
HAL Id: ensl-00644408
https://ens-lyon.hal.science/ensl-00644408v3

Submitted on 8 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some issues related to double roundings
Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller

To cite this version:
Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller. Some issues related to double round-
ings. BIT Numerical Mathematics, 2013, 53 (4), pp.897-924. �10.1007/s10543-013-0436-2�. �ensl-
00644408v3�

https://ens-lyon.hal.science/ensl-00644408v3
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Some issues related to double rounding

Érik Martin-Dorel · Guillaume Melquiond ·
Jean-Michel Muller

Received: date / Accepted: date

Abstract Double rounding is a phenomenon that may occur when different floating-
point precisions are available on the same system. Although double rounding is, in
general, innocuous, it may change the behavior of some useful small floating-point
algorithms. We analyze the potential influence of double rounding on the Fast2Sum
and 2Sum algorithms, on some summation algorithms, and Veltkamp’s splitting.

Keywords Floating-point arithmetic · Double rounding · Correct rounding · 2Sum ·
Fast2Sum · Summation algorithms

Mathematics Subject Classification (2000) 65G99 · 65Y04 · 68M15

1 Introduction

When several floating-point formats are supported in a given environment, it is some-
times difficult to know in which format some operations are performed. This may
make the result of a sequence of arithmetic operations difficult to predict, unless ade-
quate compilation switches are selected. This is an issue addressed by the recent IEEE
754-2008 standard for floating-point arithmetic [12], so the situation might become
clearer in the future. However, current users have to face the problem. For instance,
the C99 standard states [13, Section 5.2.4.2.2]:

This work is partly supported by the TaMaDi project of the French Agence Nationale de la Recherche

É. Martin-Dorel
Inria Sophia Antipolis - Méditerranée, Marelle team,
2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France
E-mail: erik.martin-dorel@ens-lyon.org

G. Melquiond
Inria Saclay–Île-de-France, Toccata team, LRI Lab., CNRS
Bât. 650, Univ. Paris Sud, 91405 Orsay Cedex, France E-mail: guillaume.melquiond@inria.fr

J.-M. Muller
CNRS, lab. LIP, Inria Aric team, Université de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
E-mail: jean-michel.muller@ens-lyon.fr

2 Érik Martin-Dorel et al.

the values of operations with floating operands and values subject to the usual
arithmetic conversions and of floating constants are evaluated to a format
whose range and precision may be greater than required by the type.

To simplify, assume the various expressions of a program are of the same type.
Two phenomenons may occur when a wider format is available in hardware (a typical
example is the double-extended format available on Intel x86-compatible processors,
for variables declared in the double-precision/binary64 format):

– For temporary values such as the result of “a+b” in the expression “d = (a+b)*c”,
it is not clear in which format they are computed.

– Explicitly assigned values may be first computed in the wider format, and then
rounded to their destination format. This sometimes leads to a subtle problem
called double rounding in the literature. This problem is illustrated by the follow-
ing example.

Example 1.1 Consider the following C program [19]:

double a = 1848874847.0;
double b = 19954562207.0;
double c;
c = a * b;
printf("c = %20.19e\n", c);
return 0;

Notice that a and b are exactly representable in the binary64 format. Depending on
the processor and the compilation options, we will either obtain

3.6893488147419103232e+19

or

3.6893488147419111424e+19,

which is the double-precision/binary64 number closest to the product ab (i.e., the
value that should, ideally, be returned). Let us explain this. The exact value of ab is

36893488147419107329,

whose binary representation is
64 bits︷ ︸︸ ︷

100︸ ︷︷ ︸
53 bits

1000000000001.

If the product is first rounded to the double-extended format, we get (in binary)
64 bits︷ ︸︸ ︷

100︸ ︷︷ ︸
53 bits

10000000000×22.

Then, if that intermediate value is rounded to the double-precision destination format,
this gives (using the round-to-nearest-even rounding mode)

100︸ ︷︷ ︸
53 bits

×213

= 3689348814741910323210.

Some issues related to double rounding 3

In general, using a greater precision is innocuous. However, it may make the behavior
of some numerical programs difficult to predict. Interesting examples are given by
Monniaux [18].

Most compilers offer options that avoid this problem. For instance, on a Linux
Debian Etch 64-bit Intel platform, with GCC, the

-march=pentium4 -mfpmath=sse

compilation switches force the results of operations to be computed and stored in
the 64-bit Streaming SIMD Extension (SSE) registers. However, such solutions have
drawbacks:

– they significantly restrict the portability of numerical programs: e.g., it is difficult
to make sure that one will always use algorithms such as 2Sum or Fast2Sum (see
Section 2.7), in a large code, with the right compilation switches;

– they may have a bad impact on the performances of programs, as well as on
their accuracy, since in most parts of a numerical program, it is in general more
accurate to perform the intermediate calculations in a wider format.

Interestingly enough, as shown by Boldo and Melquiond, double rounding could
be avoided if the wider precision calculations were implemented in a special round-
ing mode called rounding to odd [5]. Unfortunately, as we are writing this paper,
rounding to odd is not implemented in floating-point units.

With the four arithmetic operations and the square root, one may easily find condi-
tions on the precision of the wider format under which double roundings are innocu-
ous. Such conditions have been explicited by Figueroa [8,9], who mentions that they
probably have been given by Kahan in a 1998 lecture. For instance, in binary floating-
point arithmetic, if the “target” format is of precision p ≥ 4 and the wider format is
of precision p + p′, double roundings are innocuous for addition if p′ ≥ p + 1, for
multiplication and division if p′ ≥ p, and for square root if p′ ≥ p + 2. In the most
frequent case (p = 53 and p′ = 11), these conditions are not satisfied. Double round-
ings may also cause a problem in binary to decimal conversions. Solutions are given
by Goldberg [10], and by Cornea et al. [6].

Hence, it is of interest to examine which properties of some basic computer arith-
metic building blocks remain true when double roundings may occur. When these
properties suffice, the obtained programs are more portable and “robust”.

When the rounding mode (or direction) is toward +∞, −∞, or 0, one may easily
check that double rounding cannot change the result of a calculation. As a conse-
quence, in this paper, we will focus on “round to nearest” only.

