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Abstract

We construct six-dimensional (1,0) superconformal models with non-abelian

gauge couplings for multiple tensor multiplets. A crucial ingredient in the

construction is the introduction of three-form gauge potentials which com-

municate degrees of freedom between the tensor multiplets and the Yang-

Mills multiplet, but do not introduce additional degrees of freedom. Gener-

ically these models provide only equations of motions. For a subclass also

a Lagrangian formulation exists, however it appears to exhibit indefinite

metrics in the kinetic sector. We discuss several examples and analyze the

excitation spectra in their supersymmetric vacua. In general, the models

are perturbatively defined only in the spontaneously broken phase with the

vev of the tensor multiplet scalars serving as the inverse coupling constants

of the Yang-Mills multiplet. We briefly discuss the inclusion of hypermul-

tiplets which complete the field content to that of superconformal (2,0)

theories.
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1 Introduction

One of the discoveries of the seminal analysis in [1] is the existence of interacting quan-

tum field theories in five and six dimensions. Of particular interest are six-dimensional

(2, 0) superconformal theories which are supposed to describe the low energy limit of

multiple coincident M5 branes.

However, no Lagrangian description for these theories is known and it is in general

believed that no such formulation exists: The M/string theory origin implies that these

theories have no free (dimensionless) parameter, which would allow a parametrization

to weak coupling and thus make the existence of a Lagrangian description plausible.

This conclusion was also drawn from symmetry properties which imply that tree level

amplitudes have to vanish [2]. In addition, these (2, 0) theories consist of chiral tensor

multiplets and so far it has often been considered as impossible to define non-abelian

gauge couplings for such multiplets.

Regarding the first aspect the situation is similar to that of multiple M2 branes, as

it was before the recent developments that were triggered by the discovery of the three

dimensional N = 8 superconformal BLG model [3, 4]. The meaning of this N = 8

model in the M/string theory context is rather unclear, but subsequently a N = 6

superconformal theory (ABJM model) was formulated for an arbitrary number of M2

branes [5]. The decisive observation in [5] is that an orbifold compactification of the M

theory/supergravity background provides a dimensionless, though discrete, parameter

k which allows a parametrization to weak coupling and thus also a Lagrangian formu-

lation. The orbifold compactification breaks N = 8 supersymmetry down to N = 6

except for k = 1, 2, where the theory is strongly coupled. The N = 6 ABJM model has

the same field content as the N = 8 multiplet and it has been argued that monopole

operators enhance the supersymmetry to N = 8 for k = 1, 2 [6, 7] (for U(2) gauge

group see [8, 9]).

We take here an analogous route. Instead of focusing on (2, 0) supersymmetry we

construct (1, 0) superconformal models for interacting multiple tensor multiplets. One

major obstacle, the nonabelian gauging of the (self dual) tensor fields, is resolved by the

introduction of a tensor hierarchy [10, 11, 12] which besides the Yang-Mills gauge field

and the two-form gauge potentials of the tensor multiplets contains also three-form

gauge potentials. We therefore have an extended tensor gauge freedom with p = 0, 1, 2

p-form gauge parameters.

We then formulate essentially unique supersymmetry transformations for the vari-

ous fields, where we find a suitable extension of the structures introduced in [13]. While

in [13] the 2-form potential is a singlet, here it carries a representation of the local gauge

group, which is facilitated by the introduction of a 3-form potential that mediates cou-

plings between the tensor and vector multiplets. While the brane interpretation of our

models requires further investigation, it is worth mentioning that the field content of

the model in [13] is known to arise in the worldvolume description of D6 branes stretch

between NS fivebranes [14, 15, 16, 17, 18]. The closure of the supersymmetry algebra
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into translations and extended tensor gauge transformations puts the system on-shell

with a particular set of e.o.m. For example the tensor multiplet field strength has to

satisfy its self-duality condition and the Yang-Mills field strength is related to the field

strength of the three-form potentials by a first-order duality equation. Consequently,

the three-form gauge potentials do not introduce additional degrees of freedom. They

communicate degrees of freedom between the tensor multiplets and the Yang-Mills mul-

tiplet. We also describe the extension of the tensor hierarchy to higher p-form gauge

potentials and briefly discuss the inclusion of hypermultiplets which complete the field

content to that of superconformal (2, 0) theories.

Consistency of the tensor hierarchy imposes a number of conditions on the possible

gauge groups and representations. We discuss several solutions of these conditions.

Generically these models provide only equations of motions, but for a subclass also a

Lagrangian formulation exists. In particular we find a Lagrangian model with SO(5)

gauge symmetry. However, the existence of a Lagrangian description necessarily im-

plies indefinite metrics for the kinetic terms. It is at the moment not clear if the

resulting ghost states can be decoupled with the help of the large extended tensor

gauge symmetry. This and other questions regarding the quantization of the theory

we have to leave for a further investigation. A general feature of all considered cases

is that the models are perturbatively defined only in the spontaneously broken phase

with the vev of the tensor multiplet scalars serving as inverse coupling constants of the

Yang-Mills multiplets.

To write down a Lagrangian for a self dual field strength is in general a formidable

task. For a single M5 brane, in which case the e.o.m. are known [19], this has been

done in [20, 21]. We consider these difficulties to be of a different category than

finding a superconformal non-abelian theory. When we formulate a Lagrangian we

understand that the first order duality equations are consistently imposed in addition

to the second order Lagrangian e.o.m., just as in the democratic formulation of ten-

dimensional supergravity [22].

Finally we want to comment on some recent attempts and proposals for the descrip-

tion of the (2, 0) theory. The low energy description of the theory when compactified

on a small circle is expected to be given by the maximal supersymmetric Yang-Mills

theory in five dimensions. Recent attempts tried to basically rewrite five-dimensional

Yang-Mills theory in six dimensions [23, 24] or introduced non-abelian gaugings at the

cost of locality [25]. Furthermore, it was recently proposed that the (2, 0) theory is

identical to five-dimensional super Yang-Mills theory for arbitrary coupling or compact-

ification radius [26, 27]. It is not clear yet how one could obtain Yang-Mills theories in

five dimensions from the models presented here (even when including hypermultiplets).

Clearly a mechanism more complicated than a trivial dimensional reduction has to be

considered.

The paper is organized as follows: in section 2 we present the general non-abelian

hierarchy of p-forms in six dimensions. We show that all couplings are parametrized

in terms of a set of dimensionless tensors that need to satisfy a number of algebraic
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consistency constraints. In particular, we find that non-abelian charged tensor fields

require the introduction of Stückelberg-type couplings among the p-forms of different

degree. In section 3, we extend the non-abelian vector/tensor system to a supersym-

metric system. Closure of the supersymmetry algebra puts the system on-shell and we

derive the modified field equations for the vector and tensor multiplets. In particular,

we obtain the first-order duality equation relating vector fields and three-form gauge

potentials. In section 3.4 we sketch the extension of the model upon inclusion of hyper-

multiplets and gauging of their triholomorphic isometries. In section 3.5 we derive the

general conditions for maximally supersymmetric vacua and compute the fluctuation

equations by linearizing the equations of motion around such a vacuum. Finally, we

give in section 3.6 an explicit example with an arbitrary compact gauge group and

tensor fields transforming in the adjoint representation.

Section 4 presents the additional conditions on the couplings in order to allow for

a Lagrangian formulation. We give the full action in section 4.2. In section 4.3 we

calculate the fluctuation equations induced by the action and show that the degrees

of freedom arrange in the free vector and self-dual tensor multiplet as well as in cer-

tain ‘non-decomposable’ combinations of the two. We illustrate the general analysis

in sections 4.4 and 4.5 with two explicit models that provide solutions to the con-

sistency constraints with compact gauge group SO(5) and nilpotent gauge group N8,

respectively. Finally, we summarize our findings in section 5.

2 Non-abelian tensor fields in six dimensions

In this section, we present the general (non-abelian) couplings of vectors and anti-

symmetric p-form fields in six dimensions. While the standard field content of the

ungauged theories falls into vector and tensor multiplets, it is a general feature of

these theories that the introduction of gauge charges generically requires the introduc-

tion of and couplings to three-form potentials. The specific couplings can be derived

successively and in a systematic way by building up the non-abelian p-form tensor hi-

erarchy, as worked out in [10, 11, 12], see also [28, 29, 30] for some applications to the

specific 6D context. Rather than going again step by step through the derivation of

the general couplings, we directly present the final result as parametrized by a set of

constant tensors (generalized structure constants) that need to satisfy a system of al-

gebraic consistency equations (generalized Jacobi identities). In section 2.1 we present

the couplings for the minimal field content required to introduce non-abelian couplings

between vector and tensor fields. In section 2.1, we extend the system to include also

four-form gauge potentials.

