
HAL Id: ensl-00610328
https://ens-lyon.hal.science/ensl-00610328v1

Submitted on 21 Jul 2011 (v1), last revised 15 Nov 2011 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiplication by rational constants
Florent de Dinechin

To cite this version:
Florent de Dinechin. Multiplication by rational constants: LIP research report 2011-3. 2011. �ensl-
00610328v1�

https://ens-lyon.hal.science/ensl-00610328v1
https://hal.archives-ouvertes.fr


1

Multiplication by rational constants
LIP research report 2011-3

Florent de Dinechin

LIP, Université de Lyon (ENS-Lyon/CNRS/INRIA/UCBL)

46, allée d’Italie, 69364 Lyon Cedex 07

{Florent.de.Dinechin}@ens-lyon.fr

Abstract—Multiplications by simple rational constants often
appear in fixed-point or floating-point application code, for
instance in the form of division by an integer constant. The
hardware implementation of such operations is of practical
interest to FPGA-accelerated computing. It is well known that
the binary representation of rational constants is eventually
periodic. This article shows how this feature can be exploited
to implement floating-point multiplication by a rational con-
stant in a number of additions that is logarithmic in the
precision. An open-source implementation of this technique is
provided, and is shown to be practically relevant for constants
with small numerators and denominators, where it provides
improvements of 20 to 40% in area with respect to the state of
the art. It is also shown that for such constants, the additional
cost for a correctly rounded result is very small, and that
correct rounding very often comes for free in practice.

Index Terms—multiplication by a constant, floating-point,
reconfigurable computing

I. INTRODUCTION

Multiplication by constants has received much attention in

the literature, especially as many digital signal processing

algorithms can be expressed as products by constant matri-

ces. In such cases the constants are typically irrational (e.g.

the square roots of unity in a Fast Fourier Transform).

The context of the present work is quite different. We are

interested in porting applications into optimized architec-

tures for FPGAs, and in this process we want to optimize

the arithmetic operators when possible. Such applications

often involve multiplications by constants, and this article

studies how to implement them as efficiently as possible.

Our initial motivation was floating-point divisions by 3

and by 9 appearing in stencil applications, but this work

covers multiplications by arbitrary rational constants a/b.
However, we should already point out that, at least in the

hardware context, this study is relevant mostly for small

values of a and b, “small” meaning here that they fit on

few bits.

There are two contributions in this article. The first is a

systematic exploitation of an empirical observation made

by Gustafsson and Qureshi in [1]. We present an algorithm

that builds multipliers by rational constants based on their

periodic representation. These multipliers use a number of

additions that is asymptotically logarithmic in the precision

of the constant. This logarithmic complexity (which is

optimal [2]) for a large class of constants is interesting in

its own right, in a field where little is known in terms of

theoretical complexity [3]. In practice, however, exploiting

periodicity is useful only when the period is short. We show

in Section II how to compute this period for an arbitrary

rational, and in Section III how to build optimal adder trees

out of it.

The second contribution is to show in Section IV that cor-

rect rounding of the result (that is, obtaining the correctly

rounded product of X by a/b, and not of X by some finite

fixed-point or floating-point approximation to a/b) comes at

very little overhead for our “small” rationals: it requires to

consider only a few more bits of the binary representation

of the constant. Actually, these bits come often for free in

the optimal architectures of Section III.

This technique has been implemented as the

FPConstMultRational operator in the open-source FloPoCo

arithmetic core generator [4]. Section V provides some

data for correctly rounded multipliers by 1/3, 1/9 and

7/5, showing area savings up to 40% with respect to the

previous state of the art.

II. ON THE PERIODICITY OF THE BINARY

REPRESENTATION OF RATIONAL NUMBERS

The most usual system of representing numbers is the posi-

tion system, where a number is represented by a sequence

of digits, and each digit is weighted by powers of some

radix, usually 10 (decimal system) or 2 (binary system).

In such a system, any rational number a/b has an eventually

periodic representation. This is true in decimal (1/3 =
0.3333 · · · , 1/9 = 0.11111 · · · ) but also in binary (1/3 =
0.01010101 · · · , 1/9 = 0.1111000011110000 · · · ). Num-

bers with an finite decimal representation can be viewed

as as special case where the periodic pattern is composed

of zeroes, for instance 0.5 = 0.50000 · · · . A number with

a finite decimal representation may have an infinite binary

one, for instance 1/5 = 0.210 = 0.001100110011 · · · . The

opposite is not true, due to the fact that two divides ten.

The following lemma tells us which numbers have a purely

periodic binary representation:

Lemma 1. Let us consider an irreducible fraction c/d,

where 2 divides neither c nor d. If c < d, then the binary

representation of c/d is purely periodic, i.e. it starts with

an occurence of the periodic pattern.

