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Abstract. We study a particle model for a simple system of partial differen-
tial equations describing, in dimension d ≥ 2, a two component mixture where
light particles move in a medium of absorbing, fixed obstacles; the system
consists in a transport and a reaction equation coupled through pure absorp-
tion collision terms. We consider a particle system where the obstacles, of
radius ε, become inactive at a rate related to the number of light particles
travelling in their range of influence at a given time and the light particles are
instantaneously absorbed at the first time they meet the physical boundary
of an obstacle; elements belonging to the same species do not interact among
themselves. We prove the convergence (a.s. w.r.t. the product measure asso-
ciated to the initial datum for the light particle component) of the densities
describing the particle system to the solution of the system of partial differ-
ential equations in the asymptotics adnn

−κ → 0 and adnε
ζ → 0, for κ ∈ (0, 1

2
)

and ζ ∈ (0, 1
2
− 1

2d
), where a−1

n is the effective range of the obstacles and n is
the total number of light particles.

1. Introduction

In this paper we propose a microscopic model for a system of partial differential
equations consisting in a transport equation, having pure loss collision term, and
a pure loss reaction equation; the equations are self–consistently coupled and they
are meant to describe the evolution in time of the phase space densities in a binary
mixture where the two species interact in such a way that each species inhibits the
activity of the other, with an interaction proportional to their macroscopic (position
space) densities. In particular, we want to rigorously derive the system of equations
in a suitable asymptotics for the particle system.

The system of equations we shall deal with is a sort of very simple reactive
transport system, though without conservation of masses; more complex reactive
transport systems arise in many different contexts, like for instance in the modeling
of biological systems, of porous media, of radiative transfer or, more in general, of
various systems in the presence of chemical reactions (see e.g.[SDL, MM]). We
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are interested here in the analysis of the simplest reactive self-consistent coupling
(i.e. the absorption coupling), and we shall therefore not include other terms in the
equations.

From the point of view of particle modeling, an analysis of the absorption self-
consistent coupling for one species nonlinear equations can be found in models
for reaction-diffusion equations, such as the ones proposed in [NOR] and [Szn];
in both papers, the particle system evolves according to a Brownian motion (to
get the diffusion) and destruction of particles occurs with different mechanism: in
the first paper the destruction is stochastic, with a death rate for the Brownian
particles which is a function of stochastic exponential times, in the second one it is
deterministic, and it happens as soon as collisions between particles occur.

We shall consider a binary semi–deterministic system where both kinds of inter-
actions occur. More precisely, the particle system we shall consider consists in point
like (light) particles moving uniformly among fixed, spherical particles (obstacles).
Particles not belonging to the same species do not interact among themselves and
particles of different species interact in the following way: a light particle becomes
inactive (or is absorbed) at the first time it meets an obstacle and an obstacle
becomes inactive (or disappears) in a stochastic interval of time whose size is con-
nected, through a local mean-field type interaction, to the number of light particles
traveling within the area of detection (range) of the obstacle.

The main difficulty in the derivation of the (otherwise simple) system of partial
differential equations originates from the self consistent structure of the problem:
in order to overcome the mathematical troubles introduced from the self–consistent
terms, we shall adopt a natural scheme for facing self–consistent problems in partial
differential equations and particle systems and we shall prove the convergence using
two levels of approximation of the original particle system, the first one eliminating
the self-consistent structure and the second one reducing the correlations between
the two species with respect to the original many-particle system. Our formalism
is quite explicit and the strategy we shall adopt is similar to the procedure used
in [NOR]. The adjustment of this procedure to our particle system is not trivial,
since, at variance with the situation treated in [NOR], we deal with a two species
system interacting in a non symmetric way and the instantaneous absorption of
the light particles is in some sense a singular interaction with respect to the local
mean-field type interaction which govern the obstacles lifetime, i.e. the interaction
type considered in [NOR]. The presence of the deterministic component (the light
particles) imposes a sufficiently careful analysis of the trajectories, in the style of
the analysis performed for particle models of linear equations based on similar de-
terministic components (see e.g. [BGW], [DR1, DR2]). Nevertheless, the structure
of the stochastic component (the obstacles) simplifies by a considerable amount the
mathematics with respect to a two component, totally deterministic system.

Our final theorem establishes a weak law of large numbers for the empirical
measures (associated to the two species of particles in the mixture) to the solution of
the system of partial differential equations, almost surely with respect to the initial
distribution of positions in the phase space of the light particles and in probability
with respect to the distributions of positions and life time of the obstacles. This
weak law of large numbers is valid in an asymptotics where the radius and the
effective range of the obstacles vanish, keeping a finite action in the limit, and the
number of particles grows up to infinity, these quantities being related in a way
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that we shall determine while proving the theorem. As a part of this relationship,
we shall prove a simple condition (relating the diminishing rate of the effective
range of the obstacles to the number of light particles) which guarantees the weak
convergence of the product of an empirical measure times a sufficiently regular
approximant of a Dirac delta distribution toward the product of their weak limits
(under suitable regularity assumptions on the weak limit of the empirical measure
and on the choice of the delta’s approximant). This condition entails very useful
bounds for our estimates and allows to get easily the required asymptotic result.

2. The equations, the particles model and the main result

Throughout the paper we shall use the following notations: in dimension d ≥ 2,
we denote by x ∈ R

d the position of a light particle and by v ∈ R
d its velocity;

t ∈ R+ is the time variable. In general, configurations of M variables in R
d will be

denoted by boldface letters with subscript M (yM = (y1, . . . , yM )) and sequences
of variables by capital letters with the subscript ∞ (Y∞ = {yi}

∞
i=1). When needed

(e.g., in the functional spaces) we shall use R
d
x and R

d
v resp. for the position and

the velocity spaces. For p ∈ R
d and r ∈ R+ we shall denote by Br(p) = {y ∈ R

d :
|p− y| ≤ r} the ball of radius r centered in p. For a given z = (x, v) ∈ R

d×R
d, the

free flow associated to the light particle with initial position (in the phase space) z
is

T t(z) = (T t1(z), T
t
2(z)) = (x+ vt, v), t ∈ R+,

while x(t) = T t1(z), t ∈ R+, is its trajectory, and for ε > 0

(1) Tε(t, z) =
{

y ∈ R
d ; ∃s ∈ [0, t), |y − x(s)| ≤ ε

}

denotes the flow tube of radius ε associated to the trajectory up to the time t.
Unless differently stated, for a given random variable η, we denote by Pη its

associated probability distribution, and for a measure π (random variable η), we
denote by Eπ (Eη) the expectation w.r.t. π (η). In order to simplify the notation,
in many stochastic variables depending on configurations yM , we shall label this
dependence by a simple subscript M , instead of rewriting each time the whole
configuration.

We shall moreover denote ⇀ the weak convergence (convergence in law) in the

space of finite measures and
∗
⇀ the *-weak (vague) convergence on the space of

Radon measures, and by K (with some subscript) any generic constant whose value
needs not to be specified. We shall sometimes shorten the notation for sums and
difference of functions with the same argument as (f ± g)(w) = f(w) ± g(w).

For T > 0, we consider the following system of partial differential equations for
the two densities f = f(t, x, v), σ = σ(t, x), t ∈ [0, T ], x ∈ R

d, v ∈ R
d :















∂tf + v · ∇xf = −Cd|v|σf
∂tσ = −Θ(

∫

Rd dvf)σ
f(0, x, v) = f0(x, v)
σ(0, x) = σ0(x),

(2)

where Θ and Cd =
∫

{ω∈Rd:|ω|=1} |n·ω|dω, |n| = 1, are positive constants. In order to

have a convenient existence and uniqueness theorem for the solution (cf. Appendix
6.1), we assume f0 ∈ L1(Rdv;W

1,∞(Rdx)), vf0 ∈ L1(Rdv;W
1,∞(Rdx))∩L

∞(Rdx ×R
d
v),

v2f0 ∈ L1(Rdv;L
∞(Rdx)) and σ0 ∈W 1,∞(Rdx).
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We shall show that the system (2) can be derived from a semi-deterministic
particle system of the kind we specified in the Introduction. The particle system
will be described in next paragraphs.

Obviously, once established the correct asymptotics to get equation (2) from the
particle system we have chosen, we shall simply write lim

n→∞
to denote a limit in

this asymptotics (n and ε being related). This peculiar use of the notation will be
consequent to the hypothesis in the environments where the notation is used.

2.1. The particle system: initial data statistics. We consider configurations
of spherical fixed obstacles of radius ε with stochastically distributed positions at
time t = 0 and we denote by cM = (c1, . . . , cM ) the coordinates of their centers.
Obstacles may overlap (i.e., configurations such that for some i, k, |ci−ck| ≤ 2ε are
allowed) and M = 0 corresponds to absence of obstacles. In this paper, we shall
assume that obstacles positions follow a Poisson distribution with parameter µε, i.e.
that the probability distribution of finding M obstacles in a bounded measurable
set Λ ⊂ R

d is given by:

(3) P (dcM ) = e−µε[Λ]L
µMε
M !

dc1 . . . dcM ,

where (here and in what follows) [Λ]L denotes the Lebesgue measure of the set
Λ. We shall adapt the initial datum σ0(x) to this choice for the statistics of the
obstacles.

We consider then n point-like particles, located initially at positions x1, . . . , xn
and moving uniformly among the obstacles with velocities v1, . . . , vn; we shall de-
note the phase space coordinate of the i-th light particles as zi = (xi, vi). A point
in the n-particles phase space is denoted as zn = (x1, v1,. . . , xn, vn) and a sequence
of initial data is denoted as Z∞ = {zi}

∞
i=1 ∈ (Rd × R

d)∞.
We describe both species of particles by means of their empirical measure (see

e.g. [G1]).
Given a 1-particle probability density f0, we denote by P the (infinite product)

probability measure defined on the space of infinite sequences (Rd × R
d)∞ by f0,

i.e. such that, for n = 1, 2, . . . and A
(i)
x ×A

(i)
v ⊂ R

d × R
d,

(4) P(Z∞ : zi ∈ A(i)
x ×A(i)

v , 1 ≤ i ≤ n)=

n
∏

k=1

∫

A
(k)
x ×A(k)

v

f0(x, v)dxdv.

The sequence of initial empirical measures for the light particles {µ0
n}

∞
n=1 is then

such that:

(5) µ0
n(t, x, v; zn) =

1

n

n
∑

i=1

δzi(x, v)⇀ f0(x, v) P − a.e. w.r.t.Z∞.

We shall require moreover some regularity condition on f0.

2.2. The particle system: dynamics. We define now the dynamics of the sys-
tem.

We consider a sequence τ∞ = {τ1, . . . , τk, . . .} of independently distributed ex-
ponential variables and we define the following stochastic functions:
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• The risk function at a given position c,

(6) Vn,ε,M (t, c) =
1

n

n
∑

i=1

∫ t

0

dsqn(xi(s)− c)ξn,ε,M (s, zi),

where qn(x) = adnq(anx), is an (at least continuous) approximant, up to
a multiplicative constant, of the Dirac delta distribution, with q a non
negative, radial (q(x) = q(|x|)) function such that

∫

Rd q(y)dy = Θ > 0 and
ξn,ε,M is the stochastic function defined below.

• The life functions 1, resp. ξn,ε,M (t, z) for a light particle with initial
position and velocity (x, v) and ηn,ε,M (t, ck) for an obstacle centered in
ck ∈ {c1, . . . , cM},

(7)

ξn,ε,0(t, z) = 1

M ≥ 1

ξn,ε,M (t, z) = I
{x(s)/∈

M⋃

h=1

Bε(ch)ηn,ε,M (s,ch) ∀s∈[0,t)}

ηn,ε,M (t, ck) = I{Vn,ε,M (t,ck)<τk}.

• The maximal collision time between a light particle with initial phase space
position z = (x, v) and an obstacle located in c,

(8) Tz,c = inf
s∈R+

{s : |x(s) − c| ≤ ε},

with no reference to the activity of both particles. Because no life functions
are involved in this definition, Tz,c can be infinite.

In the particle system defined through (6) and (7), the obstacles become inactive
at stochastically distributed times defined at a given position ck through the risk
function (6) as the time tk = tk(ck, τk) s.t. V (tk, ck) = τk, while the light particles
are absorbed at the first time they meet an active obstacle (i.e. as soon as |xi(Tcoll)−
ck| = ε for some k and Tcoll < tk; notice that Tcoll is defined w.r.t. active particles,
and it is therefore a different variable w.r.t. Tz,c).

Unless we require q to have compact support, a light particle located at x can
affect the life function of a far obstacle (it suffices that q(x−c) 6= 0); on the contrary,
a given light particle interacts only with obstacles which are met by its trajectory
in space. Since, for a given n, the volume including all light particle trajectories up
to time T , Vn, is such that

(9) Vn ⊂ B max
i=1,...,n

|xi|+ max
j=1,...,n

|vj |T+1(0) = Bn,

and, in studying the interacting system, we do not need to consider quantities
related to obstacles which can not be met from any light particles, we may (for a
given n) restrict the expectation value with respect to (3) to the volume Λ = Λn, for

1We use, here and later, the notation
M⋃

k=1

Bε(ck)ηn,ε,M (s, ck) to mean
⋃

k∈{1,...,M}:
ηn,ε,M (s,ck)=1

Bε(ck).

Although not formally correct, this notation allows us to write less cumbersome formulas.
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a growing sequence of bounded Lebesgue measurable sets {Λn}n s.t. Bn ⊂ Λn and
lim
n→∞

Λn = R
d. We denote by E

n
c the expectation value with respect to the centers

distribution (3) with such a choice for Λ. We shall denote by E
n = E

n
cEτ = EτE

n
c ,

where Eτ is the expectation value w.r.t. to the exponential times sequence τ∞,
and by Pn the corresponding probability distributions.

2.3. Scaling laws: heuristics. In order to derive the system (2) from the particle
system defined above in the macroscopic limit where the radius ε of the obstacles
vanishes, we have to choose the scaling for densities of both species of particles in
a suitable way.

As a first requirement, we want the mean free path of the light particles to be
finite at the scale at which the system is observed, in such a way to keep track,
in the chosen asymptotics, of the interaction between the light particles and the
obstacles. To this purpose, we fix the rate µε of the Poisson process (3) to be such
that:

(10) µεε
d−1 = µ > 0

and, since we consider a uniform initial macroscopic distribution of obstacles, in
(2) we assume σ0(x) = µ.

