 of [28].

Theorem 6.3. We treat the case of πp
1(n) when p > 1/2. Recall that n is assumed to

be smaller than Lp, so that RSW holds at every scale smaller than n. We will be using
RSW extensively. We cannot stress enough the fact that it holds as long as (and roughly
speaking if and only if) n < Lp.

6There are several ways to deal with the boundary effect. One can control the probability to be
pivotal for boundary points separately, or one can do the following: for the lower bound, it is sufficient
to count points far from the boundary, for the upper bound, one can work with the event that the torus
of size n contains a circuit with non-trivial homotopy (there, the probability to be pivotal is the same
for every face, and is smaller than π

p
4
(n)).
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n2

n3

n1

2n2

n2/2

Figure 9: The paths in the annuli Bn3
\ Bn2

and Bn2
\ Bn1

are in black. A combination
of two circuits connected by a path (in grey) connects the paths together. This figure
occurs with probability bounded away from 0 thanks to RSW.

Russo’s formula implies

dπp
1(n)

dp
=

∑

f∈Bn

Pp

(

f pivotal for A1,O(n)
)

. (6.3)

The face f is pivotal if and only if there are four arms of alternating colors emanating
from it, one of the open arm going to the origin, the other to the boundary of the box,
and the two closed arms forming a circuit around the origin. The event that a face f
(at distance |f | of the origin) is pivotal is thus included in the intersection of events
A1,O(|f |/2), A1,O(2|f |, n) and a translate of A4,OCOC(|f |/2) (see Fig 10). We deduce,
using independence, that

Pp

(

f pivotal for A1,O(n)
)

≤ πp
1(|f |/2) π

p
1(2|f |, n) π

p
4(|f |/2)

≤ C πp
1(n) π

p
4(|f |/2)

where in the second line we have used quasi-multiplicativity and RSW. Plugging this
inequality into (6.3), we find

dπp
1

dp
≤ Cπp

1(n) ·
∑

f∈Bn

πp
4(|f |/2) (6.4)

which integrates into

log πp
1(n)− log π1(n) ≤ C

∫ p

1/2

∑

f∈Bn

πp′

4 (|f |/2) dp
′. (6.5)

It remains to prove that the right-hand side is of order 1.
Fix p′ ∈ (1/2, p) and note that n < Lp < Lp′ . We know that α4,OCOC < 2 thank to

Proposition 5.5. In fact, the proof of Proposition 5.5 applies whenever RSW is available,
so

πp′

4 (k, n) ≥ (n/k)2−α.
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Bn

B2|f |

B|f |/2

f

Figure 10: The event that f is pivotal for A1,O(n). The dotted line corresponds to a
closed circuit.

From quasi-mutiplicativity again, we find

πp′

4 (k) ≤ C1(n/k)
2−απp′

4 (n),

which can be put into (6.5) to give

log πp
1(n)− log π1(n) ≤ C1

∫ p

1/2

(

∑

f∈Bn

(2n/|f |)2−α πp′

4 (n)

)

dp′

≤ C2

∫ p

1/2

n2πp′

4 (n) dp
′.

To conclude, Russo’s formula implies

1 ≥ Pp([0, n/2]
2 is crossed)− P1/2([0, n/2]

2 is crossed) =

∫ p

1/2

∑

x∈Bn/2

Pp′
(

f is pivotal
)

dp′

≥

∫ p

1/2

3n2

4
πp′

4 (n) dp
′,

where we have used the fact that f is pivotal for the event {[0, n/2]2 is crossed} if there
are four arms of alternating colors going to the boundary of f + [0, n]2. In particular, we
find the required bound

log πp
1(n)− log π1(n) ≤ 4C2/3.

The same reasoning can be applied for πj,σ. The main step is to get (6.4) with π1

replaced by πj,σ, the end of the proof being the same. In order to obtain this inequality,
one harnesses a generalization of Russo’s formula; we refer to Theorem 26 of [28] for a
complete exposition.
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7 A few open questions

Percolation on the hexagonal lattice Percolation on the hexagonal lattice is now
very well understood. Nevertheless, several questions remain open. We selected three of
them.

We know the behavior of most thermodynamical quantities (the cluster density θ, the
truncated mean-cluster size ξ(p) = (p − 1/2)−ν+op(1), the two-point functions P1/2(0 ↔
x) = |x|2−d−η+o|x|(1) and many others). Nevertheless, the behavior of the following fun-
damental quantity remains unproved:

Question 1. Prove that the mean number of clusters per vertex κ(p) = Ep(|C|−1) behaves
like |1/2− p|2+α+o(1), where C is the cluster at the origin and α = −2/3.

Interestingly, the critical exponent for j 6= 1 disjoint arms of the same color is not
equal to the polychromatic arms exponent [2]. A natural open question would be to
compute these exponents:

Question 2. Compute the monochromatic exponents.