The condition that 2 divides neither c nor d is related to

the fact that powers of two, in binary, correspond to shifts

which, for the purpose of multiplication by a/b, may be

handled separately in a trivial way.



If c > d the Euclidean division of c by d gives us c =
hd+c′, and we may rewrite c/d = h+c′/d. For the purpose

of multiplying an input x by the constant c/d, we therefore

have cx/d = hx+ c′x/d. Existing literature addresses the

multiplication by the finite integer constant h, so we may

focus on the multiplication by the purely periodic constant

c′/d.

The following lemma (which seems to have very old

decimal roots [5]) allows us to compute the periodic pattern:

Lemma 2. Let c/d be an irreducible fraction, where c < d,

and 2 divides neither c nor d. The size s of its period is

the multiplicative order of 2 modulo d, i.e. the smallest

integer such that 2s mod d = 1. The periodic pattern is

the integer p = ⌊2sc/d⌋.

Proof: By definition of s we have 2s = kd + 1 for

some integer k. Therefore p = ⌊2sc/d⌋ = ⌊ (kd+1)c
d
⌋ =

⌊kc+ c/d⌋ = kc since c/d < 1. We deduce that

2sc/d = p+ c/d,

where the recursive occurence of c/d exactly expresses the

periodicity of the fraction c/d.

Examples:

• 1/3 has period size s = 2 because 22 mod 3 = 1.

The pattern is ⌊1 × 22/3⌋ = 1, which we write on 2
bits 01, and we obtain that

1/3 = 0.(012)
∞ ;

• 5/9 has period size s = 6 because 26 mod 9 = 1.

The pattern is ⌊5× 26/9⌋ = 35, which we write on 6
bits 100011, and we obtain that

5/9 = 0.(1000112)
∞.

Thanks to these lemmas, algorithm 1 determines the peri-

odic binary representation of a fractional number a/b. This

representation consists of 4 integers:

• s the period size in bits, a positive integer,

• p the periodic pattern, a positive integer that we will

usually write in binary,

• h the header, a positive integer, also typically written

in binary,

• e the scaling factor exponent, or shift.

such as

a/b = 2e
(

h+
+∞
∑

i=1

p

2si
)

.

Let us now exploit this representation to build a multiplier

of a variable x by a fraction a/b.

III. PERIODICAL SHIFT-AND-ADD TREES

In this section, we input the periodic representation of a

rational constant a/b, and also a precision w0, which is

the number of bits of a/b that have to be considered for

the multiplication. The value of w0 typically expresses the

accuracy requirements of the floating-point or fixed-point

context. For instance, section IV will define the value of

Algorithm 1 Computing the periodic representation of a

rational a/b as a tuple of integers (e, h, p, s).

1: procedure PERIODICREPRESENTATION(a, b)
2: (c, d)← SIMPLIFY(a, b)
3: e← 0
4: while c mod 2 = 0 do

5: c← c/2
6: e← e+ 1
7: end while

8: while d mod 2 = 0 do

9: d← d/2
10: e← e− 1
11: end while

12: (Now a/b = 2
ec/d with both c and d odd)

13: h← c/d (header)

14: c← c mod d (periodic part)

15:

16: (Now a/b = h+ c/d with c < d)

17:

18: s← 1 (period size)

19: if d = 1 then (a/b has a finite binary representation)

20: p← 0 (periodic pattern)

21: else (a/b has an infinite binary representation)

22: t← 2 (Invariant of the loop below: t = 2
s)

23: while t mod d 6= 1 do

24: s← s+ 1
25: t← 2t
26: end while

27: p← ct/d (periodic pattern)

28: end if

29: return (e, h, p, s)
30: end procedure

w0 that ensures correct rounding for a given floating-point

format.

In [1], Gustafsson and Qureshi suggested trying to represent

a real constant on more than w0 bits if it leads to a shift-and-

add architecture with fewer additions. They indeed mention

the fact that, due to their periodic representation, rational

constants are good candidates for exploiting this idea.

However, they do not try to exploit this idea systematically,

and do not consider the issue of correct rounding.

With the notations of previous section, let us define

π0 = 2−spx .

The 2−s factor simply scales the integer p to an approxi-

mation of c/d < 1, so π0 is an approximation of cx/d. We

may then compute increasingly accurate approximations of

cx/d as

π1 = π0 + 2−sπ0 ,

π2 = π1 + 2−2sπ1 ,

and in general

πi+1 = πi + 2−2isπi

so that πi is the product of x by an approximation of c/d
of size 2is bits.

2



Therefore, a constant corresponding to 2i repetitions of the

period may be built in i additions, and this is optimal [2].

