
HAL Id: ensl-00610328
https://ens-lyon.hal.science/ensl-00610328v3

Submitted on 15 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiplication by rational constants
Florent de Dinechin

To cite this version:
Florent de Dinechin. Multiplication by rational constants. IEEE Transactions on Circuits and Systems
Part 2 Analog and Digital Signal Processing, 2012, pp.00. �10.1109/TCSII.2011.2177706�. �ensl-
00610328v3�

https://ens-lyon.hal.science/ensl-00610328v3
https://hal.archives-ouvertes.fr


1

Multiplication by rational constants
LIP research report 2011-3

Florent de Dinechin
LIP, Université de Lyon (ENS-Lyon/CNRS/INRIA/UCBL)

46, allée d’Italie, 69364 Lyon Cedex 07
Florent.de.Dinechin@ens-lyon.fr

Abstract—Multiplications by simple rational constants often ap-
pear in fixed-point or floating-point application code, for instance
in the form of division by an integer constant. The hardware
implementation of such operations is of practical interest to
FPGA-accelerated computing. It is well known that the binary
representation of rational constants is eventually periodic. This
article shows how this feature can be exploited to implement mul-
tiplication by a rational constant in a number of additions that
is logarithmic in the precision. An open-source implementation
of these techniques is provided, and is shown to be practically
relevant for constants with small numerators and denominators,
where it provides improvements of 20 to 40% in area with respect
to the state of the art. It is also shown that for such constants,
the additional cost for a correctly rounded result is very small,
and that correct rounding very often comes for free in practice.

Index Terms—multiplication by a constant, rational number,
floating-point, reconfigurable computing

I. INTRODUCTION

Multiplication by constants has received much attention in
the literature, especially as many digital signal processing
algorithms can be expressed as products by constant matrices.
In such cases the constants are typically irrational (e.g. the
square roots of unity in a Fast Fourier Transform).
The context of the present work is quite different. We are
interested in porting applications into optimized architectures
for FPGAs, and in this process we want to optimize the
arithmetic operators when possible. Such applications often
involve multiplications by rational constants, and this article
studies how to implement them as efficiently as possible.
Our initial motivation was floating-point divisions by 3 and
by 9 appearing in stencil applications, but this work covers
multiplications by arbitrary rational constants a/b. However,
we should already point out that, at least in the hardware
context, this study is relevant mostly for small values of a
and b, “small” meaning here that they fit on few bits.
There are three contributions in this article. We first present
an algorithm that builds multipliers by rational constants
based on their periodic representation. The study of periodic
representations has very old decimal roots [1], and we extend
to arbitrary rational constants early works related to division by
a constant, mostly in a software context [2], [3]. The interested
reader will find a unifying survey on constant division in [4],
including several other references specific to division by 10

To appear in IEEE TCAS II. Copyright (c) 2011 IEEE. Personal use of
this material is permitted. However, permission to use this material for any
other purposes must be obtained from the IEEE by sending an email to pubs-
permissions@ieee.org

needed for binary/decimal conversions. The generalization to
arbitrary rational constants and the application to hardware is
a systematic exploitation of an empirical observation made by
Gustafsson and Qureshi in [5]. The multipliers we describe use
a number of additions that is asymptotically logarithmic in the
precision of the constant. This logarithmic complexity (which
is optimal [6]) for a large class of constants is interesting
in its own right, in a field where little is known in terms
of theoretical complexity [7]. In practice, however, exploiting
periodicity is only useful when the period is short. We show in
Section II how to compute this period for an arbitrary rational,
and in Section III how to construct optimal adder trees out of
it. Here we build upon a wide body of literature on constant
multiplication, minimizing the number of additions [8], [9],
[10], [11], [12], and, for hardware, also minimizing the total
size of these adders [9], [10], [13], [14].
The second contribution is to show in Section IV that correct
rounding of the result (that is, obtaining the correctly rounded
product of X by a/b, and not of X by some finite fixed-point
or floating-point approximation to a/b) comes at very little
overhead for our “small” rationals: it requires to consider only
a few more bits of the binary representation of the constant.
Actually, these bits often come for free in the architectures
built in Section III.
The third contribution, in Section V, concerns constant mul-
tiplication algorithms based on look-up tables (LUTs), devel-
oped for FPGAs by Chapman [15] then Wirthlin [16]. We
show how these algorithms also benefit from the periodicity
of the constant.
The shift-and-add technique has been implemented as the
FPConstMultRational1 operator in the open-source FloPoCo
arithmetic core generator [17], while the LUT-based technique
is implemented in the FixRealKCM operator. Section VI
provides some data for correctly rounded multipliers by 1/3,
1/9 and 7/5, comparing shift-and-add trees to LUT-based
multipliers, and showing area savings up to 40% with respect
to the previous state of the art.