2.1 Minimal tensor hierarchy

The basic p-form field content of the theories to be discussed is a set of vector fields Ar
µ,

and two-form gauge potentials BI
µν , that we label by indices r and I, respectively. In
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addition, we will have to introduce three-form gauge potentials that we denote by Cµνρ r.

The fact that three-form potentials are labeled by an index r dual to the vector fields

is in anticipation of their dynamics: in six dimensions, these fields will be the on-shell

duals to the vector fields. For the purpose of this section however, the dynamics of

these fields is not yet constrained, the construction of the tensor hierarchy remains

entirely off-shell, and the indices ‘ r ’ and ‘r’ might be taken as unrelated. Similarly,

throughout this section, the self-duality of the field strength of the two-form gauge

potentials, which is a key feature of the later six-dimensional dynamics, is not yet an

issue.

The full non-abelian field strengths of vector and two-form gauge potentials are

given as

F r
µν ≡ 2∂[µA

r
ν] − fst

rAs
µA

t
ν + hr

I B
I
µν ,

HI
µνρ ≡ 3D[µB

I
νρ] + 6 dIrsA

r
[µ∂νA

s
ρ] − 2fpq

sdIrsA
r
[µA

p
νA

q

ρ] + gIrCµνρ r , (2.1)

in terms of the antisymmetric structure constants fst
r = f[st]

r, a symmetric d-symbol

dIrs = dI(rs), and the tensors gIr, hr
I inducing Stückelberg-type couplings among forms

of different degree.1 Covariant derivatives are defined as Dµ ≡ ∂µ − Ar
µXr with an

action of the gauge generators Xr on the different fields given by Xr ·Λs ≡ −(Xr)t
sΛt,

Xr · ΛI ≡ −(Xr)J
IΛJ , etc. The field strengths are defined such that they transform

covariantly under the set of non-abelian gauge transformations

δAr
µ = DµΛ

r − hr
IΛ

I
µ ,

∆BI
µν = 2D[µΛ

I
ν] − 2 dIrsΛ

rF s
µν − gIrΛµν r ,

∆Cµνρ r = 3D[µΛνρ] r + 3 bIrsF
s
[µν Λ

I
ρ] + bIrsH

I
µνρ Λ

s + . . . , (2.2)

where we have introduced the compact notation

∆BI
µν ≡ δBI

µν − 2dIrsA
r
[µ δA

s
ν] ,

∆Cµνρ r ≡ δCµνρ r − 3 bIrsB
I
[µν δA

s
ρ] − 2 bIrs d

I
pq A

s
[µA

p
ν δA

q

ρ] . (2.3)

The ellipsis in the last line of (2.2) represent possible terms that vanish under projection

with gIr. This system is completely defined by the choice of the invariant tensors gIr,

hr
I , bIrs, d

I
rs, and frs

t. It is obvious from (2.2) that the shift symmetry action on the

p-form gauge fields can be used to gauge away some of the p-forms, giving mass to

others by the Stückelberg mechanism. However, for the general analysis of couplings,

we find it the most convenient to work with the uniform system (2.2) and to postpone

possible gauge fixing to the analysis of particular models.

Consistency of the tensor hierarchy requires that the gauge group generators in the

various representations are parametrized as

(Xr)s
t = −frs

t + dIrs h
t
I ,

(Xr)I
J = 2 hs

Id
J
rs − gJsbIsr , (2.4)

1 We use canonical dimensions such that a p-form has mass dimension p and as a result all constant

tensors fst
r, dIrs, g

Ir, hr
I , are dimensionless.
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in terms of the constant tensors appearing in the system. The second relation exposes

an important feature of the tensor hierarchy: tensor fields can be charged under the

gauge group only if either hr
I or gIr are non-vanishing, i.e. they require some non-

vanishing Stückelberg-type couplings in the field strengths (2.1). This corresponds to

the known results [31, 32] that in absence of such couplings and the inclusion of addi-

tional three-form gauge potentials, the free system of self-dual tensor multiplets does

not admit any non-abelian deformations. On the other hand, the first relation of (2.4)

shows that in presence of hr
I , the gauge group generators in the ‘adjoint representa-

tion’ (Xr)s
t are not just given by the structure constants but acquire a modification,

symmetric in its indices (rs).

Furthermore, consistency of the system, i.e. covariant transformation behavior of

the field strengths (2.1) under the gauge transformations (2.2) requires the constant

tensors to satisfy a number of algebraic consistency constraints. A first set of con-

straints, linear in f , g, h, is given by

2
(

dJr(ud
I
v)s − dIrsd

J
uv

)

hs
J = 2fr(u

sdIv)s − bJsrd
J
uv g

Is ,
(

dJrs bIut + dJrt bIsu + 2 dKrubKstδ
J
I

)

hu
J = frs

ubIut + frt
ubIsu + gJubIurbJst , (2.5)

and ensures the invariance of the d- and the b-symbol under gauge transformations.

The remaining constraints are bilinear in f , g, h and take the form

f[pq
ufr]u

s − 1
3
hs
I d

I
u[pfqr]

u = 0 ,

hr
Ig

Is = 0 ,

frs
thr

I − dJrs h
t
Jh

r
I = 0 ,

gJshr
KbIsr − 2hs

Ih
r
K dJrs = 0 ,

− frt
sgIt + dJrth

s
Jg

It − gItgJsbJtr = 0 . (2.6)

They may be understood as generalized Jacobi identities of the system: together with

(2.5) they ensure the closure of the gauge algebra according to

[Xr, Xs] = −(Xr)s
tXt , (2.7)

for the generators (2.4), as well as gauge invariance of the tensors f , g and h. The

first equation of (2.6) shows that the standard Jacobi identity is modified in presence

of a non-vanishing hI
r . Even though the set of constraints (2.5), (2.6) looks highly

restrictive, it admits rather non-trivial solutions and we will discuss explicit examples

of solutions in sections 3.6, 4.4, and 4.5, below. The system admits different abelian

limits with frs
t = 0 = gIr and either hr

I or dIrs vanishing, in which the constraints

(2.5), (2.6) are trivially satisfied. A slightly more general solution is given by vanishing

hr
I = 0 = gIr with frs

t representing the structure constants of a Lie algebra. With the

particular choice dIrs = dIδrs, the vector-tensor system then reduces to the coupling of

the Yang-Mills multiplet to an uncharged self-dual tensor multiplet as described in [13].
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The covariant field strengths (2.1) satisfy the modified Bianchi identities

D[µF
r
νρ] = 1

3
hr
I H

I
µνρ ,

D[µH
I
νρσ] = 3

2
dIrsF

r
[µνF

s
ρσ] +

1
4
gIrH(4)

µνρσ r , (2.8)

where the non-abelian field strength H(4)
µνρσ r of the three-form potential is defined by

the second equation. In turn, its Bianchi identity is obtained from (2.8) as

D[µH
(4)
νρστ ] r = −2 bIrsF

s
[µν H

I
ρστ ] + . . . , (2.9)

where the ellipsis represents possible terms that vanish under projection with gIr. We

finally note that the general variation of the field-strengths is given by

δF r
µν = 2D[µδA

r
ν] + hr

I ∆BI
µν ,

δHI
µνρ = 3D[µ∆BI

νρ] + 6 dIrsF
r
[µν δA

s
ρ] + gIr ∆Cµνρ r ,

δH(4)
µνρσ r = 4D[µ∆Cνρσ]r − 6 bIrsF

s
[µν ∆BI

ρσ] + 4 bIrsH
I
[µνρ δA

s
σ] + . . . , (2.10)

again with the ellipsis representing possible terms that vanish under projection with gIr.

2.2 Extended tensor hierarchy

The field content introduced in the last section were the p-forms Ar
µ, B

I
µν , Cµνρ r, for

which in particular we have defined their non-abelian field strengths. Strictly speak-

ing, in the entire system, only a subset of the three-form potentials have appeared,

defined by projection with the tensor gIr as gIrCµνρ r . As it turns out, this trunca-

tion is precisely the ‘minimal field content’ required in order to write down an action

and/or define a consistent set of equations of motion. Off-shell on the other hand, the

tensor hierarchy may be extended to the full set of three-form potentials, which then

necessitates the introduction of four-form gauge potentials, etc.