Let us now consider the details, including further optimiza-

tions. We note wh the size in bits of the header h. We need

to compute hx+ cx/d, where cx/d is the periodic part. If

w0 is the precision to which h+ c/d must be represented,

then c/d must be represented at least on w0 − wh bits.

First, one of the existing methods is used to build px and, if

h 6= 0, hx. As these two constants should be small for the

method to be relevant, exhaustive exploration techniques

[6], [7] may be used to perform this step optimally. Such

methods lead to less than 4 additions for any h or p of

size smaller than 12 bits, and less than 5 additions for

sizes smaller than 19 bits. The FloPoCo implementation

currently uses the simpler heuristic presented in [8] which,

in our experiments, also consistently computes the minimal

architecture, due to the fact that both h and p are very small

integers for the simple rationals that have motivated this

work.

Then we may compute the πi. In this process, we may stop

as soon as 2is ≥ w0 −wh. However, it is usually possible

to implement a smaller last addition. Let i be such that

2is < w0 ≤ 2i+1s: we must compute the πj for 0 ≤ j ≤ i.
Let j be the smallest integer such that (2i+2j)s ≥ w0−wh.

As j ≤ i, πj is already computed, and the last stage may

compute

f = πj + 2−2isπi

(another option would be to compute f = πi + 2−2jsπj ,

but this would lead to a larger adder [8]).

If h = 0, this is all. If h 6= 0, we still have to add hx.

This product is itself computed using a classical constant

multiplier, in parallel to the computation of the fractional

product. There are two possible parenthesing of the two

final additions: r = (hx+πj)+2−2isπi or r = hx+(πj +

2−2isπi). We may assume that the computation of hx has

a depth strictly smaller than that of πi (which should be the

case for “small” rationals). With this assumption, as soon

as j < i, the first parenthesing leads to a shallower tree,

and is therefore preferred. If i = j, the second parenthesing

will be preferred when it leads to a smaller overall number

of full adders.

Figure 1 illustrates the resulting architecture on the example

of a/b = 7/5 for single precision, with a target precision

is w0 = 28 (providing correct rounding according to

Section IV). The smallest value of i such that 2is ≥ 28
is i = 3. We don’t find in this case a smaller j such that

(2i−1+2j)s ≥ 28. For this simple example the product px
is computed in one addition only, while the product hx is

computed in zero additions.

This figure also illustrates a small additional optimization:

we trim, whenever possible, leading and trailing zeroes

from the various sub-constants to minimize datapath width.

For instance, for a/b = 7/5, the period is p = 01102, but

π0 is actually computed as x× 112 and the two zeroes are

added only when performing the shifts. The final result is

actually one bit more accurate than it seems, since there

is one more trailing zero to the truncated constant. These

38

30

26

24

56

54

x

π1 = x× 1100112

π2 = x× 110011001100112

π3 = x× 1100110011001100110011001100112

π0 = x× 112

x× 101100110011001100110011001100112

adding hx (h = 1)

computing px (p = 01102)
≪ 1

≪ 4

≪ 8

≪ 15

≪ 16

Fig. 1. Multiplication of a 24-bit mantissa by 7/5 (period p = 01102,
header h = 1)

technical details are taken into account by the generator in

FloPoCo.

IV. CORRECT ROUNDING

It turns out that for the small rational constants for which

this method is of interest (“small” meaning small a and

small b), obtaining a correctly rounded result is also fairly

cheap. More specifically, the following theorem holds. It

is, in essence, a generalization of the “exclusion lemma”

used to prove that some division algorithms are correctly

rounded [9].

Theorem 1. Let p be the precison of the input X and q be

the precision of the result R, and assume q ≥ p. If C is a

constant obtained by truncating the binary representation

of a/b to at least q + 1 + ⌈log2 b⌉ bits, then rounding

the product CX to the nearest floating-point number of

precision q is equivalent to rounding the exact product
a

b
X .

Note that this theorem covers the most useful case when

the input and output precisions are identical.

Proof: For reasons already invoked, we may assume

without loss of generality that X ∈ [1/2, 1), and that

both a and b are odd. Let us use the integral significand

representation of the input X: X = I
2p where I is an

integer. We want to show that a
b
X cannot be too close to the

mid-point between two floating-point numbers in the result

format. Such a mid-point M can be written M = 2J+1
2q+1 .