II. ON THE PERIODICITY OF THE BINARY
REPRESENTATION OF RATIONAL NUMBERS

The most usual system of representing numbers is the position
system, where a number is represented by a sequence of digits,

1This operator is included in the FloPoCo distribution, release 2.3 or later,
available from http://flopoco.gforge.inria.fr/.



and each digit is weighted by powers of some radix, usually
10 (decimal system) or 2 (binary system).
In such a system, any rational number a/b has an eventu-
ally periodic representation. This is true in decimal (1/3 =
0.3333 · · · , 1/9 = 0.11111 · · · ) but also in binary (1/3 =
0.010101012 · · · , 1/9 = 0.0001110001110002 · · · ). Numbers
with an finite decimal representation can be viewed as as
special case where the periodic pattern is composed of zeroes,
for instance 0.5 = 0.50000 · · · . A number with a finite decimal
representation may have an infinite binary one, for instance
1/5 = 0.210 = 0.001100110011 · · · . The opposite is not true,
due to the fact that two divides ten.
The following lemma tells us which numbers have a purely
periodic binary representation:

Lemma 1. Let us consider an irreducible fraction c/d, where
2 divides neither c nor d. If c < d, then the binary representa-
tion of c/d is purely periodic, i.e. it starts with an occurence
of the periodic pattern.

The condition that 2 divides neither c nor d is not a constraint,
since powers of two correspond to shifts in binary. For most
purposes, they may be handled separately in a trivial way.
If c > d the Euclidean division of c by d gives us c = hd +
c′, and we may rewrite c/d = h + c′/d. For the purpose
of multiplying an input x by the constant c/d, we therefore
have cx/d = hx + c′x/d. Existing literature addresses the
multiplication by the finite integer constant h, so we may focus
on the multiplication by the purely periodic constant c′/d.
The following lemma allows us to compute the periodic
pattern:

Lemma 2. Let c/d be an irreducible fraction, where c < d,
and 2 divides neither c nor d. The size s of its period is the
multiplicative order of 2 modulo d, i.e. the smallest integer
such that 2s mod d = 1. The periodic pattern is the integer
p = b2sc/dc.

Proof: By definition of s we have 2s = kd + 1 for
some integer k. Therefore p = b2sc/dc =

⌊
(kd+1)c

d

⌋
=

bkc+ c/dc = kc since c/d < 1. We deduce that

2sc/d = p+ c/d,

where the recursive occurence of c/d exactly expresses the
periodicity of the fraction c/d.
Examples:
• 1/3 has period size s = 2 because 22 mod 3 = 1. The

pattern is
⌊
1× 22/3

⌋
= 1, which we write on 2 bits 01,

and we obtain that

1/3 = 0.(012)
∞ ;

• 5/9 has period size s = 6 because 26 mod 9 = 1. The
pattern is

⌊
5× 26/9

⌋
= 35, which we write on 6 bits

100011, and we obtain that

5/9 = 0.(1000112)
∞.

Thanks to these lemmas, algorithm 1 determines the periodic
binary representation of a fractional number a/b. This repre-
sentation consists of 4 integers:

• s the period size in bits, a positive integer,
• p the periodic pattern, a positive integer that we will

usually write in binary,
• h the header, a positive integer, also typically written in

binary,
• e the scaling factor exponent, or shift.

such as

a/b = 2e

(
h+

+∞∑
i=1

p

2si

)
.

Algorithm 1 Computing the periodic representation of a
rational a/b as a tuple of integers (e, h, p, s).

