
HAL Id: ensl-00610328
https://ens-lyon.hal.science/ensl-00610328v2

Submitted on 4 Nov 2011 (v2), last revised 15 Nov 2011 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiplication by rational constants
Florent de Dinechin

To cite this version:
Florent de Dinechin. Multiplication by rational constants: LIP research report 2011-3. 2011. �ensl-
00610328v2�

https://ens-lyon.hal.science/ensl-00610328v2
https://hal.archives-ouvertes.fr


1

Multiplication by rational constants
Florent de Dinechin

LIP, Université de Lyon (ENS-Lyon/CNRS/INRIA/UCBL)
46, allée d’Italie, 69364 Lyon Cedex 07
{Florent.de.Dinechin}@ens-lyon.fr

Abstract—Multiplications by simple rational constants often
appear in fixed-point or floating-point application code, for
instance in the form of division by an integer constant. The
hardware implementation of such operations is of practical
interest to FPGA-accelerated computing. It is well known that
the binary representation of rational constants is eventually
periodic. This article shows how this feature can be exploited
to implement multiplication by a rational constant in a
number of additions that is logarithmic in the precision. An
open-source implementation of these techniques is provided,
and is shown to be practically relevant for constants with
small numerators and denominators, where it provides im-
provements of 20 to 40% in area with respect to the state of
the art. It is also shown that for such constants, the additional
cost for a correctly rounded result is very small, and that
correct rounding very often comes for free in practice.

Index Terms—multiplication by a constant, rational number,
floating-point, reconfigurable computing

I. INTRODUCTION

Multiplication by constants has received much attention in
the literature, especially as many digital signal processing
algorithms can be expressed as products by constant matri-
ces. In such cases the constants are typically irrational (e.g.
the square roots of unity in a Fast Fourier Transform).
The context of the present work is quite different. We are
interested in porting applications into optimized architec-
tures for FPGAs, and in this process we want to optimize
the arithmetic operators when possible. Such applications
often involve multiplications by rational constants, and this
article studies how to implement them as efficiently as
possible. Our initial motivation was floating-point divisions
by 3 and by 9 appearing in stencil applications, but this
work covers multiplications by arbitrary rational constants
a/b. However, we should already point out that, at least
in the hardware context, this study is relevant mostly for
small values of a and b, “small” meaning here that they fit
on few bits.
There are three contributions in this article. We first present
an algorithm that builds multipliers by rational constants
based on their periodic representation. The study of periodic
representations has very old decimal roots [1], and we
extend to arbitrary rational constants early works related to
division by a constant, mostly in a software context [2], [3].
The interested reader will find a unifying survey on constant
division in [4], including several other references specific
to division by 10 needed for binary/decimal conversions.
The generalization to arbitrary rational constants and the
application to hardware is a systematic exploitation of an

empirical observation made by Gustafsson and Qureshi in
[5]. The multipliers we describe use a number of additions
that is asymptotically logarithmic in the precision of the
constant. This logarithmic complexity (which is optimal
[6]) for a large class of constants is interesting in its
own right, in a field where little is known in terms of
theoretical complexity [7]. In practice, however, exploiting
periodicity is only useful when the period is short. We
show in Section II how to compute this period for an
arbitrary rational, and in Section III how to construct
optimal adder trees out of it. Here we build upon a wide
body of literature on constant multiplication, minimizing
the number of additions [8], [9], [10], [11], [12], and, for
hardware, also minimizing the total size of these adders [9],
[10], [13], [14].
The second contribution is to show in Section IV that cor-
rect rounding of the result (that is, obtaining the correctly
rounded product of X by a/b, and not of X by some finite
fixed-point or floating-point approximation to a/b) comes at
very little overhead for our “small” rationals: it requires to
consider only a few more bits of the binary representation
of the constant. Actually, these bits often come for free in
the architectures built in Section III.
The third contribution, in Section V, concerns constant
multiplication algorithms based on look-up tables (LUTs),
developed for FPGAs by Chapman [15] then Wirthlin
[16]. We show how these algorithms also benefit from the
periodicity of the constant.
The shift-and-add technique has been implemented as
the FPConstMultRational1 operator in the open-source
FloPoCo arithmetic core generator [17], while the LUT-
based technique is implemented in the FixRealKCM oper-
ator. Section VI provides some data for correctly rounded
multipliers by 1/3, 1/9 and 7/5, comparing shift-and-add
trees to LUT-based multipliers, and showing area savings
up to 40% with respect to the previous state of the art.