The distance between
a

b
X and M is therefore written:

∣

∣

∣

a

b
X −M

∣

∣

∣
=

∣

∣

∣

∣

a

b

I

2p
−

2J + 1

2q+1

∣

∣

∣

∣

=

∣

∣

∣

∣

2q+1−paI − (2J + 1)b

2q+1b

∣

∣

∣

∣

Here, 2q+1−paI is an even integer since q ≥p. On the other

hand, (2J + 1)b is an odd integer, as the product of two

3



constant p
This work using [8]
pc #FA pc #FA depth

1/3 24 32 118 27 190 4
h = 0 53 64 317 56 368 5
p = 012 113 128 792 116 1026 6

1/9 24 30 132 29 131 5
h = 0 53 60 356 58 408 6

p = 0001112 113 120 885 118 1116 7

7/5 24 33 139 28 193 5
h = 1 53 65 366 57 595 6

p = 01102 113 129 900 117 1507 7

TABLE I
SIZE (IN FULL-ADDERS) AND DEPTH (ALSO NUMBER OF ADDERS) OF

THE SIGNIFICAND MULTIPLIERS FOR SOME CORRECTLY ROUNDED

RATIONAL CONSTANT MULTIPLIERS. THE PRECISIONS CHOSEN ARE

THOSE OF THE IEEE754-2008 FORMATS.

odd integers. We deduce that their difference is at least one,

hence
∣

∣

∣

a

b
X −M

∣

∣

∣
≥

1

2q+1b

This defines an “exclusion zone” around mid-points. Fol-

lowing a classical argument [8], if we compute R ≈ a
b
X

such that |R − a
b
X| < 1

2q+1b
, rounding R to q bits is

then equivalent to rounding a
b
X . Truncating the infinite

representation of a
b

to the precision 2−q−1−⌈log 2b⌉ provides

this accuracy.

V. RESULTS

Table I provides some Full Adder (FA) counts for the

proposed multipliers obtained thanks to the FloPoCo imple-

mentation, compared to the previous implementation in [8].

Incidentally, FloPoCo generates test-benches along with the

operators [4], and the correct rounding claim has been

verified through exhaustive simulation for several constants

and several precision.

In all the cases of Table I, the previous approach from [8]

already buils a tree of optimal depth, but not of optimal

size. Specifically, it does build sub-constants which are

repetitions of the period, but the numbers of repetition are

not always powers of two, which prevents reusing them

optimally.

We should point out again that these operators, with one

single rounding error, are more accurate than rounding a/b
to a floating-point number f of the same format as the

result, then multiplying by f . For multiplier by 1/b, they

are functionnaly equivalent to a correctly rounded division

by b, which would consume much more resources.

VI. CONCLUSION

The periodic binary representation of rational constants

can be usefully exploited to build efficient hardware for

the multiplication by such constants. An implementation

of this idea in the open-source FloPoCo core generator

is demonstrated. This technique is mostly relevant for

constants a/b where both a and b are small integers, and

in this case correct rounding of the multiplication by the

infinitely accurate rational constant comes at a minor over-

head: On most of the examples studied, correct rounding is

for free. An important application of this technique is the

implementation of divisions by small integers.

It could be interesting to study if variations of this technique

could not be used to implement division by small integers

in multiple-precision packages such as MPFR.

Acknowledgements

Thanks to B. Pasca and A. Plesco for bringing up this

question, and to N. Brisebarre for his lights on number

theory.

REFERENCES

[1] O. Gustafsson and F. Qureshi, “Addition aware quantization for low
complexity and high precision constant multiplication,” IEEE Signal

Processing Letters, vol. 17, no. 2, pp. 173–176, 2010.
[2] O. Gustafsson, “Lower bounds for constant multiplication problems,”

IEEE Transactions On Circuits And Systems II: Express Briefs,
vol. 54, no. 11, pp. 974 – 978, Nov. 2007.

[3] V. Dimitrov, L. Imbert, and A. Zakaluzny, “Multiplication by a
constant is sublinear,” in 18th Symposium on Computer Arithmetic.
IEEE, 2007, pp. 261–268.

[4] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, Aug. 2011.

[5] J. W. L. Glaisher, “Periods of reciprocals of integers prime to 10,”
Proc. Cambridge Philos. Soc., vol. 3, pp. 185–206, 1878.

[6] A. Dempster and M. Macleod, “Constant integer multiplication using
minimum adders,” Circuits, Devices and Systems, IEE Proceedings,
vol. 141, no. 5, pp. 407–413, 1994.

[7] O. Gustafsson, A. G. Dempster, K. Johansson, and M. D. Macleod,
“Simplified design of constant coefficient multipliers,” Circuits, Sys-

tems, and Signal Processing, vol. 25, no. 2, pp. 225–251, 2006.
[8] N. Brisebarre, F. de Dinechin, and J.-M. Muller, “Integer and floating-

point constant multipliers for FPGAs,” in Application-specific Sys-

tems, Architectures and Processors. IEEE, 2008, pp. 239–244.
[9] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,

V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
Handbook of Floating-Point Arithmetic. Birkhauser Boston, 2009.

4