This paper is organized as follows:

– Section 2 defines some notation, recalls the standard “epsilon model” for bound-
ing errors of floating-point operations, and the classical 2Sum and Fast2Sum al-
gorithms.

– Section 3 gives some preliminary remarks that will be useful later on.
– Section 4 analyzes the behavior of the Fast2Sum and 2Sum algorithms in the

presence of double rounding. While they cannot always return the exact error
of a floating-point addition, we show that they return the floating-point number
nearest that error, under mild conditions.

4 Érik Martin-Dorel et al.

– Section 5 analyzes the behavior of Veltkamp/Dekker’s splitting algorithm in the
presence of double rounding. That splitting algorithm allows one to express a
precision-p floating-point number as the sum of a precision-s number and a precision-
(p− s) number. This is an important step of Dekker’s multiplication algorithm.
This is also useful for some summation algorithms.

– Fast2Sum and 2Sum are basic building blocks of many summation algorithms. In
Section 6, we give some implications of the results obtained in the previous two
sections to the behavior of these algorithms.

2 General assumptions, notation and background material

Throughout the paper, we assume that two binary floating-point formats are available
on the same system:

– a precision-p “target” format with minimum exponent emin and subnormal num-
bers,

– and a precision-(p+ p′) wider binary “internal” format, whose exponent range is
large enough to ensure that all floating-point numbers (normal or subnormal) of
the target format are normal numbers of the wider format.

We also assume that no overflow occurs in the calculations.
Assuming extremal exponents emin and emax, a precision-p binary floating-point

(FP) number x is a number of the form

x = M ·2e−p+1, (2.1)

where M and e are integers such that{
|M| ≤ 2p−1
emin ≤ e≤ emax

(2.2)

The number M of largest absolute value such that (2.1) and (2.2) hold is called
the integral significand of x, and (when x 6= 0) the corresponding value of e is called
the exponent of x. By convention, the exponent of zero is emin.

In the following, we denote by Fp the set of the precision-p binary FP numbers
with minimum exponent emin (i.e., the numbers of the “target” format).

2.1 Even, odd, normal and subnormal numbers, underflow

Let x∈ Fp, and let Mx be its integral significand. We will say that x is even (resp. odd)
if Mx is even (resp. odd). We will say that x is normal if |Mx| ≥ 2p−1. A FP number
that is not normal is called subnormal. A subnormal number has exponent emin, and
its absolute value is less than 2emin . Zero is a subnormal number.

Concerning underflow, we will follow here the rule for raising the underflow flag
of the default exception handling of the IEEE 754-2008 standard [12], and say that
an operation induces an underflow when the result is both subnormal and inexact.

Some issues related to double rounding 5

2.2 Roundings

RNk(u) means u rounded to the nearest precision-k FP number, assuming round to
nearest even: if u is exactly halfway between two consecutive precision-k FP num-
bers, RNk(u) is the one of these two numbers that is even. When k is omitted, it means
that k = p.

We say that ◦ is a faithful rounding if (i) when x is a FP number, ◦(x) = x, and
(ii) when x is not a FP number, ◦(x) is one of the two FP numbers that surround x.

We also say that a number x fits in k bits if x ∈ Fk.

2.3 ulp notation, midpoints

If |x| ∈ [2e,2e+1), with e ≤ emax, we define ulpp(x) as the number 2max(e,emin)−p+1.
When there is no ambiguity on the considered precision, we omit the “p” and just
write “ulp(x)”. Roughly speaking, ulp(x) is the distance between two consecutive FP
numbers in the neighborhood of x; but such a definition lacks rigor when |x| is near a
power of 2.

A precision-p midpoint is a number exactly halfway between two consecutive
precision-p FP numbers. If x and y are real numbers such that there is no midpoint
between x and y then RN(x) = RN(y). Notice that:

– if x is a nonzero FP number, and if |x| is not a power of 2, then the two midpoints
that surround x are x− (1/2)ulp(x) and x+(1/2)ulp(x);

– if |x| is a power of 2 strictly larger than 2emin and less than or equal to 2emax then
the two midpoints that surround x are x− sign(x) · (1/4)ulp(x) and x + sign(x) ·
(1/2)ulp(x).

In the following, we denote by Mp the set of the precision-p binary FP midpoints.

2.4 Double roundings and double rounding slips

When the arithmetic operation x>y appears in a program, we will say that:

– a double rounding occurs if what is actually performed is

RNp
(
RNp+p′(x>y)

)
;

– a double rounding slip occurs if a double rounding occurs and the obtained result
differs from RNp(x>y).

In Example 1.1, the number obtained by rounding a ·b to the widest format was a
midpoint of the target format. This is the only case where double rounding slips may
occur. More precisely,

Property 2.1 Let > be any arithmetic operation, and assume p′ ≥ 1. If a double
rounding slip occurs when evaluating a>b then RNp+p′(a>b) ∈Mp.

6 Érik Martin-Dorel et al.

Proof If RNp(a>b) is not equal to RNp(RNp+p′(a>b)), then there is a precision-
p midpoint, say µ , between a>b and RNp+p′(a>b). Since µ fits in p + 1 bits, it is
a precision-(p + p′) FP number. By definition RNp+p′(a>b) is a precision-(p + p′)
FP number nearest a>b, so RNp+p′(a>b) is equal to µ and thus it is a precision-p
midpoint. ut

2.5 The “standard model”, or “ε-model”

In the FP literature, many properties are shown using the “standard model”, or “ε-
model”, i.e., the fact that unless underflow occurs, the computed result of an arith-
metic operation a>b satisfies:

RN(a>b) = (a>b)(1+ ε1) =
a>b

1+ ε2
, (2.3)

where |ε1|, |ε2| ≤ u, with u = 2−p. When double rounding may occur, we get a similar
property by using the fact that two consecutive roundings, one in precision p+ p′ and
one in precision p, are performed:

Property 2.2 (ε-model with double roundings) Let a,b∈Fp, and let>∈{+,−,×,÷}.

