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Internal gravity waves contribute to fluid mixing and energy transport, not only in oceans but also
in the atmosphere and in astrophysical bodies. We provide here the first experimental measurement
of the growth rate of a resonant triad instability (also called parametric subharmonic instability)
transferring energy to smaller scales where it is dissipated. We make careful and quantitative
comparisons with theoretical predictions for propagating vertical modes in laboratory experiments.

PACS numbers: 92.05.Bc, 47.35.Bb, 47.55.Hd, 47.20.-k

Internal gravity waves (IGW) result from the balance
of inertia and buoyancy force in a density stratified fluid.
Such waves have received a great deal of attention re-
cently because of their relevance and ubiquity in differ-
ent physical situations: they are believed to be of pri-
mary importance as they affect ocean mixing and energy
transport [1]. Although internal waves do not play the
dominant role in the evolution of weather and climate,
their influence is non-negligible in the dynamics of the
atmosphere [2]. IGW also exist in the solar radiative in-
terior, generated at the interface between the convective
and radiative regions, transporting angular momentum
and are believed to produce observational signatures [3].
Moreover, the propensity of oceanic IGW to affect off-
shore oil and gas design, installation and operation is
seriously being considered by oil companies [4].

From a fundamental point of view, these waves are
also particularly intriguing. A striking consequence of
stratification is an anisotropic dispersion relation relat-
ing the frequency to the direction of propagation of the
wave and not to the wavelength. This property is also
encountered for inertial waves (in presence of rotation)
or plasma waves (in presence of a magnetic field). This
has unexpected and interesting consequences in the prop-
agation, reflection [5] or transmission properties of these
waves [6].

Internal waves are known to be inherently unstable
due to resonant triad instability [7], providing an effi-
cient way to transfer energy from large to smaller scales,
where it can be dissipated. This instability is often called
parametric subharmonic instability since energy is trans-
ferred from a primary wave to two recipient waves at
approximately half the frequency. Historically, a series
of experiments were performed driving low-order stand-
ing modes with plungers on the sides of the container [8],
with an oscillating paddle [9] or, more recently, relying
on the parametric forcing of the tank [10]. For large am-
plitude forcing, some “irregularities” or “traumata” were
observed, which led to mixing and overturning. Unfortu-
nately no quantitative measurements were reported. We

report here on experiments performed with a wave gener-
ator that produces sinusoidal vertical waves propagating
along a rectangular tank. We quantitatively measure the
growth rate of the instability, a quantity of paramount
importance to single out the major mechanism in dissi-
pation processes, a recently highly debated issue [1, 11].
Theory.– Internal waves are characterized by the buoy-

ancy frequency, N =
√

(−g/ρ0)(dρ/dz), in which g is the
acceleration of gravity, ρ0 the characteristic fluid density
and (dρ/dz) the density gradient in the vertical direc-
tion z. At large Prandtl number, the 2-D Boussinesq
equations of motion can be written as
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+N2 ∂

2ψ

∂x2
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∂

∂t
J(ψ,∇2ψ)−

g

ρ0

∂

∂x
J(ρ′, ψ)+ν∇4ψt

(1)
where ρ′ is the perturbation density field, ψ the stream
function, J the Jacobian operator and ν the viscosity.

Seeking wave solutions with wave number
−→
k = (k,m),

Eq. (1) leads to the inviscid linear dispersion relation for
frequency ω,

ω2 = N2 k2

k2 +m2
. (2)

For small amplitudes, it can be assumed that that several
waves could concurrently exist simply as a linear super-
position. However, in the case of a resonant triad inter-
action, where three waves satisfy the spatial resonance
condition

−→
k0 =

−→
k1 +

−→
k2 , (3)

and the temporal resonance one

ω0 = ω1 + ω2 , (4)

the nonlinear terms of Eq. (1) act as forcing terms trans-
ferring energy between the three waves. Since each wave
must satisfy the dispersion relation (2), a finite ampli-

tude, large length scale, high frequency wave (
−→
k0, ω0)

can transfer energy to produce two secondary waves of
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FIG. 1. (Color online) Snapshot of the horizontal density gradient (plotted as the square buoyancy frequency anomaly, in
rad2·s−2) obtained at t = 20T , t = 30T and t = 40T with the parameters a = 0.5 cm, ω0 = 0.95N and N = 0.822 rad· s−1.
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FIG. 2. (Color online) Real part of the Hilbert Transform of ρ̃x at t = 40T (see Fig. 1(right)) presented after filtering at
ω0 = 0.95N (left), ω1 = 0.38N (center) and ω2 = 0.57N (right).

smaller length scales and lower frequencies, (
−→
k1 , ω1) and

(
−→
k2, ω2).
The instability results from a competition between

nonlinear effects and viscous dissipation. The growth
is exponential if the amplitude of the secondary waves
is initially small compared to the primary wave [12, 13].
The growth rate is then defined as

λ = −
1

2
(T1 + T2) +

[

1

4
(T1 − T2)

