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Abstract. The divide and color model on a graph G arises by first deleting each
edge of G with probability 1 − p independently of each other, then coloring the
resulting connected components (i.e., every vertex in the component) black or white
with respective probabilities r and 1 − r, independently for different components.
Viewing it as a (dependent) site percolation model, one can define the critical point
rGc (p).

In this paper, we mainly study the continuity properties of the function rGc ,
which is an instance of the question of locality for percolation. Our main result
is the fact that in the case G = Z2, rGc is continuous on the interval [0, 1/2); we
also prove continuity at p = 0 for the more general class of graphs with bounded
degree. We then investigate the sharpness of the bounded degree condition and the
monotonicity of rGc (p) as a function of p.

1. Introduction

The divide and color (DaC) model is a natural dependent site percolation model
introduced by Häggström (2001). It has been studied directly in Häggström (2001);
Garet (2001); Bálint et al. (2009), and as a member of a more general family of
models in Kahn and Weininger (2007); Bálint et al. (2009); Bálint (2010); Graham
and Grimmett (2011). This model is defined on a multigraph G = (V,E), where E

is a multiset (i.e., it may contain an element more than once), thus allowing parallel
edges between pairs of vertices. For simplicity, we will imprecisely call G a graph
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and E the edge set, even if G contains self-loops or multiple edges. The DaC model
with parameters p, r ∈ [0, 1], on a general (finite or infinite) graph G with vertex
set V and edge set E, is defined by the following two-step procedure:

• First step: Bernoulli bond percolation. We independently declare each edge
in E to be open with probability p, and closed with probability 1− p. We
can identify a bond percolation configuration with an element η ∈ {0, 1}E:
for each e ∈ E, we define η(e) = 1 if e is open, and η(e) = 0 if e is closed.

• Second step: Bernoulli site percolation on the resulting cluster set. Given
η ∈ {0, 1}E, we call p-clusters or bond clusters the connected components
in the graph with vertex set V and edge set {e ∈ E : η(e) = 1}. The set of p-
clusters of η gives a partition of V. For each p-cluster C, we assign the same
color to all the vertices in C. The chosen color is black with probability r
and white with probability 1−r, and this choice is independent for different
p-clusters.

These two steps yield a site percolation configuration ξ ∈ {0, 1}V by defining,
for each v ∈ V, ξ(v) = 1 if v is black, and ξ(v) = 0 if v is white. The connected
components (via the edge set E) in ξ of the same color are called (black or white)
r-clusters. The resulting measure on {0, 1}V is denoted by µGp,r.

Let Eb∞ ⊂ {0, 1}V denote the event that there exists an infinite black r-cluster.
By standard arguments (see Proposition 2.5 in Häggström (2001)), for each p ∈
[0, 1], there exists a critical coloring value rGc (p) ∈ [0, 1] such that

µGp,r(E
b
∞)

{
= 0 if r < rGc (p),

> 0 if r > rGc (p).

The critical edge parameter pGc ∈ [0, 1] is defined as follows: the probability
that there exists an infinite bond cluster is 0 for all p < pGc , and positive for all
p > pGc . The latter probability is in fact 1 for all p > pGc , whence r

G
c (p) = 0 for all

such p. Kolmogorov’s 0 − 1 law shows that in the case when all the bond clusters
are finite, µGp,r(E

b
∞) ∈ {0, 1}; nevertheless it is possible that µGp,r(E

b
∞) ∈ (0, 1) for

some r > rGc (p) (e.g. on the square lattice, as soon as p > pc = 1/2, one has
µGp,r(E

b
∞) = r).

Statement of the results. Our main goal in this paper is to understand how the
critical coloring parameter rGc depends on the edge parameter p. Since the addition
or removal of self-loops obviously does not affect the value of rGc (p), we will assume
that all the graphs G that we consider are without self-loops. On the other hand,
G is allowed to contain multiple edges.

Our first result, based on a stochastic domination argument, gives bounds on
rGc (p) in terms of rGc (0), which is simply the critical value for Bernoulli site perco-
lation on G. By the degree of a vertex v, we mean the number of edges incident on
v (counted with multiplicity).

Proposition 1.1. For any graph G with maximal degree ∆, for all p ∈ [0, 1),

1− 1− rGc (0)

(1− p)∆
≤ rGc (p) ≤

rGc (0)

(1− p)∆
.

As a direct consequence, we get continuity at p = 0 of the critical value function:
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Proposition 1.2. For any graph G with bounded degree, rGc (p) is continuous in p
at 0.

One could think of an alternative approach to the question, as follows: the DaC
model can be seen as Bernoulli site percolation of the random graph Gp = (Vp, Ep)
where Vp is the set of bond clusters and two bond clusters are connected by a bond
of Ep if and only if they are adjacent in the original graph. The study of how rGc (p)
depends on p is then a particular case of a more general question known as the
locality problem: is it true in general that the critical points of site percolation on a
graph and a small perturbation of it are always close? Here, for small p, the graphs
G and Gp are somehow very similar, and their critical points are indeed close.