1: procedure PERIODICREPRESENTATION(a, b)
2: (c, d)← SIMPLIFY(a, b)
3: e← 0
4: while c mod 2 = 0 do
5: c← c/2
6: e← e+ 1
7: end while
8: while d mod 2 = 0 do
9: d← d/2

10: e← e− 1
11: end while
12: (Now a/b = 2ec/d with both c and d odd)
13: h← c/d (header)
14: c← c mod d (periodic part)
15:
16: (Now a/b = h+ c/d with c < d)
17:
18: s← 1 (period size)
19: if d = 1 then (a/b has a finite binary representation)
20: p← 0 (periodic pattern)
21: else (a/b has an infinite binary representation)
22: t← 2 (Invariant of the loop below: t = 2s)
23: while t mod d 6= 1 do
24: s← s+ 1
25: t← 2t
26: end while
27: p← ct/d (periodic pattern)
28: end if
29: return (e, h, p, s)
30: end procedure

Let us now exploit this representation to build a multiplier of
a variable x by a fraction a/b.

III. PERIODICAL SHIFT-AND-ADD TREES

In this section, we input the periodic representation of a
rational constant a/b, and also a precision w0, which is the
number of bits of a/b that have to be considered for the mul-
tiplication. The value of w0 typically expresses the accuracy
requirements of the floating-point or fixed-point context. For
instance, section IV will define the value of w0 that ensures
correct rounding for a given floating-point format.
In [5], Gustafsson and Qureshi suggested trying to represent
a real constant on more than w0 bits if it leads to a shift-and-
add architecture with fewer additions. They indeed mention the

2



fact that, due to their periodic representation, rational constants
are good candidates for exploiting this idea, without exploiting
this idea systematically.
With the notations of previous section, let us define

π0 = 2−spx .

The 2−s factor simply scales the integer p to an approximation
of c/d < 1, so π0 is an approximation of cx/d. We may then
compute increasingly accurate approximations of cx/d as

π1 = π0 + 2−sπ0 ,

π2 = π1 + 2−2sπ1 ,

and in general
πi+1 = πi + 2−2

isπi

so that πi is the product of x by an approximation of c/d of
size 2is bits.
Therefore, a constant corresponding to 2i repetitions of the
period may be built in i additions, and this is optimal [6].
Let us now consider the details, including further optimiza-
tions. We note wh the size in bits of the header h. We need
to compute hx+ cx/d, where cx/d is the periodic part. If w0

is the precision to which h + c/d must be represented, then
c/d must be represented at least on w0 − wh bits.
First, one of the existing methods is used to build px and,
if h 6= 0, hx. As these two constants should be small for
the method to be relevant, exhaustive exploration techniques
[9], [10], [12] may be used to perform this step optimally.
Such methods lead to less than 4 additions for any h or p of
size smaller than 12 bits, and less than 5 additions for sizes
smaller than 19 bits. The FloPoCo implementation currently
uses the simpler heuristic presented in [14], which is better
suited to hardware as it also minimizes the size of the adders
and leads to minimum-depth adder trees. In our experiments,
it consistently computes a minimal-adder-count architecture,
probably due to the fact that both h and p are very small
integers for the simple rationals that motivate this work.
Then we may compute the πi. In this process, we may stop
as soon as 2is ≥ w0 − wh. However, it is usually possible to
implement a smaller last addition. Let i be such that 2is <
w0 ≤ 2i+1s: we must compute the πj for 0 ≤ j ≤ i. Let j be
the smallest integer such that (2i+2j)s ≥ w0−wh. As j ≤ i,
πj is already computed, and the last stage may compute

f = πj + 2−2
isπi

(another option would be to compute f = πi + 2−2
jsπj , but

this would lead to a larger adder [14]).
If h = 0, this is all. If h 6= 0, we still have to add hx. This
product is itself computed using a classical constant multiplier,
in parallel to the computation of the fractional product. There
are two possible parenthesing of the two final additions: r =
(hx + πj) + 2−2

isπi or r = hx + (πj + 2−2
isπi). We may

assume that the computation of hx has a depth strictly smaller
than that of πi (which should be the case for “small” rationals).
With this assumption, as soon as j < i, the first parenthesing
leads to a shallower tree, and is therefore preferred. If i = j,