2 + I1I2ψ
2
0

]1/2

(5)

where ψ0 is the amplitude of the stream function of the
primary wave, I1 and I2 are the interaction coefficients

Ii =
kpmq − kqmp

2ωiκ2i

[

ωi(κ
2
p − κ2q) + ki

(

kp
ωp

−
kq
ωq

)]

(6)

where i, p, q = 0, 1 or 2 while Ti = 1/2νκ2i is the viscous
damping factor of the wave i and κ2 = k2 +m2.
Experimental Configuration.–A tank, 160 cm long and

17 cm wide, is filled with linearly stratified salt water
with constant Brünt-Väisälä frequency N using the dou-
ble bucket system. The wave generator, similar to the
one used in Ref. [14], is set to generate a monochromatic
vertical mode-1, i.e. a horizontal velocity boundary forc-
ing u(x = 0, z, t) = −aω0 cos(πz/H) cos(ωt), H being
the water depth, ω0 the excitation frequency and a the
amplitude of the oscillations of the plates of the wave-
maker. The motion of the fluid is captured thanks to a
Synthetic Schlieren technique using a dotted image be-
hind the tank [15]. A camera is used to acquire images
of this background at 1.875 frames per second. The CIV
algorithm [16] computes the cross-correlation between

the real-time and the t = 0 background images, giving
the variation of the horizontal, ρ̃x(x, z, t), and vertical,
ρ̃z(x, z, t), density gradients.

Results.– Snapshots of an experimental horizontal den-
sity gradient field at different times for a particular ex-
periment are presented in Fig. 1. At early times, a pure
vertical mode-1 wave can be seen propagating to the right
away from the wave generator located at x = 0: this is
the primary wave. After several buoyancy periods (typ-
ically 30), this wave is destabilized and two secondary

waves appear, of different frequencies and wave numbers
from the primary wave. To see these waves more clearly,
the horizontal density gradient at later times is filtered
at the frequency of the primary wave, ω0 and at the fre-
quencies of the two secondary waves ω1 and ω2. The
result is shown in Fig. 2. It is clear that the mode-1
wave at t = 40T is less intense than at t = 20T . Some of
its energy has been transferred to both secondary waves.
These two waves have smaller frequency and also smaller
wavelength. In agreement with the dispersion relation,
which links the frequency to the angle of propagation of
the wave, the angle is different for the two wavelengths.
Measuring the phase of the signal using a Hilbert trans-
form [17], one can obtain the three different frequencies
(ω0, ω1, ω2) = (0.95, 0.38, 0.57)N , attesting that the tem-
poral resonance condition (4) is satisfied. Moreover, dif-
ferentiating the phase, one measures the three wavevec-
tors which are presented in Fig. 3. Within experimental
errors, wave vectors satisfy the theoretical spatial reso-
nance condition (3).

The measured density gradient fields are then analyzed
using a time-frequency representation calculated at each
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FIG. 3. (Color online) Spatial resonance conditions for the
experiment presented in Fig. 1. The black line represents the

location of the tip of the wave vector ~k1 for a given primary

wave vector ( ~k0) so that the resonance conditions (4) and (3)
and dispersion relations (2) are satisfied. The three arrows
are the experimental measurement of the three wave vectors:

the red arrow is the primary wave vector ~k0, the blue arrows

the secondary wave vectors ~k1 and ~k2. The box represents
the most unstable theoretical mode.

spatial point [18]

Sx(t, ω) =
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∣
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, (7)

where h is a smoothing Hamming window of energy unity.
A large (resp. small) window provides good frequency
(resp. time) resolution. To increase the signal over noise
ratio, data are averaged along a vertical line over the wa-
ter depth. For large ω0/N values, the dissipation length
is small, so the analysis line is chosen to be close to the
generator so that the amplitude is large.
Fig. 4(top) presents the spectra of the density field for

four different amplitudes of the mode-1 wave with ω0 =
0.94N . The spectra is obtained using a large window to
increase frequency resolution and by averaging Sx(t, ω)
over the 10 last periods. Analyzing first the result for the
amplitude 0.5 cm, the picture emphasizes a large peak
close to 1 corresponding to the frequency of the mode-1
wave. A pair of twin peaks are observed, corresponding
to secondary waves of frequencies, ω1 and ω2, smaller
than ω0.
The amplitude of each wave is then computed using a

time-frequency analysis with a smaller window h. The
amplitude of the secondary wave of frequency ω1 is pre-
sented in Fig. 4(bottom). After a few buoyancy peri-
ods, a stationary state for the primary wave is reached.
The secondary wave then starts to grow (except for the
largest amplitude, where it starts very early) and a lin-
ear increase of the amplitude on a semilogarithmic plot is
observed which confirms exponential growth. The value
of the growth rate λ is measured using a linear fit, shown
with the dashed lines in Fig. 4(bottom). The amplitude
of the secondary waves finally saturates.
The influence of the amplitude of the wavemaker, and

consequently of the primary wave, is presented for the
same stratification and a forcing frequency of 0.94N in
Fig. 4. The amplitude has an influence not only on the