Percolation on other graphs Conformal invariance of percolation has been proved
only on the hexagonal lattice. In physics, it is conjectured that the scaling limit of
percolation should be universal, meaning that it should not depend on the lattice (this
hypothesis is verified numerically in [23]). For instance, interfaces of bond-percolation on
the square lattice at criticality (when the bond-parameter is 1/2) should also converge to
SLE(6).

Question 3. Prove conformal invariance of percolation on another planar lattice.

For general graphs, the question of embedding the graph becomes crucial. Indeed,
if one embeds the square lattice by gluing long rectangles, then the model will not be
rotationally invariant. We refer to [4] for further details on the subject.

Question 4. For a general lattice, how to construct a natural embedding on which per-
colation is conformally invariant?

In order to understand universality, a natural class of lattices to start with is the class
of lattices where RSW estimates can be proved. Note that proofs of RSW always invoke
some symmetry (rotational invariance for instance). A proof valid for lattices without
any symmetry would be of great importance:

Question 5. Prove RSW for critical percolation on all planar lattices.

Percolation in high dimension is well understood (see e.g. [15]), thanks to the so-
called triangular condition and lace-expansion techniques associated to it. In intermediate
dimensions, the critical phase is not understood. Of course, one of the main conjectures
in probability is to prove that θ(pc) = 0 for bond-percolation on Z3. Even weakening of
this conjecture seems to be very hard. For instance, the same question on the “sandwich”
Z
2 × {0, 1} is still open:

Question 6. Prove that θ(pc) = 0 on Z2 × {0, 1}.
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Other two-dimensional models of statistical physics Conformal invariance is not
restricted to percolation (see [35, 36] and references therein). It should hold for a wide
class of two-dimensional lattice models at criticality. Among natural generalizations of
percolation, we mention the class of random-cluster models and of loop O(n)-models
(including the Ising model and the self-avoiding walk). The only three models in this
family for which conformal invariance has been proved are the Ising model, the q = 2-
random cluster model (which is a geometric representation of the Ising model), and the
uniform spanning tree (the ’q = 0’-random cluster model).

Question 7. Prove conformal invariance of your favorite model on your favorite lattice
(this is assuming that your favorite model is not site-percolation on the triangular lattice).

Acknowledgements. The authors were supported by the ANR grant BLAN06-3-134462,
the EU Marie-Curie RTN CODY, the ERC AG CONFRA, as well as by the Swiss FNS.
The second author would like to thank Stanislav Smirnov for his constant support.

References

[1] M. Aizenman and A. Burchard, Hölder regularity and dimension bounds for random
curves, Duke Math. J. 99 (1999) 419–453.

[2] V. Beffara and P. Nolin, On monochromatic arm exponents for 2D critical percolation,
Annals of Probability, to appear (2010).

[3] V. Beffara, Cardy’s formula on the triangular lattice, the easy way. Universality and
Renormalization, vol. 50 of the Fields Institute Communications (2007) 39–45.

[4] V. Beffara, Is critical 2D percolation universal? In and Out of Equilibrium 2 (2008),
vol. 60 of Progress in Probability, Birkhäuser, 31–58.

[5] B. Bollobás and O. Riordan, Percolation, Cambridge Univ. Press (2006).

[6] B. Bollobás and O. Riordan, A short proof of the Harris-Kesten Theorem, Bulletin of
the London Mathematical Society 38 (2006), 470–484.

[7] S.R. Broadbent and J.M. Hammersley, Percolation processes I. Crystals and mazes,
Proceedings of the Cambridge Philosophical Society 53 (1957) 629–641.

[8] F. Camia and C. M. Newman, Two-dimensional critical percolation: the full scaling
limit, 268 (2005), 1–38.

[9] J. Cardy, Critical percolation in finite geometries, J. Phys. A 25 (1992) L201–L206.

[10] A. Desolneux, B. Sapoval, A. Baldassarri, Self-organized percolation power laws with
and without fractal geometry in the etching of random solids, in Fractal Geometry and
Applications: A Jubilee of Benoit Man- delbrot, Proc. Symp. Pure Math. 72 Part 2,
(2004) 485–505.

[11] E. Friedgut. Influence in product spaces: KKL and BKKKL revisited. Combinatorics,
Probability, Computing, 13 (2004) 17–29.

26



[12] E. Friedgut and G. Kalai. Every monotone graph has a sharp threshold. Proceedings
of the American Mathematical Society, 124 (1996) 2993–3002.

[13] G. R. Grimmett, Percolation, vol. 321 of Grundlehren Math. Wiss., Springer-Verlag,
Berlin, second ed., 1999.

[14] G. R. Grimmett, Probability on graphs, Cambridge Univ. Press, Vol. 1 of the IMS
textbook series (2010).