Dropping the bounded-degree assumption allows for the easy construction of
graphs for which continuity does not hold at p = 0:

Proposition 1.3. There exists a graph G with pGc > 0 such that rGc is discontinuous
at 0.

In general, when p > 0, the graph Gp does not have bounded degree, even if G
does; this simple remark can be exploited to construct bounded degree graphs for
which rGc has discontinuities below the critical point of bond percolation (though
of course not at 0):

Theorem 1.4. There exists a graph G of bounded degree satisfying pGc > 1/2 and
such that rGc (p) is discontinuous at 1/2.

Remark 1.5. The value 1/2 in the statement above is not special: in fact, for every
p0 ∈ (0, 1), it is possible to generalize our argument to construct a graph with a
critical bond parameter above p0 and for which the discontinuity of rc occurs at p0.

Our main results concerns the case G = Z2, for which the above does not occur:

Theorem 1.6. The critical coloring value rZ
2

c (p) is a continuous function of p on
the whole interval [0, 1/2).

The other, perhaps more anecdotal question we investigate here is whether rGc is
monotonic below pc. This is the case on the triangular lattice (because it is constant
equal to 1/2), and appears to hold on Z2 in simulations (see the companion paper
Bálint et al. (2013)).

In the general case, the question seems to be rather delicate. Intuitively the pres-
ence of open edges would seem to make percolation easier, leading to the intuition
that the function p 7→ rc(p) should be nonincreasing. Theorem 2.9 in Häggström
(2001) gives a counterexample to this intuition. It is even possible to construct
quasi-transitive graphs on which any monotonicity fails:

Proposition 1.7. There exists a quasi-transitive graph G such that rGc is not mono-
tone on the interval [0, pGc ).

A brief outline of the paper is as follows. We set the notation and collect a
few results from the literature in Section 2. In Section 3, we stochastically compare
µGp,r with Bernoulli site percolation (Theorem 3.1), and show how this result implies
Proposition 1.1. We then turn to the proof of Theorem 1.6 in Section 4, based on
a finite-size argument and the continuity of the probability of cylindrical events.

In Section 5, we determine the critical value function for a class of tree-like
graphs, and in the following section we apply this to construct most of the examples
of graphs we mentioned above.
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2. Definitions and notation

We start by explicitly constructing the model, in a way which will be more
technically convenient than the intuitive one given in the introduction.

Let G be a connected graph (V,E) where the set of vertices V = {v0, v1, v2, . . .}
is countable. We define a total order “<” on V by saying that vi < vj if and only
if i < j. In this way, for any subset V ⊂ V, we can uniquely define min(V ) ∈ V as
the minimal vertex in V with respect to the relation “<”. For a set S, we denote
{0, 1}S by ΩS . We call the elements of ΩE bond configurations, and the elements of
ΩV site configurations. As defined in the Introduction, in a bond configuration η,
an edge e ∈ E is called open if η(e) = 1, and closed otherwise; in a site configuration
ξ, a vertex v ∈ V is called black if ξ(e) = 1, and white otherwise. Finally, for η ∈ ΩE

and v ∈ V, we define the bond cluster Cv(η) of v as the maximal connected induced
subgraph containing v of the graph with vertex set V and edge set {e ∈ E : η(e) = 1},
and denote the vertex set of Cv(η) by Cv(η).

For a ∈ [0, 1] and a set S, we define νSa as the probability measure on ΩS that
assigns to each s ∈ S value 1 with probability a and 0 with probability 1 − a,
independently for different elements of S. We define a function

Φ : ΩE × ΩV → ΩE × ΩV,
(η, κ) 7→ (η, ξ),

where ξ(v) = κ(min(Cv(η))). For p, r ∈ [0, 1], we define PGp,r to be the image

measure of νEp ⊗ νVr by the function Φ, and denote by µGp,r the marginal of PGp,r on

ΩV. Note that this definition of µGp,r is consistent with the one in the Introduction.
Finally, we give a few definitions and results that are necessary for the analysis of

the DaC model on the square lattice, that is the graph with vertex set Z2 and edge
set E2 = {〈v, w〉 : v = (v1, v2), w = (w1, w2) ∈ Z2, |v1 − w1|+ |v2 − w2| = 1}. The
matching graph Z2

∗ of the square lattice is the graph with vertex set Z2 and edge
set E2

∗ = {〈v, w〉 : v = (v1, v2), w = (w1, w2) ∈ Z2, max(|v1 − w1|, |v2 − w2|) = 1}.
In the same manner as in the Introduction, we define, for a color configuration

ξ ∈ {0, 1}Z2

, (black or white) ∗-clusters as connected components (via the edge set

E2
∗) in ξ of the same color. We denote by Θ∗(p, r) the PZ2

p,r-probability that the
origin is contained in an infinite black ∗-cluster, and define

r∗c (p) = sup{r : Θ∗(p, r) = 0}

for all p ∈ [0, 1] — note that this value may differ from r
Z2
∗
c (p). The main result in