For later use, we present in this section the results of the general tensor hierarchy for

the four-form gauge potentials which we denote by C
(4)
µνρλ α with covariant field strength

H(5)
α . The full version of the Bianchi identity (2.9) then reads

D[µH
(4)
νρστ ] r = −2 bIrs F

s
[µν H

I
ρστ ] +

1
5
kr

αH(5)
µνρστ α , (2.11)

where now the field strength H(5)
α itself satisfies the Bianchi identity

D[µH
(5)
νρλστ ]α = 10

3
cα IJH

I
[µνρH

J
λστ ] −

5
2
ctα sF

s
[µνH

(4)
ρλστ ] t + · · · , (2.12)

up to terms vanishing under projection with the tensor kr
α. The new constant tensors

kr
α, cα IJ , and ctα s are constrained by the relations

kr
αcα IJ = hs

[IbJ ]rs , kr
αctα s = frs

t − bIrsg
It + dIrsh

t
I , gKr kr

α = 0 ,(2.13)
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which extend the constraints (2.5), (2.6). As a consistency check, we note that equa-

tions (2.5), (2.6) imply the orthogonality relations

gKr hs
[IbJ ]rs = 0 ,

gKr
(

frs
t − gItbIrs + ht

Id
I
rs

)

= 0 , (2.14)

showing that (2.13) does not imply new constraints among the previous tensors. Fur-

thermore, consistency of the extended system requires an additional relation among b-

and d-symbol to be satisfied

bJr(sd
J
uv) = 0 , (2.15)

as also noted in [28]. The new tensor gauge transformations take the form

∆Cµνρ r = 3D[µΛνρ] r + 3 bIrsF
s
[µν Λ

I
ρ] + bIrsH

I
µνρ Λ

s − kr
α Λµνρα ,

∆C(4)
µνρσ α = 4D[µΛνρσ]α − 8 cα IJ H

[I
[µνρ Λ

J ]
σ] + 6 ctα sF

s
[µν Λρσ] t

+ ctα sH
(4)
µνρσ t Λ

s + . . . , (2.16)

where the first equation completes the corresponding transformation law of (2.2) and

the second transformation is given up to terms that vanish under projection with the

tensor kr
α. Accordingly, the general variation of the non-abelian field strengths from

(2.11), (2.12) is given by

δH(4)
µνρσ r = 4D[µ∆Cνρσ]r − 6 bIrsF

s
[µν ∆BI

ρσ] + 4 bIrsH
I
[µνρ δA

s
σ] + kr

α∆C(4)
µνρσ α ,

δH(5)
µνρστ α = 5D[µ∆C

(4)
νρστ ]α − 10 ctα s F

s
µν ∆Cρστ ] t − 20cα IJ H

[I
[µνρ ∆B

J ]
στ ]

− 5 ctα s δA
s
[µH

(4)
νρστ ] t + . . . . (2.17)

Continuing along the same line, the tensor hierarchy can be continued by introducing

five-form and six-form potentials together with their field strengths and non-abelian

gauge transformations. For the purpose of this paper we will only need the vec-

tor/tensor system up to the four-form gauge potentials given above.

3 Superconformal field equations

In the previous section we have introduced the tensor hierarchy for p-form gauge po-

tentials (p = 1, 2, 3) with the associated generalized field strengths (2.1) and Bianchi

identities (2.8). Gauge covariance w.r.t. the extended tensor gauge symmetry (2.2)

implies a number of conditions on the (dimensionless) invariant tensors and generators

of the gauge group (2.4)–(2.6), but otherwise does not contain any information about

the dynamics of theses fields.

The aim of this section is to complete the bosonic fields of the tensor hierarchy

into supersymmetry multiplets in order to obtain a non-abelian superconformal model
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for the (1, 0) vector and tensor multiplets. With the given (bosonic) field content of

the tensor hierarchy (2.1), a supersymmetric tensor hierarchy will contain Yang-Mills

multiplets (Ar
µ, λ

i r, Y ij r), and tensor multiplets (φI , χi I , BI
µν), labeled by indices r and

I, respectively. The index i = 1, 2 indicates the Sp(1) R-symmetry, the field Y ij

denotes the auxiliary field of the off-shell vector multiplets. In addition one has to

accommodate within this structure the three-form potential Cµνρ r whose presence was

crucial in the last section in order to describe non-abelian charged tensor fields.

3.1 Supersymmetry

The coupling of a single (1, 0) self-dual tensor multiplet to a Yang-Mills multiplet was

introduced in [13] and as a first step we give the necessary generalization for a non-

abelian coupling of an arbitrary number of these tensor multiplets. To this end, we

introduce supersymmetry transformations such that they close into translations and

the extended tensor gauge symmetry (2.2) according to

[δǫ1 , δǫ2] = ξµ∂µ + δΛ + δΛµ
+ δΛµν

, (3.1)

with field dependent transformation parameters for the respective transformations.

These parameters are given by

ξµ ≡ 1
2
ǭ2γ

µǫ1 ,

Λr = −ξµAr
µ ,

ΛI
µ = −ξνBI

νµ + dIrsΛ
rAs

µ + ξµ φ
I ,

Λµν r = −ξρCρµν r − bIrsΛ
sBI

µν −
2
3
bIrpd

I
qsΛ

sAp

[µA
q

ν] , (3.2)

as will be shown shortly. With dIrs = α′dIδrs, bIrs = 0, this reproduces the correspond-

ing algebra of [13].2 The supersymmetry transformations for the Yang-Mills multiplet

are given by

δAr
µ = −ǭγµλ

r ,

δλi r = 1
8
γµνF r

µνǫ
i − 1

2
Y ij rǫj +

1
4
hr
Iφ

Iǫi ,

δY ij r = −ǭ(iγµDµλ
j)r + 2hr

I ǭ
(iχj)I . (3.3)

Here the generalization w.r.t. the transformations for the off-shell pure Yang-Mills

multiplet is parametrized by the constant tensor hr
I and brings in the fields (φI , χi I , BI

µν)

of the tensor multiplets on the r.h.s. of the transformations. These additional terms

are necessary for the supersymmetry algebra to close to the generalized tensor gauge

symmetry (3.1), (3.2). E.g. the last term in δλi r is required to produce the proper δΛµ

action in the commutator of supersymmetries on the vector field Ar
µ. Likewise, the

last term in δY ij r ensures the proper closure of the supersymmetry algebra on λi r. It

2Note that in canonical dimensions, the tensor dIrs is dimensionless.
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then comes as a non-trivial consistency check, that the variation of this last term is

precisely what is needed for closure of the algebra on Y ij r. Even though, fields from

the tensor multiplets appear in these transformation rules, the Yang-Mills multiplet by

itself, using the necessary tensor multiplet transformations, still closes off-shell.

Next we give the supersymmetry transformations of the tensor multiplet

δφI = ǭχI ,

δχi I = 1
48
γµνρ HI

µνρǫ
i + 1

4
γµDµφ

Iǫi − 1
2
dIrsγ

µλi r ǭγµλ
s ,

∆BI
µν = −ǭγµνχ

I ,

∆Cµνρ r = −bIrs ǭγµνρλ
sφI , (3.4)

where we have used the same notation (2.3) for general variation introduced in the

tensor hierarchy. We also note that γµνρǫi acts as a self-duality projector such that

only HI +
µνρ, see (A.1), is actually alive in δχi I . W.r.t. the couplings discussed in [13], the

r.h.s. of these transformations has been generalized by the introduction of the general

d-symbol, and the inclusion of covariant field strengths and derivatives on the now

charged fields of the tensor multiplets. In particular, the important new ingredient in

these transformation rules is the three-form potential Cµνρ r which is contained in the

definition of HI
µνρ and contributing to its supersymmetry transformation according to

(2.10). Its presence has been vital in establishing the non-abelian bosonic vector-tensor

system in the last section, and similarly, its presence turns out to be indispensable for

closure of the supersymmetry algebra here. To group it with the tensor multiplet in

(3.4) is a mere matter of convenience; with the same right it might be considered as a

member of the gauge multiplet (indeed, as mentioned before by its dynamics the three-

form potential will be the dual of the vector fields Ar
µ). The form of its supersymmetry

transformation (3.4), mixing Yang-Mills and tensor multiplet fields, displays its dual

role as a messenger between these two multiplets. Note that we have given in (3.4)

the supersymmetry transformation for the uncontracted three-form Cµνρ r, although all

the explicit couplings only contain the contracted expression gK rCµνρ r. We will come

back to this difference in the following.

Closure of the supersymmetry algebra on the tensor multiplet according to (3.1) is

now rather non-trivial and heavily relies on the extra terms arising from variation of

the three-form potential. In particular, the algebra closes only on-shell on the tensor

multiplets. In the search for new model or theory such a property may be considered

as feature that provides a certain uniqueness. We will discuss these equations and their

individual origin now in detail.