II. ON THE PERIODICITY OF THE BINARY
REPRESENTATION OF RATIONAL NUMBERS

The most usual system of representing numbers is the posi-
tion system, where a number is represented by a sequence
of digits, and each digit is weighted by powers of some
radix, usually 10 (decimal system) or 2 (binary system).

1This operator is included in the FloPoCo distribution, release 2.3 or
later, available from http://flopoco.gforge.inria.fr/.



In such a system, any rational number a/b has an eventually
periodic representation. This is true in decimal (1/3 =
0.3333 · · · , 1/9 = 0.11111 · · · ) but also in binary (1/3 =
0.010101012 · · · , 1/9 = 0.0001110001110002 · · · ). Num-
bers with an finite decimal representation can be viewed
as as special case where the periodic pattern is composed
of zeroes, for instance 0.5 = 0.50000 · · · . A number with
a finite decimal representation may have an infinite binary
one, for instance 1/5 = 0.210 = 0.001100110011 · · · . The
opposite is not true, due to the fact that two divides ten.
The following lemma tells us which numbers have a purely
periodic binary representation:

Lemma 1. Let us consider an irreducible fraction c/d,
where 2 divides neither c nor d. If c < d, then the binary
representation of c/d is purely periodic, i.e. it starts with
an occurence of the periodic pattern.

The condition that 2 divides neither c nor d is not a
constraint, since powers of two correspond to shifts in
binary. For most purposes, they may be handled separately
in a trivial way.
If c > d the Euclidean division of c by d gives us c =
hd+c′, and we may rewrite c/d = h+c′/d. For the purpose
of multiplying an input x by the constant c/d, we therefore
have cx/d = hx+ c′x/d. Existing literature addresses the
multiplication by the finite integer constant h, so we may
focus on the multiplication by the purely periodic constant
c′/d.
The following lemma allows us to compute the periodic
pattern:

Lemma 2. Let c/d be an irreducible fraction, where c < d,
and 2 divides neither c nor d. The size s of its period is
the multiplicative order of 2 modulo d, i.e. the smallest
integer such that 2s mod d = 1. The periodic pattern is
the integer p = b2sc/dc.

Proof: By definition of s we have 2s = kd + 1 for
some integer k. Therefore p = b2sc/dc =

⌊
(kd+1)c

d

⌋
=

bkc+ c/dc = kc since c/d < 1. We deduce that

2sc/d = p+ c/d,

where the recursive occurence of c/d exactly expresses the
periodicity of the fraction c/d.
Examples:
• 1/3 has period size s = 2 because 22 mod 3 = 1.

The pattern is
⌊
1× 22/3

⌋
= 1, which we write on 2

bits 01, and we obtain that

1/3 = 0.(012)
∞ ;

• 5/9 has period size s = 6 because 26 mod 9 = 1.
The pattern is

⌊
5× 26/9

⌋
= 35, which we write on 6

bits 100011, and we obtain that

5/9 = 0.(1000112)
∞.

Thanks to these lemmas, algorithm 1 determines the peri-
odic binary representation of a fractional number a/b. This
representation consists of 4 integers:

• s the period size in bits, a positive integer,
• p the periodic pattern, a positive integer that we will

usually write in binary,
• h the header, a positive integer, also typically written

in binary,
• e the scaling factor exponent, or shift.

such as

a/b = 2e

(
h+

+∞∑
i=1

p

2si

)
.

Algorithm 1 Computing the periodic representation of a
rational a/b as a tuple of integers (e, h, p, s).

1: procedure PERIODICREPRESENTATION(a, b)
2: (c, d)← SIMPLIFY(a, b)
3: e← 0
4: while c mod 2 = 0 do
5: c← c/2
6: e← e+ 1
7: end while
8: while d mod 2 = 0 do
9: d← d/2

10: e← e− 1
11: end while
12: (Now a/b = 2ec/d with both c and d odd)
13: h← c/d (header)
14: c← c mod d (periodic part)
15:
16: (Now a/b = h+ c/d with c < d)
17:
18: s← 1 (period size)
19: if d = 1 then (a/b has a finite binary representation)
20: p← 0 (periodic pattern)
21: else (a/b has an infinite binary representation)
22: t← 2 (Invariant of the loop below: t = 2s)
23: while t mod d 6= 1 do
24: s← s+ 1
25: t← 2t
26: end while
27: p← ct/d (periodic pattern)
28: end if
29: return (e, h, p, s)
30: end procedure

Let us now exploit this representation to build a multiplier
of a variable x by a fraction a/b.