38

30

26

24

56

54

x

π1 = x× 1100112

π2 = x× 110011001100112

π3 = x× 1100110011001100110011001100112

π0 = x× 112

x× 101100110011001100110011001100112

adding hx (h = 1)

computing px (p = 01102)� 1

� 4

� 8

� 15

� 16

Fig. 1. Multiplication of a 24-bit mantissa by 7/5 (period p = 01102,
header h = 1)

the second parenthesing will be preferred when it leads to a
smaller overall number of full adders.
Figure 1 illustrates the resulting architecture on the example of
a/b = 7/5 for single precision, with a target precision w0 =
28 (providing correct rounding according to Section IV). The
smallest value of i such that 2is ≥ 28 is i = 3. We don’t find
in this case a smaller j such that (2i−1 + 2j)s ≥ 28. For this
simple example the product px is computed in one addition
only, while the product hx is computed in zero additions.
This figure also illustrates a small additional optimization:
we trim, whenever possible, leading and trailing zeroes from
the various sub-constants to minimize datapath width. For
instance, for a/b = 7/5, the period is p = 01102, but π0
is actually computed as x× 112 and the two zeroes are added
only when performing the shifts. The final result is actually
one bit more accurate than it seems, since there is one more
trailing zero to the truncated constant. These technical details
are taken into account by the generator in FloPoCo.

IV. CORRECT ROUNDING

It turns out that for the small rational constants for which this
method is of interest (“small” meaning small a and small b),
obtaining a correctly rounded result is also fairly cheap. More
specifically, the following theorem holds. It is, in essence, a
generalization of the “exclusion lemma” used to prove that
some division algorithms are correctly rounded [18].

Theorem 1. Let n be the precison of the input X and q be the
precision of the result R, and assume q ≥ n. If C is a constant
obtained by truncating the binary representation of a/b to at
least q + 1 + dlog2 be bits, then rounding the product CX to
the nearest floating-point number of precision q is equivalent
to rounding the exact product

a

b
X .

Note that this theorem covers the most useful case when the
input and output precisions are identical.

3



CX0

CX1

+
+
+

CX =

2−3αCX3

2−αCX1

2−2αCX2

CX0

+

+

+

T3T2

X0 X1 X2 X3

T1

α

T0

α

n bits
X = X0 + 2−αX1 + 2−2αX2 + 2−3αX3

q + g bits q + g

Fig. 2. The KCM LUT-based method

Proof: For reasons already invoked, we may assume
without loss of generality that X ∈ [1/2, 1), and that both a
and b are odd. Let us use the integral significand representation
of the input X: X = I

2n where I is an integer. We want to
show that a

bX cannot be too close to the mid-point between
two floating-point numbers in the result format. Such a mid-
point M can be written M = 2J+1

2q+1 .
The distance between

a

b
X and M is therefore written:∣∣∣a

b
X −M

∣∣∣ =

∣∣∣∣ab I

2n
− 2J + 1

2q+1

∣∣∣∣
=

∣∣∣∣2q+1−naI − (2J + 1)b

2q+1b

∣∣∣∣
Here, 2q+1−naI is an even integer since q ≥ n. On the other
hand, (2J + 1)b is an odd integer, as the product of two odd
integers. We deduce that their difference is at least one, hence∣∣∣a

b
X −M

∣∣∣ ≥ 1

2q+1b
This defines an “exclusion zone” around mid-points. Following
a classical argument [14], if we compute R ≈ a

bX such that
|R− a

bX| <
1

2q+1b , rounding R to q bits is then equivalent to
rounding a

bX . Truncating the infinite representation of a
b to

the precision 2−q−1−dlog 2be provides this accuracy.

V. LUT-BASED METHODS FOR RATIONAL CONSTANTS

On most FPGAs, the basic logic element is the look-up-table,
a small memory addressed by α bits. Once filled with the
truth table of an arbitrary Boolean function of these α bits, it
implements this function. The KCM algorithm2 due to Chap-
man [15] and further studied by Wirthlin [16] is an efficient
way to use these LUTs to implement a multiplication by an
integer constant. As we are interested in rational constants,
we use here a variation introduced in [19] that multiplies a
fixed-point input X by an arbitrary real constant C.
This algorithm consists in breaking down the binary decom-
position of X into chunks of α bits (see Figure 2):

X =

dnα e−1∑
i=0

Xi.2
−αi where Xi ∈ {0, ..., 2α − 1}

The product of X by a constant C becomes

CX =

dnα e∑
i=0

CXi.2
−αi

2This historical acronym seems to mean constant (K) Coefficient Multipli-
ers.