3.2 Minimal model

We first investigate the equations of motion resulting from supersymmetrization of the

bosonic field content of the minimal tensor hierarchy of section 2.1. In particular, this

model includes only the projected subset gK rCµνρ r of three-form gauge potentials. The

10



resulting tensor multiplet field equations are given by

HI−
µνρ = −dIrsλ̄

rγµνρλ
s ,

γσDσχ
iI = 1

2
dIrsF

r
στ γ

στλis + 2dIrsY
ij r λs

j +
(

dIrsh
s
J − 2bJsrg

Is
)

φJλir ,

DµDµ φ
I = −1

2
dIrs

(

F r
µνF

µν s − 4 Y r
ijY

ij s + 8λ̄rγµDµλ
s
)

− 2
(

bJsrg
Is − 8dIrsh

s
J

)

λ̄rχJ − 3 dIrsh
r
Jh

s
K φJφK . (3.5)

The first equation, which imposes a self duality condition on the three-from field

strength, originates in the closure of supersymmetry on the associated two-form poten-

tial BI
µν . The closure on δχi I gives the fermionic equations of motion while the scalar

field equation is obtained by the supersymmetry transformation of the χiI- equation.

The fact that the tensor fields are charged under the gauge group has rather non-

trivial consequences, namely supersymmetry variation of the field equations (3.5) in

turn implies the following first-order equations of motion for the Yang-Mills multiplets

gKrbIrs
(

Y s
ij φ

I − 2λ̄s
(iχ

I
j)

)

= 0 ,

gKrbIrs
(

F s
µνφ

I − 2 λ̄sγµνχ
I
)

= 1
4!
εµνλρστ g

Kr H(4) λρστ
r ,

gKrbIrs
(

φIγµDµλ
s
i +

1
2
γµλs

iDµφ
I
)

= gKrbIrs
(

1
4
F s

µνγ
µνχI

i +
1
24
HI

µνργ
µνρλs

i − Y s
ij χ

j I

+ 3
2
hs
Jφ

IχJ
i + 1

3
dIuv γ

µλu
i λ̄

sγµλ
v
)

.

(3.6)

The first equation is the algebraic equation for the auxiliary field Y ij r, while the second

equation provides the anticipated duality of vector fields and three-form potentials by

relating their respective field strengths. In particular, derivation of this equation and

use of the Bianchi identity (2.9) gives rise to a standard second-order equation of Yang-

Mills type for the vector fields Ar
µ . Equivalently, the first two equations of (3.6) can be

inferred from closure of the supersymmetry algebra on the three-form gauge potentials

gKrCµνρ r . The appearance of the Yang-Mills dynamics (3.6) from supersymmetry of

the tensor field equations (3.5) is in strong contrast to the model of [13] (in which

effectively gKr = 0, and the tensor field are not charged) where the vector fields remain

entirely off-shell or can alternatively be set on-shell with field equations that do not

contain the tensor multiplet fields. Moreover, in the model of [13], an algebraic equation

analogous to the first equation of (3.6) is excluded by the appearance of an anomaly

in its supersymmetry variation (see also [33]). We should stress that in the present

model, such anomalies are actually absent due to the particular Fierz identities (A.6),

(A.7) in combination with the identity (2.15). I.e. the quartic fermion terms in the

supersymmetry variation of (3.6) cancel precisely, which yields a strong consistency

check of the construction.

To summarize, the system of equations of motion (3.5), (3.6) consistently trans-

forms into itself under supersymmetry. It describes a novel system of supersymmetric
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non-abelian couplings for multiple (1, 0) tensor multiplets in six dimensions. The equa-

tions of motion contain no dimensionful parameter and hence the system is at least

classically (super)-conformal. A crucial ingredient to the model are the three-form

gauge potentials Cµνρ r which are related by first-order duality equations to the vector

fields of the theory and thus do not constitute new dynamical degrees of freedom. This

is similar to the situation of Chern-Simons matter theories in the context of multiple

M2 branes [5], [3]. The actual model depends on the explicit choice of the gauge group

and representations and the associated invariant tensors of the gauge group which have

to satisfy the conditions (2.4)–(2.6). The task that remains is to find explicit solutions

for these constraints. We will discuss different examples in sections 3.6, 4.4 and 4.5

below.

3.3 Extended model

The above described model represents the minimal field content and equations of mo-

tion, required for closure of the supersymmetry algebra and the supersymmetry of the

equations of motions. In particular, it relies on the projected subset gK rCµνρ r of three-

form gauge potentials. Just as for the bosonic tensor hierarchy in section 2.2, one may

seek to extend the above supersymmetric system to the full set of three-form gauge

potentials. With the supersymmetry transformation of general Cµνρ r given by (3.4),

closure of the supersymmetry algebra leads to the following uncontracted equations

bIrs
(

Y s
ij φ

I − 2λ̄s
(iχ

I
j)

)

= 0 ,

bIrs
(

F s
µνφ

I − 2 λ̄sγµνχ
I
)

= 1
4!
εµνλρστ H

(4) λρστ
r ,

bIrs
(

φIγµDµλ
s
i +

1
2
γµλs

iDµφ
I
)

= bIrs
(

1
4
F s

µνγ
µνχI

i +
1
24
HI

µνργ
µνρλs

i − Y s
ij χ

j I +

+ hs
J

(

2φIχJ
i − 1

2
φJχI

i

)

+ 1
3
dIuv γ

µλu
i λ̄

sγµλ
v
)

,

(3.7)

In order to have this system close under supersymmetry it is necessary to introduce also

a four-form gauge potential. Consequently the tensor hierarchy has to be continued one

step further as described in section 2.2. The resulting supersymmetry transformation

of the four-form potential is

∆C(4)
µνρσ α = 2cα IJ φ

[I ǭγµνρσχ
J ] , (3.8)

Furthermore, supersymmetry of the field equations (3.7) induces the first-order field

equations

1
5!
εµνρλστ kr

αH(5)µνρλσ
α = 2kr

α
(

cα IJ

(

φIDµφ
J − 2χ̄Iγµχ

J
)

− ctα ubJtv λ̄
uγµλ

v
)

. (3.9)

This shows that the dynamics of C
(4)
µνρσ α is given by a first-order duality equations,

which relates these four-form potentials to the Noether current of some underlying

global symmetry. In particular, this first-order equation ensures that the four-form

gauge potentials do not constitute new dynamical degrees of freedom.
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3.4 Adding hypermultiplets

Another possible extension of the supersymmetric model presented above is the inclu-

sion of hypermultiplets. As is well known, global supersymmetry requires the hyper-

scalars to parametrize a hyper-Kähler manifold Mh, more precisely superconformal

symmetry requires Mh to be a hyper-Kähler cone. The above presented non-abelian

theories can be extended to include gaugings of isometries on the hyper-Kähler cone

along the lines of [34, 35, 36], from which the additional couplings and in particular the

resulting scalar potential can be inferred. While we defer the details of this extension

to another publication, here we only sketch a few relevant elements of the construc-

tion. Within in the above construction, gauging of triholomorphic isometries on the

hyper-Kähler cone is achieved by introducing an embedding tensor ϑr
α that encodes

the coupling of vector fields Ar
µ to hyper-Kähler isometries Kα and is subject to the

algebraic conditions

fpr
sϑs

α = fβγ
αϑp

βϑr
γ , hr

I ϑr
α = 0 , (3.10)

with the structure constants fαβ
γ of the algebra of hyper-Kähler isometries. On the

other hand, in the presence of hypermultiplets, the vector multiplet equations of motion

(3.7) allow for a consistent modification, in particular in the Y -field equation as

bIrs
(

Y s
ij φ

I − 2λ̄s
(iχ

I
j)

)

= kr
αP ij

α , (3.11)

with the constant tensor kr
α from (2.13), and the moment maps P ij

α associated with the

triholomorphic hyper-Kähler isometries. It is only by means of this algebraic equation

for Y s
ij that the hyperscalars enter the tensor multiplet field equations. Further requiring

the existence of an action eventually leads to the identification

kr
α = ϑr

α , (3.12)

i.e. relates the gauging of hyper-Kähler isometries to a modification of the vector and

tensor multiplet field equations.

3.5 Supersymmetric vacua and excitation spectrum

We study now supersymmetric vacua for the minimal model of section 3.2 and the

excitation spectrum in such vacua, i.e. the linearized field equations. The algebraic

equation for the vector field strength, the second equation in (3.6), indicates that

the expectation value of the tensor multiplet scalar φI serves as an (inverse) coupling

constant. This notion will become more evident in the subsequent sections where we

discuss models which provide a Lagrangian. Consequently, the perturbative analysis is

limited to the spontaneously broken phase where φI has a (large) expectation value.