– In the absence of underflow,

RNp
(
RNp+p′(a>b)

)
= (a>b) · (1+ ε1) =

a>b
1+ ε2

, (2.4)

where |ε1|, |ε2| ≤ u′, with u′ = 2−p +2−p−p′ ;
– For >= + or >=−, (2.4) holds even in the presence of underflow.

Proof If no double rounding slip occurs, (2.3) holds, so that Property 2.2 holds as
well. Now, assume that a double rounding slip occurs, and define a FP number σ as
RNp

(
RNp+p′(a>b)

)
. We have

|(a>b)−RNp+p′(a>b)| ≤ 1
2

ulpp+p′(a>b) = 2−p′−1 ulpp(a>b) (2.5)

and
|RNp+p′(a>b)−σ | ≤ 1

2
ulpp

(
RNp+p′(a>b)

)
. (2.6)

Since a double rounding slip occurred, Property 2.1 implies that RNp+p′(a>b) ∈
Mp. Therefore, there is no power of 2 between a>b and RNp+p′(a>b), so that
ulpp

(
RNp+p′(a>b)

)
= ulpp(a>b). This, combined with (2.5) and (2.6), gives

|(a>b)−σ | ≤
(

1
2

+2−p′−1
)

ulpp(a>b). (2.7)

– Since ulp(a>b)≤ |a>b| ·2−p+1, we have |(a>b)−σ | ≤ (2−p +2−p−p′) · |a>b|,
from which we deduce

σ = (a>b) · (1+ ε1), with |ε1| ≤ u′.

Some issues related to double rounding 7

– Since ulp(a>b)= ulpp(RNp+p′(a>b))≤ |σ2−p+1|, we have |(a>b)−σ | ≤ (2−p +
2−p−p′) · |σ |, from which we deduce

σ = (a>b)/(1+ ε2), with |ε2| ≤ u′.

The second part of Property 2.2 is straightforward. Indeed, when the sum or dif-
ference of two precision-p FP numbers is subnormal, that sum or difference is a
precision-p FP number. So RNp

(
RNp+p′(a±b)

)
= (a±b).

ut

When p′ is large enough, the bound u′ is only slightly larger than u, therefore most
properties that can be shown using the ε-model only, remain true in the presence of
double roundings (possibly with slightly larger error bounds).

2.6 u, u′, γk, and γ ′ notations

In [11, page 67], Higham defines notations γk that are useful in error analysis. We
slightly adapt them to the context of double rounding.

For any integer k, define

γk =
ku

1− ku
,

and

γ
′
k =

ku′

1− ku′
,

where u = 2−p and u′ = 2−p +2−p−p′ .

2.7 The 2Sum, Fast2Sum algorithms

The Fast2Sum algorithm was first introduced by Dekker [7]. It allows one to compute
the error of a floating-point addition. Without double rounding, that algorithm is

Algorithm 1 (Fast2Sum(a,b))
s← RN(a+b)
z← RN(s−a)
t← RN(b− z)

We have the following result.

Theorem 2.1 (Fast2Sum algorithm ([7], and Theorem C of [16], page 236, adapted
to the case of binary arithmetic)) Let a,b ∈ Fp, with exponents ea,eb respectively,
be given. Assume ea ≥ eb. Then the results of Algorithm 1 applied to a and b satisfy

s = RN(a+b) and s+ t = a+b.

Moreover, z = s−a and t = b− z, that is, no rounding error occurs when computing
z and t.

8 Érik Martin-Dorel et al.

When we do not know in advance whether ea ≥ eb or not, it may be preferable to
use the following algorithm, due to Knuth [16] and Møller [17].

Algorithm 2 (2Sum(a,b))
s← RN(a+b)
a′← RN(s−b)
b′← RN(s−a′)
δa← RN(a−a′)
δb← RN(b−b′)
t← RN(δa +δb)

Knuth has shown that, if a and b are normal FP numbers and no underflow occurs,
then a+b = s+ t. Boldo et al. [4] have shown that the property still holds in presence
of subnormal numbers and underflows. They have formally checked the proof of the
following theorem with the COQ proof assistant [1] to ensure that no corner cases
have been missed.

Theorem 2.2 Let a,b ∈ Fp. The results of Algorithm 2 applied to a and b satisfy

s = RN(a+b) and s+ t = a+b.

3 Some preliminary remarks

It is well known that the error of a rounded-to-nearest FP addition of two precision-p
numbers is a precision-p number (it is precisely that error that is computed by Algo-
rithms 1 and 2). When double rounding slips occur, the results of sums are slightly
different from rounded to nearest sums. This difference, although it is very small,
sometimes suffices to make the error not representable in FP arithmetic. More pre-
cisely, we have the following property.

Remark 3.1 If p′ ≥ 1 and p′ ≤ p, then there exist a,b ∈ Fp such that the number

s = RNp(RNp+p′(a+b))

satisfies
a+b− s /∈ Fp.

Proof To show this, it suffices to consider

a = 1xxxx · · ·x︸ ︷︷ ︸
p−3 bits

01

where xxxx · · ·x is any (p−3)-bit bit-chain. Number a is a p-bit integer, thus a ∈ Fp.
Also consider

b = 0.0111111 · · ·1︸ ︷︷ ︸
p ones

=
1
2
−2−p−1.

Some issues related to double rounding 9

Number b is equal to (2p−1) ·2−p−1, thus b ∈ Fp. We have

a+b = 1xxxx · · ·x01︸ ︷︷ ︸
p bits

.0111111 · · ·1︸ ︷︷ ︸
p bits

,

so that, if 1≤ p′ ≤ p,

c = RNp+p′(a+b) = 1xxxx · · ·x01.100 · · ·0.

The “round to nearest even” rule thus implies

s = RNp(c) = 1xxxx · · ·x10 = a+1.

Therefore,

s− (a+b) = a+1− (a+
1
2
−2−p−1) =

1
2

+2−p−1 = 0.10000 · · ·01︸ ︷︷ ︸
p+1 bits

,

which does not belong to Fp. ut

Notice that the condition “p′ ≤ p” in Remark 3.1 is necessary. More precisely, it
is shown in [8,9] that if p′ ≥ p + 1 then a double rounding slip cannot occur when
computing a+b, i.e., we always have RNp

(
RNp+p′(a+b)

)
= RNp(a+b).