and we have a sum of (shifted) products CXi. Instead of
computing these products, we read CXi from a table of pre-
computed values Ti, indexed by Xi.
The cost of each table is one FPGA LUT per output bit
(on Figure 2, the corresponding boxes are sized accordingly).
We also have to count the cost of computing the sum of
these CXi. The minimal cost is obtained with the sequential
implementation of this sum depicted on Figure 2: it consists of
dn/αe− 1 adders of increasing sizes. However, an adder tree,
reducing the latency for a slightly larger overal cost, is usually
preferred. As the cost of an adder in FPGAs is typically one
LUT per bit, the cost of the adders is roughly equivalent to
the cost of the tables.
The FixRealKCM operator in FloPoCo implements this tech-
nique. In addition, to ensure last-bit accuracy of CX , the data-
path has to be extended with g guard bits that will absorb the
rounding errors performed when filling the tables [19]. The
error analysis determining g is easily adapted to ensure correct
rounding in the case of rational constants, using the results of
Section IV.
We now remark that the periodicity of the constant also leads
to an optimization of the KCM tables. To illustrate it, let us
take as an example C = 1/3, and consider in Figure 3 a
table holding Xi/3 for Xi on α = 4 bits. Since each row,
having the same denominator, is eventually periodic, the whole
table is eventually periodic. This example 22-bit table can
be implemented as 5 LUTs instead of 22. In general, for a
constant a/b < 1 of period size s, the table for a/bXi requires
of the order of α+ s LUTs: only the most significand α bits
are not periodic.
This optimization only reduces the size of the tables, not
the size of the adders, which limits its impact to a 50%
improvement at most. However, it is discovered by synthesis
tools, so we do not need to explicit it in the code.

VI. RESULTS AND COMPARISONS

Table I provides some results obtained thanks to FloPoCo for
the proposed multipliers, compared to the previous implemen-
tation of [14], and (for FPGAs) to the KCM approach. In
the latter case, one Logic Element (LE) may implement one
4-input LUT, or one Full Adder (FA): the costs reported on
each line indeed use the same units.
In all the cases of Table I, the previous shift-and-add approach
from [14] already builds a tree of optimal depth, but not of
optimal size. Specifically, it does build sub-constants which are
repetitions of the period, but the numbers of repetition are not
always powers of two, which prevents reusing them optimally.
The same holds for the implementation of [9] on spiral.net.

Fig. 3. For rational constants (here 1/3), the KCM tables are periodic.

4



constant n = q
Section III using [14] KCM
pc + (FA) pc + (FA) + (LE)

1/3 24 32 4 (118) 27 4 (190) 5 (127)
h = 0 53 64 5 (317) 56 5 (368) 12 (508)
p = 012 113 128 6 (792) 116 6 (1026) 27 (2088)

1/9 24 30 5 (132) 29 5 (131) 5 (167)
h = 0 53 60 6 (356) 58 6 (408) 12 (613)

p = 0001112 113 120 7 (885) 118 7 (1116) 27 (2283)
7/5 24 33 5 (139) 28 5 (193) 5 (162)
h = 1 53 65 6 (366) 57 6 (595) 12 (594)

p = 01102 113 129 7 (900) 117 7 (1507) 27 (2267)

TABLE I
ADDER COUNT AND SIZE OF THE SIGNIFICAND MULTIPLIERS FOR SOME

CORRECTLY ROUNDED RATIONAL CONSTANT MULTIPLIERS. THE
PRECISIONS CHOSEN ARE THOSE OF THE IEEE754-2008 FORMATS.

The other generator of spiral.net [11] minimizes adder count
but not adder size, leading to a larger overal number of FA
than the periodic approach. These online generators are limited
to constant sizes smaller than 25 bits, so they do not appear
in the table.
As expected, the KCM approach leads to an adder count
proportional to the input precision n and independent of the
constant. However, most of these adders are smaller than the
output precision q (see Figure 2), whereas the adders in the
shift-and-add method are all larger than n (see Figure 1).
Therefore, KCM is competitive for small n (typically smaller
than 20) especially if q > n [19].
The KCM results are given for α = 4 for comparison with the
literature (for instance [16] reports 308 LUTs for a KCM with
a 24-bit input and a 24-bit constant – this would not even offer
correct rounding as the operators of Table I). However, recent
FPGAs have larger LUTs (α = 5), which leads to a typical
reduction of 4/5 of the KCM cost. In our table, a KCM with
α = 5 would take the lead only for the first line (113 LE
instead of 127 for KCM with α = 4, and 118 LE for the
periodic shift-and-add). For the other lines, the shift-and-add
approach still wins, and KCM is only interesting for precisions
smaller than 24 bits.