III. PERIODICAL SHIFT-AND-ADD TREES

In this section, we input the periodic representation of a
rational constant a/b, and also a precision w0, which is
the number of bits of a/b that have to be considered for
the multiplication. The value of w0 typically expresses the
accuracy requirements of the floating-point or fixed-point
context. For instance, section IV will define the value of
w0 that ensures correct rounding for a given floating-point
format.

2



In [5], Gustafsson and Qureshi suggested trying to represent
a real constant on more than w0 bits if it leads to a shift-
and-add architecture with fewer additions. They indeed
mention the fact that, due to their periodic representation,
rational constants are good candidates for exploiting this
idea, without exploiting this idea systematically.
With the notations of previous section, let us define

π0 = 2−spx .

The 2−s factor simply scales the integer p to an approxi-
mation of c/d < 1, so π0 is an approximation of cx/d. We
may then compute increasingly accurate approximations of
cx/d as

π1 = π0 + 2−sπ0 ,

π2 = π1 + 2−2sπ1 ,

and in general

πi+1 = πi + 2−2
isπi

so that πi is the product of x by an approximation of c/d
of size 2is bits.
Therefore, a constant corresponding to 2i repetitions of the
period may be built in i additions, and this is optimal [6].
Let us now consider the details, including further optimiza-
tions. We note wh the size in bits of the header h. We need
to compute hx+ cx/d, where cx/d is the periodic part. If
w0 is the precision to which h+ c/d must be represented,
then c/d must be represented at least on w0 − wh bits.
First, one of the existing methods is used to build px and, if
h 6= 0, hx. As these two constants should be small for the
method to be relevant, exhaustive exploration techniques
[9], [10], [12] may be used to perform this step optimally.
Such methods lead to less than 4 additions for any h or
p of size smaller than 12 bits, and less than 5 additions
for sizes smaller than 19 bits. The FloPoCo implementation
currently uses the simpler heuristic presented in [14], which
is better suited to hardware as it also minimizes the size
of the adders and leads to minimum-depth adder trees. In
our experiments, it consistently computes a minimal-adder-
count architecture, probably due to the fact that both h
and p are very small integers for the simple rationals that
motivate this work.
Then we may compute the πi. In this process, we may stop
as soon as 2is ≥ w0 −wh. However, it is usually possible
to implement a smaller last addition. Let i be such that
2is < w0 ≤ 2i+1s: we must compute the πj for 0 ≤ j ≤ i.
Let j be the smallest integer such that (2i+2j)s ≥ w0−wh.
As j ≤ i, πj is already computed, and the last stage may
compute

f = πj + 2−2
isπi

(another option would be to compute f = πi + 2−2
jsπj ,

but this would lead to a larger adder [14]).
If h = 0, this is all. If h 6= 0, we still have to add hx.
This product is itself computed using a classical constant
multiplier, in parallel to the computation of the fractional
product. There are two possible parenthesing of the two
final additions: r = (hx+πj)+2−2

isπi or r = hx+(πj+

38

30

26

24

56

54

x

π1 = x× 1100112

π2 = x× 110011001100112

π3 = x× 1100110011001100110011001100112

π0 = x× 112

x× 101100110011001100110011001100112

adding hx (h = 1)

computing px (p = 01102)� 1

� 4

� 8

� 15

� 16

Fig. 1. Multiplication of a 24-bit mantissa by 7/5 (period p = 01102,
header h = 1)