Remark 3.2 Assume that we compute w = RNp(RNp+p′(a + b)), where a,b ∈ Fp,
with exponents ea and eb, respectively. Assume ea ≥ eb and p′ ≥ 2. If a double round-
ing slip occurs, then

ea− p−1≤ eb ≤ ea− p′, (3.1)

and
ew ≥ eb + p′+1. (3.2)

Proof (First part: Equation (3.1))
First, if ea− p−1 > eb (i.e., ea− p−2≥ eb), then

|b|< 2eb+1 ≤ 2ea−p−1 =
1
4

ulp(a).

Also, p′ ≥ 2 implies that a− 1
4 ulp(a) and a + 1

4 ulp(a) are precision-(p + p′) FP
numbers. Therefore,

a− 1
4

ulp(a)≤ RNp+p′(a+b)≤ a+
1
4

ulp(a).

As a consequence, if |a| is not a power of 2, then RNp+p′(a + b) cannot be a
precision-p midpoint, which means that no double rounding slip occurs, according to
Property 2.1.

So we are left with the case |a| = 2ea . Then |a| − 1
4 ulp(a) is a midpoint, and it

is the only one between |a|− 1
4 ulp(a) and |a|+ 1

4 ulp(a). Since |b| < 1
4 ulp(a), a + b

is between the midpoint µ = a− sign(a) · 1
4 ulp(a) and µ ′ = a + sign(a) · 1

4 ulp(a).
Since RNp

(
RNp+p′(µ)

)
= a (due to the round-to-nearest even rounding rule) and

10 Érik Martin-Dorel et al.

RNp
(
RNp+p′(µ ′)

)
= a, the monotonicity of rounding functions ensures that we have

RNp
(
RNp+p′(a+b)

)
= a = RN(a + b). So no double rounding slip occurs in that

case either.
Second, if eb > ea− p′, then a+b can be written 2eb−p+1 (2ea−ebMa +Mb), where

Ma and Mb are the integral significands of a and b, and the integer 2ea−eb Ma + Mb
satisfies ∣∣2ea−ebMa +Mb

∣∣≤ 2p′−1(2p−1)+(2p−1)≤ 2p+p′ −1.

Therefore a+b ∈ Fp+p′ , so that no double rounding slip can occur.

Proof (Second part: Equation (3.2))
Let k be the integer such that 2k ≤ |a+b|< 2k+1. The monotonicity of the rounding
functions implies that

2k ≤
∣∣RNp(RNp+p′(a+b))

∣∣≤ 2k+1,

therefore, ew is equal to k or k +1. Since a+b does not fit into p+ p′ bits (otherwise
there would be no double rounding slip) and a + b is a multiple of 2eb−p+1, we de-
duce that ulpp+p′(a + b) > 2eb−p+1, which implies that k− p− p′+ 1 > eb− p + 1.
Therefore ew ≥ k > eb + p′, which concludes the proof. ut

An immediate consequence of Property 2.1 (due to the round-to-nearest-even
rule) is the following.

Remark 3.3 Assume p′ ≥ 1. If a double rounding slip occurs when evaluating a>b,
then the returned result RNp

(
RNp+p′(a>b)

)
is an even FP number.

In our proofs, we will also frequently use the following well-known result.

Remark 3.4 (Sterbenz’ Lemma [29]) If a and b are positive elements of Fp, and

a
2
≤ b≤ 2a,

then a−b ∈ Fp, which implies that it will be computed exactly, whatever the round-
ing.

The following remark is directly adapted from Lemma 4 in Shewchuk’s paper [28].

Remark 3.5 Let a,b ∈ Fp. Let

s = RNp
(
RNp+p′(a+b)

)
or s = RNp(a+b).

If |s|< min{|a|, |b|} then s = a+b.

The proof can be found in [28, page 311].
Finally, the following result will be used in the proofs of Theorems 4.1 and 4.2.

Remark 3.6 Let a,b ∈ Fp, and define s = RNp
(
RNp+p′ (a+b)

)
. The number a +

b− s fits in at most p+2 bits, so that as soon as p′ ≥ 2, we have

RNp
(
RNp+p′ (a+b− s)

)
= RNp(a+b− s). (3.3)

Some issues related to double rounding 11

Proof Without loss of generality, we assume ea ≥ eb. We already know that if no
double rounding slip occurs when computing s, then a + b− s ∈ Fp. In such a case,
(3.3) is obviously true. So let us assume that RNp

(
RNp+p′ (a+b)

)
6= RNp(a + b).

Equation (3.1) in Remark 3.2 implies therefore that eb ≥ ea− p−1.
Since a and b are both multiple of 2eb−p+1, we deduce that a + b− s too is a

multiple of 2eb−p+1. Also, since |a| and |b| are less than (2p−1) ·2ea−p+1, |a+b| is
less than (2p− 1) · 2ea−p+2. Since rounding functions are monotonic and (2p− 1) ·
2ea−p+2 ∈ Fp, |s| is less than or equal to (2p−1) ·2ea−p+2. Therefore es ≤ ea +1.

From all this, we deduce that a+b− s is a multiple of 2eb−p+1 of absolute value
less than or equal to

2−p+es +2−p−p′+es ≤ 2−p+ea+1 +2−p−p′+ea+1 ≤ 2eb+2 +2eb−p′+2.

Thus a+b− s fits in at most p+2 bits. Therefore, RNp+p′(a+b− s) = a+b− s as
soon as p′ ≥ 2. ut

4 Behavior of Fast2Sum and 2Sum in the presence of double rounding

4.1 Fast2Sum and double rounding

Remark 3.1 implies that Algorithms Fast2Sum and 2Sum cannot always return the
exact value of the error when RN(a+b) is replaced with RNp

(
RNp+p′(a+b)

)
, i.e.,

when a double rounding occurs, because that error is not always a FP number. And
yet, we may try to bound the difference between the error and the returned number t.
Let us analyze how algorithm Fast2Sum behaves when double roundings are allowed.
Consider the following algorithm,

Algorithm 3 (Fast2Sum-with-double-rounding(a,b))
s← RNp

(
RNp+p′(a+b)

)
or RNp(a+b)

z←◦(s−a)
t← RNp

(
RNp+p′(b− z)

)
or RNp(b− z)

where ◦ is any faithful rounding (for instance, ◦(x) can be either RNp(x) or RNp(RNp+p′(x))).
We are going to see that s−a ∈ Fp, so that ◦(s−a) = s−a.