Bálint et al. (2009) is that for all p ∈ [0, 1/2), the critical values rZ
2

c (p) and r∗c (p)
satisfy the duality relation

rZ
2

c (p) + r∗c (p) = 1. (2.1)

We will also use exponential decay result for subcritical Bernoulli bond percola-
tion on Z2. Let 0 denote the origin in Z2, and for each n ∈ N = {1, 2, . . .}, let us
define Sn = {v ∈ Z2 : dist(v,0) = n} (where dist denotes graph distance), and the
event Mn = {η ∈ ΩE2 : there is a path of open edges in η from 0 to Sn}. Then we
have the following result:

Theorem 2.1 (Kesten (1980)). For p < 1/2, there exists ψ(p) > 0 such that for
all n ∈ N, we have that

νE
2

p (Mn) < e−nψ(p).
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3. Stochastic domination and continuity at p = 0

In this section, we prove Proposition 1.1 via a stochastic comparison between
the DaC measure and Bernoulli site percolation. Before stating the corresponding
result, however, let us recall the concept of stochastic domination.

We define a natural partial order on ΩV by saying that ξ′ ≥ ξ for ξ, ξ′ ∈ ΩV if,
for all v ∈ V, ξ′(v) ≥ ξ(v). A random variable f : ΩV → R is called increasing if
ξ′ ≥ ξ implies that f(ξ′) ≥ f(ξ), and an event E ⊂ ΩV is increasing if its indicator
random variable is increasing. For probability measures µ, µ′ on ΩV, we say that µ′

is stochastically larger than µ (or, equivalently, that µ is stochastically smaller than
µ′, denoted by µ ≤st µ

′) if, for all bounded increasing random variables f : ΩV → R,
we have that ∫

ΩV

f(ξ) dµ′(ξ) ≥
∫
ΩV

f(ξ) dµ(ξ).

By Strassen’s theorem (1965), this is equivalent to the existence of an appropriate
coupling of the measures µ′ and µ; that is, the existence of a probability measure
Q on ΩV×ΩV such that the marginals of Q on the first and second coordinates are
µ′ and µ respectively, and Q({(ξ′, ξ) ∈ ΩV × ΩV : ξ′ ≥ ξ}) = 1.

Theorem 3.1. For any graph G = (V,E) whose maximal degree is ∆, at arbitrary
values of the parameters p, r ∈ [0, 1],

νVr(1−p)∆ ≤st µ
G
p,r ≤st ν

V
1−(1−r)(1−p)∆ .

Before turning to the proof, we show how Theorem 3.1 implies Proposition 1.1.
It follows from Theorem 3.1 and the definition of stochastic domination that for the
increasing event Eb∞ (which was defined in the Introduction), we have µGp,r(E

b
∞) > 0

whenever r(1 − p)∆ > rGc (0), which implies that rGc (p) ≤ rGc (0)/(1 − p)∆. The
derivation of the lower bound for rGc (p) is analogous. �

Now we give the proof of Theorem 3.1, which bears some resemblance with the
proof of Theorem 2.3 in Häggström (2001). Fix G = (V,E) with maximal degree ∆,
and parameter values p, r ∈ [0, 1]. We will use the relation “<” and the minimum
of a vertex set with respect to this relation as defined in Section 2. In what follows,
we will define several random variables; we will denote the joint distribution of all
these variables by P.

First, we define a collection (ηex,y : x, y ∈ V, e = 〈x, y〉 ∈ E) of i.i.d. Bernoulli(p)
random variables (i.e., they take value 1 with probability p, and 0 otherwise); one
may imagine having each edge e ∈ E replaced by two directed edges, and the random
variables represent which of these edges are open. We define also a set (κx : x ∈ V) of
Bernoulli(r) random variables. Given a realization of (ηex,y : x, y ∈ V, e = 〈x, y〉 ∈ E)
and (κx : x ∈ V), we will define an ΩV × ΩE-valued random configuration (η, ξ)
with distribution PGp,r, by the following algorithm.

(1) Let v = min{x ∈ V : no ξ-value has been assigned yet to x by this
algorithm}. (Note that v and V, vi,Hi (i ∈ N), defined below, are running
variables, i.e., their values will be redefined in the course of the algorithm.)

(2) We explore the “directed open cluster” V of v iteratively, as follows. Define
v0 = v. Given v0, v1, . . . , vi for some integer i ≥ 0, set η(e) = ηevi,w for every
edge e = 〈vi, w〉 ∈ E incident to vi such that no η-value has been assigned
yet to e by the algorithm, and write Hi+1 = {w ∈ V \ {v0, v1, . . . , vi} : w
can be reached from any of v0, v1, . . . , vi by using only those edges e ∈ E
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such that η(e) = 1 has been assigned to e by this algorithm}. If Hi+1 6= ∅,
then we define vi+1 = min(Hi+1), and continue exploring the directed open
cluster of v; otherwise, we define V = {v0, v1, . . . , vi}, and move to step 3.

