
HAL Id: ensl-00616454
https://ens-lyon.hal.science/ensl-00616454v2

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resonant Triad Instability in Stratified Fluids
Sylvain Joubaud, James Munroe, Philippe Odier, Thierry Dauxois

To cite this version:
Sylvain Joubaud, James Munroe, Philippe Odier, Thierry Dauxois. Resonant Triad Instability in
Stratified Fluids. Physics of Fluids, 2012, 24, pp.041703. �10.1063/1.4706183�. �ensl-00616454v2�

https://ens-lyon.hal.science/ensl-00616454v2
https://hal.archives-ouvertes.fr


Experimental Parametric Subharmonic Instability in Stratified Fluids
Sylvain Joubaud,1, a) James Munroe,2, b) Philippe Odier,1, c) and Thierry Dauxois1, d)

1)Laboratoire de Physique de l’École Normale Supérieure de Lyon, CNRS and Université de Lyon, 46 Allée d’Italie,
69007 Lyon, France
2)Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s,
NL A1B 3X7, Canada

(Dated: 27 April 2012)

Internal gravity waves contribute to fluid mixing and energy transport, not only in oceans but also in the
atmosphere and in astrophysical bodies. An efficient way to transfer energy from large scale to smaller
scale is the parametric subharmonic instability. We provide here the first experimental measurement of the
growth rate of this instability. We make careful and quantitative comparisons with theoretical predictions for
propagating vertical modes in laboratory experiments.

PACS numbers: 92.05.Bc, 47.35.Bb, 47.55.Hd, 47.20.-k

Internal gravity waves (IGW) result from the balance
of inertia and buoyancy forces in a density stratified fluid.
Such waves have received a great deal of attention re-
cently because of their relevance and ubiquity in differ-
ent physical situations: they are believed to be of pri-
mary importance as they affect ocean mixing and energy
transport1. Although internal gravity waves do not play
the dominant role in the evolution of weather and cli-
mate, their influence is non-negligible in the dynamics
of the atmosphere2. From a fundamental point of view,
these waves are also particularly intriguing. A striking
consequence of stratification is an anisotropic dispersion
relation relating the frequency to the direction of propa-
gation of the wave and not to the wavelength. This prop-
erty is also encountered for inertial waves (in presence
of rotation) or plasma waves (in presence of a magnetic
field). This has unexpected and interesting consequences
in the propagation, reflection3 or transmission properties
of these waves4.

Internal waves are known to be inherently unstable due
to parametric subharmonic instability (PSI)5. PSI is a
type of resonant triad interaction where nonlinear terms
in the equations of motion allow for efficient transfer of
energy from large to small length scales where it can be
dissipated. The terminology "parametric sub-harmonic"
is used because, for inviscid fluids, PSI transfers energy
from a primary wave to two recipient waves of half the
frequency. As viscosity effects set in, the frequencies of
the recipient waves diverge from half the frequency of
the primary wave. In previous laboratory experiments,
PSI has been qualitatively observed by driving low-order
standing modes with plungers on the sides of the con-
tainer6, with an oscillating paddle7,8 or relying on the
parametric forcing of the tank9. For large amplitude forc-
ing, “irregularities” or “traumata” were observed, which
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led to mixing and overturning. In ref8, the critical ampli-
tude of the instability has been measured. Quantitative
measurements of the growth rate of the instability have
never been reported.

We present here experiments performed with a wave
generator, which produces sinusoidal vertical modes
propagating along a rectangular tank. We measured
the growth rate of the instability. This quantity is of
paramount importance to single out the major mecha-
nism in dissipation processes, a recently highly debated
issue1,10,11. We first briefly outline theoretical aspects
of this instability, after which the experimental configu-
ration is described. Then we present our experimental
results and compare some of them with theoretical pre-
dictions.