When Vn,ε,M ≡ 0 (i.e. q ≡ 0), formula (10) defines the so called Boltzmann-
Grad scaling, which has been analysed for linear particle systems in particular
in connection with the asymptotics of the Lorentz gas and its variants (see e.g.
[Ga, Sp, BBS], [DR1] for the stochastic case, [BGW, G2, RW] for the periodic case
and the beautiful review [G3] -focused on the periodic case-). When Vn,ε,M 6≡ 0,
(10) guarantees the finiteness of the mean free path for a given light particle as soon
as Vn,ε,M , in flow tubes and for a non-negligible set of obstacles configurations,
is bounded uniformly in n. This is true, under the conditions on f0 specified
at the beginning of Section 2 and the conditions on q given in Section 2.2 (i.e.

q ∈ L1(Rd) ∩C(Rd)), whenever adnn
− 1

2 ≤ const.
A second requirement is to have, in the ε→ 0 asymptotics, vanishing correlations

between light particles and obstacles, so as to obtain a Markovian limit (i.e. without
memory effects), coherently with the structure of (2). Since the dominant part
of correlations is associated to grazing crossings of light particle trajectories, and
in particular to the mean volume V εg spanned from grazing trajectories crossings
within the effective range of an obstacle, this requirement connects the scaling in
the effective range a−1

n to the scaling in the mean density of the obstacles. In order
to have negligible correlations, the mean number of multiple collisions per unit
volume has to vanish in the limit. This leads to the condition µεa

d
nV

ε
g → 0. Notice

that possibly V εg = O(εd−1), and having a better asymptotic behavior depends
essentially on the regularity of the limit measure of the light particle component.

We have then a third, technical, requirement due to the form of (6): since even-
tually we want to obtain a mean-field limit, and therefore we want to be able to
perform limits of mean values with respect to µ0

n of sequences of functions con-
verging to singular limits (such as Dirac delta distributions), we need a condition
assuring the convergence (in a suitable sense) of the product of such sequences times
the initial empirical measure: this is achieved if the empirical measure converges
faster to its (sufficiently regular) limit than the chosen approximant concentrates,
in such a way that the empirical measure is in practice equivalent to its limit den-
sity well before than the delta’s approximant concentrates in its center. We can
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guess roughly that this happens if the fraction of particles fluctuating around mean
values in a volume corresponding to the effective range of an obstacle vanishes in
the chosen asymptotics, and therefore 1√

n
= o(a−dn ). We shall prove a more precise

asymptotics in Appendix 6.2
Given (10) and the just described scaling laws, for a given configuration of obsta-

cles, the empirical measure at time t for the light particle component (representing
its mesoscopic density in phase space) is:

(11) µn(t, x, v; zn, cM ) =
1

n

n
∑

i=1

δT t(zi)(x, v)ξn,ε,M (t, zi)

and the (macroscopic) density of the obstacle component (i.e. the number of ob-
stacles per unit volume) is expressed as:

(12) σn(t, x; zn, cM ) = εd−1
M
∑

k=1

δck(x)ηn,ε,M (t, ck).

2.4. The limit process. Under the conditions we assumed on (f0, σ0), as shown
in paragraph 6.1 in the Appendix, the problem (2) admits a unique solution (f, σ) ∈
L∞([0, T ]×R

d×R
d)×L∞([0, T ]×R

d), with
∫

dvf ∈ L∞([0, T ]×R
d) (and actually

∫

dvf(t, ·, v) ∈ Cb(R
d)). This solution can be expressed in semi-explicit form as:

f(t, x, v) = f0(x− vt, v)e−Cd|v|
∫

t

0
dsσ(s,x−v(t−s))

σ(t, x) = σ0(x)e
−Θ

∫
t

0
ds

∫
Rd
dvf(s,x,v).

(13)

In order to be able to compare solutions of (2) with the stochastic measures (11)
and (12), we define the risk functions and the life functions associated to the limit
process described by (2) as:

V
f
L (t, c) = Θ

∫ t

0

ds

∫

Rd

dvf(s, c, v)

η
f
L(t, c) = I{VL(t,c)<τ}

(14)

UσL(t, z) = Cd|T
t
2(z)|

∫ t

0

dsσ(s, T s1 (z))

ξσL(t, z) = I{UL(t,z)<τp},

(15)

where τ and τp are independently distributed exponential variables and τ = τk
when c = ck.

In this way, the semi-explicit form of the solution (13) can be re-expressed as

f(t, x, v) = f0(x− vt, v)Eτp
[

ξσL(t, T
−t(x, v))

]

σ(t, x) = σ0(x)Eτ
[

η
f
L(t, x)

]

.

(16)

In order to simplify the notation, we shall omit in what follows the dependence

on the density functions (VL = V
f
L , UL = UσL).
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We want to establish a (weak) law of large numbers for the measures (11) and
(12). More precisely, we shall prove the following theorem (we recall that S (Rn)
denotes the space of C∞(Rn) functions of rapid decay at infinity [Sch, DL]):

Theorem 1. Consider the non-negative functions f0 and q and assume

• f0 ∈ S (Rd × R
d)
⋂

L1(Rdv;W
1,∞(Rdx)) is a probability density such that

(17)

∫

Rd

dvf0 ∈ S (Rd) with

∫

Rd

dvf0(0, v) > 0,

and vf0 ∈ L1(Rdv;W
1,∞(Rdx)), v

2f0 ∈ L1(Rdv;L
∞(Rdx));

• q is a radial function s.t. q ∈ S (Rd) and
∫

Rd dxq(x) = Θ > 0;

• {an}
∞
n=1 is such that an > 0, lim

n→∞
an = ∞ and there exists some κ ∈ (0, 12 )

such that

(18) lim
n→∞

adn
nκ

= 0;

• {ε}∞n=1 = {εn}
∞
n=1 s.t. εn > 0 and

(19) lim
n→∞

adnε
ζ = 0

for some ζ ∈ (0, 12 − 1
2d ).

Then, P-almost everywhere w.r.t. sequences of initial data Z∞ and in probability
w.r.t. P and Pτ , when n→ ∞

(20) µn(t, x, v; zn, cM ) =
1

n

n
∑

i=1

δT t(zi)(x, v)ξn,ε,M (t, zi)⇀ f(t, x, v)

(21) σn(t, x; zn, cM ) = εd−1
M
∑

i=1

δci(x)ηn,ε,M (t, ci)
∗
⇀ σ(t, x),

where ξn,ε,M , ηn,ε,M are defined in paragraph 2.2 and (f, σ) is the unique solution
of















∂tf + v · ∇xf = −Cd|v|σf
∂tσ = −Θ(

∫

Rd dvf)σ
f(0, x, v) = f0(x, v)
σ(0, x) = µ.

(22)

We shall see in paragraph 6.2 in the appendix that hypothesis (18), together with
suitable regularity assumptions on f0 (all included in our theorem), guarantees the
following P-a.s. convergence

|v|jµ0
n(x, v)qn(x) ⇀ Θ|v|jf0(x, v)δ0(x)(23)

|v|jµ0
n ⇀ |v|jf0

⊗ki=1|v|
jµ0
n ⇀ ⊗ki=1|v|

jf0

for j = 0, 1, 2, . . . , P , k = 1, . . .Q, with given positive integers P,Q.
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3. Definitions of the approximating systems and proof of the main
theorem

The main difficulty in studying (2) and its associated particle system (6),(7) is
that we have to deal with a self-consistent problem. The first step is therefore to
find, both for the limit system (2) and for the particle system defined from (6),(7),
suitable approximating systems which do not share this self-consistent structure.

We first recall here without proof, since it will be useful for the sequel and we
shall use it largely in various steps of the convergence proof, lemma 3.2 in [NOR],
concerning bounds of distances of stochastic variables of the form η(t) = I{S(t)<τ}
in terms of distances between their associated risk function S.

Lemma 1. Let τ > 0 be an exponentially distributed real variable and define, for
i = 1, 2, t ∈ [0, T ], ηi(t) = I{Si(t)<τ}, where Si, S are non negative, non decreasing,
right continuous random functions. Then, for any δ > 0

(24) |η1(t)− η2(t)| ≤
1

δ
|S1(t)− S(t)|+

1

δ
|S2(t)− S(t)|+ I{|S(t)−τ |<δ}.

Remark 1. Whenever at least one or both risk functions Si, i = 1, 2 are in-
dependent of the exponential time τ , the bound simplifies in the first case as
Eτ |η1(t)− η2(t)| ≤

1
δEτ |S1(t)− S2(t)|+ 2δ, and in the second case as Eτ |η1(t) −

η2(t)| ≤ |S1(t)− S2(t)| .

3.1. Approximation of the limit system. As shown in Appendix 6.1, under
suitable hypothesis on f0, the solution of the system of equations (2) can be obtained
as the k → ∞ limit of the sequence of solutions of the sequence of linear systems
defined as:

f (0)(t, x, v) = f0(x− vt, v), σ(0)(t, x) = µ(25)















∂tf
(k) + v · ∇xf

(k) = −Cd|v|σ
(k−1)f (k)

∂tσ
(k) = −(Θ

∫

Rd dvf
(k−1))σ(k)

f(0, x, v) = f0(x, v)
σ(0, x) = µ

k = 1 . . . .

More precisely, the sequence of semiexplicit solutions of (25) is, for k = 1, 2, . . .,

f (k)(t, x, v) = f0(x− vt, v)e−Cd|v|
∫

t

0
dsσ(k−1)(s,x−v(t−s))

σ(k)(t, x) = µe−Θ
∫

t

0
ds

∫
Rd
dvf(k−1)(s,x,v),

(26)

and we have, when k → ∞ (cf. Appendix 6.1)

(27)
‖f − f (k)‖L∞([0,T ]×Rd×Rd) → 0 , ‖

∫

Rd dv(f − f (k))‖L∞([0,T ]×Rd) → 0,

‖σ − σ(k)‖L∞([0,T ]×Rd) → 0.

The risk functions associated to the k-th system (25) are defined as:

V̄ (k)(t, c) = Θ

∫ t

0

ds

∫

Rd

dvf (k−1)(s, c, v)(28)

Ū (k)(t, z) = Cd|T
t
2(z)|

∫ t

0

dsσ(k−1)(s, T s1 (z)),(29)
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and, because we shall need it later (cf. the definition of the system (33)), we define
V̄ (0)(t, c) = 0. Their associated life functions are:

η̄(k)(t, c) = I{V̄ (k)(t,c)<τ}

ξ̄(k)(t, z) = I{Ū(k)(t,z)<τp},

(30)

with τ and τp exponentially distributed times. Of course, (26) can be expressed in

terms of V̄ (k) and Ū (k) in a form analogous to (16).

3.2. Approximation of the particle system. In the same spirit, we may also
approximate, for each n, the particle system described by (6), (7) by a suitable
sequence of systems. For an initial datum zn for the n particles phase space position
and configuration of obstacles cM (M = 0 in the absence of obstacles), we define
this system, for integers M,k ≥ 1, j = 1, . . . , n and ℓ = 1, . . . ,M , as:

(31)

ξ
(0)
n,ε,0(t, zj) = ξ

(k)
n,ε,0(t, zj) = 1

V
(0)
n,ε,M (t, cℓ) = 0, η

(0)
n,ε,M (t, cℓ) = 1, ξ

(0)
n,ε,M (t, zj) = 1

V
(k)
n,ε,M (t, cℓ) =

1

n

n
∑

i=1

∫ t

0 dsqn(xi(s)− cℓ)ξ
(k−1)
n,ε,M (s, zi)

η
(k)
n,ε,M (t, cℓ) = I{V (k)

n,ε,M
(t,cℓ)<τℓ}

ξ
(k)
n,ε,M (t, zj) = I

{xj(s)/∈
M⋃

h=1

Bε(ch)η
(k−1)
n,ε,M

(s,ch) ∀∈[0,t)}
.

This sequence is a linearization of the original particle system (which is its formal
limit when k → ∞) in the same way as (25) is a linearization of (2) and it satisfies
what is called in [NOR] sandwiching property (see (48)). This property implies, in
a given asymptotics for n and ε:

(32)

E
n|V

(k)
n,ε,M − V̄ (k)| → 0 =⇒ E

n|Vn,ε,M − VL| → 0

E
n|ξ

(k)
n,ε,M − ξ̄(k)| → 0 =⇒ E

n
Eτp |ξn,ε,M − ξL| → 0

E
n
Eτ |η

(k)
n,ε,M − η̄(k)| → 0 =⇒ E

n
Eτ |ηn,ε,M − ηL| → 0

E
n|
∫

dzµnφ(ξ
(k)
n,ε,M − ξ̄(k))|→0 =⇒ E

n
Eτp |

∫

dzµnφ(ξn,ε,M − ξL)|→0

and using these implications we shall be able to bypass the direct evaluation of
quantities related to the particle system (6),(7).

The advantage in dealing with the two approximating sequences of systems de-
fined by (25) and (31) instead of the original systems is that, for each k, the two
components evolve in a given field, associated to the functions defined at the pre-
vious step k − 1 in the sequence, and the original self-consistent structure is lost.
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The next step would be then to show that (25) and (31) are, for a given k,
asymptotically equivalent. Unfortunately, the system defined from (31), when ε

is positive, still keeps strong correlations between all light particles and obstacles
positions (in the phase space), correlations which are absent in (25); this makes
hard the direct comparison of the two systems. Therefore, we need to define an
intermediate system in which correlations among light particles and obstacles are
further reduced. We shall prove then that this system is equivalent in the limit
n→ ∞ both to (25) and to (31).

3.3. A system asymptotically equivalent to both approximating systems.

For an initial datum zn for the n particles phase space position, and for configura-
tions of obstacles cM (M = 0 in the absence of obstacles), we define, for integers
M,k ≥ 1, j = 1, . . . , n and ℓ = 1, . . . ,M , the intermediate system in the following
way

(33)

ξ̂
(0)
n,ε,0(t, zj) = ξ̂

(k)
n,ε,0(t, zj) = 1

ξ̂
(0)
n,ε,M (t, zj) = 1,

ξ̂
(k)
n,ε,M (t, zj) = I

{xj(s)/∈
M⋃

h=1

Bε(ch)I{V̄ (k−1)(s,ch)<τh}
∀s∈[0,t)}

Â
(k)
n,ε,M (t, cℓ) =

1

n

n
∑

i=1

∫ t

0
ds qn(xi(s)− cℓ)ξ̂

(k−1)
n,ε,M (s, zi)

η̂
(k)
n,ε,M (t, cℓ) = I{Â(k)

n,ε,M
(t,cℓ)<τℓ}

where τk, 1 ≤ k ≤M , are independent exponentially distributed times.
In (33), the life function of a light particle at level k is defined through fictitious

obstacles life functions (I{V̄ (k−1)(t,c)<τc}), corresponding to the obstacles life func-

tions at level k − 1 associated to (25); the life function of an obstacle at level k,
I{Â(k)

n,ε,M
<τc}, is defined through the light particles life functions at level k − 1. In

this way, the correlation between light particles and obstacles is weaker, compared
to the same correlation in system (31), and this allows us to prove, when n and ε
verify conditions (18) and (19), the convergence to both systems (25) and (31) in
quadratic mean w.r.t. the expectation value E

n.