(3) Define ξ(w) = κv for all w ∈ V , and return to step 1.

It is immediately clear that the above algorithm eventually assigns a ξ-value to
each vertex. Note also that a vertex v can receive a ξ-value only after all edges
incident to v have already been assigned an η-value, which shows that the algorithm
eventually determines the full edge configuration as well. It is easy to convince
oneself that (η, ξ) obtained this way indeed has the desired distribution.

Now, for each v ∈ V, we define Z(v) = 1 if κv = 1 and ηew,v = 0 for all edges
e = 〈v, w〉 ∈ E incident on v (i.e., all directed edges towards v are closed), and
Z(v) = 0 otherwise. Note that every vertex with Z(v) = 1 has ξ(v) = 1 as well,
whence the distribution of ξ (i.e., µGp,r) stochastically dominates the distribution of
Z (as witnessed by the coupling P).

Notice that Z(v) depends only on the states of the edges pointing to v and on
the value of κv; in particular the distribution of Z is a product measure on ΩV

with parameter r(1 − p)d(v) at v, where d(v) ≤ ∆ is the degree of v, whence µGp,r
stochastically dominates the product measure on ΩV with parameter r(1 − p)∆,
which gives the desired stochastic lower bound. The upper bound can be proved
analogously; alternatively, it follows from the lower bound by exchanging the roles
of black and white. �

4. Continuity of rZ
2

c (p) on the interval [0, 1/2)

In this section, we will prove Theorem 1.6. Our first task is to prove a technical
result valid on more general graphs stating that the probability of any event A
whose occurrence depends on a finite set of ξ-variables is a continuous function of
p for p < pGc . The proof relies on the fact that although the color of a vertex v may
be influenced by edges arbitrarily far away, if p < pGc , the corresponding influence
decreases to 0 in the limit as we move away from v. Therefore, the occurrence of
the event A depends essentially on a finite number of η- and κ-variables, whence its
probability can be approximated up to an arbitrarily small error by a polynomial
in p and r.

Once we have proved Proposition 4.1 below, which is valid on general graphs, we
will apply it on Z2 to certain “box-crossing events,” and appeal to results in Bálint

et al. (2009) to deduce the continuity of rZ
2

c (p).

Proposition 4.1. For every site percolation event A ⊂ {0, 1}V depending on the
color of finitely many vertices, µGp,r(A) is a continuous function of (p, r) on the set

[0, pGc )× [0, 1].

Proof. In this proof, when µ is a measure on a set S, X is a random variable with
law µ and F : S −→ R is a bounded measurable function, we write abusively
µ[F (X)] for the expectation of F (X). We show a slightly more general result: for
any k ≥ 1, x = (x1, . . . , xk) ∈ Vk and f : {0, 1}k → R bounded and measur-
able, µGp,r [f(ξ(x1), . . . , ξ(xk))] is continuous in (p, r) on the product [0, pGc )× [0, 1].
Proposition 4.1 will follow by choosing an appropriate family {x1, . . . , xk} such that
the states of the xi suffices to determine whether A occurs, and take f to be the
indicator function of A.
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To show the previous affirmation, we condition on the vector

mx(η) = (minCx1(η), . . . ,minCxk
(η))

which takes values in the finite set

V =
{
(v1, . . . , vk) ∈ Vk : ∀i vi ≤ max{x1, . . . , xk}

}
,

and we use the definition of PGp,r as an image measure. By definition,

µGp,r [f(ξ(x1), . . . , ξ(xk))]

=
∑
v∈V

PGp,r [f(ξ(x1), . . . , ξ(xk))|{mx = v}]PGp,r [{mx = v}]

=
∑
v∈V

νEp ⊗ νVr [f(κ(v1), . . . , κ(vk))|{mx = v}] νEp [{mx = v}]

=
∑
v∈V

νVr [f(κ(v1), . . . , κ(vk))] ν
E
p [{mx = v}] .

Note that νVr [f(κ(v1), . . . , κ(vk))] is a polynomial in r, so to conclude the proof we
only need to prove that for any fixed x and v, νEp ({m(x) = v}) depends continu-
ously on p on the interval [0, pGc ).

For n ≥ 1, write Fn = {|Cx1 | ≤ n, . . . , |Cxk
| ≤ n}. It is easy to verify that

the event {mx = v} ∩ Fn depends on the state of finitely many edges. Hence,
νEp [{mx = v} ∩ Fn] is a polynomial function of p.

Fix p0 < pGc . For all p ≤ p0,

0 ≤ νEp [{m(x) = v}]− νEp [{mx = v} ∩ Fn] ≤ νEp [F cn]

≤ νEp0 [F
c
n]

where lim
n→∞

νEp0 [F
c
n] = 0, since p0 < pGc . So, νEp [m(x) = v] is a uniform limit of

polynomials on any interval [0, p0], p0 < pGc , which implies the desired continuity.
�

Remark 4.2. In the proof we can see that, for fixed p < pGc , µ
G
p,r(A) is a polynomial

in r.