Theory Internal waves are characterized by the buoy-
ancy frequency, N =

√

(−g/ρ̄0)(dρ0/dz), in which g is
the acceleration of gravity, ρ̄0 the characteristic fluid den-
sity and (dρ0/dz) the density gradient in the vertical di-
rection z. At large Prandtl number, the 2-D Boussinesq
equations of motion can be written as

∂2∇2ψ

∂t2
+N2 ∂

2ψ

∂x2
=

∂

∂t
J(ψ,∇2ψ)−

g

ρ0

∂

∂x
J(ρ̃, ψ)+ν∇4ψt ,

(1)
where ρ̃ = ρ − ρ0 is the perturbation density field, ψ
the stream function, J the Jacobian operator and ν
the viscosity. Seeking wave solutions with wave number
−→
k = (k,m), Eq. (1) leads to the inviscid linear dispersion
relation for frequency ω,

ω2 = N2 k2

k2 +m2
. (2)

For small amplitudes, it can be assumed that that several
waves concurrently exist simply as a linear superposition.
In the case of a resonant triad interaction, where three
waves satisfy the spatial resonance condition

−→
k0 =

−→
k1 +

−→
k2 , (3)

and the temporal resonance condition

ω0 = ω1 + ω2 , (4)
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the nonlinear terms of Eq. (1) act as forcing terms trans-
ferring energy between the three waves. Each wave must
satisfy the dispersion relation (2). A finite amplitude,

large length scale, high frequency wave (
−→
k0, ω0) can trans-

fer energy to produce two secondary waves of smaller

length scales and lower frequencies, (
−→
k1, ω1) and (

−→
k2, ω2).

The instability results from a competition between non-
linear effects and viscous dissipation. The growth is ex-
ponential if the amplitude of the secondary waves is ini-
tially small compared to the amplitude of the primary
wave12,13. In this case, the growth rate is equal to

λ = −
1

2
(T1 + T2) +

[

1

4
(T1 − T2)

2 + I1I2ψ
2
0

]1/2

, (5)

where ψ0 is the amplitude of the stream function of the
primary wave, I1 and I2 are the interaction coefficients

Ii =
kpmq − kqmp

2ωiκ2i

[

ωi(κ
2
p − κ2q) +N2ki

(

kp
ωp

−
kq
ωq

)]

(6)
and i, p, q = 0, 1 or 2 while Ti = νκ2i /2 is the viscous
damping factor of the wave i and κ2 = k2 +m2.

Experimental Configuration A tank, 160 cm long and
17 cm wide, is filled with linearly stratified salt water
with constant buoyancy frequency N using the stan-
dard double bucket method. A monochromatic verti-
cal mode-1 wave is generated using the wave genera-
tor employed in previous experiments14,15. The gener-
ator is composed of 50 plates moving horizontally to
impose the horizontal velocity component of a mode-
1, i.e, u(x = 0, z, t) = −aω0 cos(πz/H) cos(ω0t), H be-
ing the water depth, ω0 the excitation frequency and a
the amplitude of the oscillation of the plates. The mo-
tion of the fluid is captured by the synthetic schlieren
technique using a dotted image behind the tank16. A
camera is used to acquire images of this background at
1.875 frames per second. The CIVx algorithm17 com-
putes the cross-correlation between the real-time and the
t = 0 background images, giving the variation of the hor-
izontal, ρ̃x(x, z, t) = ∂x(ρ(x, z, t) − ρ0(z)), and vertical,
ρ̃z(x, z, t) = ∂z(ρ(x, z, t)− ρ0(z)), density gradients.
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FIG. 1. (Color online) Snapshot of the horizontal density
gradient (in kg/m4) obtained at t = 20T , t = 30T and t =
40T with the parameters a = 0.5 cm, ω0 = 0.95N and N =
0.822 rad· s−1. On the left-hand panel the direction of the
group velocity, ~vg , is indicated. After 20T , the primary wave
has only reached a steady state in the first 20 cm from the
generator (see Fig. 4).
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FIG. 2. (Color online) Real part of the Hilbert Transform
of ρ̃x at t = 40T (see Fig. 1(right)) presented after filtering
at ω0 = 0.95N (left), ω1 = 0.38N (center) and ω2 = 0.57N
(right). Note that the color scale is the same as in Fig. 1.