Theorem 4.1 Assume p ≥ 3 and p′ ≥ 2. Let a,b ∈ Fp with exponents ea and eb re-
spectively, be given. Assume ea≥ eb. Then the values z and t computed by Algorithm 3
satisfy

– z = s−a;
– if no double rounding slip occurred when computing s then t = a+b− s;
– otherwise, t = RNp(a+b− s).

Proof We already know from Theorem 2.1 that, if there is no double rounding slip
at line 1 of Algorithm 3, lines 2 and 3 of the algorithm are executed without errors.
Therefore, we only need to consider the case when a double rounding slip occurs at
line 1. Assuming p′ ≥ 2, we deduce from Remark 3.2 that eb ≤ ea− p′ ≤ ea− 2.
This implies |b| ≤ |a/2|, from which we deduce that a and s have the same sign,

12 Érik Martin-Dorel et al.

and that |a/2| ≤ |s| ≤ |2a|. According to Sterbenz’ Lemma (Remark 3.4), s− a ∈
Fp. Therefore, z = s− a, and b− z = a + b− s. If there is no double rounding at
line 3 of Algorithm 3, we immediately deduce t = RNp(a + b− s). Otherwise we
have t = RNp(RNp+p′(a + b− s)), from which we obtain t = RNp (a+b− s) using
Remark 3.6. ut

4.2 2Sum and double roundings

We will now analyze the following algorithm.

Algorithm 4 (2Sum-with-double-rounding(a,b))
(1) s←�(a+b)
(2) a′←�(s−b)
(3) b′←◦(s−a′)
(4) δa← RNp(RNp+p′(a−a′)) or RNp(a−a′)
(5) δb← RNp(RNp+p′(b−b′)) or RNp(b−b′)
(6) t← RNp(RNp+p′(δa +δb)) or RNp(δa +δb)

where �(x) means either RNp(x) or RNp(RNp+p′(x)) (but it is mandatory that the
same rounding be applied at lines (1) and (2) of the algorithm), and ◦(x) is either
RNp(x), RNp+p′(x), or RNp(RNp+p′(x)), or any faithful rounding.

Theorem 4.2 Assume p ≥ 4 and p′ ≥ 2. Let a,b ∈ Fp. The results of Algorithm 4
applied to a and b satisfy:

– if no double rounding slip occurred when computing s (i.e., if s = RNp(a + b)),
then t = a+b− s;

– otherwise, t = RNp(a+b− s).

We will focus on proving that t = RNp(a+b−s): when there is no double round-
ing slip when computing s, we already know that a + b− s is a FP number, so that
RNp(a + b− s) = a + b− s. Before giving a proof of Theorem 4.2, let us raise the
following point:

Remark 4.1 Assuming p′ ≥ 2, if the variables a′ and b′ of Algorithm 4 satisfy a′ = a
and b′ = s−a′, then t = RN(a+b− s).

Proof If a′ = a then δa = 0. Also, b′ = s− a′ = s− a implies b− b′ = a + b− s, so
that δb = RNp(RNp+p′(a+b− s)). This gives

t = RNp(RNp+p′(a+b− s)) = RNp(a+b− s),

using Remark 3.6. ut

Let us now prove Theorem 4.2. We will assume that � is RNp(RNp+p′(·)), since
when � is RNp, the classical proof [7] (with no double roundings) applies.

Some issues related to double rounding 13

Proof (First case: if |b| ≥ |a|)
In that case, lines (1), (2), and (4) of Algorithm 4 constitute Algorithm 3, called
with input values (b,a). Therefore (from Theorem 4.1), the computation of line (2)
is exact, which implies a′ = s−b and δa = RNp(a+b− s). Also, a′ = s−b implies
s−a′ = b, so that b′ = b and δb = 0. All this implies t = RNp(a+b− s).

Proof (Second case: if |b|< |a| and |s|< |b|)
In that case, Remark 3.5 applies: s = a + b, which implies a′ = a, b′ = b, and δa =
δb = t = 0.

Proof (Third case: if |b|< |a| and |s| ≥ |b|)
In that case:

– From Property 2.2, we have s = (a+b) · (1+ ε1) and a′ = (s−b) · (1+ ε2), with
|ε1|, |ε2| ≤ u′, from which we easily deduce

a′ = (a+aε1 +bε1) · (1+ ε2) = a · (1+ ε3),

with |ε3| ≤ 3u′+2u′2. A consequence is that as soon as p≥ 4 and p′ ≥ 1, |a/2| ≤
|a′| ≤ |2a|, and a and a′ have the same sign. Hence, from Remark 3.4, a−a′ ∈ Fp,
which implies δa = a−a′. Moreover, we have ea′ ≤ ea +1, which will be useful
to establish (4.1).

– Lines (2), (3), and (5) constitute Algorithm 3, called with input values (s,−b).
This implies b′ = s− a′ and δb = RNp(a′ − (s− b)). Moreover, Theorem 4.1
implies that δb = a′− (s− b) if no double rounding slip occurred at line (2). In
such a case, δa + δb = a + b− s, which implies t = RNp(RNp+p′(a + b− s)) =
RNp(a+b− s) (using Remark 3.6).

So, in the following, we assume that a double rounding slip occurred at line (2), i.e.,
when computing s− b. This implies from Remark 3.3 that a′ is even. Notice that
Equation (3.2) in Remark 3.2 implies that eb ≤ ea′ − p′−1.

Also, we know that

– δa = a−a′ and b′ = s−a′;
– all variables (s,a′,b′,δa,δb, t) are multiples of 2eb−p+1.

Since a double rounding slip occurred in line (2), we have

s−b = a′+ i ·2ea′−p + j · ε,

where i = ±1 (or ± 1
2 in the case a′ is a power of 2), j = ±1 and 0 ≤ ε ≤ 2ea′−p−p′ .