Remark 4.3. If G is a graph with uniqueness of the infinite bond cluster in the
supercritical regime, then it is possible to verify that νEp [{m(x) = v}] is contin-
uous in p on the whole interval [0, 1]. In this case, the continuity given by the
Proposition 4.1 can be extended to the whole square [0, 1]2.

Proof of Theorem 1.6. In order to simplify our notations, we write Pp,r, νp, rc(p),
for PZ2

p,r, ν
E2

p and rZ
2

c (p) respectively. Fix p0 ∈ (0, 1/2) and ε > 0 arbitrarily. We
will show that there exists δ = δ(p0, ε) > 0 such that for all p ∈ (p0 − δ, p0 + δ),

rc(p) ≥ rc(p0)− ε, (4.1)

and

rc(p) ≤ rc(p0) + ε. (4.2)

Note that by equation (2.1), for all small enough choices of δ > 0 (such that
0 ≤ p0 ± δ < 1/2), (4.1) is equivalent to

r∗c (p) ≤ r∗c (p0) + ε. (4.3)
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Below we will show how to find δ1 > 0 such that we have (4.2) for all p ∈ (p0 −
δ1, p0+δ1). One may then completely analogously find δ2 > 0 such that (4.3) holds
for all p ∈ (p0 − δ2, p0 + δ2), and take δ = min(δ1, δ2).

Fix r = rc(p0)+ ε, and define the event Vn = {(ξ, η) ∈ ΩZ2 ×ΩE2 : there exists a
vertical crossing of [0, n]×[0, 3n] that is black in ξ}. By “vertical crossing,” we mean
a self-avoiding path of vertices in [0, n]×[0, 3n] with one endpoint in [0, n]×{0}, and
one in [0, n] × {3n}. Recall also the definition of Mn in Theorem 2.1. By Lemma
2.10 in Bálint et al. (2009), there exists a constant γ > 0 such that the following
implication holds for any p, a ∈ [0, 1] and L ∈ N:

(3L+ 1)(L+ 1)νa(MbL/3c) ≤ γ,
and Pp,a(VL) ≥ 1− γ

}
⇒ a ≥ rc(p).

As usual, bxc for x > 0 denotes the largest integer m such that m ≤ x. Fix such a
γ.

By Theorem 2.1, there exists N ∈ N such that

(3n+ 1)(n+ 1)νp0(Mbn/3c) < γ

for all n ≥ N . On the other hand, since r > rc(p0), it follows from Lemma 2.11 in
Bálint et al. (2009) that there exists L ≥ N such that

Pp0,r(VL) > 1− γ.

Note that both (3L + 1)(L + 1)νp(MbL/3c) and Pp,r(VL) are continuous in p at
p0. Indeed, the former is simply a polynomial in p, while the continuity of the
latter follows from Proposition 4.1. Therefore, there exists δ1 > 0 such that for all
p ∈ (p0 − δ1, p0 + δ1),

(3L+ 1)(L+ 1)νp(MbL/3c) ≤ γ,

and Pp,r(VL) ≥ 1− γ.

By the choice of γ, this implies that r ≥ rc(p) for all such p, which is precisely what
we wanted to prove.

Finding δ2 > 0 such that (4.3) holds for all p ∈ (p0 − δ2, p0 + δ2) is analogous:
one only needs to substitute rc(p0) by r∗c (p0) and “crossing” by “∗-crossing,” and
the exact same argument as above works. It follows that δ = min(δ1, δ2) > 0 is a
constant such that both (4.2) and (4.3) hold for all p ∈ (p0−δ, p0+δ), completing the
proof of continuity on (0, 1/2). Right-continuity at 0 may be proved analogously;
alternatively, it follows from Proposition 1.2. �

Remark 4.4. It follows from Theorem 1.6 and equation (2.1) that r∗c (p) is also
continuous in p on [0, 1/2).

5. The critical value functions of tree-like graphs

In this section, we will study the critical value functions of graphs that are
constructed by replacing edges of an infinite tree by a sequence of finite graphs.
We will then use several such constructions in the proofs of our main results in
Section 6.

Let us fix an arbitrary sequence Dn = (Vn,En) of finite connected graphs and,
for every n ∈ N, two distinct vertices an, bn ∈ Vn. Let T3 = (V3, E3) denote the
(infinite) regular tree of degree 3, and fix an arbitrary vertex ρ ∈ V3. Then, for
each edge e ∈ E3, we denote the end-vertex of e which is closer to ρ by f(e), and
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the other end-vertex by s(e). Let ΓD = (Ṽ , Ẽ) be the graph obtained by replacing
every edge e of Γ3 between levels n− 1 and n (i.e., such that dist(s(e), ρ) = n) by
a copy De of Dn, with an and bn replacing respectively f(e) and s(e). Each vertex

v ∈ V3 is replaced by a new vertex in Ṽ , which we denote by ṽ. It is well known
that pΓ3

c = rΓ3
c (0) = 1/2. Using this fact and the tree-like structure of ΓD, we will

be able to determine bounds for pΓD
c and rΓD

c (p).
First, we define hDn(p) = νEn

p (an and bn are in the same bond cluster), and
prove the following, intuitively clear, lemma.