[15] T. Hara and G. Slade Mean-field behaviour and the lace expansion, Probability and
Phase Transition (G. R. Grimmett, ed.), Kluwer, Dordrecht, (1994) 87–122.

[16] J. Kahn, G. Kalai and N. Linial. The influence of variables on Boolean functions.
Pro- ceedings of 29th Symposium on the Foundations of Computer Science, Computer
Science Press (1988) 66–80.

[17] G. Kalai and S. Safra. Threshold phenomena and influence. Computational Com-
plexity and Statistical Physics, Oxford University Press, New-York, 2006.

[18] H. Kesten, Percolation theory for mathematicians, vol. 2 of Progress in Probability
and Statistics, Birkhäuser, Boston, Mass., 1982.

[19] H. Kesten, Subdiffusive behavior of random walk on a random cluster, Ann. I.H.P.
Sec. B 22 (1986) 425–487.

[20] H. Kesten, Scaling relations for 2D-percolation, Comm. Math. Phys. 109 (1987)
109–156.

[21] H. Kesten, V. Sidoravicius and Y. Zhang, Almost all words are seen in critical site
percolation on the triangular lattice, Elec. J. Probab. 3, paper no 10 (1998).

[22] S. Lang, Complex Analysis, vol. 103 of Graduate Texts in Mathematics, Springer-
Verlag, New York, fourth ed., 1999.

[23] R. Langlands, Ph. Pouliot, Y. Saint-Aubin, Conformal invariance in two-dimensional
percolation, Bull. Amer. Math. Soc. N.S. 30 (1994) 1–61.

[24] G. F. Lawler, Conformally Invariant Processes in the Plane. Math. Surveys Monogr.
114, Amer. Math. Soc., Providence, RI, 2005.

[25] G. F. Lawler, O. Schramm, W. Werner, Values of Brownian intersection exponents
I: Half-plane exponents, Acta Mathematica 187 (2001) 237–273.

[26] G. F. Lawler, O. Schramm, W. Werner, Values of Brownian intersection exponents
II: Plane exponents, Acta Mathematica 187 (2001) 275–308.

[27] G. F. Lawler, O. Schramm, W. Werner, One-arm exponent for 2D critical percolation,
Electron. J. Probab. 7 (2001) 13 pages.

[28] P. Nolin, Near-critical percolation in two dimensions, Electronic Journal of Proba-
bility 13 (2008) 1562–1623.

[29] D. Reimer Proof of the van den Berg-Kesten conjecture. Combin. Probabs. Comput.
9 (2000) 27–32.

27



[30] L. Russo, A note on percolation. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 43

(1978) 39–48.

[31] P.D. Seymour, D.J.A. Welsh, Percolation probabilities on the square lattice, Ann.
Discrete Math. 3 (1978) 227–245.

[32] B. Sapoval, M. Rosso, J.F. Gouyet, The fractal nature of a diffusion front and the
relation to percolation, J. Phys. Lett. 46 (1985) 146–156.

[33] S. Smirnov, Critical percolation in the plane: Conformal invariance, Cardy’s for-
mula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 239–244.

[34] S. Smirnov, Critical percolation and conformal invariance, in Zambrini, Jean-Claude
(ed.), XIVth International Congress on Mathematical Physics, Lisbon, Portugal, July
28 – August 2, 2003. 99–112, World Sci. Publ., Hackensack, NJ.

[35] S. Smirnov, Towards conformal invariance of 2D lattice models, in Sanz-Solé, Marta
(ed.) et al., Proceedings of the International Congress of Mathematicians (ICM),
Madrid, Spain, August 22-30, 2006. Volume II, 1421–1451. Zürich: European Math-
ematical Society, 2006.

[36] S. Smirnov, Discrete complex analysis and probability, Proceedings of the Interna-
tional Congress of Mathematicians (ICM), Hyderabad, India, 2010.

[37] S. Smirnov and W. Werner, Critical exponents for two-dimensional percolation,
Mathematical Research Letters, 8 (2001) 729–744.

[38] W. Werner, Random planar curves and Schramm-Löwner evolutions. In Lectures
on probability theory and statistics, Lecture Notes in Math. 1840, Springer-Verlag,
Berlin (2004) 107–195.

[39] W. Werner, Lectures on 2D critical percolation, Park City (2007).

[40] W. Werner, Percolation et modèle d’Ising, (in french) published by the French Math.
Society (SMF) in the Series "Cours spécialisés" (2009).

Unité de Mathématiques Pures et Appliquées
École Normale Supérieure de Lyon

F-69364 Lyon CEDEX 7, France
E-mail: Vincent.Beffara@ens-lyon.fr

Département de Mathématiques
Université de Genève
Genève, Switzerland

E-mail: hugo.duminil@unige.ch

28