Since b′ = s−a′, we deduce

b′ = b+ i ·2ea′−p + j · ε,

hence
b−b′ =−i ·2ea′−p− j · ε,

so that, since it is a multiple of 2eb−p+1, b−b′ fits in at most

(ea′ − p)− (eb− p+1)+1 = ea′ − eb ≤ ea− eb +1 (4.1)

14 Érik Martin-Dorel et al.

bits. As a result, if ea− eb ≤ p− 1 then b− b′ ∈ Fp, therefore δb = b− b′. It fol-
lows that δa + δb = a− a′+ b− b′ = a− a′+ b− (s− a′) = a + b− s, so that t =
RNp(RNp+p′(a+b− s)) = RNp(a+b− s) (using Remark 3.6).

Furthermore, if ea−eb≥ p+2, then one easily checks that s = a′= a, b′= δa = 0,
and t = δb = b, which is the desired result.

Hence the last case that remains to be checked is the case ea− eb ∈ {p, p + 1}.
In that case,

– if a is not a power of 2, s ∈ {a−,a,a+}, where a− and a+ are the floating-point
predecessor and successor of a;

– if a is a power of 2, s can also be equal to a−− (when a > 0) or a++ (when a < 0).
To simplify the presentation, we now assume a > 0. Otherwise, it suffices to

change the signs of a and b. Notice that s < a⇒ a′ ≥ s (because in that case, b < 0),
and s > a⇒ a′ ≤ s.

1. If a is not a power of 2, then s ∈ {a−,a,a+}.
– If |b| is not of the form ±2ea−p + ε with |ε| ≤ 2ea−p−p′ , then there are no

double rounding slips in lines (1) and (2) of the algorithm.
– Otherwise, if a is even, then (due to the round to nearest even rounding rule)

s = a, and a′ = s = a, therefore Remark 4.1 implies t = RNp(a+b− s).
– Otherwise, if a is odd, then s = a+ or a− and a′ = s, so that b′ = 0, which

implies δb = b and t = RNp(RNp+p′(a− a′ + b)) = RNp(RNp+p′(a + b−
s)) = RNp(a+b− s).

2. If a is a power of 2, i.e., a = 2ea . Notice that eb ∈ {ea− p,ea− p+1} implies

1
4

ulp(a)≤ |b|< ulp(a).

– If b≥ 0, then s is equal to a, or a+.
– If s = a+ = a+ulp(a) then

a+ulp(a)−ulp(a) < s−b≤ a+ulp(a)− 1
4

ulp(a),

therefore (since � = RNp(RNp+p′(·)) is an increasing function),

a≤�(s−b) = a′ ≤ a+ulp(a) = a+.

Since a′ is even, we do not need to consider the case a′ = a+. If a′ = a
then Remark 4.1 implies t = RNp(a+b− s).

– if s = a then RNp+p′(a+b)≤ a+ 1
2 ulp(a), hence

b≤ 1
2

ulp(a)+2ea−p−p′ .

In that case,

a− 1
2

ulp(a)−2ea−p−p′ ≤ s−b≤ a− 1
4

ulp(a),

hence,
a− ≤�(s−b) = a′ ≤ a.

Since a′ is even, we do not need to consider the case a′ = a−. If a′ = a
then Remark 4.1 implies t = RNp(a+b− s).

Some issues related to double rounding 15

– If b < 0, then a− ulp(a) < a + b ≤ a− 1
4 ulp(a), which implies a−− = a−

ulp(a)≤ s≤ a.
– If s = a then RNp+p′(a+b)= a− 1

4 ulp(a), hence b≥− 1
4 ulp(a)−2ea−p−p′−1,

therefore
a < s−b≤ a+

1
4

ulp(a)+2ea−p−p′−1.

This implies

a≤ RNp+p′(s−b)≤ a+
1
4

ulp(a),

so that a′ = �(s−b) = a. From Remark 4.1, we deduce that t = RNp(a+
b− s).

– If s = a− = a− 1
2 ulp(a), then

a− 3
4

ulp(a) < RNp+p′(a+b) < a− 1
4

ulp(a),

hence,

−3
4

ulp(a) < b <−1
4

ulp(a).

This implies

a− 1
4

ulp(a) < s−b < a+
1
4

ulp(a),

so that a′ = �(s−b) = a. From Remark 4.1, we deduce that t = RNp(a+
b− s).

– If s = a−− = a−ulp(a) then RNp+p′(a+b)≤ a− 3
4 ulp(a), therefore

b≤−3
4

ulp(a)+2ea−p−p′−1,

so that (since we also have −ulp(a) < b),

a− 1
4

ulp(a)−2ea−p−p′−1 ≤ s−b < a.

This implies
a− ≤ a′ = �(s−b)≤ a.

Since a′ is even, we do not need to consider the case a′ = a−. If a′ = a
then Remark 4.1 implies t = RNp(a+b− s).

If a different rounding is applied at lines (1) and (2) of Algorithm 4, the returned result
t may differ from RN(a+b−s). A counterexample is obtained by applying rounding
RNp at line (1), rounding RNp(RNp+p′(·)) at line (2), and choosing a = 2p−1 +1 and
b = 1/2−2−p−1.
An immediate consequence of Theorems 4.1 and 4.2 is as follows.

Corollary 4.1 The values s and t returned by Algorithms 3 or 4 satisfy

(s+ t) = (a+b)(1+η),

with |η | ≤ uu′ = 2−2p +2−2p−p′ .

16 Érik Martin-Dorel et al.

Even when a double rounding slip occurred when computing s in Fast2Sum or
2Sum, (a + b)− s will often be exactly representable. More precisely, we have the
following result.

Remark 4.2 Assume p′ ≥ 2. Let a,b ∈ Fp with exponents ea,eb, respectively, be
given. Assume ea ≥ eb, and define

s = RNp
(
RNp+p′(a+b)

)
6= RNp(a+b).

If a+b− s /∈ Fp, then eb = ea− p−1.