Lemma 5.1. For any p ∈ [0, 1], the following implications hold:

a) if lim supn→∞ hDn(p) < 1/2, then p ≤ pΓD
c ;

b) if lim infn→∞ hDn(p) > 1/2, then p ≥ pΓD
c .

Proof. We couple Bernoulli bond percolation with parameter p on ΓD with inhomo-
geneous Bernoulli bond percolation with parameters hDn(p) on T3, as follows. Let

η be a random variable with law νẼp , and define, for each edge e ∈ E3, W (e) = 1

if ˜f(e) and ˜s(e) are connected by a path consisting of edges that are open in η,
and W (e) = 0 otherwise. The tree-like structure of ΓD implies that W (e) depends
only on the state of the edges in De, and it is clear that if dist(s(e), ρ) = n, then
W (e) = 1 with probability hDn(p).

It is easy to verify that there exists an infinite open self-avoiding path on ΓD from
ρ̃ in the configuration η if and only if there exists an infinite open self-avoiding path
on T3 from ρ in the configurationW . Now, if we assume lim supn→∞ hDn(p) < 1/2,
then there exists t < 1/2 and N ∈ N such that for all n ≥ N , hDn(p) ≤ t. Therefore,
the distribution of the restriction of W on L = {e ∈ E3 : dist(s(e), ρ) ≥ N} is

stochastically dominated by the projection of νE3
t on L. This implies that, a.s.,

there exists no infinite self-avoiding path in W , whence p ≤ pΓD
c by the observation

at the beginning of this paragraph. The proof of b) is analogous. �
We now turn to the DaC model on ΓD. Recall that for a vertex v, Cv denotes

the vertex set of the bond cluster of v. Let Ean,bn ⊂ ΩEn × ΩVn denote the event
that an and bn are in the same bond cluster, or an and bn lie in two different bond
clusters, but there exists a vertex v at distance 1 from Can which is connected to
bn by a black path (which also includes that ξ(v) = ξ(bn) = 1). This is the same
as saying that Can is pivotal for the event that there is a black path between an
and bn, i.e., that such a path exists if and only if Can is black. It is important to
note that Ean,bn is independent of the color of an. Define fDn(p, r) = PDn

p,r (Ean,bn),

and note also that, for r > 0, fDn(p, r) = PDn
p,r (there is a black path from an to

bn | ξ(an) = 1).

Lemma 5.2. For any p, r ∈ [0, 1], we have the following:

a) if lim supn→∞ fDn(p, r) < 1/2, then r ≤ rΓD
c (p);

b) if lim infn→∞ fDn(p, r) > 1/2, then r ≥ rΓD
c (p).

Proof. We couple here the DaC model on ΓD with inhomogeneous Bernoulli site
percolation on T3. For each v ∈ V3 \ {ρ}, there is a unique edge e ∈ E3 such that
v = s(e). Here we denote De (i.e., the subgraph of ΓD replacing the edge e) by Dṽ,
and the analogous event of Ean,bn for the graph Dṽ by Eṽ. Let (η, ξ) with values
in ΩẼ × ΩṼ be a random variable with law PΓD

p,r . We define a random variable X
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with values in ΩV3 , as follows:

X(v) =


ξ(ρ̃) if v = ρ,

1 if the event Eṽ is realized by the restriction of (η, ξ) to Dṽ,

0 otherwise.

As noted after the proof of Lemma 5.1, if u = f(〈u, v〉), the event Eṽ is in-
dependent of the color of ũ, whence (Eṽ)v∈V3\{ρ} are independent. Therefore, as

X(ρ) = 1 with probability r, and X(v) = 1 is realized with probability fDn(p, r)
for v ∈ V3 with dist(v, ρ) = n for some n ∈ N, X is inhomogeneous Bernoulli site
percolation on T3.

Our reason for defining X is the following property: it holds for all v ∈ V3 \ {ρ}
that

ρ̃
ξ↔ ṽ if and only if ρ

X↔ v, (5.1)

where x
Z↔ y denotes that x and y are in the same black cluster in the configuration

Z. Indeed, assuming ρ̃
ξ↔ ṽ, there exists a path ρ = x0, x1, · · · , xk = v in Γ3 such

that, for all 0 ≤ i < k, x̃i
ξ↔ ˜xi+1 holds. This implies that ξ(ρ̃) = 1 and that all the

events (Ex̃i
)0<i≤k occur, whence X(xi) = 1 for i = 0, . . . , k, so ρ

X↔ v is realized.
The proof of the other implication is similar. It follows in particular from (5.1)
that ρ̃ lies in an infinite black cluster in the configuration ξ if and only if ρ lies in
an infinite black cluster in the configuration X.