Results Snapshots of an experimental horizontal den-
sity gradient field at different times for a particular ex-
periment are presented in Fig. 1. At early times, a pure
vertical mode-1 wave can be seen propagating to the right
away from the wave generator located at x = 0: this
is the primary wave. After several frequency periods T
(typically 30), this wave is destabilized and two secondary

waves appear, with different frequencies and wave num-
bers from the primary wave. To see these waves more
clearly, the horizontal density gradient at later times is
filtered at the frequency of the primary wave, ω0 and at
the frequencies of the two secondary waves ω1 and ω2.
As described below, the frequencies ω1 and ω2 were de-
termined from a power spectrum. The result is shown
in Fig. 2. Some of the energy of the primary wave has
been transferred to both secondary waves, leading to a
decrease in the amplitude of the primary wave (com-
pare the left part of Fig. 1(left) and Fig. 2(left)). These
two waves have smaller frequency and also smaller wave-
length. In agreement with the dispersion relation, which
links the frequency to the angle of propagation of the
wave, the angle of constant phase is different for the two
wavelengths. For the experiment presented in Fig. 1,
the three measured frequencies (ω0, ω1, ω2) are equal to
(0.95, 0.38, 0.57)N , attesting that the temporal resonance
condition (4) is satisfied. To justify that the spatial res-
onance condition (3) is also satisfied, the components
of the three wavevectors have to be measured. This is
done by extracting the phase of the signal at a given fre-
quency, ω0,1,2t± k0,1,2x±m0,1,2z, using a Hilbert trans-
form18. At a fixed time and x (respectively z), the phase
is linear with the position z (resp. x). The component
m0,1,2 (resp. k0,1,2) is given by the slope of the linear
fit. Within experimental errors, the wave vectors, repre-
sented in Fig. 3, satisfy the theoretical spatial resonance
condition (3).

The measured density gradient fields are then analyzed
using a time-frequency representation calculated at each
spatial point

Sx(t, ω) =

∣

∣

∣

∣

∫ +∞

−∞

du ρ̃x(u) e
iωu h(t− u)

∣

∣

∣

∣

2

, (7)

where h is a smoothing Hamming window of energy
unity19. Good frequency resolution is provided by a large
time window h while good time resolution is provided by
small time window h. To increase the signal to noise ra-
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FIG. 3. (Color online) Spatial resonance conditions for the
experiment presented in Fig. 1. The black line represents the

theoretical location of the tip of the wave vector ~k1 for a given

primary wave vector ~k0 so that the resonance conditions (3)
and (4) and dispersion relations (2) are satisfied. The three
arrows are the experimental measurement of the three wave

vectors: the red solid arrow is the primary wave vector ~k0,
the green dashed and blue dotted arrows the secondary wave

vectors ~k1 and ~k2. The square � represents the most unstable
theoretical mode.

tio, the data is averaged along a vertical line over the wa-
ter depth. For large ω0/N values, the dissipation length
is small, so the analysis line is chosen to be close to the
generator so that the amplitude is large.

Fig. 4(left) presents the spectra of the density field for
four different excitation amplitudes with ω0 = 0.94N .
The spectra are obtained using a time window width
equal to 100 T to have good frequency resolution.
Sx(t, ω) is then averaged over the 10 last periods. Analyz-
ing first the result for the amplitude 0.5 cm, the picture
emphasizes a large peak close to N , corresponding to the
frequency of the mode-1 wave. A pair of twin peaks are
observed, corresponding to secondary waves of frequen-
cies, ω1 and ω2, smaller than ω0.

The amplitude of each wave is then computed us-
ing a time-frequency analysis with a time window width
equal to 20 T to increase time resolution. The ampli-
tude of the secondary wave of frequency ω1 is presented
in Fig. 4(right). After several forcing periods, a steady
state for the primary wave is reached. After a time in-
terval, the secondary wave starts to grow and a linear
increase of the amplitude on a semilogarithmic plot is
observed, confirming exponential growth. The value of
the growth rate λ is measured using a linear fit, shown
with the dashed lines in Fig. 4(right). The amplitude of
the secondary waves eventually saturates.

Comparing the different curves in Fig. 4, one observes
that the amplitude has an influence not only on the loca-
tion but also on the height of the peaks of the secondary
waves in the spectrum. If the amplitude of the primary
wave is too small, no peaks are visible and therefore no
instability is observed during the experiment run time,
Trun. This result shows that the growth rate in this par-
ticular case has to be smaller than 1/run. It may also give
an indication of the existence of a threshold in amplitude.
As the amplitude increases, the distance between the two
peaks increases and the instability occurs earlier (after
fewer forcing periods) and is stronger, i.e. with a larger
growth rate which is in agreement with the theoretical
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FIG. 4. (Color online) (Left) Spectra of the density gradi-
ent field, 〈Sx(ω)〉t, for four different excitation amplitudes for
ω0 = 0.94N measured at x ≈ 12 cm. The amplitudes are
respectively 0.25 cm (green), 0.35 (red), 0.5 (black) and 1
(blue). The value of the amplitude is indicated next to the
corresponding curve. The spectra 0.25, 0.35 and 1 are mul-
tiplied respectively by 0.01, 0.1 and 10 for illustration pur-
poses. (Right) Amplitude of the secondary wave ω1, Sx,1(t),
normalized by the amplitude of the primary wave, 〈Sx,0〉t,
averaged over time when the steady-state of the mode-1 has
been reached. Results are similar for the other secondary
wave ω2. The dashed-dotted lines represent the amplitude of
the primary wave using the same normalization. The dashed
lines shows the linear fit, which gives the value of the growth
rate λ.