The Killing spinor equations of the theory (4.3) are obtained from (3.3), (3.4)

0
!
≡ δλi r = 1

8
γµνF r

µνǫ
i − 1

2
Y ij rǫj +

1
4
hr
Iφ

Iǫi ,

0
!
≡ δχi I = 1

48
γµνρHI+

µνρǫ
i + 1

4
γµDµφ

Iǫi , (3.13)
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and characterize solutions that preserve some fraction of supersymmetry. These equa-

tions show that a Lorentz-invariant solution preserving all supersymmetries corre-

sponds to setting the scalar fields to constant values φI
0 satisfying

φI
0 h

r
I = 0 , (3.14)

and setting all other fields to zero. Expanding the scalar fluctuations as φI ≡ φI
0 +

ϕI and imposing the condition (3.14) one obtains at the linearized level for the field

equations (3.5), (3.6) the system:

( dBI + gIrCr )
− = 0 , N I

r Y
r
ij = 0 ,

/∂ χiI + 2N I
r λ

ir = 0 , N I
r dA

r − gIr ∗dCr = 0 ,

✷ϕI −N I
r ∂ · Ar = 0 , N I

r
/∂λir = 0 , (3.15)

where we have defined the matrices

Krs ≡ φI
0 bIrs , N I

r ≡ gIsKsr . (3.16)

and used that N I
r h

r
J = 0, by the first identity in (2.14) and the susy vacuum condi-

tion (3.14).

Unbroken gauge symmetry. For a generic supersymmetric vacuum which satisfies

(3.14) the vector gauge transformations Λr Xr are broken down to the subgroup of

transformations Λr Xr which satisfy

Xr J
I φJ

0 = −N I
r

!
= 0 , (3.17)

where the index r labels the subset of unbroken generators (2.4). The rest of the

extended tensor gauge symmetry (2.2) remains intact. Consequently, in the case that

the gauge group is not completely broken, the matrix N I
r , and for invertible gIr also

the matrix Krs, always has some null-directions. The fluctuation equations (3.15)

show that for these null-directions the fields of the corresponding vector multiplets

drop out of this perturbative analysis. This is nothing else than the above mentioned

observation that the perturbative analysis is valid only in the spontaneously broken

phase and that the unbroken sector of the Yang-Mills multiplet is (infinitely) strongly

coupled and perturbatively not visible. This part of the spectrum decouples and should

be integrated out for a proper treatment.

In general it is rather difficult to break the gauge symmetry completely with a

single scalar field. The addition of hypermultiplets as sketched in section 3.4 may

offer additional possibilities in this directions. This is for example comparable with the

situation of N = 2 SQCD, for which mixed Coulomb-Higgs phases with vev’s for vector

multiplet and hypermultiplet scalars exist where the theory is completely higgsed. In

such a case there would be regions in the moduli space of vacua where the complete

spectrum of the models discussed here is perturbatively accessible. For the extended

models of section 3.3 on the other hand, the coupling of the Yang-Mills multiplet is

given by the matrix Krs which may have less null directions than the matrix N I
r .
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3.6 A model with adjoint tensor multiplets

A particular solution to the constraints (2.5), (2.6) is given by choosing some semi-

simple compact gauge group G with Lie-algebra g, identifying both I and r with

the adjoint representation of G, and the tensor grs with the Cartan-Killing metric.

Moreover we set

hs
r ≡ 0 , dprs ≡ drstg

pt , bp rs ≡ fprs , (3.18)

with the totally symmetric d-symbol drst and the totally antisymmetric structure con-

stants frst . As will be discuss in detail in the next section, for a solution of this form

the resulting theory does not admit an action and is described by the set of equations

of motion (3.5), (3.6) only.

With grs being the (invertible) Cartan-Killing metric, the matrices N and K intro-

duced in (3.16) are essentially the same,

N r
s = grtKts =: Kr

s = −φt
0 fts

r , (3.19)

and the matrix Kr
s defines the adjoint action of the vev φ0. By a gauge rotation the

φ0 can always be chosen to lie in the Cartan subalgebra t, and we decompose g into

the orthogonal sum g = t ⊕ g̃ . In that case, the unbroken sector of the Yang-Mills

multiplets, which drops out of the fluctuation equations, spans the Cartan subalgebra

t on which the action of Kr
s vanishes. On the orthogonal complement g̃ and for

generic choice of φ0, the matrix Kr
s is invertible, and using the Cartan-Weyl basis we

introduce the notation K r̃
red s̃ = kr̃ δ

r̃
s̃ for the reduced matrix on this subspace (there is

no summation over repeated indices in this case).

Before giving the explicit excitation equations for this specific model we discuss the

gauge fixing of the vector field gauge symmetry, which for hs
r = 0 is an ordinary gauge

symmetry, see (2.2). A convenient gauge, which disentangles the scalar field and gauge

field fluctuations is given by the Lorenz gauge condition

∂ · Ar = 0 . (3.20)

Since the gauge fields are determined by first-order equations the Lorenz gauge, and not

a ’t Hooft Rξ-gauge, decouples the scalar and gauge field kinetic terms. The fluctuation

equations (3.15) thus take the form

/∂ χir = 0 , dC r = 0 ,

( dBr + Cr )− = 0 , ✷ϕr = 0 ,

/∂ χir̃ + 2 kr̃ λ
ir̃ = 0 , dAr̃ −

1

kr̃
∗dC r̃ = 0 ,

/∂λir̃ = 0 , Y r̃
ij = 0 , (3.21)

where we have split the gauge indices as r = (r, r̃) according to the decomposition

g = t ⊕ g̃. For the unbroken sector t, the first line of (3.21) together with the second
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line for r = r thus describe a free tensor multiplet coupled to the three-form potential

Cr which has vanishing field strength and may be gauged away. Alternatively, one

may employ the two-form shift symmetry in (2.2) with gauge parameter Λr
µν to set

Br = 0. Then the linearized equations describe a self-dual closed field Cr which gives

an equivalent description of the free tensor multiplet.

The broken sector g̃ is described by the second line of (3.21) for r = r̃ together with

the last two lines. Here also the Yang-Mills multiplet is present but the structure is

somewhat unusual. The multiplet structure is not the direct sum of a free tensor and

Yang-Mills multiplet, but forms a multiplet that we call henceforth non-decomposable,

as can be seen in particular from the fermionic field equations. This seems to be a

general feature of the models considered here and will be discussed in section 4.3.

The third equation in the right column again demonstrates the dual role of the three-

form potential C r̃: Acting with d ∗ on this equation implies the second-order free field

equation ✷Ar̃ = 0. The original equation then fixes C r̃ in terms of Ar̃ up to an two-

form br̃ whose field strength has to be self dual in the Br = 0 gauge, see the second

line of (3.21). The three-form potential C r̃ therefore shifts or communicates degrees of

freedom between the gauge and tensor multiplet.

4 Action

So far, we have found a set of field equations that consistently transform into each

other under (1, 0) supersymmetry. The full system is entirely determined by the choice

of the constant tensors gIr, hr
I , bIrs, d

I
rs, and frs

t subject to the set of algebraic con-

straints (2.5), (2.6). In this section we present the additional conditions, which these

tensors have to satisfy in order for the field equations to be integrated to an action. We

give the full supersymmetric action and discuss the general structure of supersymmet-

ric vacua and the fluctuation equations around such vacua. The non-unitarity of the

action manifests itself in the generic appearance of some unusual ‘non-decomposable’

multiplet couplings. Finally, we illustrate the general analysis by two concrete mod-

els, with compact gauge group SO(5) and a nilpotent eight-dimensional gauge group,

respectively.

4.1 Conditions for existence of an action

The existence of an action first of all requires the existence of a constant non-degenerate

metric ηIJ by which tensor multiplet indices can be raised and lowered, in order to

provide a kinetic term for the scalar fields and the other fields of the tensor multiplets.

Further inspection of the field equations (3.5)–(3.7) then shows that their integrability

to an action requires the identifications

hr
I = ηIJg

Jr , dIrs =
1
2
ηIJbJrs , (4.1)
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i.e. in particular a b-symbol that is symmetric in its indices (rs). Moreover, in the

process of computing the action, one finds that the identity (2.15) needs to be imposed

in order to ensure the existence of a proper topological term. From (4.1) it is obvious

that the models we have discussed in section 3.6 indeed do not admit an action.

To summarize, with these identifications, the algebraic consistency conditions (2.5),

(2.6), (2.15) reduce to

bI r(ub
I
vs) = 0 ,

(

bJr(u b
I
v)s − bJuv b

I
rs + bK rsb

K
uv η

IJ
)

gsJ = 2fr(u
sbIv)s ,

6f[pq
ufr]u

s − gsI b
I
u[pfqr]

u = 0 ,

2frs
tgrI − bJrs g

t
Jg

r
I = 0 ,

grKg
s
[IbJ ]sr = 0 ,

grIg
Is = 0 . (4.2)

Finding non-trivial solutions to these constraints is a formidable task. We will give in

sections 4.4, 4.5 below some explicit solutions that are inspired from similar construc-

tions in gauged supergravity theories.