Lemma 5.2 presents two scenarios when it is easy to determine (via a stochastic
comparison) whether the latter event has positive probability. For example, if we
assume that lim infn→∞ fDn(p, r) > 1/2, then there exists t > 1/2 and N ∈ N such
that for all n ≥ N , fDn(p, r) ≥ t. In this case, the distribution of the restriction of
X on K = {v ∈ V3 : dist(v, ρ) ≥ N} is stochastically larger than the projection of

νE3
t on K. Let us further assume that r > 0. In that case, X(ρ) = 1 with positive
probability, and fDn(p, r) > 0 for every n ∈ N. Therefore, under the assumptions
lim infn→∞ fDn(p, r) > 1/2 and r > 0, ρ is in an infinite black cluster in X (and,
hence, ρ̃ is in an infinite black cluster in ξ) with positive probability, which can only
happen if r ≥ rΓD

c (p). On the other hand, if lim infn→∞ fDn(p, 0) > 1/2, then it
is clear that lim infn→∞ fDn(p, r) > 1/2 (whence r ≥ rΓD

c (p)) for all r > 0, which
implies that rΓD

c (p) = 0. The proof of part a) is similar. �

6. Counterexamples

In this section, we study two particular graph families and obtain examples of
non-monotonicity and non-continuity of the critical value function.

6.1. Non-monotonicity. The results in Section 5 enable us to prove that (a small
modification of) the construction considered by Häggström in the proof of Theorem
2.9 in Häggström (2001) is a graph whose critical coloring value is non-monotone
in the subcritical phase.
Proof of Proposition 1.7. Define for k ∈ N, Dk to be the complete bipartite graph
with the vertex set partitioned into {z1, z2} and {a, b, v1, v2, . . . , vk} (see Figure 6.1).
We call e1, e

′
1 and e2, e

′
2 the edges incident to a and b respectively, and for i =

1, . . . , k, fi, f
′
i the edges incident to vi. Consider Γk the quasi-transitive graph

obtained by replacing each edge of the tree T3 by a copy of Dk. Γk can be seen
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as the tree-like graph resulting from the construction described at beginning of the
section, when we start with the constant sequence (Dn, an, bn) = (Dk, a, b).

z1

vkv1

e1 f1 fk

f ′

k

e′
1

e′
2

z2

e2

. . .

f ′

1

ba

Figure 6.1. The graph Dk.

We will show below that it holds for all k ∈ N that

pΓk
c > 1/3, (6.1)

rΓk
c (0) < 2/3, and (6.2)

rΓk
c (1/3) < 2/3. (6.3)

Furthermore, there exists k ∈ N and p0 ∈ (0, 1/3) such that

rΓk
c (p0) > 2/3. (6.4)

Proving (6.1)–(6.4) will finish the proof of Proposition 1.7 since these inequalities
imply that the quasi-transitive graph Γk has a non-monotone critical value function
in the subcritical regime.

Throughout this proof, we will omit superscripts in the notation when no con-

fusion is possible. For the proof of (6.1), recall that hD
k

is strictly increasing in p,

and hD
k

(pDk) = 1/2. Since 1−hDk

(p) is the νp-probability of a and b being in two
different bond clusters, we have that

1− hD
k

(1/3) ≥ ν1/3({e1 and e′1 are closed} ∪ {e2 and e′2 are closed}).

From this, we get that hD
k

(1/3) ≤ 25/81, which proves (6.1).

To get (6.2), we need to remember that for fixed p < pDk , fD
k

(p, r) is strictly in-

creasing in r, and fD
k

(p, rDk(p)) = 1/2. One then easily computes that f(0, 2/3) =
16/27 > 1/2, whence (6.2) follows from Lemma 5.2.

Now, define A to be the event that at least one edge out of e1, e
′
1, e2 and e′2 is

open. Then

fD
k

(1/3, 2/3) ≥ P1/3,2/3(Ea,b | A)P1/3,2/3(A)

≥ P1/3,2/3(Cb black | A) · 65/81,

which gives that fD
k

(1/3, 2/3) ≥ 130/243 > 1/2, and implies (6.3) by 5.2.



664 András Bálint, Vincent Beffara and Vincent Tassion

To prove (6.4), we consider Bk to be the event that e1, e
′
1, e2 and e′2 are all

closed and that there exists i such that fi and f ′i are both open. One can easily
compute that

Pp,r(Bk) = (1− p)
4
(
1− (1− p2)

k
)
,

which implies that we can choose p0 ∈ (0, 1/3) (small) and k ∈ N (large) such that
Pp0,r(Bk) > 17/18. Then,

fD
k

(p0, 2/3) = Pp0,r(Ea,b | Bk)Pp0,r(Bk) + Pp0,r(Ea,b | Bck)(1−Pp0,r(Bk))
< (2/3)2 · 1 + 1 · 1/18(= 1/2),

whence inequality (6.4) follows with these choices from Lemma 5.2, completing the
proof. �

6.2. Graphs with discontinuous critical value functions.
Proof of Proposition 1.3. For n ∈ N, let Dn be the graph depicted in Figure 6.2, and
let G be ΓD constructed with this sequence of graphs as described at the beginning
of Section 5.

v
.