3.4. Proof of the main theorem. We proceed now with the proof of our main
theorem. To this purpose, we assume we have already proved the sandwiching
property for the system (31) and the asymptotic equivalence of this last system
to (25): we shall postpone to next sections the proof of lemmas and propositions
concerning these two facts, since they are the core of the derivation; as pointed out
in section 3.2, the convergence of (31) to (25) will be obtained passing through the
equivalence in this asymptotics of (33) to both systems (31) and (25).

Proof of Theorem 1. Given the definitions in the previous paragraphs, we write

ξn,ε,M = (ξn,ε,M − ξL) + (ξL − ξ̄(k)) + ξ̄(k)

and

f = (f − f (k)) + f (k).



12 CÉDRIC BERNARDIN AND VALERIA RICCI

Then, using formula (13) for f and (26) for f (k), we can write, for all φ ∈ Cb(R
d×R

d)
and for all k ≥ 1:

E
n

[

∣

∣

1

n

n
∑

i=1

φ(T t(zi))ξn,ε,M (t, zi)−

∫

Rd×Rd

dxdvφ(x, v)f(t, x, v)
∣

∣

]

≤

(34)

E
n
Eτp

[

∣

∣

1

n

n
∑

i=1

φ(T t(zi))(ξn,ε,M − ξL)(t, zi)
∣

∣

]

+

(35)

‖φ‖∞







E
n
Eτp





1

n

n
∑

j=1

|ξL − ξ̄(k)|(t, zj)



 +

∫

Rd×Rd

dxdvCd|v|f0(x, v)

∫ t

0

ds|σ − σ(k−1)|(s, x(s))

}

+

(36)

E
n
Eτp

[

∣

∣

1

n

n
∑

i=1

φ(T t(zi))ξ̄
(k)(t, zi)−

∫

Rd×Rd

dxdvf (k)(t, x, v)φ(x, v)
∣

∣

]

.

The term (34) vanishes on a set of full measure w.r.t. P as a consequence
of the sandwiching property valid for (31) (cf. Corollary 1, Sec. 4.3) and of the
convergence of (31) to (25) in the asymptotics specified in (18), (19) (cf. Proposition
4, Sec. 5).

Thanks to (23), and in particular to the convergence |v|µ0
n ⇀ |v|f0, the term

in curly brackets (35) is bounded (excepted on a set of zero measure with respect
to P) by Ka‖σ − σ(k−1)‖L∞([0,T ]×Rd), so that, by choosing a suitable k, it can be
made arbitrarily small because of (27).

Using Cauchy-Schwarz’s inequality, we get then for (36)
∣

∣

∣

∣

∣

E
n
Eτp

[

∣

∣

1

n

n
∑

i=1

φ(T t(zi))ξ̄
(k)(t, zi)−

∫

Rd×Rd

dxdvf (k)(t, x, v)φ(x, v)
∣

∣

]∣

∣

∣

∣

∣

2

≤

E
n

[

∣

∣

1

n

n
∑

i=1

φ(T t(zi))Eτp [ξ̄
(k)(t, zi)]

∣

∣

2

]

+

∫

Rd×Rd

dxdvf (k)(t, x, v)φ(x, v)×

×

[

∫

Rd×Rd

dxdvf (k)(t, x, v)φ(x, v) −
2

n

n
∑

i=1

φ(T t(zi))Eτp [ξ̄
(k)(t, zi)]

]

.

Because of the hypothesis on f0, φ(T
t(·))Eτp [ξ̄

(k)(t, ·)] ∈ Cb(R
d × R

d), so that,

thanks to (23) (and in particular to µ0
n ⇀ f0), on a set of full measure w.r.t. P we

have

1

n

n
∑

i=1

φ(T t(zi))Eτp [ξ̄
(k)(t, zi)] →

∫

Rd×Rd

dxdvf (k)(t, x, v)φ(x, v),

and (36) vanishes on this set.
In the same way, by writing

ηn,ε,M = (ηn,ε,M − ηL) + (ηL − η̄(k)) + η̄(k)



PARTICLE MODEL FOR COUPLED PDE’S 13

and

σ = (σ − σ(k)) + σ(k),

we get, for all ψ ∈ CK(Rd) and for all k ≥ 1,

E
n

[

∣

∣εd−1
M
∑

i=1

ψ(ci)ηn,ε,M (t, ci)−

∫

Rd

dxψ(x)σ(t, x)
∣

∣

]

≤

(37)

‖ψ‖∞

{

E
n

[

εd−1
M
∑

i=1

Isuppψ(ci)|ηn,ε,M − ηL|(t, ci)

]

+

(38)
(

E
n

[

εd−1
M
∑

i=1

Isuppψ(ci)|η̄
(k) − ηL|(t, ci)

]

+

∫

suppψ

dx|σ(k) − σ|(t, x)

)}

(39)

+E
n

[

∣

∣εd−1
M
∑

i=1

ψ(ci)η̄
(k)(t, ci)−

∫

Rd

dxψ(x)σ(k)(t, x)
∣

∣

]

,

where the term in round brackets (38) is (everywhere) bounded by Kb‖
∫

dv(f −

f (k−1))‖L∞([0,T ]×Rd) and can be made arbitrarily small because of (27).
The term (37) vanishes on a set of full measure w.r.t. P for the same reasons

as (34), i.e. as a consequence of the sandwiching property valid for (31) and of the
convergence of (31) to (25) in the asymptotics specified in (18), (19).

As for (39), we can write
∣

∣

∣

∣

∣

E
n

[

∣

∣εd−1
M
∑

i=1

ψ(ci)η̄
(k)(t, ci)−

∫

Rd

dxψ(x)σ(k)(t, x)
∣

∣

]
∣

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

∫

Λn

dcψ(c)σ(k)(t, c)−

∫

Rd

dcψ(c)σ(k)(t, c)

∣

∣

∣

∣

2

+ εd−1

∫

Λn

dcψ2(c)σ(k)(t, c).

Since ψ ∈ CK(Rd), we have ψh(·)σ(k)(t, ·) ∈ L1(Rd)) for h = 1, 2 and when n grows
to infinity we have both Λn → R

d and ε → 0, so that this term vanishes, in the
chosen asymptotics.

Collecting all the assertions about the different terms, the theorem is proved. �

4. Asymptotic equivalence of (31) and (25) and convergence of the
particle system to the limit system

We collect in the present section the Lemmas and Propositions which will help
us to build up the last step of the proof of our main theorem.

4.1. A few useful bounds. Let us list a few bounds and formulas which we shall
use often in our calculations.

It will be useful to adopt in next sections, for stochastic variables λFn,M of the
form

λFn,M (t, zj) = I
{xj(s)/∈

M⋃

h=1

Bε(ch)I{Fn,M (s, ch)<τh} ∀s∈[0,t)}
,
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(with Fn,M (s, ch) = FcM ,τM ,zn(s, ch) a given random function) the following rep-
resentation:

(40) λFn,M (t, zj) =
M
∏

h=1

(

1− I{ch∈Tε(t,zj)}I{Fn,M (Tzj,ch
, ch)<τch}

)

.

Given any couple of stochastic variables λF
(1)
n,M , λF

(2)
n,M of the form (40), using

the trivial inequality

|
∏

h

IAh
−
∏

h

IBh
| ≤

∑

h

|IAh
− IBh

|,

for M ≥ 1, we get the bound

(41)

∣

∣

∣

∣

λ
F(1)

n,M

1 − λ
F(2)

n,M

2

∣

∣

∣

∣

(t, zj) ≤

M
∑

h=1

Ich∈Tε(t,zj)|η
F(1)

n,M − ηF
(2)
n,M |(Tzj ,ch , ch),

where

ηF
(i)
n,M (Tzj ,ch , ch) = I{F(i)

n,M
(Tzj,ch

,ch)<τch}, i = 1, 2.

The bound (41) will be largely used in the last paragraph of this section.

Moreover, because of the hypothesis on f0 (assigning initially uniformly bounded
number and kinetic energy limit densities for the light particle component, cf. Re-
mark 9 in Appendix 6.2), P-a.e. with respect to Z∞, we may use the bounds

‖
1

n

n
∑

j=1

qn(xj(s)− c)‖∞ ≤ K1(42)

‖
1

n

n
∑

j=1

qn(xj(s)− c)[Tε(s, zj)]L‖∞ ≤ εd−1CdTK2(43)

where K1,K2 > 0 are constant independent of n.

4.2. Quantities related to flow tubes. When bounding correlations in our parti-
cle system, we shall need to evaluate expectation values with respect to the Poisson
distribution (3) and to µ0

n on volumes corresponding to the intersections of flow
tubes.

Defining, for two vectors v, w ∈ R
d, cosα(v, w) = v·w

|v||w| (and αij = α(vi, vj)),

and recalling the notation Br(p) introduced at the beginning of Section 2 to denote
the ball of radius r centered in p, we have, for the intersection of two flow tubes
associated to the particles with initial phase space positions zi and zj, the following
trivial bound:

Lemma 2. For any β ∈ (0, 1d ):

(44) [Tε(t, zj) ∩ Tε(t, zi)]L ≤

[B2(0)]Lε
d(1−β)I| sinαij |≥εβ + Cdε

d−1min(|vi|, |vj |)TI| sinαij |<εβ .

Proof. We have always

[Tε(t, zj) ∩ Tε(t, zi)]L ≤ min([Tε(t, zj)]L, [Tε(t, zi)]L)

= Cdε
d−1min(|vi|, |vj |)t
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and, whenever sinαij 6= 0, denoting as y the (unique) crossing point for the trajec-
tories xi(s), xj(s) (i.e. y = xi + vis1 = xj + vjs2 for some s1, s2 ∈ R),

Tε(t, zj) ∩ Tε(t, zi) ⊂ B 2ε
sinαij

(y).

We can therefore write:

(45) |Tε(t, zj) ∩ Tε(t, zi)| ≤ |B2(0)|

(

ε

sinαij

)d

∧ Cdε
d−1 min(|vi|, |vj |)t

and (44) follows.
�

Thanks to the weak convergence of the initial empirical measure toward a regular
density, we can estimate the measure (w.r.t. µ0

n ) of the set corresponding, for a
given velocity w ∈ R

d, to the grazing collisions. We can prove in fact the following
Lemma:

Lemma 3. Let µ0
n ⇀ f0 ∈ S (Rd × R

d), β > 0 and w ∈ R
d. Assume (18).

Denoting cosαi =
vi·w
|vi||w| , the following bound is verified

1

n

n
∑

i=1

I| sinαi|<εβ ≤ Kεζ + o(a−dn )

for any ζ ∈ (0, d−1
2 β).

Proof. We observe first that we have lim
n→∞

#{j:|vj ·w|=|w||vj|}
n =0, since f0∈S (Rd×R

d),

so that, uniformly in ε, the contribution of the corresponding term vanishes when
n→ ∞ and it is actually o(a−dn ) in the prescribed asymptotics2.

We now evaluate the contribution of grazing crossings of particle trajectories.
We choose a suitable (standard) C∞ regularization R̄δ of I|v·w|6=|v||w|, for instance

R̄δ is s.t.:

I|v·w|6=|v||w| − R̄δ ≤ e
− sin2 α(v,w)

δ2(δ2−sin2 α(v,w)) I| sinα(v,w)|≤δ.

Here the parameter δ denotes the radius of the set where the regularization differs
from the original characteristic functions (i.e. the set in R

d×R
d s.t. | sinα(v, w)| ≤

δ), and, for all δ > 0 and 0 < ι < d−1
2 , we write:

1

n

n
∑

i=1

I|vi·w|6=|vi||w|I| sinαi|<εβ ≤
1

n

n
∑

i=1

ειβ

(1− |vi·w|2
|vi|2|w|2 )

ι
2

R̄δ(vi) + o(δ)

≤ ειβ
∫

Rd×Rd

dxdv
f0(x, v)

(1 − |v·w|2
|v|2|w|2 )

ι
2

+KR
ειβ

δ3+ι
+ o(δ).

The error coming from the regularization of the characteristic function I|v·w|6=|v||w|
is o(δ) because of the weak convergence of µ0

n toward f0 ∈ S (Rd×R
d) and, for the

same reason, all constants (here and in the following estimates) are uniform in w

2In fact, since by Toeplitz’s lemma, for all a ∈ (0, 1], 1
n

n∑

k=1
(
#{j:|vj ·w|=|w||vj |}

k
)a vanishes

when n → ∞, we have at least
#{j:|vj ·w|=|w||vj |}

n
= o( 1√

n
) ).
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and n and depend only on the dimension d and on few Lp norms of f0. We obtain
then, for suitable choices of δ,

1

n

n
∑

i=1

I|vi·w|6=|vi||w|I| sinαi|<εβ ≤ Kεζ,

for any ζ ∈ (0, ιβ) and therefore for any ζ ∈ (0, d−1
2 β). Collecting the two estimates,

the lemma is proved. �

We shall use Lemma 3 for free choices of β ∈ (0, 1d), so that ζ ∈ (0, d−1
2 β) ⊂

(0, 12 − 1
2d).

Remark 2. The estimate obtained in Lemma 3 is valid for any given sequence of
empirical measures {µ0

n} such that µ0
n ⇀ f0 ∈ S (Rd × R

d) and it is actually a
stronger assertion with respect to what we need to prove Theorem 1 (which is
valid P − a.e. w.r.t. Z∞). In order to prove Lemma 3, where, as stated in the
introductory sentence to the lemma, we bound the measure of a set with respect
to the empirical measure µ0

n, we need to evaluate the measure of the set {(x, v) :
|v · w| = |w||v|} with respect to the measure µ0

n because the measure of this set
vanishes only asymptotically (i.e. with respect to the limit measure with density
f0). We choose to evaluate this measure with respect to the parameter adn (i.e. as
o(a−dn )) for further convenience.