2−2
isπi). We may assume that the computation of hx has

a depth strictly smaller than that of πi (which should be the
case for “small” rationals). With this assumption, as soon
as j < i, the first parenthesing leads to a shallower tree,
and is therefore preferred. If i = j, the second parenthesing
will be preferred when it leads to a smaller overall number
of full adders.
Figure 1 illustrates the resulting architecture on the example
of a/b = 7/5 for single precision, with a target precision
w0 = 28 (providing correct rounding according to Sec-
tion IV). The smallest value of i such that 2is ≥ 28 is
i = 3. We don’t find in this case a smaller j such that
(2i−1+2j)s ≥ 28. For this simple example the product px
is computed in one addition only, while the product hx is
computed in zero additions.
This figure also illustrates a small additional optimization:
we trim, whenever possible, leading and trailing zeroes
from the various sub-constants to minimize datapath width.
For instance, for a/b = 7/5, the period is p = 01102, but
π0 is actually computed as x× 112 and the two zeroes are
added only when performing the shifts. The final result is
actually one bit more accurate than it seems, since there
is one more trailing zero to the truncated constant. These
technical details are taken into account by the generator in
FloPoCo.

IV. CORRECT ROUNDING

It turns out that for the small rational constants for which
this method is of interest (“small” meaning small a and
small b), obtaining a correctly rounded result is also fairly
cheap. More specifically, the following theorem holds. It
is, in essence, a generalization of the “exclusion lemma”
used to prove that some division algorithms are correctly
rounded [18].

Theorem 1. Let n be the precison of the input X and q be
the precision of the result R, and assume q ≥ n. If C is a

3



constant obtained by truncating the binary representation
of a/b to at least q + 1 + dlog2 be bits, then rounding
the product CX to the nearest floating-point number of
precision q is equivalent to rounding the exact product

a

b
X .

Note that this theorem covers the most useful case when
the input and output precisions are identical.

Proof: For reasons already invoked, we may assume
without loss of generality that X ∈ [1/2, 1), and that
both a and b are odd. Let us use the integral significand
representation of the input X: X = I

2n where I is an
integer. We want to show that abX cannot be too close to the
mid-point between two floating-point numbers in the result
format. Such a mid-point M can be written M = 2J+1

2q+1 .
The distance between

a

b
X and M is therefore written:∣∣∣a

b
X −M

∣∣∣ =

∣∣∣∣ab I

2n
− 2J + 1

2q+1

∣∣∣∣
=

∣∣∣∣2q+1−naI − (2J + 1)b

2q+1b

∣∣∣∣
Here, 2q+1−naI is an even integer since q ≥ n. On the
other hand, (2J + 1)b is an odd integer, as the product of
two odd integers. We deduce that their difference is at least
one, hence ∣∣∣a

b
X −M

∣∣∣ ≥ 1

2q+1b

This defines an “exclusion zone” around mid-points. Fol-
lowing a classical argument [14], if we compute R ≈ a

bX
such that |R − a

bX| <
1

2q+1b , rounding R to q bits is
then equivalent to rounding a

bX . Truncating the infinite
representation of ab to the precision 2−q−1−dlog 2be provides
this accuracy.

V. LUT-BASED METHODS FOR RATIONAL CONSTANTS

On most FPGAs, the basic logic element is the look-up-
table, a small memory addressed by α bits. Once filled with
the truth table of an arbitrary Boolean function of these
α bits, it implements this function. The KCM algorithm2

due to Chapman [15] and further studied by Wirthlin [16]
is an efficient way to use these LUTs to implement a
multiplication by an integer constant. As we are interested
in rational constants, we use here a variation introduced in
[19] that multiplies a fixed-point input X by an arbitrary
real constant C.
This algorithm consists in breaking down the binary de-
composition of X into chunks of α bits (see Figure 2):

X =

dnα e−1∑
i=0

Xi.2
−αi where Xi ∈ {0, ..., 2α − 1}

The product of X by a constant C becomes

CX =

dnα e∑
i=0

CXi.2
−αi

2This historical acronym seems to mean constant (K) Coefficient
Multipliers.