.

.

bna

Figure 6.2. The graph Dn.

It is elementary that limn→∞ hDn(p) = p, whence pGc = 1/2 follows from
Lemma 5.1, thus p = 0 is subcritical. Since limn→∞ fDn(0, r) = r2, Lemma 5.2

gives that rGc (0) = 1/
√
2. On the other hand, limn→∞ fDn(p, r) = p+ (1− p)r for

all p > 0, which implies by Lemma 5.2 that for p ≤ 1/2,

rGc (p) =
1/2− p

1− p
→ 1/2

as p→ 0, so rGc is indeed discontinuous at 0 < pGc . �
In the rest of this section, for vertices v and w, we will write v ↔ w to denote

that there exists a path of open edges between v and w. Our proof of Theorem 1.4
will be based on the Lemma 2.1 in Peres et al. (2009), that we rewrite here:

Lemma 6.1. There exists a sequence Gn = (V n, En) of graphs and xn, yn ∈ V n

of vertices (n ∈ N) such that

(1) νE
n

1/2(xn ↔ yn) >
2
3 for all n;

(2) limn→∞ νE
n

p (xn ↔ yn) = 0 for all p < 1/2, and
(3) there exists ∆ <∞ such that, for all n, Gn has degree at most ∆.

Lemma 6.1 provides a sequence of bounded degree graphs that exhibit sharp
threshold-type behavior at 1/2. We will use such a sequence as a building block to
obtain discontinuity at 1/2 in the critical value function in the DaC model.
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Proof of Theorem 1.4. We first prove the theorem in the case p0 = 1/2. Consider
the graph Gn = (V n, En), xn, yn (n ∈ N) as in Lemma 6.1. We construct Dn from
Gn by adding to it one extra vertex an and one edge {an, xn}. More precisely Dn

has vertex set V n ∪ {an} and edge set En ∪ {an, xn}. Set bn = yn and let G be the
graph ΓD defined with the sequence (Dn, an, bn) as in Section 5.

We will show below that there exists r0 > r1 such that the graph G verify the
following three properties:

(i) 1/2 < pGc
(ii) rGc (p) ≥ r0 for all p < 1/2.
(iii) rGc (1/2) ≤ r1.

It implies a discontinuity of rGc at 1/2 < pGc , finishing the proof.
One can easily compute hDn(p) = pνE

n

p (xn ↔ yn). Since the graph Gn has

degree at most ∆ and the two vertices xn, yn are disjoint, the probability νE
n

p (xn ↔
yn) cannot exceed 1 − (1 − p)∆. This bound guarantees the existence of p0 > 1/2
independent of n such that hDn(p0) < 1/2 for all n, whence Lemma 5.1 implies
that 1/2 < p0 ≤ pGc .

For all p ∈ [0, 1], we have

fDn(p, r) ≤ (p+ r(1− p))
(
νE

n

p (xn ↔ yn) + r(1− νE
n

p (xn ↔ yn))
)

which gives that lim
n→∞

fDn(p, r) <
(
r+1
2

)
r. Denoting by r0 the positive solution of

r(1 + r) = 1, we get that lim
n→∞

fDn(p, r0) < 1/2 for all p < 1/2, which implies by

Lemma 5.2 that rGc (p) ≥ r0.
On the other hand, fDn(1/2, r) ≥ νE

n

p (xn ↔ yn)
(
1+r
2

)
, which gives by

Lemma 6.1 that lim
n→∞

fDn(1/2, r) > 2
3 · 1+r

2 . Writing r1 such that 2
3 (1 + r1) = 1, it

is elementary to check that r1 < r0 and that lim
n→∞

fDn(1/2, r1) > 1/2. Then, using

Lemma 5.2, we conclude that rc(1/2) ≤ r1. �

Acknowledgments. We thank Jeff Steif for suggesting (a variant of) the graph
that appears in the proof of Theorem 1.4.

References

A. Bálint. Gibbsianness and non-Gibbsianness in divide and color models. Ann.
Probab. 38 (4), 1609–1638 (2010). MR2663639.

A. Bálint, V. Beffara and V. Tassion. Confidence intervals for the critical value in
the divide and color model. ALEA 10, 667–679 (2013).

A. Bálint, F. Camia and R. Meester. Sharp phase transition and critical behaviour
in 2D divide and colour models. Stochastic Process. Appl. 119 (3), 937–965
(2009). MR2499865.

O. Garet. Limit theorems for the painting of graphs by clusters. ESAIM Probab.
Statist. 5, 105–118 (electronic) (2001). MR1875666.

B. Graham and G. Grimmett. Sharp thresholds for the random-cluster and Ising
models. Ann. Appl. Probab. 21 (1), 240–265 (2011). MR2759201.
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