A similar, simpler statement can be proved P-a.e. w.r.t. Z∞: in this case we
obtain the bound 1

n

∑n
i=1 I| sinαi|<εβ ≤ Kεζ (P-a.e. w.r.t. Z∞). This alternative

statement could be used instead of Lemma 3 to prove our main theorem. We prefer
nevertheless to use Lemma 3, getting in this way bounds which are (as much as
possible) valid on the whole subset of initial sequences Z∞ such that the associated
sequence of empirical measures {µ0

n}
∞
n=1 converges weakly to f0 ∈ S (Rd × R

d).

Remark 3. Notice that, since 1
n2

∑

i,j:|vi·vj |=|vi||vj |
1 = o(a−dn ) and all bounds are

uniform in the velocity w, we get also

(46)
1

n2

n
∑

i,j=1

I| sinαij |≤εβ ≤
1

n

n
∑

j=1

(
1

n

n
∑

i=1

I| sinαij |≤εβ ) ≤ Kεζ + o(a−dn ).

A last very useful tool will be the following parametrization of the points c∈Tε(t,z).
Let u = Tz,c be the maximal collision time defined in (8); then we may define the change
of variables

c = x(u) + εω, u ∈ [0, t), ω ∈ ∂B1(0).

Using this parametrization, for each non negative function V ∈ L∞([0, T ];W 1,∞(Rd)) we
can write V (Tz,c, c) = V (u, x(u) + εω), getting then

(47)

∫

Tε(t,z)

dce−V (Tz,c,c) = εd−1Cd|v|
(
∫ t

0

du[e−V (u,x(u)) + φε(u, x(u))]

)

where we may bound the remainder through the trivial inequality |e−y − e−x| ≤ |x− y|,
for x, y ≥ 0, and the function φε is such that sup[0,T ] ‖φε‖L∞(Rd) = O(ε) → 0 when ε→ 0.



PARTICLE MODEL FOR COUPLED PDE’S 17

4.3. The sandwiching property. We prove now the sandwiching property for the sys-
tem defined by (31) and its implication on the convergence of (7).

Lemma 4. (sandwiching property) Consider Vn,ε,M , ξn,ε,M , ηn,ε,M defined by (6), (7)

and ξ
(k)
n,ε,M , V

(k)
n,ε,M , η

(k)
n,ε,M defined by (31). Then, for k = 1, 2 . . .,

ξ
(2k−1)
n,ε,M ≤ ξ

(2k+1)
n,ε,M ≤ ξn,ε,M ≤ ξ

(2k)
n,ε,M ≤ ξ

(2k−2)
n,ε,M

V
(2k−2)
n,ε,M ≤ V

(2k)
n,ε,M ≤ Vn,ε,M ≤ V

(2k+1)
n,ε,M ≤ V

(2k−1)
n,ε,M

η
(2k−1)
n,ε,M ≤ η

(2k+1)
n,ε,M ≤ ηn,ε,M ≤ η

(2k)
n,ε,M ≤ η

(2k−2)
n,ε,M .

(48)

Proof. From definitions (6), (7) and (31), we have 0 = V
(0)
n,ε,M ≤ Vn,ε,M ≤ V

(1)
n,ε,M , which

implies η
(0)
n,ε,M ≥ ηn,ε,M ≥ η

(1)
n,ε,M , which in turn implies ξ

(1)
n,ε,M ≤ ξn,ε,M ≤ ξ

(2)
n,ε,M ≤

ξ
(0)
n,ε,M = 1.
We have therefore, using again these definitions:

ξ
(1)
n,ε,M ≤ ξ

(3)
n,ε,M ≤ ξn,ε,M ≤ ξ

(2)
n,ε,M ≤ ξ

(0)
n,ε,M

V
(0)
n,ε,M ≤ V

(2)
n,ε,M ≤ Vn,ε,M ≤ V

(3)
n,ε,M ≤ V

(1)
n,ε,M

η
(1)
n,ε,M ≤ η

(3)
n,ε,M ≤ ηn,ε,M ≤ η

(2)
n,ε,M ≤ η

(0)
n,ε,M

and (48) is valid for k = 1.
Since the following chain is also valid:

V
(2k−2)
n,ε,M ≤ V

(2k)
n,ε,M ≤ Vn,ε,M ≤ V

(2k+1)
n,ε,M ≤ V

(2k−1)
n,ε,M =⇒

η
(2k−2)
n,ε,M ≥ η

(2k)
n,ε,M ≥ ηn,ε,M ≥ η

(2k+1)
n,ε,M ≥ η

(2k−1)
n,ε,M =⇒

ξ
(2k−1)
n,ε,M ≤ ξ

(2k+1)
n,ε,M ≤ ξn,ε,M ≤ ξ

(2k+2)
n,ε,M ≤ ξ

(2k)
n,ε,M =⇒

V
(2k)
n,ε,M ≤ V

(2k+2)
n,ε,M ≤ Vn,ε,M ≤ V

(2k+3)
n,ε,M ≤ V

(2k+1)
n,ε,M

the statement of the proposition follows by induction. �

We may then prove the following corollary to Lemma 4:

Corollary 1. Consider Vn,ε,M , ξn,ε,M , ηn,ε,M and V
(k)
n,ε,M , ξ

(k)
n,ε,M , η

(k)
n,ε,M defined as in

Lemma 4 and VL and ξL given by (14) and (15), with (f, σ) unique solution of (2). Then,
when n→ ∞, ε→ 0, for any sub-linear operators L on L∞([0, T ]× R

d × R
d)

L|V (k)
n,ε,M − V̄ (k)| → 0 =⇒ L|Vn,ε,M − VL| → 0

L|ξ(k)n,ε,M − ξ̄(k)| → 0 =⇒ LEτp |ξn,ε,M − ξL| → 0

LEτ |η(k)n,ε,M − η̄(k)| → 0 =⇒ LEτ |ηn,ε,M − ηL| → 0

L|
∫

Rd×Rd

dzµ0
nφ(ξ

(k)
n,ε,M − ξ̄(k))| → 0 =⇒ LEτp |

∫

Rd×Rd

dzµ0
nφ(ξn,ε,M − ξL)| → 0.
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Proof. We denote here by φ+ = φ ∧ 0, φ− = −φ ∨ 0 resp. the positive and the negative
part of φ.

Let Fn,ε,M be one among the non negative functions Vn,ε,M , 1− ξn,ε,M , 1− ηn,ε,M ,
∫

dzµ0
nφ+ ξn,ε,M ,

∫

dzµ0
nφ− ξn,ε,M and F(k)

n,ε,M its approximant of order k (defined through

(31)). Let FL be its associate limit function (defined through (14) and (15)) and F(k) the
approximant of FL (defined through (28),(29) and (30)).

Because of (48), we have, for a given k ≥ 1:

F(2k)
n,ε,M − FL ≤ Fn,ε,M −FL ≤ F(2k+1)

n,ε,M − FL,
and therefore,

|Fn,ε,M − FL| ≤ |FL −F(2k)|+ |FL − F(2k+1)|+

|F(2k+1) −F(2k+1)
n,ε,M |+ |F(2k) − F(2k)

n,ε,M |.
Since ‖VL− V̄ (k)‖L∞([0,T ]×Rd) and ‖Eτp [ξL− ξ̄(k)]‖L∞([0,T ]×Rd×Rd) vanish in the k → ∞

limit (cf. (27)), and since Eτp [|ηL − η̄(k)|] ≤ |VL − V̄ (k)| (cf. Remark 1), the assertion is
proved. �

As already pointed out, Corollary 1 is valid in particular when L is an expectation
value operator.

4.4. Equivalence between (33) and (25).

4.4.1. Motion of light particles in a decaying medium: equivalence of the light particle
components of (33) and (25). We prove here a lemma which describes the behavior of the
light particle component of the system (33) in the n→ ∞ limit. In this lemma, we consider
a particle system such that the rate of death of the obstacles is given and independent from
the light particles component, while the light particles are instantaneously absorbed each
time they collide with an obstacle. The correspondent limit system consists of equations
which are coupled only in a very weak way and the parameters determining the asymptotics
are independent.

Let g(t, c) ∈ L1([0, T ];W 1,∞(Rd)) be a non negative function. The risk function V (t, c)
defined, for t ≤ T , by

V (t, c) =

∫ t

0

g(s, c)ds

is non decreasing as a function of t.
As in the previous sections, we define:

(49)

ηV (t, ch) = I{V (t,ch)<τh}

ξVn,ε,M (t, zi) = I
{xi(s)/∈

M⋃

k=1
Bε(ck)η

V (s,ck) ∀∈[0,t)}
.

We have then:

Lemma 5. Let g(t, c) ∈ L1([0, T ];W 1,∞(Rd)) and ξVn,ε,M be defined by (49). Consider the

sequence Z∞ ∈ (Rd × R
d)∞ and its associated sequence of empirical measures {µ0

n}∞n=1.
Assume µ0

n ⇀ f0 ∈ S and |v|µ0
n ⇀ |v|f0 ∈ S . Then ∀φ ∈ Cb(R

d × R
d),

lim
n→∞
ε→0

E
n

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξVn,ε,M (t, zi)φ(T
t(zi))−

∫

Rd×Rd

dxdvf(t, x, v)φ(x, v)

∣

∣

∣

∣

∣

2]

= 0
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(independently of the order of the limits), where (f, σ) is the (unique) solution of the
following system of partial differential equations:















∂tf + v · ∇xf = −|v|Cdσf
∂tσ = −gσ
f(0, x, v) = f0(x, v)
σ(0, x) = µ.

Remark 4. Of course, when V = V̄ (k−1), we have ξVn,ε,M = ξ̂
(k)
n,ε,M , so that obviously (by

the triangular inequality) Lemma 5 implies, when ε→ 0, n→ ∞, the limit En[|
∫

dxdvµ0
n(ξ̂

(k)
n,ε,M−

ξ̄(k))φ|] → 0.

Proof. According to the definition of maximal collision time (8), we have

ξVn,ε,M (t, zj) = 1 ⇐⇒
∀h : 1 ≤ h ≤M,

Tzj ,ch ∧ t ≥ infs∈R+{ηV (s, ch) = 0} ∧ t.

The function F (·, c) = inf{z : z = V −1(·, c)} is well defined and

inf{s ∈ R+; η
V (s, ch) = 0} = F (τch , ch).

Moreover, the maximal collision time Tzj,c is greater than t if and only if c does not belong
to the tube Tε(t, zj). It follows that

Pn
[

ξVn,ε,M (t, zj) = 1
]

= Pn
[

{1 ≤ h ≤M : Tzj,ch ∧ t ≥ F (τch , ch) ∧ t}
]

= E
n

[

M
∏

h=1

(

I{ch /∈Tε(t,zj)} + I{ch∈Tε(t,zj); Tzj,ch≥V−1(τch ,ch)∧t}

)

]

= exp

[

−µε
∫

Tε(t,zj)

dce
−V (Tzj,c,c)

]

.

Using (47), because of the weak convergence of µ0
n and |v|µ0

n, we get

(50) E
n

[

1

n

n
∑

i=1

ξVn,ε,M (t, zi)φ(T
t(zi))

]

n→∞,ε→0→
∫

Rd×Rd

dxdvf(t, x, v)φ(x, v),

the result being independent of the ordering of the limits.
From (50), we prove Lemma 5 as follows. We call

E1n = E
n









1

n2

n
∑

i,j=1
i6=j

ξVn,ε,M (t, zi)ξ
V
n,ε,M (t, zj)φ(T

t(zi))φ(T
t(zj))









E2n =

∫

Rd×Rd

dxdvf(t, x, v)φ(x, v)− E
n

[

2

n

n
∑

i=1

ξVn,ε,M (t, zi)φ(T
t(zi))

]

.

We write then:

E
n

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

ξVn,ε,M (t, zi)φ(T
t(zi))−

∫

Rd×Rd

dxdvf(t, x, v)φ(x, v)

∣

∣

∣

∣

∣

2]

=

E
n

[

1

n2

n
∑

i=1

ξVn,ε,M (t, zi)φ
2(T t(zi))

]

+ E1n + E2n

∫

Rd×Rd

dxdvf(t,x,v)φ(x,v)
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where E
n

[

1
n2

n
∑

i=1

ξVn,ε,M (t, zi)φ
2(T t(zi))

]

, when n→ ∞, obviously vanishes and, thanks

to (50),

E2n

∫

Rd×Rd

dxdvf(t, x, v)φ(x, v) → −
(∫

Rd×Rd

dxdvf(t, x, v)φ(x, v)

)2

.

As for E1n we observe that, for i 6= j:

E
n
[

ξVn,ε,M (t, zi)ξ
V
n,ε,M (t, zj)

]

=

exp

[

−µε
∫

Tε(t,zi)

dc e−V (Tzi,c,c) − µε

∫

Tε(t,zj)

dc e
−V (Tzj,c,c)

]

×

exp

[

µε

∫

Tε(t,zj)
⋂Tε(t,zi)

dc
(

I{c:Tzi,c≤Tzj,c}e
−V (Tzj,c,c) + I{c:Tzi,c>Tzj,c}e

−V (Tzi,c,c)
)

]

.

We write 1 = I| sinαij |≥εβ + I| sinαij |<εβ , for β <
1
d
. Then, using (46) and [Tε(t, zj) ∩

Tε(t, zi))]L ≤ K̄µε
d−1 (always valid for intersections of flow tubes, as shown also in the

proof of Lemma 2) we have:

1

n2

n
∑

i,j=1
i6=j

I| sinαij |<εβE
n
[

ξVn,ε,M (t, zi)ξ
V
n,ε,M (t, zj)

]

≤ 1

n2

n
∑

i,j=1
i6=j

eµε[Tε(t,zj)
⋂Tε(t,zi)]LI| sinαij |<εβ ≤ Kµε

ζ + o(a−dn ).

As for the remaining part (since I| sinαij |≥εβ = 1− I| sinαij |<εβ ), from (46) and Lemma
2 we get:

1

n2

n
∑

i,j=1
i6=j

φ(T t(zi))φ(T
t(zj))I| sinαij |>εβE

n
[

ξVn,ε,M (t, zi)ξ
V
n,ε,M (t, zj)

]

=

o(a−dn ) +O(εζ) +
1

n2

n
∑

i,j=1

φ(T t(zi))φ(T
t(zj))×

× exp

[

−µε
(

∫

Tε(t,zi)

dce−V (Tzi,c,c) +

∫

Tε(t,zj)

dce
−V (Tzj,c,c)

)

+Ktε
1−dβ

]

since in this case µε[Tε(t, zj)
⋂ Tε(t, zi))]L = O(ε1−dβ) → 0, so that (using (47) once more)

E1n →
(∫

Rd×Rd

dxdvf(s, x, v)φ(x, v)

)2

and Lemma 5 is proved. �

We emphasize again that all results in this Lemma are independent of the ordering of
the limits n→ ∞, ε→ 0.
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4.4.2. Equivalence of the obstacle components of (33) and (25). Lemma 5 describes the
asymptotic average behavior of the light particle component of the system (33). The
asymptotic average behavior of its risk function, for an obstacle located in c, should
be equivalent to the behavior associated to the risk (28). This fact is described by the
proposition proved in this section and its corollary (notice that the risk function of a given
obstacle with position ch, differently from the generic risk function associated to a given
position, is defined only if there exists an obstacle in ch ). The second proposition will be
useful in the proof of equivalence of (33) to (31), in the next section.