growth rate (5).
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FIG. 5. (Color online) (Left) Values of the frequencies of the
secondary waves for the experiments (blue ◦) and the theoret-
ical calculation (red �). The error bars are the half-width of
the corresponding peak (vertical error bars are smaller than
the symbols). The top line of point corresponds to the sum
of the frequencies, with corresponding colors for theoretical
and experimental data. (Right) Values of the growth rate
of the secondary waves for the experiments (blue ◦) and the
theoretical calculation (red �). Vertical error bars for the
experimental results come from the choice of the horizontal
location and from the linear fit. These values are smaller than
the symbol. T is the period of the primary wave. The theoret-
ical values (�) are computed using Eq. (5) and the measured
amplitude of the primary wave. The vertical error bars come
from the error made measuring the amplitude of the mode-1.

Experiments were performed using the same stratifi-
cation and an amplitude of 0.5 cm for frequencies in the
range of 0.9 < ω0/N < 1. For each experiment, the value
of the frequencies of the two secondary waves, ω1 and ω2,
and the growth rate λ were measured. Experimental re-
sults are presented as a function of the frequency of the
primary wave, ω0/N , in Fig. 5. The sum of the frequen-
cies of the two secondary waves, ω1 + ω2, is equal to the
frequency of the primary wave, ω0, within experimental
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errors, in agreement with Eq. (4). As ω0/N increases, the
distance between the two secondary frequencies is larger.
The measured value of the growth rate is presented in
Fig. 5(right). The growth rate increases to reach a max-
imum around ω0 = 0.95N and then decreases as ω0 gets
closer to N .

To compare quantitatively the experimental results
with the theoretical prediction of the growth rate, the
value of the amplitude of the mode-1 wave has to be pre-
cisely known. The theoretical value of the amplitude of
the streamfunction is equal to aω0/m0. However, the
conversion efficiency from the energy of the wavemaker
to the energy of the mode-1 is less than unity and de-
pends on experimental conditions15. Moreover, as ω0 gets
closer to the cut-off frequency, N , the value of the vis-
cous damping increases20. Consequently, the efficiency
is not the same for all primary frequencies ω0, and the
amplitude of the primary wave has to be measured exper-
imentally to compute the theoretical value of the growth
rate. It is important to check that the steady-state of the
mode-1 wave has been reached. However, the tank being
finite in length, the measurement has to be performed
before the mode-1 wave reflects back into the measure-
ment area. Then, using a linear polarization relation, the
amplitude ψ0 of the stream function at this particular
frequency and wave number is ψ0 = gω0∂xρ̃0/(4k

2
0ρ̄N

2).
The theoretical frequency pair (ω1,ω2) of the instability
is defined as the one that maximizes the growth rate.
Without adjustable parameters, the comparison between
experimental and theoretical results, presented in Fig. 5,
emphasizes a good quantitative agreement.

Conclusions We have reported the first experimental
measurement of the growth rate of parametric subhar-
monic instability in stratified fluids and we have demon-
strated this effect in a systematic set of laboratory ex-
periments allowing careful comparisons with theoretical
predictions. In practice, this heavily debated mecha-
nism10 has implications for many geophysical scenar-
ios. Interestingly, although the generation mechanisms of
oceanic IGW are quite well understood, the comprehen-
sion of the processes by which they dissipate is much more
open. Consequently, determining the relative importance
of parametric subharmonic instability, among the four
recognized dissipation processes1, is the next step in fur-
thering our understanding of how internal waves impact
ocean mixing. Quantitative measurements of the subse-
quent mixing together with a fundamental study of wave
turbulence would be of high interest.
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