VII. CONCLUSION

The periodic binary representation of rational constants can be
usefully exploited to build efficient hardware for the multipli-
cation by such constants. An implementation of this idea in
the open-source FloPoCo core generator is demonstrated. This
technique is mostly relevant for constants a/b where both a
and b are small integers, and in this case correct rounding of
the multiplication by the infinitely accurate rational constant
comes at a minor overhead: On most of the examples studied,
correct rounding is for free. An important application of this
technique is the implementation of divisions by small integers.
A multiplier by 1/b using this approach is bit-for-bit equivalent
to a correctly rounded divider by b.
It could be interesting to study if variations of this technique
could not be used to implement division by small integers in
software multiple-precision packages.

Acknowledgements

Thanks to B. Pasca and A. Plesco for bringing up this question,
to N. Brisebarre for his lights on number theory, and to the
anonymous reviewers for their insightful suggestions.

REFERENCES

[1] J. W. L. Glaisher, “Periods of reciprocals of integers prime to 10,” Proc.
Cambridge Philos. Soc., vol. 3, pp. 185–206, 1878.

[2] E. Artzy, J. A. Hinds, and H. J. Saal, “A fast division technique for
constant divisors,” Communications of the ACM, vol. 19, pp. 98–101,
Feb. 1976.

[3] S.-Y. R. Li, “Fast constant division routines,” IEEE Transactions on
Computers, vol. C-34, no. 9, pp. 866–869, Sep. 1985.

[4] P. Srinivasan and F. Petry, “Constant-division algorithms,” IEE Proc.
Computers and Digital Techniques, vol. 141, no. 6, pp. 334–340, Nov.
1994.

[5] O. Gustafsson and F. Qureshi, “Addition aware quantization for low
complexity and high precision constant multiplication,” IEEE Signal
Processing Letters, vol. 17, no. 2, pp. 173–176, 2010.

[6] O. Gustafsson, “Lower bounds for constant multiplication problems,”
IEEE Transactions On Circuits And Systems II: Express Briefs, vol. 54,
no. 11, pp. 974 – 978, Nov. 2007.

[7] V. Dimitrov, L. Imbert, and A. Zakaluzny, “Multiplication by a constant
is sublinear,” in 18th Symposium on Computer Arithmetic. IEEE, 2007,
pp. 261–268.

[8] R. Bernstein, “Multiplication by integer constants,” Software – Practice
and Experience, vol. 16, no. 7, pp. 641–652, 1986.

[9] A. Dempster and M. Macleod, “Constant integer multiplication using
minimum adders,” Circuits, Devices and Systems, IEE Proceedings, vol.
141, no. 5, pp. 407–413, 1994.

[10] O. Gustafsson, A. G. Dempster, K. Johansson, and M. D. Macleod,
“Simplified design of constant coefficient multipliers,” Circuits, Systems,
and Signal Processing, vol. 25, no. 2, pp. 225–251, 2006.

[11] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multi-
plication,” ACM Trans. Algorithms, vol. 3, no. 2, 2007.

[12] J. Thong and N. Nicolici, “An optimal and practical approach to single
constant multiplication,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 30, no. 9, pp. 1373–1386, 2011.

[13] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Exact and approximate
algorithms for the optimization of area and delay in multiple constant
multiplications,” IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, vol. 27, no. 6, pp. 1013–1026, 2008.

[14] N. Brisebarre, F. de Dinechin, and J.-M. Muller, “Integer and floating-
point constant multipliers for FPGAs,” in Application-specific Systems,
Architectures and Processors. IEEE, 2008, pp. 239–244.

[15] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design
idea winner),” EDN magazine, May 1994.

[16] M. Wirthlin, “Constant coefficient multiplication using look-up tables,”
Journal of VLSI Signal Processing, vol. 36, no. 1, pp. 7–15, 2004.

[17] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, Aug. 2011.

[18] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-
Point Arithmetic. Birkhauser Boston, 2009.

[19] F. de Dinechin and B. Pasca, “Floating-point exponential functions for
DSP-enabled FPGAs,” in Field Programmable Technologies, Dec. 2010,
pp. 110–117.

5