It will be convenient to define the following stochastic functions. For z = (x, v) ∈
R
d × R

d:

(51) ρ(k)ε (t, c, z) = 1− I{c∈Tε(t,z)} I{V̄ (k)(Tz,c,c)<τc}

ρ(k)(t, z) =

∫ t

0

du

∫

∂B1(0)

|v · ω|dω exp
(

−V̄ (k)(u, x(u))
)

Qijn (s, t, c) = qn(xi(s)− c)qn(xj(t)− c)

Rij (k)
ε (s, t, c) = Eτc [ρ

(k)
ε (s, c, zi)ρ

(k)
ε (t, c, zj)].

Given these definitions, a fundamental tool in all estimates in this section is the fol-
lowing lemma:

Lemma 6. Take a sequence Z∞ ∈ (Rd × R
d)∞ and its associated sequence of empirical

measures {µ0
n}∞n=1. Take a sequence {Λn}∞n=1 of bounded, Lebesgue measurable sets such

that Bn ⊂ Λn (with Bn defined in (9)) and assume µ0
n ⇀ f0 ∈ S and |v|µn0 ⇀ |v|f0 ∈ S .

For 0 ≤ s ≤ t, we have

(52)

1

[Λn]L

∫

Λn
dcRij (k)

ε (t, s, c) = 1− εd−1

[Λn]L
[ρ(k)(t, zi) + ρ(k)(s, zj)(1− δij)]

+
R

(2)
ε (zi, zj , t, s)

[Λn]L

where, for each ζ ∈ (0, 1
2
− 1

2d
),

(53)
1

n

n
∑

i=1

‖R(2)
ε (zi, zj)‖L∞([0,T ]×[0,T ]) ≤ Kr1ε

d−1+ζ |vj |+ εd−1[o(a−dn )]

and

(54) lim
ε→0

ε1−d
1

n2

n
∑

i,j=1

‖R(2)
ε (zi, zj)‖L∞([0,T ]×[0,T ]) = 0.

Proof. Formula (52) follows, through simple calculations, from (47), expanding the expec-

tation value in the definition of Rij (k)
ε , given in (51), and writing

∫

Tε(t,z)

dce−V̄
(k)(Tz,c,c) = εd−1

[

ρ(k)(t, z) + Cd|v|
∫ t

0

duφε(u, x(u))

]

;

doing this, we obtain for the remainder

|R(2)
ε (zi, zj , t, s)| ≤ εd−1Cd(|vi|+ |vj |)‖ϕε‖L∞([0,T ]×Rd)

+[Tε(s, zj) ∩ Tε(t, zi)]L
(55)

where ‖ϕε‖L∞([0,T ]×Rd) = O(ε) → 0.
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We use then the bound (55) to obtain (53) and (54). In the single sum in (53), so
as in the double sum in (54), thanks to the weak convergence of |v|µ0

n, the contribution

of the first term on the right-hand side of (55) is O(εd). As for the contribution of
[Tε(s, zj)∩Tε(t, zi)]L, we bound the Lebesgue measure of the intersection of the tubes using
Lemma 2; then, thanks to the weak convergence of µ0

n toward the (sufficiently) regular
function f0, we can use Lemma 3 and (46), with β < 1

d
, to estimate the contribution

coming from the grazing collisions (being the remaining part in both sums o(εd−1)). So,
from Lemma 3 we get straightforwardly (53) and, from (46), we get the bound:

(56)
1

n2

n
∑

i,j=1

‖R(2)
ε (zi, zj)‖L∞([0,T ]×[0,T ]) ≤ KRε

d−1[εζ + o(a−dn )],

and, when ε→ 0, we obtain (54).
�

We may now prove the main proposition of this section:

Proposition 1. Consider the stochastic variables defined in (33) and (28) and the se-
quences of positive real numbers {an}∞n=1 and {εn}∞n=1 satisfying conditions (18) and (19),
i.e. lim

n→∞
adn n

−κ = 0, for some κ ∈ (0, 1
2
), and lim

n→∞
adnε

ζ = 0, for some ζ ∈ (0, 1
2
− 1

2d
).

Then, P-almost everywhere w.r.t. sequences of initial data Z∞,

lim
n→∞

[Λn]L sup
t∈[0,T ]

E
n

[

∣

∣

∣Â
(k)
n,ε,M (t, c)− V̄ (k)(t, c)

∣

∣

∣

2

IM≥1

]

= 0

where {Λn} is an increasing sequence of bounded Lebesgue measurable sets such that Bn ⊂
Λn (with Bn defined in (9)) and lim

n→∞
Λn = R

n.

Proof. We expand the square power in the expectation value and we calculate the value
of the three resulting terms.

Because of definition (51), using (40), we can write:

ξ̂
(k−1)
n,ε,M (s, zj) =

M
∏

h=1

ρ(k−2)
ε (s, ch, zj).

We substitute this expression in the definition of Â
(k)
n,ε,M , in system (33), and we obtain

(resumming on the Poissonian variables):

[Λn]LE
n

[

∣

∣

∣Â
(k)
n,ε,M (t, c)

∣

∣

∣

2

I{M≥1}

]

=

1

n2

n
∑

i,j=1

∫

[0,t]2
ds1 ds2

(

exp

[

µε[Λn]L
(

∫

Λn

dc
Rij (k−2)
ε (s1, s2, c)

[Λn]L
− 1
)

]

− e−µε[Λn]L

)

×

×
∫

Λn
dcQijn (s1, s2, c)Rij (k−2)

ε (s1, s2, c)

∫

Λn
dc

Rij (k−2)
ε (s1, s2, c)

[Λn]L

.

Then, using Lemma 6, we have:

(57) [Λn]LE
n

[

∣

∣

∣
Â

(k)
n,ε,M (t, c)

∣

∣

∣

2

I{M≥1}

]

=

1

n2

n
∑

i,j=1

∫

[0,t]2
ds1 ds2 e

−µ[ρ(k−2)(s1,zi)+ρ
(k−2)(s2,zj)(1−δij )]

×(1 + ε1−dRij(3)ε )

[∫

Λn

dcQijn (s1, s2, c)Rij (k−2)
ε (s1, s2, c)

]
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where R
ij(3)
ε = R

(3)
ε (s1, s2, zi, zj) ≤ KtR

(2)
ε (s1, s2, zi, zj) is such that

ε1−d

n2

n
∑

i,j=1

‖Rij(3)ε ‖L∞[0,T ]×[0,T ] ≤ KR3(ε
ζ + o(a−dn )).

We recall that, using Lemma 6 and since q ∈ S (Rd), we have, P-almost everywhere

w.r.t. sequences of initial data Z∞ and for any D ⊂ R
d, the bounds

(58)
ε1−d

n2

n
∑

i,j=1

‖R(3)
ε ‖L∞[0,T ]×[0,T ]

∫

D

dcQijn (s, t, c) ≤ KqΘa
d
n‖q‖∞(εζ + o(a−dn )),

1

n2

n
∑

i,j=1

∫

Tε(t,zi)

dcQijn (s, t, c) ≤ Cdtε
d−1(adn‖q‖∞)

K1

n

n
∑

i=1

|vi|.

Therefore, using the definition of Rij (k−2)
ε , given in (51), we get the equality

[Λn]LE
n

[

∣

∣

∣Â
(k)
n,ε,M (t, c)

∣

∣

∣

2

I{M≥1}

]

= R(4)
ε (t)+

1

n2

n
∑

i,j=1

∫

[0,t]2
ds1ds2e

−µ[(ρ(k−2)(s1,zi)+ρ
(k−2)(s2,zj)(1−δij )]

∫

Λn

dcQijn (s1, s2, c)

where

sup
t∈[0,T ]

R(4)
ε (t) ≤ 4KqΘT

2‖q‖∞adn(εζ + o(a−dn )) +O(εd−1adn) → 0,

since lim
n→∞

adnε
ζ = 0 with ζ ∈ (0, 1

2
− 1

2d
).

Let z = (x, v) and z̃ = (y,w). Define the sequence of measurable sets Λsn[z] = {a ∈ R
d :

∃b ∈ Λn s.t. a = b− x(s)} and the sequence of functions Q∗
Λs
n
(z, x) = (IΛs

n[z]qn) ∗ qn(x).
Since q is a radial function, we have the following equality:

1

n2

n
∑

i,j=1

e−µ[(ρ
(k−2)(s1,zi)+ρ

(k−2)(s2,zj)(1−δij )]
∫

Λn

dcQijn (s1, s2, c) =

∫

(Rd×Rd)2
dzdz̃[µ0

n ⊗ µ0
n](z, z̃)e

−µ[ρ(k−2)(s1,z)+ρ
(k−2)(s2,z̃)]Q∗

Λ
s2
n
(z̃, x(s1)− y(s2))

+
1

n

∫

Rd dzµ
0
n(z)e

−µρ(k−2)(s1,z)[1− e−µρ
(k−2)(s2,z)]Q∗

Λ
s2
n
(z̃, x(s1)− y(s2)),

where the last term is bounded by

2

n

∫

dzµ0
n(qn ∗ qn)(x(s1)− y(s2)) ≤ 2

adn
n

‖q‖∞Θ.

In the first term we can use Fubini’s theorem, rewriting
∫

(Rd×Rd)2
dzdz̃[µ0

n ⊗ µ0
n](z, z̃)e

−µ[ρ(k−2)(s1,z)+ρ
(k−2)(s2,z̃)]Q∗

Λ
s2
n
(z̃, x(s1)− y(s2)) =

∫

Rd

da

∫

(Rd×Rd)2
dzdz̃[µ0

n ⊗ µ0
n](z, z̃)

[

e−µρ
(k−2)(s1,z)qn(a− x(s1))

]

×

×
[

e−µρ
(k−2)(s2,z̃)qn(a− y(s2))IΛs2

n [z̃](a− y(s2))
]

and, because of (42), we can use Lebesgue’s dominated convergence theorem to pass to
the limit into the integral.
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{Λn}∞n=1 is an increasing sequence of Lebesgue measurable set and IΛn → 1 in L∞(Rd).

From the P-a.e. weak convergence ⊗Qk=1qnµ
0
n ⇀ ⊗Qk=1δ0f0 and the L∞ convergence of

IΛs
n[y], we have

∫

[0,t]2×(Rd×Rd)2
ds1ds2dzdz̃[µ

0
n ⊗ µ0

n](z, z̃)×

× e−µ[ρ
(k−2)(s1,z)+ρ

(k−2)(s2,z̃)]Q∗
Λ
s2
n
(z̃, x(s1)−y(s2))

→
∫

Rd dc
∣

∣

∣
V̄ (k)(t, c)

∣

∣

∣

2

,

so that we obtain finally

lim
n→∞

1

n2

n
∑

i,j=1

∫

[0,t]2×Λn

ds1 ds2 dcQ
ij
n e

−µ[ρ(k−2)(s2,zi)+ρ
(k−2)(s1,zj)(1−δij)] =

∫

Rd

dc
∣

∣

∣
V̄ (k)(t, c)

∣

∣

∣

2

.

We compute now the double product and, because of the definitions of ρ
(k)
ε , Λn and of

the boundedness of V̄ (k), we get :

[Λn]LE
n
[

Â
(k)
n,ε,M (t, c)V̄ (k)(t, c)I{M≥1}

]

= O(adnε
d−1)+

1
n

n
∑

j=1

∫ t

0
ds1

(

exp
[

−µε
∫

Tε(s1,zj)
dc e

−V̄ (k−2)(Tzj,c,c)
]

×
∫

Λn
dcV̄ (k)(t, c)qn(xj(s1)− c)

)

.

Using (47), P-a.e. with respect to Z∞, we get:

[Λn]LE
n
[

Â
(k)
n,ε,M (t, c)V̄ (k)(t, c)I{M≥1}

]

=

1

n

n
∑

i=1

∫ t

0

ds1e
−µρ(k−2)(s1,zi)

∫

Λn

dc V̄ (k)(t, c)qn(xi(s1)− c) + o(ε)

so that, because of the P-a.e. weak convergence of qnµ
0
n and the hypothesis on f0, we

obtain:

−2 lim
n→∞

[Λn]LE
n
[

Â
(k)
n,ε,M (t, c)V̄ (k)(t, c)I{M≥1}

]

= −2

∫

Rd

dc
∣

∣

∣
V̄ (k)(t, c)

∣

∣

∣

2

.

For the last term we have:

[Λn]LE
n
[

|V̄ (k)(t, c)|2I{M≥1}
]

= (1− e−µε[Λn]L)

∫

Λn

dc
∣

∣

∣
V̄ (k)(t, c)

∣

∣

∣

2

,

whose limit is
∫

Rd dc
∣

∣

∣
V̄ (k)(t, c)

∣

∣

∣

2

because of the L∞ convergence of IΛn .

Hence, we have established Proposition 1. �

In addition to Proposition 1, we shall need its corollary

Corollary 2. Under the same hypothesis as Proposition 1, for the obstacles life functions
defined in (30) and in (33) and for all φ ∈ CK(Rd), P-almost everywhere w.r.t. sequences
of initial data Z∞:

lim
n→∞

E
n[εd−1

M
∑

i=1

Isuppφ(ci)|η̂n,ε,M (t, ci)− η̄(t, ci)|] = 0.



PARTICLE MODEL FOR COUPLED PDE’S 25

Proof. Since for all δ > 0 (cf. Remark 1)

E
n[εd−1

M
∑

i=1

Isuppφ(ci)|η̂n,ε,M (t, ci)− η̄(t, ci)|] ≤

1

δ
E
n[εd−1MIsuppφ(c)|V̄ (k)(t, c)− Â

(k)
n,ε,M (t, c)|] + 2δµ |suppφ ∩ Λn| ,

the proof follows easily bounding the first term on the right-hand side by Cauchy-Schwarz’s
inequality and using the identity

E
n[(εd−1M)2Isuppφ(c)] = µ2[Λn]L[suppφ ∩ Λn]L

and Proposition 1. �

We shall need moreover a modified form of the proposition, whose proof will be only
sketched, being essentially the same as the one of Proposition 1

Proposition 2. Under the same hypothesis as Proposition 1,P-almost everywhere w.r.t.
sequences of initial data Z∞:

lim
n→∞

sup
1≤h≤n

(

1

|vh|
E
n
[

|Â(k)
n,ε,M − V̄ (k)|2(Tzh,c1 , c1)MIc1∈Tε(T,zh)

]

)

= 0.