4.2 The action

In case the constant tensors satisfy all algebraic conditions (4.2), the equations of

motion (3.5), (3.6) can be lifted to an action. In fact, one may verify a somewhat

stronger conclusion: the identifications (4.1) and thus the set of constraints (4.2) appear

already to be necessary in order to construct a conserved supercurrent underlying the

equations of motion (3.5), (3.6) from a canonical structure for the fermions [37].

In order to write an action, we ignore for the moment the subtleties of writing an

action for a self-dual three-form field strength, but give a standard second-order action,

keeping in mind that the corresponding first-order equation of (3.5) is supposed to be

imposed after having derived the second-order equations of motion, just as in the

democratic formulation of ten-dimensional supergravities [22].3 The full action then

reads

L = −1
8
DµφI Dµφ

I − 1
2
χ̄I γ

µDµχ
I + 1

16
bIrsφ

I
(

F r
µνF

µν s − 4Y r
ijY

ij s + 8λ̄rγµDµλ
s
)

− 1
96
HI

µνρ H
µνρ
I − 1

48
bIrsH

I
µνρ λ̄

rγµνρλs − 1
4
bIrsF

r
µν λ̄

sγµνχI + bIrsY
r
ij λ̄

i sχj I

+ 1
2
(bJsrg

s
I − 4bIsrg

s
J)φ

I λ̄rχJ + 1
8
bIrsg

r
Jg

s
K φIφJφK − 1

48
Ltop

− 1
24
bIrsb

I
uv λ̄

rγµλuλ̄sγµλ
v , (4.3)

which shows explicitly the role of the scalar fields φI as inverse coupling constants for

the Yang-Mills multiplet. Like the equations of motion, this action contains no dimen-

sionful parameter such that the system is (super)-conformal at least at the classical

3 Alternatively, this self-duality can be implemented by using a non-abelian version [38] of the

Henneaux-Teitelboim action [39] that breaks manifest space-time covariance.
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level. The topological term is given by integrating

dV δLtop = 6
{

bIrs δA
r
∧F s

∧HI −∆BI
∧

(

grI H
(4) − 1

2
bIrsF

r
∧F s

)

− grI∆Cr∧H
I
}

,(4.4)

and has the explicit form

dV Ltop = −6 grI Cr∧H
I + bIrsB

I
∧F r

∧F s − bIrsh
r
Jh

s
K BI

∧BJ
∧BK

+BI
∧

[

hs
Ib

J
subJvrA

u
∧Av

∧ dAr + 3
4
(bIrsfpq

r + 4bJqsXp I
J) fuv

sAp
∧Aq

∧Au
∧Av

]

− 1
10
fup

sbJqsbJvr A
p
∧Aq

∧Au
∧Av

∧ dAr . (4.5)

It can be understood in compact form as the boundary contribution of a manifestly

gauge-invariant seven-dimensional term
∫

∂M7

Ltop ∝

∫

M7

(

bIrs F
r
∧F s

∧HI −HI
∧DHI

)

. (4.6)

As usual, gauge invariance of the topological term may lead to quantization conditions

for the various coupling constants. For the tensor multiplet, it is straightforward to

verify that the action (4.3) induces the field equations (3.5) from above. For the fields

of the vector multiplet, we obtain the first and the last of the uncontracted equations

(3.7), while the duality equation relating F r
µν and H(4)

µνρσ r only appears in its contracted

form (3.6). In addition, variation w.r.t. the vector field gives rise to the Yang-Mills

equation

bIrsD
ν
(

φIF s
µν − 2λ̄sγµνχ

I
)

=
(

φIDµφ
J − 2χ̄Iγµχ

J
)

Xr IJ − 2φIbIpqXrs
q λ̄pγµλ

s

− 1
12
bIrs εµνρλστ F

νρ sHλστ I , (4.7)

that can alternatively obtained as a derivative of the uncontracted duality equation

(3.7) upon use of the first-order equation (3.9).

We note that the last constraint equation of (4.2) shows that non-trivial solutions

to these constraints (i.e. solutions in which the tensor fields are charged) exist only

if the metric ηIJ is indefinite, which in turn implies that some of the scalars (and

some of the two-forms) in (4.3) have a negative kinetic term. This somewhat reminds

the situation for the three-dimensional BLG theories [3, 4] with Lorentzian three-

algebra [40, 41, 42, 43, 44], and certainly requires further investigation. We also note

that similar structures as encountered in this section have appeared in generic 6d

supergravity theories [45, 46, 47]

4.3 Multiplet structure of excitations

The supersymmetry transformations of the model (4.3) are still given by equations (3.3),

(3.4), such that the Killing spinor equations remain of the form (3.13). In particular,

the existence of a maximally supersymmetric vacuum is still encoded in the condition

(3.14) on the scalar expectation values. In this vacuum, the linearized field equations
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obtained from (4.3) extend the fluctuation equations (3.21) by the linearization of the

second-order equation for the vector fields (4.7), which takes the form

Krs

(

✷As
µ − ∂µ∂

νAs
ν

)

= NIr

(

∂µϕ
I − ∂νBI

νµ

)

. (4.8)

With the gauge fixing ∂νBI
νµ = 0 = ∂µAr

µ+grIϕ
I , the equation turn into the free Klein-

Gordon equation for the vector field components Ar
µ.

4 With this gauge fixing, the full

set of linearized field equations obtained from (4.3) is given as

( dBI + gIrCr )
− = 0 , Krs Y

s
ij = 0 ,

/∂ χiI + 2N I
r λ

ir = 0 , N I
r dA

r − gIr ∗dCr = 0 ,

✷ϕI = 0 , Krs /∂λ
is − 2NrIχ

iI = 0 ,

Krs✷As
µ = 0 , (4.9)

with the matrices Krs and N I
r from (3.16). We note that N I

r g
rJ = 0 = grIN s

I . With

a proper choice of basis such that Krs is diagonal, the lowest order dynamics contains

rK = rank(K) vector multiplets. The fluctuation equations (4.9) decouple into various

multiplets which we denote as follows, and whose multiplicities are given in Table 1:

(V) : ✷Aµ = 0 , /∂λ = 0 ,

(T) : ✷ϕ = 0 , /∂χ = 0 , (dB)− = 0 ,

(T′) : ✷ϕ = 0 , /∂χ = 0 , (dB)− = −gC− , dC = 0 ,

(TV) : ✷ϕ = 0 , κ dA = ∗dC , (dB)− = −gC− , /∂λ = 0 , /∂χ = −2gκλ ,

(VT) : ✷ϕ = 0 , ✷Aµ = 0 , (dB)− = 0 , /∂χ = 0 , /∂λ = 2g χ . (4.10)

We have kept the coupling constants g and κ to keep track of the scales of gIr and φI
0,

respectively. The first two multiplets (V) and (T) are the free vector and self-dual tensor

multiplet, respectively, the third one (T’) is the self-dual tensor multiplet enhanced by

a non-propagating three-form potential. The fourth line (TV) describes the ‘non-

decomposable’ combination of a free vector multiplet and a self-dual tensor multiplet

for which the vector multiplet acts as a source. It is obvious from the fermionic field

equations that these two multiplets cannot be separated. This is the type of coupling

we have encountered in the broken sector g̃ of the model described in section 3.6. The

last line (VT) describes the dual version of such a ‘non-decomposable’ coupling, here a

free self-dual tensor multiplet acts as the source for a vector multiplet. This situation is

similar to the observation made in [33] regarding the BSS model [13]. Diagonalizing for

example the χ-equation and using the relations for N I
r given above shows that there are

rN = rank(N) TV-multiplets. Is straightforward to verify that only the combination

4 Alternatively, this can be achieved by choosing Lorenz gauge for the vector fields and fixing

the tensor gauge freedom by ∂νBI
νµ ≡ ∂µϕ

I . This is a consistent gauge choice since the scalar field

equation in this gauge turns into the massless Klein-Gordon equation.
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multiplet (V) (T) (T’) (TV) (VT)

# rK − 2rN nT − rN − rg rg − rN rN rN

Table 1: Multiplicities of the different structures (4.10) appearing in the lowest order

fluctuations (4.9) expressed in terms of the number of tensor multiplets nT and the

ranks rg, rN , rK of the matrices gIr, N I
r and Krs, respectively.

of (TV) and (VT) can be derived from an action, which implies that they appear with

equal multiplicity and thus the λ-equation in (4.9) describes rK −2 rN vector multiplet

(VT) fermions. In a similar fashion one finds the multiplicities of the other couplings

in (4.10) as obtained from the equations (4.9) and which are entirely encoded in the

rank of the matrices gIr, N I
r and Krs. We collect the explicit result in table 1. In the

following, we will illustrate these general structures in some explicit examples.