CX0

CX1

+
+
+

CX =

2−3αCX3

2−αCX1

2−2αCX2

CX0

+

+

+

T3T2

X0 X1 X2 X3

T1

α

T0

α

n bits
X = X0 + 2−αX1 + 2−2αX2 + 2−3αX3

q + g bits q + g

Fig. 2. The KCM LUT-based method

and we have a sum of (shifted) products CXi. Instead of
computing these products, we read CXi from a table of
pre-computed values Ti, indexed by Xi.
The cost of each table is one FPGA LUT per output bit (on
Figure 2, the corresponding boxes are sized accordingly).
We also have to count the cost of computing the sum of
these CXi. The minimal cost is obtained with the sequential
implementation of this sum depicted on Figure 2: it consists
of dn/αe−1 adders of increasing sizes. However, an adder
tree, reducing the latency for a slightly larger overal cost,
is usually preferred. As the cost of an adder in FPGAs is
typically one LUT per bit, the cost of the adders is roughly
equivalent to the cost of the tables.
The FixRealKCM operator in FloPoCo implements this
technique. In addition, to ensure last-bit accuracy of CX ,
the data-path has to be extended with g guard bits that will
absorb the rounding errors performed when filling the tables
[19]. The error analysis determining g is easily adapted to
ensure correct rounding in the case of rational constants,
using the results of Section IV.
We now remark that the periodicity of the constant also
leads to an optimization of the KCM tables. To illustrate it,
let us take as an example C = 1/3, and consider in Figure 3
a table holding Xi/3 for Xi on α = 4 bits. Since each
row, having the same denominator, is eventually periodic,
the whole table is eventually periodic. This example 22-
bit table can be implemented as 5 LUTs instead of 22. In
general, for a constant a/b < 1 of period size s, the table
for a/bXi requires of the order of α + s LUTs: only the
most significand α bits are not periodic.
This optimization only reduces the size of the tables,
not the size of the adders, which limits its impact to a
50% improvement at most. However, it is discovered by
synthesis tools, so we do not need to explicit it in the code.

VI. RESULTS AND COMPARISONS

Table I provides some results obtained thanks to FloPoCo
for the proposed multipliers, compared to the previous

Fig. 3. For rational constants (here 1/3), the KCM tables are periodic.

4



constant n = q
Section III using [14] KCM
pc + (FA) pc + (FA) + (LE)

1/3 24 32 4 (118) 27 4 (190) 5 (127)
h = 0 53 64 5 (317) 56 5 (368) 12 (508)
p = 012 113 128 6 (792) 116 6 (1026) 27 (2088)

1/9 24 30 5 (132) 29 5 (131) 5 (167)
h = 0 53 60 6 (356) 58 6 (408) 12 (613)

p = 0001112 113 120 7 (885) 118 7 (1116) 27 (2283)
7/5 24 33 5 (139) 28 5 (193) 5 (162)
h = 1 53 65 6 (366) 57 6 (595) 12 (594)

p = 01102 113 129 7 (900) 117 7 (1507) 27 (2267)

TABLE I
ADDER COUNT AND SIZE OF THE SIGNIFICAND MULTIPLIERS FOR

SOME CORRECTLY ROUNDED RATIONAL CONSTANT MULTIPLIERS. THE
PRECISIONS CHOSEN ARE THOSE OF THE IEEE754-2008 FORMATS.

implementation of [14], and (for FPGAs) to the KCM
approach. In the latter case, one Logic Element (LE) may
implement one 4-input LUT, or one Full Adder (FA): the
costs reported on each line indeed use the same units.
In all the cases of Table I, the previous shift-and-add
approach from [14] already builds a tree of optimal depth,
but not of optimal size. Specifically, it does build sub-
constants which are repetitions of the period, but the
numbers of repetition are not always powers of two, which
prevents reusing them optimally. The same holds for the
implementation of [9] on spiral.net. The other generator of
spiral.net [11] minimizes adder count but not adder size,
leading to a larger overal number of FA than the periodic
approach. These online generators are limited to constant
sizes smaller than 25 bits, so they do not appear in the
table.
As expected, the KCM approach leads to an adder count
proportional to the input precision n and independent of
the constant. However, most of these adders are smaller
than the output precision q (see Figure 2), whereas the
adders in the shift-and-add method are all larger than n
(see Figure 1). Therefore, KCM is competitive for small n
(typically smaller than 20) especially if q > n [19].
The KCM results are given for α = 4 for comparison with
the literature (for instance [16] reports 308 LUTs for a
KCM with a 24-bit input and a 24-bit constant – this would
not even offer correct rounding as the operators of Table I).
However, recent FPGAs have larger LUTs (α = 5), which
leads to a typical reduction of 4/5 of the KCM cost. In
our table, a KCM with α = 5 would take the lead only for
the first line (113 LE instead of 127 for KCM with α = 4,
and 118 LE for the periodic shift-and-add). For the other
lines, the shift-and-add approach still wins, and KCM is
only interesting for precisions smaller than 24 bits.