Proof. The proof is obtained along the same line as the proof of Prop. 1, since Tzh,c1
is independent of the stochastic times τ∞, is bounded by T and all quantities involved
depend on Tzh,c1 in a simple way, so to allow to get estimates uniform in zh.

Using, instead of (58), the estimates

ε1−d

n2

n
∑

i,j=1

‖Rij(3)ε ‖L∞[0,T ]×[0,T ]Q
ij
n (s, t, c) ≤ Kra

d
n(ε

ζ + o(a−dn )),

1

n2

n
∑

i,j=1

∫

Tε(t,zh)∩Tε(t,zi)

dcQijn (s, t, c) ≤ KQ|vh|εd−1adn(ε
ζ + o(a−dn ))

which are a consequence of Lemma 6 and of the bounds (42), (43), we perform the change
of variables (47) and we get:

1

|vh|
E
n

[

M
∣

∣

∣
Â

(k)
n,ε,M (Tzh,c1 , c1)

∣

∣

∣

2

Ic1∈Tε(T,zh)

]

= O(adn(ε
ζ + o(a−dn )))+

µCd
n2

n
∑

i,j=1

∫ T

0

ds

∫

[0,s]2
ds1ds2Q

ij
n (s1, s2, xh(s))e

−µ[ρ(k−2)(s1,zi)+ρ
(k−2)(s2,zj)],

while for the double product, we have

1

|vh|
E
n
[

MI{c1∈Tε(T,zh)}Â
(k)
n,ε,M (t, c1)V̄

(k)(t, c1)
]

= O(ad+1
n ε)+

µCd
n

n
∑

j=1

∫ T

0

dsV̄ (k)(s, xh(s))

∫ s

0

ds1qn(xj(s1)− xh(s)) exp[−µρ(k−2)(s1, zj)].

Of course

1

|vh|
E
n

[

M
∣

∣

∣V̄
(k)(t, c1)

∣

∣

∣

2

Ic1∈Tε(T,zh)

]

=µCd

∫ T

0

ds
∣

∣

∣V̄
(k)(s, xh(s))

∣

∣

∣

2

+O(ε).

Then, observing that, thanks to the P-a.e. weak convergence of qnµ
0
n, the quantity

1

|vh|
E
n
[

|Â(k)
n,ε,M (Tzh,c1 , c1)− V̄ (k)(Tzh,c1 , c1)|2MIc1∈Tε(T,zh)

]

vanishes for all fixed h ∈ N, uniformly in zh because of the choice of the initial data (cf.
Remark 9 in Appendix 6.2) and since all error estimates in this section are themselves
uniform in zh, the Proposition is proved. �
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4.5. Equivalence between (33) and (31): the O,P-frozen system. The last step
to complete the proof of our main theorem is to estimate the distance between the par-
ticle system (33) and the particle system (31). The difficulty, here, originates from the
complicate dependence of the life functions, defining both systems, on the stochastic con-
figuration: in particular, this dependence compels us to use (24) for estimating differences
of life functions for both species, preventing the use of any of its simplified forms, men-
tioned in Remark 1.

Since the system (33) is equivalent in the large particles number limit to the system (25),
a mean–field system, what should happen for systems (33) and (31) to be equivalent in the
limit is that (31) is somehow stable (in the large particles number limit) w.r.t. deletion (or
addition) of a finite number of particles of the two species. This is in fact the case, as we
shall show in the first Lemma in this section. Then, deleting light particles and obstacles
in a suitable way from system (31), we shall be able to simplify the dependence on the
stochastic configuration in the estimates and finally to prove the asymptotic equivalence
between (33) and (31).

Let O and P be finite subsets of N and k the level of approximation. In this section,
we introduce a sequence of particle systems where the obstacles with labels in O (resp.
light particles with labels in P) have no interaction with the light particles (resp. with
the obstacles). These systems will give us a tool to estimate the required distance.

For a given configuration of obstacles, cM = (c1, . . . , cM ) and a particle initial datum
zn = (z1, . . . , zn), fix the sets of integers O ⊆ {1, . . . ,M}, P ⊆ {1, . . . , n} and define, for
integers M,k ≥ 1:

(59)

γ
(0,∅,P)
n,ε,0 (t, zj) = γ

(k,∅,P)
n,ε,0 (t, zj) = I{j/∈P},

γ
(0,O,P)
n,ε,M (t, zj) = I{j/∈P},

δ
(0,O,P)
n,ε,M (t, cℓ) = I{ℓ/∈O},

γ
(k,O,P)
n,ε,M (t, zj) = I

{xj(s)/∈
M⋃

h=1
Bε(ch)δ(k−1,O,P)(ch,s) ∀s∈[0,t)}

I{j/∈P},

δ
(k,O,P)
n,ε,M (t, cℓ) = I{A(k,O,P)

n,ε,M
(t,cℓ)≤τcℓ}

I{ℓ/∈O},

A
(k,O,P)
n,ε,M (t, cℓ) =

1

n

n
∑

i=1

∫ t

0
qn(xi(s)− cℓ)γ

(k−1,O,P)
n,ε,M (s, zi)ds.

Remark that A
(k,O,P)
n,ε,M (t, cℓ) does not depend on τch , xj , vj for any h ∈ O and any j ∈ P ,

and it does not depend on ch, h ∈ O, whenever ℓ 6= h. Moreover, for (O,P) = (∅, ∅), the
system defined above is the k-th level approximation system defined in (31), Section 3.2,
i.e.

A
(k,∅,∅)
n,ε,M = V

(k)
n,ε,M , γ

(k,∅,∅)
n,ε,M = ξ

(k)
n,ε,M , δ

(k,∅,∅)
n,ε,M = η

(k)
n,ε,M .

4.5.1. Proof of the equivalence between (33) and (31) using the O,P-frozen system. Using
the bound (41), we can use the same strategy as in [NOR].

To shorten the notation, we define in this paragraph, for sets O,O1 ⊆ {1, . . . ,M} and
P ,P1 ⊆ {1, . . . , n}:

AnM(k)
O,P (O1,P1) =

∣

∣

∣
A

(k,O∪O1,P∪P1)
n,ε,M −A

(k,O,P)
n,ε,M

∣

∣

∣
,

for M = 1, . . .,
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IO,P,0
ε,t,zi

(cℓ) = 0

IO,P,M
ε,t,zi

(cℓ) = MI{cℓ∈Tε(t,zi)}IO⊂{1,...,M}IP⊂{1,...,n},

and IMε,t,zi = I∅,∅,M
ε,t,zi

.
We prove the following lemmas:

Lemma 7. Consider the stochastic variables defined in (59). Then, under the same
hypothesis as in Proposition 1, for all integers k ≥ 1, p ≥ 1 and for all O1,P1 ⊂ N s.t.
0 < #O1,#P1 < ∞, P-almost everywhere w.r.t. sequences of initial data Z∞, we have
the limits

(60)

lim
n→∞

1

np

∑

1≤j1≤n
,...,

1≤jp≤n

sup
zj0∈Rd×Rd

1

|vj0 |
E
n

[

∫

[0,T ]p

p
∏

h=1

dsjhqn(xjh(sjh)− cih)I{cih∈Tε(sjh−1
,zjh−1

)}

×IO∪O1,P∪P1,M
ε,sjp ,zjp

(cℓ)M
#{i1,...,ip,ℓ}−1AnM(k)

O,P (O1,P1)(Tzjp ,cℓ , cℓ)

]

= 0

lim
n→∞

sup
zj0∈Rd×Rd

1

|vj0 |
E
n
[

IO∪O1,P∪P1,M
ε,sj0 ,zj0

(cℓ)AnM(k)
O,P (O1,P1)(Tzj0 ,cℓ , cℓ)

]

= 0

for all i1, . . . , ip ∈ O ∪O1 and sj0 < T , zj0 = (xj0 , vj0). Limits (60) are valid also in the
case where T replaces Tzj,cℓ .

Remark 5. This lemma shows that particle systems obtained from (31) by deleting a finite
number of light particles and/or obstacles are equivalent, in the prescribed asymptotics.

Proof. The proof is obtained by induction.
For k = 1 and p ≥ 0, we have

AnM(1)
O,P (O1,P1)(Tzjp ,cℓ , cℓ) ≤

1

n

∑

h∈P1

∫ Tzjp ,cℓ

0

dsqn(xh(s)− cℓ).

and the second limit in (60) follows straightforwardly, since

IO∪O1,P∪P1,M
ε,sjp ,zjp

(cℓ)AnM(1)
O,P (O1,P1)(Tzjp ,cℓ , cℓ) ≤

IO∪O1,P∪P1,M
ε,sjp ,zjp

(cℓ)
adn
n

#P1‖q‖∞T

and E
n[IO∪O1,P∪P1,M

ε,sjp ,zjp
(cℓ)] ≤ µCdT |vjp |, for p ≥ 0.

Denoting N = #{i1, . . . , ip, ℓ}, we build a partition of labels by grouping them in the
following way.

We start from the label ℓ and we denote as i
k
(1)
1

, . . . , i
k
(1)
w1

, with k
(1)
1 < k

(1)
2 < . . . < k

(1)
w1 ,

the w1 labels among the p + 1 labels i1, . . . , ip, ℓ having common value ℓ; notice that

k
(1)
w1 = p + 1, being cip+1 = cℓ the obstacle associated to the light particle label jp+1.

We then consider if1 = max{is : is 6= ℓ} and we call i
k
(2)
1

, . . . , i
k
(2)
w2

the w2 labels having

common value if1 , always using the ordering k
(2)
1 < k

(2)
2 < . . . < k

(2)
w2 (i.e., k

(2)
w2 = f1). We

build in this way N groups of labels and we denote q̄ the group label such that k
(q̄)
1 = 1 .
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We can write then

(61)
1

np

∑

1≤j1≤n
,...,

1≤jp≤n

E
n

[

∫

[0,T ]p

p
∏

h=1

dsjhqn(xjh(sjh)− cih )I{cih∈Tε(sjh−1
,zjh−1

)}

×IO∪O1,P∪P1,M
ε,sjp ,zjp

(cℓ)M
#{i1,...,ip,ℓ}−1 1

n

∑

jp+1∈P1

∫ Tzjp ,cℓ

0

dsqn(xjp+1(s)− cℓ)



 ≤

E
n
c [M

N ]

[Λn]N
1

np+1

∑

j
k
(1)
w1

∈P1

∑

1≤j
k
(1)
h

≤n

h=1,...,w1−1

∑

1≤j
k
(2)
h

≤n

h=1,...,wq

. . .
∑

1≤j
k
(N)
h

≤n

h=1,...,wN

N
∏

q=1

∫

Λn

dci
k
(q)
wq

∫

[0,T ]wq

wq
∏

h=1






dsj

k
(q)
h

qn(xj
k
(q)
h

(sj
k
(q)
h

)− ci
k
(q)
wq

)I
{ci

k
(q)
wq

∈
wq⋂

h=1
Tε(sj

k
(q)
h

−1

,zj
k
(q)
h

−1

)}







We use then the bound

I
{ci

k
(q)
wq

∈
wq⋂

h=1
Tε(sj

k
(q)
h

−1

,zj
k
(q)
h

−1

)}
≤ I{ci

k
(q)
wq

∈Tε(sj
k
(q)
1 −1

,zj
k
(q)
1 −1

)}.

so that, thanks to (42), we have:

(61) ≤ E
n
c [M

N ]

[Λn]N

(

#P1‖q‖∞T a
d
n

n

)

N
∏

q=1

(K1T )
wq−1

nN−1

∫

ΛN
n

N
∏

q=1

dci
k
(q)
wq

{

I{ci
k
(q̄)
wq̄

∈Tε(sj0 ,zj0 )}

N
∏

q=1
q 6=q̄









∑

1≤j
k
(q)
1

≤n

∫

[0,T ]

dsj
k
(q)
1

−1
qn(xj

k
(q)
1

−1
(sj

k
(q)
1

−1
)− ci

k
(q)
1

−1
)I{ci

k
(q)
wq

∈Tε(sj
k
(q)
1 −1

,zj
k
(q)
1 −1

)}























and, using (43) and E
n
c [M

N ] ≤ K(µε[Λn])
N we get finally:

(61) ≤ K

(

#P1‖q‖∞T a
d
n

n

)(

µTCdK2

K1

)N
(TK1)

p+1

K2
|vj0 |

so that (60) is valid for k = 1.
For k = 2, since

IO∪O1,P∪P1,M
ε,sjp ,zjp

(cℓ)AnM(2)
O,P (O1,P1)(Tzjp ,cℓ , cℓ) ≤

IO∪O1,P∪P1,M
ε,sjp ,zjp

(cℓ)





1

n

∑

h∈P1

∫ Tzjp ,cℓ

0

dsqn(xh(s)− cℓ)+

1

n

∑

h/∈P1

∫ Tzjp ,cℓ

0

dsqn(xh(s)− cℓ)
∑

m∈O
I{cm∈Tε(sh,zh)}



 ,

in the same way (using Lemma 2 and Lemma 3) we get the second limit in (60) and

(61) ≤ KD

(

#P1
adn
n

+#O(adnε
ζ + εd−1)

)(

µTCdK2

K1

)N
(TK1)

p+1

K2
|vj0 |

(with KD depending on ‖q‖∞, T , K1, K2, Cd).
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Let assume then that (60) is true for k − 1, with k > 2. From the definition of

A
(k,O,P)
n,ε,M (Tzjp ,cℓ , cℓ) and the bound (41) we have, for p ≥ 0:

(62)

IO∪O1,P∪P1,M
ε,sjp ,zjp

(cℓ)AnM(k)
O,P (O1,P1)(Tzjp ,cℓ , cℓ) ≤ IO∪O1,P∪P1,M

ε,sjp ,zjp
(cℓ)×







(

#P1‖q‖∞T a
d
n

n

)

+
1

n

∑

jp+1 /∈P

∫ T

0

dsqn(xjp+1(s)− cℓ)×

[

M
∑

m=1

I{cm∈Tε(s,zjp+1
)}|δ(k−2,O,P)

n,ε,M − δ
(k−2,O∪O1,P∪P1)
n,ε,M |(Tzjp+1

,cm , cm)

]}

,

and from Lemma 1, for δ > 0,

(63) Eτm

[
∣

∣

∣
δ
(k−2,O∪O1,P∪P1)
n,ε,M − δ

(k−2,O,P)
n,ε,M

∣

∣

∣
(Tzjp+1

,cm , cm)
]

≤ 2δ+

1

δ
Eτm

[

AnM(k−2)
O,P (O1 ∪ {m},P1 ∪ {jp+1})(Tzjp+1

,cm , cm)
]

+
1

δ
Eτm

[

AnM(k−2)
O∪O1,P∪P1

({m}, {jp+1})(Tzjp+1
,cm , cm)

]

.