0 N
10

−8

10
−4

10
0

<
S

x
(ω

)
>

t

0 50 100

10
−4

10
0

t/T

S
x

,1
(t

)/
<

S
x

,0
>

t

ω0ω2ω1

1

0.5

0.35

0.25

FIG. 4. (Color online) (Top) Spectra of the density gradient
field, 〈Sx(ω)〉t, for four different amplitudes of the mode-1
for ω0 = 0.94N . The amplitudes are respectively 0.25 cm
(green), 0.35 (red), 0.5 (black) and 1 (blue). The spectra 0.25,
0.35 and 1 are multiplied respectively by 0.01, 0.1 and 10 for
illustration purposes. (Bottom) Amplitude of the secondary
wave ω1, Sx,1(t), normalized by the amplitude of the primary
wave, 〈Sx,0〉, averaged over time when the steady-state of the
mode-1 has been reached. Results are similar for the other
secondary wave ω2. The dashed-dotted lines represent the
amplitude of the primary wave, while the dashed lines shows
the linear fit.

location but also on the height of the peaks of the sec-
ondary waves. If the amplitude of the primary wave is
too small no peaks are visible and therefore no instabil-
ity is observed attesting to the existence of an amplitude
threshold. As the amplitude increases, the distance be-
tween the two peaks increases and the instability occurs
earlier (after fewer buoyancy periods) and is stronger,
i.e. with a larger growth rate. This result is in agree-
ment with the theoretical growth rate (Eq. (5)).
Experiments were performed using the same stratifi-

cation and an amplitude of 0.5 cm for frequencies in the
range of 0.9 < ω0/N < 1. For each experiment, the value
of the frequencies of the two secondary waves, ω1 and ω2,
and the growth rate λ were measured. Experimental re-
sults are presented as a function of the frequency of the
primary wave, ω0/N , in Fig. 5. The sum of the frequen-
cies of the two secondary waves, ω1 + ω2, is equal to the
frequency of the primary wave, ω0, within experimental
errors, in agreement with Eq. (4). As ω0/N increases, the
distance between the two secondary frequencies is larger.
The measured value of the growth rate is presented in
Fig. 5(right). The growth rate increases to reach a max-
imum around ω0 = 0.95N and then decreases as ω0 gets
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FIG. 5. (Color online) (Left) Values of the frequencies of the secondary waves for the experiments (blue ◦) and the theoretical
calculation (red �). The error bars are the width of the corresponding peak. The top line of point corresponds to the sum
of the frequencies, with corresponding colors for theoretical and experimental data. (Right) Values of the growth rate of the
secondary waves for the experiments (blue ◦) and the theoretical calculation (red �). The theoretical values (�) are computed
using Eq. (5) and the measured amplitude of the primary wave.

closer to N .

To compare quantitatively the experimental results
with the theoretical prediction of the growth rate, the
value of the amplitude of the mode-1 wave has to be
precisely known. The theoretical value of the amplitude
of the streamfunction is equal to aω0/m0. However, as
mentioned in [14], the conversion efficiency from the en-
ergy of the wavemaker to the energy of the mode-1 is
less than unity and depends on experimental conditions.
Moreover, as ω0 gets closer to the cut-off frequency, N ,
the value of the viscous damping increases [19]. Conse-
quently, the efficiency is not the same for all primary fre-
quencies ω0, and the amplitude of the primary wave has
to be measured experimentally to compute the theoreti-
cal value of the growth rate. It is important to check that
the steady-state of the mode-1 wave has been reached. In
contrast, the tank being finite in length, the measurement
has to be performed before the mode-1 wave reflects back
into the measurement area. Then, using a linear relation,
the amplitude ψ0 of the stream function at this particular
frequency and wave number is ψ0 = gω0∂xρ̃0/(k

2
0 ρ̄N

2).
The theoretical frequencies of the instability is defined
as the one that maximizes the growth rate. Without ad-
justable parameter, the comparison between experimen-
tal and theoretical results is presented in Fig. 5, empha-
sizing a good quantitative agreement.

Conclusions.– We have reported the first experimen-
tal measurement of resonant triad instability in strat-
ified fluids and we have demonstrated this effect in a
systematic set of laboratory experiments allowing care-
ful comparisons with theoretical predictions. In practice,
this heavily debated mechanism [11] has implications for
many geophysical scenarios. Interestingly, although the
generation mechanisms of oceanic IGW are quite well
understood, their ultimate fate is currently poorly un-
derstood. Consequently determining the relative impor-
tance of parametric subharmonic instability, among the
four recognized dissipation processes [1] is the next step

in furthering our understanding of how internal waves
impact ocean mixing. Quantitative measurements of the
subsequent mixing together with a fundamental study of
wave turbulence would be of high interest.
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