4.4 Example: SO(5) gauge group

The constraints (4.2) constitute a rather non-trivial system of consistency conditions for

the undetermined constant tensors and structure constants. Fortunately, a number of

solutions can be inferred from analogous construction in gauged supergravity theories.

In this section, we discuss a solution to (4.2) that is inspired by gaugings of the maximal

six-dimensional supergravity theory [29].

Let the indices I and r parametrize the vector and spinor representations of the

group SO(5, 5), respectively, let ηIJ to be corresponding invariant metric, and set

bIrs ≡ γI
rs , frs

t ≡ − 4 γIJK
rs γIJ p

t gpK , (4.11)

where we have chosen a real representation of gamma matrices. With this choice, the

first equation of (4.2) is the well known magic identity for SO(5, 5) gamma-matrices.

The second equation reduces to a non-trivial SO(5, 5) gamma-matrix identity if in

addition one imposes the tensor gIr to be gamma-traceless according to

gIrγIrs = 0 , (4.12)

i.e. to parametrize the real 144c representation. Some further calculation shows that

the remaining equations of (4.2) which are quadratic in gIr then reduce to the last two

equations which transform in the 10+ 126c + 320 of SO(5, 5) . A particular solution

to these equations can be found by choosing gIr to live within the 15 ⊂ 144c upon

breaking to the maximal subgroup GL(5) ⊂ SO(5, 5) . This simply follows from the

fact that the symmetric tensor product (15 ⊗ 15)sym does not contain any represen-

tation that lies in the 10 + 126c + 320 in which the bilinear constraints transform.

Representing the 15 parameters as a symmetric 5×5 matrix, the resulting gauge group

is CSO(p, q, r) with p + q + r = 5 according to the signature of the matrix, cf. [29]

for details. In particular, these gaugings include the theory with compact gauge group
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SO(5). It is instructive, to give the bosonic field content in representations of this

gauge group:

Ar
µ −→ 1+5 + 5−3 + 10+1 ,

(φI , BI
µν) −→ 5+2 + 5−2 ,

Cµνρ r −→ 1−5 + 5+3 + 10−1 , (4.13)

where the subscripts refer to GL(1) charges under the embedding GL(1) × SO(5) ⊂

GL(5) ⊂ SO(5, 5), under which the tensor gIr has charge −1. In particular, the tensor

multiplets transform in two copies of the fundamental representation of the gauge

group. The scalar field content shows that the gauge invariant cubic potential of (4.3)

for this theory vanishes identically.

In order to elucidate the structure of the SO(5) theory, we will calculate the fluc-

tuations around a maximally supersymmetric solution according to general analysis of

section 4.3. It follows from (3.14) and the particular form of gIr that maximal super-

symmetry of the vacuum amounts to restricting φI
0 to values within the 5+2 of (4.13).

For the supersymmetric SO(5) invariant vacuum φI
0 = 0, both matrices Krs, NIr from

(3.16) vanish identically. As a result, the linearized field equations (4.9) simply describe

ten copies of the self-dual tensor multiplet whereas as discussed above in the unbroken

phase, the vector multiplets are invisible in this perturbative analysis. In the notation

of section 4.3 we find five copies of (T) and of (T’), respectively.

Let us instead consider a non-vanishing value of φI
0 in the 5+2 which breaks the

gauge symmetry at the vacuum down to SO(4) but preserves all supersymmetries.

Accordingly, the bosonic fields break into

Ar
µ −→ 1+5 + 1−3 + 4−3 + 4+1 + 6+1 ,

(φI , BI
µν) −→ 1+2 + 4+2 + 1−2 + 4−2 ,

Cµνρ r −→ 1−5 + 1+3 + 4+3 + 4−1 + 6−1 , (4.14)

under SO(4)×GL(1) . In this case, the only non-vanishing entries in the kinetic vec-

tor matrix Krs are the off-diagonal entries in its 4+3 × 4−1 and 4−1 × 4+3 blocks,

corresponding to eight non-vanishing eigenvalues, of which four are negative. Ac-

cordingly, the vector fields from the 1+5 + 1−3 + 6+1 (which include the fields in the

adjoint representation of the unbroken gauge group) do not appear in the lowest order

fluctuations (4.9). On the other hand, the matrix gIr as chosen above has its only

non-vanishing entries in the (1+2+4+2)× (1−3 +4−3) block. This shows in particular,

that from the three-form fields Cµνρ r, only the components in the 1+3 + 4+3 appear

in the action (4.3). Evaluating the linearized field equations (4.9) for these fields, one

verifies that these indeed fall into the structures identified in (4.10). The explicit re-

sult for the representation content of the various multiplets is displayed in table 2. In

order to correctly keep track of the GL(1) charges, it is worth to keep in mind that

the gauge coupling constant g and the scalar vacuum expectation value κ appearing in

these equations are of charge −1 and +2, respectively.
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(T) (T’) (TV) (VT)

1−2: (ϕ
−, χ−, B−) 1+3: C

+ 4+3: C
m

1+2: (ϕ
+, χ+, B+) 4+2: (ϕ

m, χm, Bm) 4−2 (ϕ̃
m, χ̃m, B̃m)

4+1: (A
m, λm) 4−3: (Ã

m, λ̃m)

Table 2: Lowest order fluctuations around the SO(4) invariant vacuum.

4.5 Example: Nilpotent gauge group

Another solution to the constraints (4.2) may be obtained from the gauged supergrav-

ities of [30]. In this case, vector and tensor multiplets are supposed to come in the

spinor and vector representation, respectively, of the group SO(9, 1). Since real gamma

matrices exist, and their algebra is the same as in the previous example, with the choice

(4.11), the first two equations of (4.2) again reduce to gamma-tracelessness (4.12) of

the tensor gIr . However, in this case, the remaining constraint equations turn out to

admit a unique solution, which is given by

gIr ≡ g ζrζsζ tγI
st , (4.15)

with gauge coupling constant g and an arbitrary constant SO(9, 1) spinor ζr. This

choice corresponds to a nilpotent gauge group whose algebra N+
8 is embedded into

so(9, 1) according to the three-grading

so(9, 1) −→ N−

8 ⊕ (so(8)⊕ so(1, 1))⊕N+
8 , (4.16)

see [30] for further details. Under the little group SO(7) of the spinor defining (4.15),

the multiplets decompose as

Ar
µ −→ 1−1 + 7−1 + 8+1 ,

(φI , BI
µν) −→ 1+2 + 1−2 + 80 ,

Cµνρ r −→ 1+1 + 7+1 + 8−1 , (4.17)

where again we keep the charges under the GL(1) under which the gauge coupling

constant carries charge −3. A distinctive feature of this model as compared to the

previous one, is a nonvanishing cubic scalar potential. More precisely, the scalar La-

grangian takes the form

L = −1
8
Dµφi Dµφ

i − 1
8
∂µφ+Dµφ

− + g3(φ+)3 , (4.18)

where (φ+, φ−, φi) represent the 1+2 + 1−2 + 80 scalars in the 80 according to the

decomposition (4.17). A maximally supersymmetric vacuum is found by choosing a

non-vanishing φi
0, which breaks one generator of the nilpotent gauge group, and the

little group down from SO(7) to G2. In this case, the matrix Krs in (4.9) remains

invertible, such that all fields contribute to the linearized fluctuation equations. Eval-

uating the fluctuation equations, one confirms that all fluctuations again fall into the

structures identified in (4.10). The final result for the representation content of the

various multiplets is displayed in table 3.
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(V) (T) (TV) (VT)

7+ 7 7 + 1 1 1

Table 3: Lowest order fluctuations around the G2 invariant vacuum.

5 Conclusions

In this paper, we have constructed a general class of six-dimensional (1,0) superconfor-

mal models with non-abelian vector and tensor multiplets. The construction is based

on the non-abelian hierarchy of p-form fields and strongly relies on the introduction of

further three-form gauge potentials. These are related to the vector fields by a first-

order duality equation and do not constitute new degrees of freedom, however they

play a crucial role in communicating the degrees of freedom between the vector and

tensor multiplets. The models are parametrized by a set of dimensionless constant

tensors, which are constrained to satisfy a number of algebraic identities (2.5)–(2.6).

Generically these models provide only equations of motions which we have derived

from closure of the supersymmetry algebra. For particular choice of the parameters,

the equations of motion may be integrated to an action. However, the kinetic metrics

in the vector and the tensor sector appear with indefinite signature. It will require

further work to understand the fate of the resulting ghost states and if one can for

example decoupled them with the help of the large extended tensor gauge symmetry.