When substituting (63) through (62) into the expectation values in formula (60), the
contribution to the expectation value coming from the first term on the righthand side of
(63) is bounded by 2KIδ, where KI = KI(T,Cd, µ,K1,K2, p,#{i1, . . . , ip, ℓ}), while the
contribution to (60) due to the last terms in (63) vanish asymptotically because of the
inductive hypothesis. The remaining term coming from (62) is O(adnn

−1).
The last part of the Lemma is proved replacing Tzj,cℓ by T . �

Lemma 8. Consider the stochastic variables defined in (33) and (59). Under the same
hypothesis as in Proposition 1, ∀k ≥ 1, ∀O,P ⊂ N such that 0 ≤ #O,#P <∞, P-almost
everywhere w.r.t. sequences of initial data Z∞,

(64) lim
n→∞

sup
1≤u≤n

1

|vu|
E
n[IO,P,M

ε,T,zu
(cℓ)|A(k,O,P)

n,ε,M − Â
(k)
n,ε,M |(Tzu,cℓ , cℓ)|

]

= 0.

Proof. We can prove Lemma 8 by induction.
For k = 1 and 1 ≤ u ≤ n we have:

1

|vu|
E
n[IO,P,M

ε,T,zu
(cℓ)|A(1,O,P)

n − Â(1)
n |(Tzu,cℓ , cℓ)] ≤ (#P)CdT

2µ‖q‖∞ adn
n
,

and for k = 2 (using Lemma 3)

1

|vu|
E
n[IO,P,M

ε,T,zu
(cℓ)|A(2,O,P)

n − Â(2)
n |(Tzu,cℓ , cℓ)] ≤ Km(#P a

d
n

n
+#Oεd−1 + adnε

ζ)

so that (64), because of (18) and (19), is valid (Km depends on ‖q‖∞, T , µ, K2, Cd).

Let assume (64) is valid for a given k > 1 and ∀O,P .
We shall use the notation

∑

j /∈P
=

∑

1≤j≤n
j/∈P

and
∑

h/∈O
=

∑

1≤h≤M
h/∈O

.

From the definitions (59) and (33) we obtain

1

|vu|
E
n[IO,P,M

ε,T,zu
(cℓ)|A(k,O,P)

n,ε,M − Â
(k)
n,ε,M |(Tzu,cℓ , cℓ)] ≤ (#P)CdT

2µ‖q‖∞ adn
n

+

E
n
[IO,P,M

ε,T,zu
(cℓ)

|vu|n
∑

j /∈P

∫ T

0

dsqn(xj(s)− cℓ)
∣

∣

∣
ξ̂(k−1) − γ(k−1,O,P)

∣

∣

∣
(s, zj)

]

.
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Since both ξ̂(k−1)(s, xj , vj) and γ
(k−1,O,P)(s, xj , vj) are of the form (40), using (41) and

then Lemma 2 and Lemma 3, P-almost everywhere w.r.t. sequences of initial data Z∞
we get (we omit the time integral):

(65)
1

n

∑

j /∈P
E
n

[

IO,P,M
ε,T,zu

(cℓ)

|vu|
qn(xj(s)− cℓ)

∣

∣

∣ξ̂
(k−1) − γ(k−1,O,P)

∣

∣

∣ (s, zj)

]

≤

TCdµ‖q‖∞adn
[

TCd(#O)(
1

n

n
∑

i=1

|vi|) εd−1 + 3Kc(ε
ζ + o(a−dn ))

]

+

∑

j /∈P
E
n





IO,P,M
ε,T,zu

(cℓ)

n|vu|
qn(xj(s)−cℓ)

∑

h/∈O∪{ℓ}
Ich∈Tε(s,zj)

∣

∣

∣η̄
(k−2)−δ(k−1,O,P)

n,ε,M

∣

∣

∣(Tzj,ch , ch)



.

We use then lemma 1 and we write, for δ > 0:

(66) Eτℓ

[∣

∣

∣η̄
(k−2) − δ

(k−1,O,P)
n,ε,M

∣

∣

∣ (Tzj,ch , ch)
]

≤ 2δ+

Eτℓ

δ

[{∣

∣

∣
V̄ (k−2) − A

(k−2,O∪{ℓ},P∪{j})
n,ε,M

∣

∣

∣
+AnM(k−2)

O,P ({ℓ}, {j})
}

(Tzj,ch , ch)
]

,

since A
(k−2,O∪{ℓ},P∪{j})
n,ε,M (Tzj ,ch , ch) does not depend on τℓ.

The contribution to the right-hand side of (65) coming from the last term in the last
expectation value of (66) vanishes in the limit thanks to Lemma 7 and the contribution
coming from the first term is bounded by 2δ(Ka +Kba

d
nε
ζ + o(a−dn )) for each δ > 0.

We evaluate now the remaining term, recalling that h 6= ℓ.

When h 6= ℓ, since
∣

∣

∣
V̄ (k−2) − A

(k−2,O∪{ℓ},P∪{j})
n,ε,M

∣

∣

∣
(Tzj ,ch , ch) is independent of cℓ, we

have (again omitting the time integral):

E
n









IO,P,M
ε,T,zu

(cℓ)

|vu|n
∑

j /∈P
h/∈O∪{ℓ}

qn(xj(s)−cℓ)Ich∈Tε(s,zj)

∣

∣

∣
V̄ (k−2)−A(k−2,O∪{ℓ},P∪{j})

n,ε,M

∣

∣

∣
(Tzj,ch , ch)









≤ µε[Λn]L
n|vu|

∑

j /∈P
E
n[Ic∈Tε(T,zu)qn(xj(s)− c)]

× E
n
[

IO,P,M
ε,s,zj (c1)

∣

∣

∣
V̄ (k−2) − A

(k−2,O∪{ℓ},P∪{j})
n,ε,M

∣

∣

∣
(Tzj ,c1 , c1)

]

.

By the triangular inequality, we may then bound the time integral in [0, T ] of this
quantity, P-almost everywhere w.r.t. sequences of initial data Z∞, by the sum of:

µε[Λn]L
n|vu|

∑

j /∈P

∫ T

0

dsEn[I{c∈Tε(T,zu)}qn(xj(s)− c)]

×E
n
[

IO,P,M
ε,s,zj (c1)

∣

∣

∣
V̄ (k−2) − Â

(k−2)
n,ε,M

∣

∣

∣
(Tzj,c1 , c1)

]

≤ KV

√

sup
1≤u≤n

En

[

1
|vu|IMε,T,zu(c1)

∣

∣

∣
V̄ (k−2) − Â

(k−2)
n,ε,M

∣

∣

∣

2

(Tzu,c1 , c1)

]

,
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vanishing because of Proposition 2, and

µε[Λn]L
n|vu|

∑

j /∈P

∫ T

0

dsEn[I{c∈Tε(T,zu)}qn(xj(s)− c)]

×E
n
[

IO,P,M
ε,s,zj (c1)

∣

∣

∣
Â

(k−2)
n,ε,M − A

(k−2,O∪{ℓ},P∪{j})
n,ε,M

∣

∣

∣
(Tz,c1 , c1)

]

≤ KA sup
1≤j≤n

E
n

[

IO,P,M
ε,T,zj

(c1)

|vj |
∣

∣

∣
A

(k−2,O∪{ℓ},P∪{j})
n,ε,M − Â

(k−2)
n,ε,M

∣

∣

∣
(Tzj,c1 , c1)

]

,

vanishing because of the inductive hypothesis (the constants there depend on Cd, µ, T ,
K1, K2). Since, because of condition a

d
nε
ζ → 0, all terms vanish, the Lemma is proved. �

Collecting all results in this section we prove

Proposition 3. Consider the stochastic variables defined in (31) and (33). Then, under
the same hypothesis as in Proposition 1, P-almost everywhere w.r.t. sequences of initial
data Z∞,

(67) lim
n→∞

1

n

n
∑

j=1

E
n
[ ∣

∣

∣
ξ̂(k)(t, zj)− ξ

(k)
n,ε,M (t, zj)

∣

∣

∣

]

= 0

and

(68) lim
n→∞

E
n
[

εd−1MIsuppφ(cℓ)|η(k)n,ε,M (t, cℓ)− η̂
(k)
n,ε,M (t, cℓ)|

]

= 0.

Proof. We start from (67), bounding it first as

1

n

n
∑

j=1

E
n
[ ∣

∣

∣
ξ̂
(k)
n,ε,M − ξ

(k)
n,ε,M

∣

∣

∣
(t, zj)

]

≤ 1

n

n
∑

j=1

E
n
[

IMε,t,zj (c)|η
(k)
n,ε,M − η̄(k)|(Tzj,c, c)

]

.

Using lemma 1 and the bound

(69) |V̄ (k) − A
(k,{h},{j})
n,ε,M | ≤ |V̄ (k) − Â

(k)
n,ε,M |+ |Â(k)

n,ε,M − A
(k,{h},{j})
n,ε,M |,

we get, ∀δ > 0:

Eτh

[

|η(k)n,ε,M − η̄(k)|(·, ch)
]

≤ 2δ +
1

δ
Eτh

[

|AnM(k)
∅,∅ ({h}, {j})|(·, ch)

]

+
1

δ
Eτh

[{

|Â(k)
n,ε,M −A

(k,{h},{j})
n,ε,M |+ |Â(k)

n,ε,M − V̄ (k)|
}

(·, ch)
]

.

Define

E
(k)
h,l (t) = sup

z∈Rd×Rd

1

|v|E
n[I{h},{j},M

ε,t,z (cl)AnM(k)

∅,∅ ({h}, {j})(Tz,cl , cl)]

+ sup
1≤i≤n

1

|vi|
E
n[IMε,t,zi(cl)|V̄

(k) − Â
(k)
n,ε,M |2(Tzi,cl , cl)]

+ sup
1≤i≤n

1

|vi|
E
n[I{h},{j},M

ε,t,zi
(cl)|A(k,{h},{j})

n,ε,M − Â
(k)
n,ε,M |(Tzi,cl , cl)].

We get, for all δ > 0:

1

n

n
∑

j=1

E
n
[ ∣

∣

∣
ξ̂
(k)
n,ε,M − ξ

(k)
n,ε,M

∣

∣

∣
(t, zj)

]

≤
(

1

n

n
∑

i=1

|vi|
)[

CdTµδ +
1

δ
sup
t∈[0,T ]

Eh,h(t)

]

and (67) follows from Lemma 7, Proposition 2 and Lemma 8.
As for (68), we use Lemma 1 to get the bounds

Eτh

[

|η(k)n,ε,M − η̂
(k)
n,ε,M |(t, cℓ)

]

≤ 2δ+
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1

δ
Eτh

[{

|AnM(k)

∅,∅ ({h}, {j})| + |A(k,{h},{j})
n,ε,M − Â

(k)
n,ε,M |

}

(t, cℓ)
]

,

and, for h 6= ℓ,

Eτh

[

|η(k−2)
n,ε,M − δ

k−2,{ℓ},{j}
n,ε,M |(t, ch)

]

≤ 2δ +
1

δ
Eτh

[

AnM(k−2)
∅,∅ ({h}, {j})|(t, ch)

]

,

and we bound the difference of risk functions through (41).

Noticing that the quantity AnM(k)
∅,∅ ({ℓ}, {j})(t, ch) does not depend on cℓ for h 6= ℓ

when cℓ /∈
n
⋃

i=1

Tε(t, zi), we get then, through (69), for all δ > 0:

E
n
[

εd−1MIsuppφ(cℓ)|η(k)n,ε,M (t, cℓ)− η̂
(k)
n,ε,M (t, cℓ)|

]

≤ µ[suppφ]LKp(δ +
adn
δn

)

+
Kd

δ3

[

sup
s∈[0,T ]

E
(k−2)
ℓ,ℓ−1 (s) + adnε

d−1 sup
s∈[0,T ]

E
(k−2)
ℓ,ℓ (s)

+εd−1 1

n

∑

1≤i≤n
sup

s∈[0,T ]

z∈R
d×R

d

1

|v|E
n

[

∫

[0,T ]

dsiqn(xi(si)− cℓ)I{cℓ∈Tε(s,z)}

×I{ℓ},{j},M
ε,si,zi (cℓ−1)MAnM(k−2)

∅,∅ ({ℓ}, {j})(Tzi,cℓ−1 , cℓ−1)

]]

,

where Kp = Kp(T, ‖q‖∞,K1, K2, µ, Cd) and Kd = Kd(µ,Θ, ‖|v|f0‖L1). The proof of the
proposition follows using Lemmas 7, 8 and Proposition 2. �

5. Final proposition: asymptotic equivalence of (31) and (25)

We may now prove our final proposition, which will allow us to establish the vanishing
limits of (34) and (37) :

Proposition 4. For the life functions defined in (30) and in (31), under the same hy-

pothesis as in Proposition 1 and for all φ ∈ Cb(R
d × R

d) and ψ ∈ CK(Rd), the following
limits are valid, P-almost everywhere w.r.t. sequences of initial data Z∞:

(70) lim
n→∞

E
n
[

| 1
n

n
∑

i=1

φ(T t(zi))(ξ̄
(k)(t, zi)− ξ

(k)
n,ε,M (t, zi))|

]

= 0

and

(71) lim
n→∞

E
n
[

εd−1
M
∑

i=1

Isuppψ(ci)|η(k)n,ε,M (t, ci)− η̄(k)(t, ci)|
]

= 0.