Proof Remark 3.2 and the assumption p′ ≥ 2 imply

ea− p−1≤ eb ≤ ea− p′ ≤ ea−2,

therefore |b|< |a/2|, which implies |b|< |s|< 2|a|. Let r = (a+b)− s. We have

|r|< ulp(s)≤ 2ulp(a). (4.2)

Also, since a, b, s, and therefore r are all multiple of ulp(b), there exists an integer
Mr such that

r = Mr ·ulp(b). (4.3)

– If eb ≥ ea− p+1 then ulp(a)/ulp(b)≤ 2p−1. Combined with (4.2) and (4.3), this
gives |Mr| ≤ 2p, which implies r ∈ Fp;

– if eb = ea− p then ulp(a)/2 ≤ |b| < ulp(a). Therefore a−ulp(a) < a + b < a +
ulp(a), which implies a− ulp(a) ≤ s ≤ a + ulp(a). We deduce (by separately
handling the cases b ≤ 0 and b > 0) that |r| < ulp(a). Combined with ulp(a) =
2p ulp(b), this implies |Mr|< 2p, therefore r ∈ Fp.

Therefore, if a+b− s /∈ Fp, then eb = ea− p−1. ut

The following consequence of Remark 4.2 will be of interest when discussing
the Splitting algorithm of Rump, Ogita, and Oishi (useful for designing a summation
algorithm):

Remark 4.3 If a is a power of 2 and |b| ≤ a, then the values s and t returned by
Algorithm 3 or Algorithm 4 satisfy t = a+b− s.

Proof We know that if s = RNp(a + b), then a + b− s ∈ Fp, so t = RNp(a + b−
s) = a + b− s. Therefore, let us assume that a double rounding slip occurred while
computing s:

s = RNp
(
RNp+p′(a+b)

)
6= RNp(a+b),

and that a+b− s /∈ Fp. Remark 4.2 implies eb = ea− p−1, so that

|b|< 1
2

ulp(a).

Some issues related to double rounding 17

– If b > 0 then the only case for which we may have a double rounding slip (accord-
ing to Property 2.1, and the fact that a + b < a + 1

2 ulpp(a)⇒ RNp+p′(a + b) ≤
a+ 1

2 ulp(a)) is

RNp+p′(a+b) = 2ea +
1
2

ulp(a).

– If b < 0 then then the only case for which we may have a double rounding slip
(still according to Property 2.1, and the fact that a + b > a− 1

2 ulp(a) = a−, so
that RNp+p′(a+b)≥ a−) is

RNp+p′(a+b) = 2ea − 1
4

ulp(a).

In both cases, the round-to-nearest-even rounding rule implies s = 2ea = a, so that
a+b− s = b, which contradicts the assumption that a+b− s /∈ Fp. ut

5 Splitting algorithms in the presence of double roundings

5.1 Veltkamp’s splitting algorithm in the presence of double roundings

In some applications (e.g., to implement Dekker’s multiplication algorithm [7]), we
need to “split” a precision-p floating-point number x in two FP numbers xh and x`

such that, for a given s≤ p−1, xh fits in p− s bits, x` fits in s bits, and x = xh + x`.
Veltkamp’s algorithm (Algorithm 5) can be used for that purpose [7]. It uses a

constant C equal to 2s +1 (which belongs to Fp as soon as s≤ p−1).

Algorithm 5 (Split(x,s): Veltkamp’s algorithm)
Require: C = 2s +1

γ ← RN(C · x)
δ ← RN(x− γ)
xh← RN(γ +δ)
x`← RN(x− xh)

Boldo [2] shows that for any precision p, the variables xh and x` returned by the
algorithm satisfy the desired properties. Moreover x` actually fits in s−1 bits, which
is an important feature when one wishes to implement Dekker’s product algorithm
with a binary FP format of odd precision. Let us see what happens if double roundings
may occur. More precisely, we will analyze the following algorithm:

Algorithm 6 (Split(x,s): Veltkamp’s algorithm with possible double roundings)
Require: C = 2s +1

(1) γ ← RNp(C · x) or RNp(RNp+p′(C · x))
(2) δ ← RNp(x− γ) or RNp(RNp+p′(x− γ))
(3) xh←◦(γ +δ)
(4) x`←◦(x− xh)

18 Érik Martin-Dorel et al.

where ◦(x) can be either RNp(x), RNp+p′(x), or RNp(RNp+p′(x)), or any faithful
rounding.

We can no longer be sure that x` fits in s− 1 bits (unless no double rounding
slip occurs at step (2)). This is illustrated by the following example: assume p = 11,
p′ = 3, s = 5, and x = 104110 = 100000100012. If we run Algorithm 6 with rounding
RNp(RNp+p′(·)) at steps (1) and (2), we obtain xh = 102410 = 100000000002, and
x` = 1710 = 100012, which fits in 5 bits, but does not fit in 4 bits. However, we have
the following result.

Theorem 5.1 Assume 2≤ s≤ p−2, p≥ 5, and p′ ≥ 2. For any input value x ∈ Fp,
the values xh and x` returned by Algorithm 6 satisfy:

– x = xh + x`;
– xh fits in p− s bits;
– x` fits in s bits.

Proof Without loss of generality, we assume x > 0. We also assume that x is not a
power of 2 (otherwise, the proof is straightforward). This gives

2ex +2ex−p+1 ≤ x≤ 2ex+1−2ex−p+1,

where ex is the FP exponent of x. Furthermore, one may easily check that when
x = 2ex+1−2ex−p+1, the algorithm returns a correct result:

– if s + 1 ≤ p′, then no double rounding slip can occur when computing γ , we get
γ = 2ex+s+1 + 2ex+1− 2ex+s−p+2, δ = −(2ex+s+1− 2ex+s−p+2), xh = 2ex+1, and
x` =−2ex−p+1;

– if s≥ p′ and step (1) consists of γ ← RNp(C · x), then we also get γ = 2ex+s+1 +
2ex+1−2ex+s−p+2, δ =−(2ex+s+1−2ex+s−p+2), xh = 2ex+1, and x` =−2ex−p+1;

– and if s≥ p′ and step (1) involves a double rounding, then a double rounding slip
occurs when computing γ , we get γ = 2ex+s+1 +2ex+1, δ =−2ex+s+1, xh = 2ex+1,
and x` =−2ex−p+1.