For the M2-brane theories, a similar structure has appeared in the theories based on

Lorentzian signature 3-algebras. In these models, the ghost states have been elimi-

nated at the cost of breaking conformal symmetry by further gauging of particular

shift symmetries [44], which are however absent in the models constructed here. The

cubic potential, if non-vanishing, will generically be unbounded from below. However,

since the indefinite metric brings in negative norm states, the relation E = ||Q||2 ≥ 0

is no longer valid in such cases (E = energy, Q = supercharge) and a non-vanishing

cubic potential is in principle possible and not forbidden by supersymmetry.

We have discussed several explicit examples which satisfy all algebraic consistency

conditions. An arbitrary compact gauge group with tensor fields in the adjoint repre-

sentation can be realized on the level of equations of motion. Lagrangian models have

been given for the compact gauge group SO(5) and for a particular eight-dimensional

nilpotent gauge group embedded in SO(9, 1). All these models share some peculiar

features. The fluctuation spectrum of excitations around a supersymmetric vacuum

contain not only free vector and tensor multiplets, but also certain ‘non-decomposable’

combinations of couplings between the two, which we have collected in (4.10). More-

over, null-directions in the kinetic vector matrix may appear for unbroken gauge sym-

metries and cause that the fields of the corresponding vector multiplets drop out of

this perturbative analysis. In general this analysis is valid only in the spontaneously

broken phase, however, the unbroken sector of the Yang-Mills multiplet is still (in-
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finitely) strongly coupled and perturbatively not visible. The corresponding part of

the spectrum decouples and should be integrated out for a proper treatment.

Let us note that although we have used in our explicit examples the algebraic struc-

ture underlying gauged supergravity theories in order to find solutions to the algebraic

consistency constraints (4.2), none of these theories can be obtained as a suitable flat-

space limit of the supergravities of [48, 29, 30]. E.g. globally supersymmetric theories

derived as a flat space limit of these supergravities (if they exist) would not have ghosts

in the scalar sector, which seems to be an inevitable feature of the theories presented

here.

An obvious direction of further investigation is the study of the constraints (4.2)

and (2.5)–(2.6) for models with and without action, respectively. Especially for the

case with an action, it would be highly interesting to understand, if the model with

compact SO(5) gauge group that we have presented in section 4.4 corresponds to

very particular solution of these constraints or if it may be generalized to other gauge

groups. In this context, it may be interesting to pursue the comparison to the five-

dimensional superconformal models classified and studied in [49], which may elucidate

the geometric role of the set of algebraic consistency constraints (4.2) that underlie

our construction. Another interesting research direction is the generalization of the

analysis our maximally supersymmetric vacua of these models to such states which

only preserve a fraction of supersymmetry.

An intriguing question about the models is, how much of the presented structures

can be carried over to (2, 0) theories. Although there is no propagating-(2, 0) vector

multiplet, the present construction has illustrated the possible relevance of the inclusion

of non-propagating degrees of freedom. As a first step in this direction, we have briefly

sketched in section 3.4 the inclusion of hypermultiplets to the gauged models. Adding

nT hypermultiplets with flat target space completes the present field content from (1,0)

to the (2,0) theories. A different extension of our models within the (1,0) framework

could be obtained by studying the possibilities of coupling linear multiplets as sketched

in [50]. A pending question is of course the quantization of the models, in particular the

decoupling of the ostensible ghost states and if the conformal symmetry is preserved at

the quantum level. Last but not least, the study of anomalies for the presented models

with their new gauge symmetries and non-abelian couplings raises an entirely new set

of questions.

It seems clear from our discussion and the many open questions that we are still far

from a profound understanding of the models we have presented in this paper. On the

other hand, given the hitherto lack of non-abelian models in six dimensions the very

existence of these models is rather fascinating. They provide new and very intriguing

structures that deserve more study and may yet reserve further surprises. We look

forward to further analysis.
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Appendix

A Conventions

In this appendix, we summarize our space-time and spinor conventions. We work with

a flat space-time metric of signature (−+++++) and Levi-Civita tensor ε012345 = 1.

(Anti-)selfdual three-forms are defined such as to satisfy

H±

µνρ = ±
1

3!
ελστµνρ H

λστ ± , (A.1)

with Hµνρ = H+
µνρ +H−

µνρ . Six-dimensional gamma-matrices satisfy the basic relations

{γµ, γν} = 2gµν ,

γ7 ≡ γ012345 , γ2
7 = 1 ,

γa1···an =
sn

(6− n)!
εa1···anb1···b6−nγb1···b6−n

γ7 , sn =

{

−1 : n = 0, 1, 4, 5

+1 : n = 2, 3, 6
,

(A.2)

as well as the particular identities γλγµνργλ = 0, γµνργλγµνρ = 0, γµνργλστγµνρ = 0.

The spinor chiralities are given by Spinor chiralities

γ7 ǫ = ǫ , γ7 λ
r = λr , γ7 χ

X = −χX . (A.3)

In addition, the fermions carry Sp(1) indices for which we use standard northwest-

southeast conventions according to λi = εijλj , etc. Accordingly, their bilinear products

satisfy the symmetry properties

λ̄iγ(n)χj = tnχ̄
jγ(n)λi , tn =

{

−1 : n = 0, 3, 4

+1 : n = 1, 2, 5, 6
. (A.4)

The Fierz identities are of the form

ǫj2ǭ
i
1 = −

1

4

(

ξµγµε
ij +

1

6
ξijµνρ γ

µνρ

)

1− γ7
2

,

with ξµ ≡ 1
2
ǭ2γ

µǫ1 , ξijµνρ ≡
1
2
ǭ2

iγµνρǫ
j
1 . (A.5)
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In addition, we will employ some particular Fierz identities, cubic in a spinor λr

0 = trs,uv
(

3 ǭγρλu λ̄sγµνρλ
v + 4 ǭγ[µλ

u λ̄sγν]λ
v − ǭγµνρλ

u λ̄sγρλv
)

, (A.6)

0 = trs,uv
(

ǭ(iγ
µλu

j) λ̄
sγµλ

v − 3 ǭγµλ
u λ̄s

(iγ
µλv

j)

)

, (A.7)

with an arbitrary tensor trs,uv = t[rs],(uv) satisfying tr(s,uv) = 0 . These identities can be

derived by making use of the following well known γ-matrix identity

ηµν γ
µ

δℓ,(αi γ
ν
βj,γk) = 0 (A.8)

as follows. Multiplication of this identity by

trs,uv (γ
ρσ)ηm

αi ǫδℓλβj,u λγk,s ληm,v (A.9)

and using the conventions

γµ
αi,βj = γαβεij , λαiγµ

αβλ
β
j = λ̄iγµλj (A.10)

yields the identity (A.6). Similarly, multiplication of (A.8) with

trs,uvλ
δn,s λαu

j λβk,v ǫγℓ (A.11)

produces the identity (A.7).

References

[1] E. Witten, Some comments on string dynamics, hep-th/9507121.

[2] Y.-t. Huang and A. E. Lipstein, Amplitudes of 3D and 6D maximal

superconformal theories in supertwistor space, JHEP 1010 (2010) 007,

[1004.4735].

[3] J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple

M2-branes, Phys. Rev. D77 (2008) 065008, [0711.0955].

[4] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B811

(2009) 66–76, [0709.1260].

[5] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N = 6

superconformal Chern-Simons-matter theories, M2-branes and their gravity

duals, JHEP 10 (2008) 091, [0806.1218].

[6] D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole

operators, JHEP 1105 (2011) 015, [1007.4861].

[7] H. Samtleben and R. Wimmer, N = 6 superspace constraints, SUSY

enhancement and monopole operators, JHEP 1010 (2010) 080, [1008.2739].

26

http://xxx.lanl.gov/abs/hep-th/9507121
http://xxx.lanl.gov/abs/1004.4735
http://xxx.lanl.gov/abs/0711.0955
http://xxx.lanl.gov/abs/0709.1260
http://xxx.lanl.gov/abs/0806.1218
http://xxx.lanl.gov/abs/1007.4861
http://xxx.lanl.gov/abs/1008.2739


[8] A. Gustavsson and S.-J. Rey, Enhanced N = 8 supersymmetry of ABJM theory

on R
8 and R

8/Z2, 0906.3568.

[9] O.-K. Kwon, P. Oh, and J. Sohn, Notes on supersymmetry enhancement of

ABJM theory, JHEP 08 (2009) 093, [0906.4333].

[10] B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of

nonabelian vector-tensor systems, Fortschr. Phys. 53 (2005) 442–449,

[hep-th/0501243].

[11] B. de Wit, H. Nicolai, and H. Samtleben, Gauged supergravities, tensor

hierarchies, and M-theory, JHEP 02 (2008) 044, [arXiv:0801.1294].

[12] E. A. Bergshoeff, J. Hartong, O. Hohm, M. Hübscher, and T. Ortin, Gauge
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