Proof. By the triangular inequality:

E
n
[

| 1
n

n
∑

i=1

φ(T t(zi))[ξ̄
(k) − ξ

(k)
n,ε,M ](t, zi)|

]

≤

E
n
[

| 1
n

n
∑

i=1

φ(T t(zi))[ξ̄
(k) − ξ̂

(k)
n,ε,M ](t, zi)|+ ‖φ‖∞

n

n
∑

i=1

|ξ̂(k)n,ε,M − ξ
(k)
n,ε,M |(t, zi)

]

and the right-hand side term vanishes because of Lemma 5 and Proposition 3.
In the same way,

E
n[εd−1

M
∑

i=1

Isuppψ(ci)|η(k)n,ε,M − η̄(k)|(t, ci)] ≤

E
n[εd−1MIsuppψ(c){|η(k)n,ε,M − η̂

(k)
n,ε,M |+ |η̂(k)n,ε,M − η̄(k)|}(t, c)]

and the right-hand side term vanishes because of Corollary 2 and Proposition 3. �
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This proposition completes the proof of theorem 1.

6. Appendix

6.1. Existence and Uniqueness of solutions for the limit system. We give here
the theorem of existence and uniqueness of solutions of system (2), which we can state as
follows:

Theorem 2. Let f0≥0 and σ0≥0 be s.t.f0∈L1(Rdv;W
1,∞(Rdx)), vf0∈L1(Rdv;W

1,∞(Rdx))∩
L∞(Rdx × R

d
v), v

2f0 ∈ L1(Rdv;L
∞(Rdx)) and σ0 ∈ W 1,∞(Rdx). Then for each T > 0 there

exists an unique solution (f, σ) to the initial value problem (2) in the interval [0, T ].

The proof of theorem (2) is the consequence of the following proposition:

Proposition 5. Consider the space

W = {F = (F1, F2, F3) : Fi ≥ 0 i = 1, 2, 3,

F1 ∈ L∞([0, T ]× R
d × R

d), F2, F3 ∈ L∞([0, T ]× R
d) }

with norm

‖F‖W = ‖F1‖L∞([0,T ]×Rd×Rd) + ‖F2‖L∞([0,T ]×Rd) + ‖F3‖L∞([0,T ]×Rd)

and the map M = (M1,M2,M3) : W → W defined, for f0, σ0 ≥ 0, as:

(72)

M1[F](t, x, v) = f0(x− vt, v)e−Cd|v|
∫ t
0 dsF3(s,x−v(t−s))

M2[F](t, x) =
∫

Rd dvf0(x− vt, v)e−Cd|v|
∫ t
0 dsF3(s,x−v(t−s))

M3[F](t, x) = σ0(x)e
−Θ

∫ t
0 dsF2(s,x).

Assume σ0∈W 1,∞(Rd) and f0∈L1(Rdv;W
1,∞(Rdx)), together with vf0∈L1(Rdv;W

1,∞(Rdx))∩
L∞(Rdx × R

d
v) and v2f0 ∈ L1(Rdv;L

∞(Rdx)).
Then

•M is a strict contraction on W whenT<T0, whereT0 depends on Cd,Θ, ‖vf0‖L∞(R×Rd),

‖vf0‖L1(Rd
v;W

1,∞(Rd
x)), ‖σ‖W1,∞(Rd))

• Let M [f ] = f be the (unique) fixed point of M , then for each t ∈ [0, T ], T < T0,

f1(t, ·, ·) ∈ L1(Rdv;W
1,∞(Rdx)),

vf1(t, ·, ·) ∈ L1(Rdv;W
1,∞(Rdx)) ∩ L∞(Rdx × R

d
v),

v2f1(t, ·, ·) ∈ L1(Rdv;L
∞(Rdx))

f3(t, ·) ∈ W 1,∞(Rd).

Remark 6. The map (72) is defined so to represent the solutions to the linear problem
(25) (cf. the proof of Theorem 2 on next page), and therefore it does not depend on
F1 (the sources in the linear problem are indeed F2 and F3). Three components are (of
course) nevertheless needed to get a map having as unique fixed point the solution to the
nonlinear problem (2).

Proof of Proposition 5. Consider F,G ∈ W. Then

‖M1[F]−M1[G]‖L∞([0,T ]×Rd×Rd)≤CdT‖vf0‖L∞(Rd×Rd)‖F3−G3‖L∞([0,T ]×Rd)

‖M2[F]−M2[G]‖L∞([0,T ]×Rd)≤CdT‖vf0‖L1(Rd;L∞(Rd))‖F3−G3‖L∞([0,T ]×Rd)

‖M3[F]−M3[G]‖L∞([0,T ]×Rd)≤ΘT‖σ0‖L∞([0,T ]×Rd)‖F2−G2‖L∞([0,T ]×Rd)
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We can therefore write

(73) ‖M [F]−M [G]‖W ≤ AT‖F−G‖W ,

whereA is a constant depending on Cd,Θ and on the norms ‖vf0‖L∞(Rd×Rd), ‖σ0‖L∞([0,T ]×Rd),

‖vf0‖L1(Rd
v;L

∞(Rd
x)). Whenever T < T0, where T0 = 1

A
, M is a contraction on the

complete space W. Therefore, whenever T < 1
A
, there exists a unique fixed point

(f, g, σ) =M(f, g, σ) (and of course, g =
∫

dvf).
The properties of the fixed point functions listed in the second part of the thesis of the

proposition follow trivially from (72) and the assumptions on f0. �

Proof of theorem 2. The map M maps the point F in the point M [F], with M2[F] =
∫

dvM1[F] and (M1[F],M3[F]) solution to the linear problem (25), with sources
∫

Rddvf
(k−1)=

F2 and σ(k−1) = F3 and initial data f(0, x, v) = f0(x, v), σ(0, x) = σ0(x). The fixed point
f of M is therefore s.t. f = (f,

∫

dvf, σ), where (f, σ) is the solution of (2) for t ∈ [0, T ],

with T < 1
A
.

Because of the property of the fixed point (f,
∫

dvf, σ), the solution is prolongeable for
any value of T > 0. �

Remark 7. Since f1(t, ·, ·) ∈ L1(Rdv;W
1,∞(Rdx)),

∫

dvf1(t, ·, v) ∈ Cb(R
d).

6.2. Condition for the weak convergence qnµ
n
0 ⇀ δ0f0. We state here a simple

condition on the growth rate of the generic term of the sequence {an} such that the
product of two weakly convergent measures converges weakly to the product of the two
limit measures.

Lemma 9. Let P be a probability measure defined as (4), with one particle probability
density f0 s.t.

(74)

∫

dvf0(·, v) ∈ S (Rd),

and q ∈ S (Rd) a non negative function s.t.
∫

q(x)dx = Θ > 0.

Take a sequence of positive real numbers {an}∞n=1 (an > 0) such that for some κ ∈ (0, 1
2
)

lim
n→∞

adn
nκ

= 0.

Then, given φ ∈ Cb(R
d × R

d), P-a.s.,

(75)
1

n

n
∑

h=1

adnq(anxh)φ(xh, vh) → Θ

∫

Rd

f0(0, v)φ(0, v)dv.

Proof. We observe first that, since q ∈ S (Rd), we can use the identity

q(x) =
1

(2π)d

∫

Rd

eik·xq̂(k)dk

where q̂ ∈ S (Rd) is the Fourier transform of q.
Because of q̂ ∈ S (Rd) and (74), in all calculations below we can apply Fubini’s theorem.
We can then write:
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∣

∣

∣

∣

∣

1

n

n
∑

h=1

adnq(anxh)φ(xh, vh)−Θ

∫

Rd

f0(0, v)φ(0, v)dv

∣

∣

∣

∣

∣

≤

1

(2π)d

∫

Rd

∣

∣q̂
( k

an

)
∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

h=1

eik·xhφ(xh, vh)−
∫

Rd×Rd

eik·xf0(x, v)φ(x, v)dxdv

∣

∣

∣

∣

∣

dk

+

∣

∣

∣

∣

∫

Rd×Rd

adnq(anx)f0(x, v)φ(x, v)dxdv −Θ

∫

Rd

f0(0, v)φ(0, v)dv

∣

∣

∣

∣

.

(76)

We consider then, for h = 1, . . ., the sequence of independent stochastic variables

νφh (k) = eik·xhφ(xh, vh)−
∫

Rd×Rd

eik·xf0(x, v)φ(x, v),

s.t. EP [νφh (k)] = 0 and EP[|νφh |2(k)] ≤ 2‖φ‖2∞ and for which we have, for any even j ∈ N,

(77) EP

[

| 1
n

n
∑

h=1

νφh (k)|j
]

≤ Kj

n
j
2

(EP[|ν|2(k)])
j
2 ≤ Kj

n
j
2

(
√
2‖φ‖∞)j .

We define then

(78) ω̂φn =
1

(2π)d

∫

Rd

dk
∣

∣q̂
( k

an

)∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

h=1

νφh (k)

∣

∣

∣

∣

∣

I
{k:| 1

n

n∑

h=1
ν
φ
h
(k)|> C

nκ }

and we get:
∣

∣

∣

∣

∣

1

n

n
∑

h=1

adnq(anxh)φ(xh, vh)−Θ

∫

Rd

f0(0, v)φ(0, v)dv

∣

∣

∣

∣

∣

≤ C
adn
nκ

‖q̂‖L1 + ω̂φn

+

∣

∣

∣

∣

∫

Rd×Rd

adnq(anx)f0(x, v)φ(x, v)dxdv −Θ

∫

Rd

f0(0, v)φ(0, v)dv

∣

∣

∣

∣

(79)

Since, because of the characteristic function in the definition of ω̂φn,

EP(ω̂φn) ≤
n(j−1)κ

C(2π)d

∫

Rd

dk
∣

∣q̂
( k

an

)∣

∣EP

[

| 1
n

n
∑

h=1

νφh (k)|j
]

,

by Tchebycheff inequality and (77), for δ > 0,

P(|ω̂φn| > δ) ≤ EP(ω̂φn)

δ
≤ K

δ
adnn

(j−1)κ− j
2

(with K depending on ‖φ‖∞ and ‖q̂‖L1); we obtain then, for κ ∈ (0, 1
2
) and for all δ > 0,

∑

n

P(|ω̂φn| > δ) <∞, and therefore ω̂φn
Pa.s.→ 0.

Since lim
n→∞

adn
nκ = 0 and qn(x) = adnq(anx) is such that qn ⇀ Θδ0, we get finally

1

n

n
∑

h=1

adnq(anxh)φ(xh, vh)
Pa.s.→ Θ

∫

Rd

f0(0, v)φ(0, v)dv.

�

Proposition 6. In the same hypothesis as in Lemma 9, on a full measure set with respect
to P

qn(x)µ
n
0 (x, v) ⇀ Θδ0(x)f0(x, v).
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Proof. We consider first functions in the separable space C0(R
d×R

d), the set of continuous
functions vanishing at infinity. Let D be a countable dense set in C0(R

d×R
d) and consider

the two sets

A = {Z∞ : ∀φ ∈ D

∫

Rd×Rd

dxdvqn(x)µ
n
0 (x, v)φ(x, v) → Θ

∫

Rd

dvf0(0, v)φ(0, v)}

and

B = {Z∞ :

∫

Rd×Rd

dxdvqn(x)µ
n
0 (x, v) → Θ

∫

Rd

dvf0(0, v)}.

Because of Lemma 9, both sets have full measure, so as their intersection A ∩B.
For Z∞ ∈ A ∩ B the sequence {qnµ0

n}∞n=1 is a sequence of finite positive measures s.t.
for all φ ∈ C0(R

d × R
d)

(80)

∫

Rd×Rd

dxdvqnµ
n
0φ→ Θ

∫

Rd

dvf0(0, v)φ(0, v) <∞.

Since the convergence in (80) is valid also for φ = 1, on the set A∩B, weakly in the sense
of measure,

qn(x)µn(x, v)⇀ Θδ0(x)f0(x, v)

(see e.g. [MA], p.90, theorem 6.8), and the proposition is proved. �

Remark 8. Since f0 ∈ S (Rd × R
d) and

∫

dvf0 ∈ S (Rd), the convergence proved in

Proposition 6 is valid also for |v|jqnµn0 , j = 1, 2, . . . (i.e. |v|jqnµn0 ⇀ |v|jδ0f0). To show it,

it suffices to rewrite the proof with νφh replaced with |v|jνφh . Under the same hypothesis,

it is also possible to prove, by induction, that ⊗Mk=1qnµn ⇀ ⊗Mk=1δ0f0, for M = 1, 2 . . ..

Remark 9. Whenever, in addition to the hypothesis in Lemma 9, we have f0 ∈ L1(Rdv;W
1,∞(Rdx))

and v2f0 ∈ L1(Rdv;L
∞(Rdx)), we can obtain, following the same steps, the weak conver-

gence of (T v,s
a q)nµ

0
n and |v|(T v,s

a q)nµ
0
n, where we define (T v,s

a g)(x) = g(x+ vt+ a). The
convergence is uniform in a ∈ R

d, as can be easily checked.
Moreover, a very simplified form of the procedure allows to prove that, given a limit

density f0 ∈ S (Rd × R
d) and two positive integers P,Q, on a full measure set w.r.t. P,

|v|jµn0 ⇀ |v|jf0 and ⊗ik=1|vk|jµn ⇀ ⊗ik=1|v|jf0, for j = 0, . . . , P and i = 1, . . . , Q.
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[G1] (MR2050595) F. Golse. The mean-field limit for the dynamics of large particle systems,

JEDP Forges les Eaux (2003), Exp. No. IX, 47, Univ. Nantes.
[G2] (MR2499853) F. Golse. On the periodic Lorentz gas and the Lorentz kinetic equation, Ann.

Fac. Sci. Toulouse, Ser.6 17 (2008), 735–749.
[G3] F. Golse. Recent results on the periodic Lorentz gas, preprint, HAL: hal-00390895, (2009),

1–62.
[DL] (MR969367) P. Dautray and J. L. Lions “Mathematical Analysis and Numerical Methods

for Science and Technology”, v.2, Springer-Verlag, Berlin, 1988.

[MA] (MR1254211) P. Malliavin and H. Airault. “Integration et Analyse de Fourier, Probabilités
et Analyse Gaussienne”, 2nd edition, Masson, Paris, 1994.

[MM] (MR781346) D. Mihalas and B. Weibel Mihalas. “Foundations of radiation hydrodynamics”,
Oxford University Press, 1984, Reprint Dover 1999.



PARTICLE MODEL FOR COUPLED PDE’S 37

[NOR] (MR1003528) G. Nappo, E. Orlandi and H. Rost. A reaction-diffusion model for moder-

ately interacting particles, J. Stat. Phys. 55 (1989), 579–600.
[RW] (MR2056540) V. Ricci and B. Wennberg. On the derivation of a linear Boltzmann equation

from a periodic lattice gas, Stochastic Process. Appl. 111 (2004), 281–315.
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