VII. CONCLUSION

The periodic binary representation of rational constants
can be usefully exploited to build efficient hardware for
the multiplication by such constants. An implementation
of this idea in the open-source FloPoCo core generator
is demonstrated. This technique is mostly relevant for
constants a/b where both a and b are small integers, and

in this case correct rounding of the multiplication by the
infinitely accurate rational constant comes at a minor over-
head: On most of the examples studied, correct rounding is
for free. An important application of this technique is the
implementation of divisions by small integers. A multiplier
by 1/b using this approach is bit-for-bit equivalent to a
correctly rounded divider by b.
It could be interesting to study if variations of this technique
could not be used to implement division by small integers
in software multiple-precision packages.

Acknowledgements

Thanks to B. Pasca and A. Plesco for bringing up this ques-
tion, to N. Brisebarre for his lights on number theory, and
to the anonymous reviewers for their insightful suggestions.

REFERENCES

[1] J. W. L. Glaisher, “Periods of reciprocals of integers prime to 10,”
Proc. Cambridge Philos. Soc., vol. 3, pp. 185–206, 1878.

[2] E. Artzy, J. A. Hinds, and H. J. Saal, “A fast division technique for
constant divisors,” Communications of the ACM, vol. 19, pp. 98–101,
Feb. 1976.

[3] S.-Y. R. Li, “Fast constant division routines,” IEEE Transactions on
Computers, vol. C-34, no. 9, pp. 866–869, Sep. 1985.

[4] P. Srinivasan and F. Petry, “Constant-division algorithms,” IEE Proc.
Computers and Digital Techniques, vol. 141, no. 6, pp. 334–340,
Nov. 1994.

[5] O. Gustafsson and F. Qureshi, “Addition aware quantization for low
complexity and high precision constant multiplication,” IEEE Signal
Processing Letters, vol. 17, no. 2, pp. 173–176, 2010.

[6] O. Gustafsson, “Lower bounds for constant multiplication problems,”
IEEE Transactions On Circuits And Systems II: Express Briefs,
vol. 54, no. 11, pp. 974 – 978, Nov. 2007.

[7] V. Dimitrov, L. Imbert, and A. Zakaluzny, “Multiplication by a
constant is sublinear,” in 18th Symposium on Computer Arithmetic.
IEEE, 2007, pp. 261–268.

[8] R. Bernstein, “Multiplication by integer constants,” Software –
Practice and Experience, vol. 16, no. 7, pp. 641–652, 1986.

[9] A. Dempster and M. Macleod, “Constant integer multiplication using
minimum adders,” Circuits, Devices and Systems, IEE Proceedings,
vol. 141, no. 5, pp. 407–413, 1994.

[10] O. Gustafsson, A. G. Dempster, K. Johansson, and M. D. Macleod,
“Simplified design of constant coefficient multipliers,” Circuits,
Systems, and Signal Processing, vol. 25, no. 2, pp. 225–251, 2006.

[11] Y. Voronenko and M. Püschel, “Multiplierless multiple constant
multiplication,” ACM Trans. Algorithms, vol. 3, no. 2, 2007.

[12] J. Thong and N. Nicolici, “An optimal and practical approach to
single constant multiplication,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 30, no. 9,
pp. 1373–1386, 2011.

[13] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Optimization of area
in digital FIR filters using gate-level metrics,” in Design Automation
Conference, 2007, pp. 420–423.

[14] N. Brisebarre, F. de Dinechin, and J.-M. Muller, “Integer and
floating-point constant multipliers for FPGAs,” in Application-
specific Systems, Architectures and Processors. IEEE, 2008, pp.
239–244.

[15] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993
design idea winner),” EDN magazine, May 1994.

[16] M. Wirthlin, “Constant coefficient multiplication using look-up ta-
bles,” Journal of VLSI Signal Processing, vol. 36, no. 1, pp. 7–15,
2004.

[17] F. de Dinechin and B. Pasca, “Designing custom arithmetic data
paths with FloPoCo,” IEEE Design & Test of Computers, Aug. 2011.

[18] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres,
Handbook of Floating-Point Arithmetic. Birkhauser Boston, 2009.

[19] F. de Dinechin and B. Pasca, “Floating-point exponential functions
for DSP-enabled FPGAs,” in Field Programmable Technologies,
Dec. 2010, pp. 110–117.

5