Therefore, in the following, we assume 2ex +2ex−p+1 ≤ x≤ 2ex+1−2ex−p+2. Without
difficulty, we find

γ = (2s +1) · x+ ε1,

with |ε1| ≤ 2ex+s−p+1 +2ex+s−p−p′+1. We have

|x− γ| ≤ 2s · x+ |ε1|
≤ 2s

(
2ex+1−2ex−p+2

)
+2ex+s−p+1 +2ex+s−p−p′+1

< 2ex+s+1

(as soon as p′ ≥ 1), from which we deduce

δ = x− γ + ε2,

with |ε2| ≤ 2ex+s−p +2ex+s−p−p′ . Furthermore,

|x− γ| ≥ 2s(2ex +2ex−p+1)− (2ex+s−p+1 +2ex+s−p−p′+1).

Some issues related to double rounding 19

This implies
|x− γ| ≥ 2ex+s(1−2−p−p′+1).

Because of the monotonicity of rounding, as soon as p′≥ 2, we have |δ | ≥RNp[2ex+s ·
(1− 2−p−p′+1)] = 2ex+s (resp. |δ | ≥ RNp(RNp+p′ [2ex+s · (1− 2−p−p′+1)]) = 2ex+s,
depending on the rounding involved in step (2)). This implies that δ is a multiple of
2ex+s−p+1.

Let us now focus on the computation of xh. So far, we have obtained

−δ =−x+ γ− ε2 = 2sx+ ε1− ε2

and
γ = (2s +1)x+ ε1,

with
|ε1| ≤ 2ex+s−p+1 +2ex+s−p−p′+1 ≤ (2s−p+1 +2s−p−p′+1) · x

and
|ε2| ≤ (2s−p +2s−p−p′) · x.

Therefore

2s

2s +1
· 1−2−p+2−2−p−p′+2

1+2−p+1 +2−p−p′+1 ≤
∣∣∣∣δγ
∣∣∣∣≤ 2s

2s +1
· 1+2−p+2 +2−p−p′+2

1−2−p+1−2−p−p′+1 ,

so that as soon as p≥ 5, p′ ≥ 1, and s≥ 2, |γ| and |δ | are within a factor 2 from each
other. Hence, since γ and δ clearly have opposite signs, we deduce from Remark 3.4
that xh = γ + δ is computed exactly. Also, since γ and δ are multiples of 2ex+s−p+1,
xh is multiple of 2ex+s−p+1 too. Moreover,

xh = x+ ε2 ≤
(
2ex+1−2ex−p+1

)
+
(

2ex+s−p +2ex+s−p−p′
)

< 2ex+1 +2ex+s−p+1,

which implies:

– either xh < 2ex+1, in which case, since xh is a multiple of 2ex+s−p+1, it fits in p− s
bits;

– or xh ≥ 2ex+1, but the only possible value that is both multiple of 2ex+s−p+1 and
less than 2ex+1 +2ex+s−p+1 is 2ex+1, which fits in 1 bit.

Therefore, in any case, xh fits in at most p− s bits.
There now remains to focus on the computation of x`. Since |x− xh| = |ε2| ≤

2ex+s−p +2ex+s−p−p′ ≤ x · (2s−p +2s−p−p′), we easily find that as soon as s≤ p−2,
one can apply Remark 3.4 and deduce that x` = x− xh is computed exactly. Hence,
we have x = xh + x`. Furthermore,

|x`|= |ε2| ≤ 2ex+s−p +2ex+s−p−p′ ,

and (since both x and xh are multiples of 2ex−p+1), x` is a multiple of 2ex−p+1 too.
From this we deduce that x` fits in s bits. ut

If s≤ p′+1, there is no multiple of 2ex−p+1 between 2ex+s−p and 2ex+s−p +2ex+s−p−p′ .
In such a case, x` ≤ 2ex+s−p, and we deduce that x` fits in s−1 bits.

20 Érik Martin-Dorel et al.

5.2 Application to the computation of exact products

A consequence of Theorem 5.1 is that if the precision p is an even number, then
Dekker’s product algorithm [7] can be used: the proof of Dekker’s product given for
instance in [19, pages 137–139] shows that all operations but those of the Veltkamp’s
splitting in Dekker’s algorithm are exact operations, so that they are not hindered by
double roundings.

Dekker’s product algorithm requires 17 operations. If a fused multiply-add (FMA)
instruction is available,1 there is a much better solution for expressing the product of
two FP numbers as the unevaluated sum of two FP numbers, which works even in
the presence of double roundings. That solution can be traced back at least to Ka-
han [15]. One may find a good presentation in [21]. More precisely (once adapted to
the context of double roundings), we get the following theorem.

Theorem 5.2 Let ◦ denote either RNp(·), RNp+p′(·), or RNp(RNp+p′(·)), or any
faithful rounding. Let x,y ∈ Fp, with exponents ex and ey, respectively. If

ex + ey ≥ emin + p−1

then the sequence of calculations
Algorithm 2MultFMA(x,y)
πh← RNp(RNp+p′(xy)) or RNp(xy)
π`←◦(xy−πh)

returns πh ∈ Fp and π` ∈ Fp such that xy = πh +π`.

The proof just uses the fact (see Theorem 2 in [3]) that for any faithful rounding �,
xy−�(xy) ∈ Fp, provided that ex + ey ≥ emin + p−1.

5.3 Rump, Ogita, and Oishi’s Extractscalar splitting algorithm

In [27], Rump, Ogita, and Oishi introduce a splitting algorithm and use it for design-
ing very accurate summation methods. We will now see that most properties of their
Extractscalar splitting algorithm are preserved in the presence of double rounding.
Rewritten with double roundings, their algorithm is as follows.

Algorithm 7 (Extractscalar-with-double-rounding(σ ,x))
Require: σ = 2k

s← RNp(RNp+p′(x+σ))
y← RNp(RNp+p′(s−σ))
x′← RNp(RNp+p′(x− y))

When there are no double roundings, Rump, Ogita, and Oishi show that, if the
exponent of x satisfies ex ≤ k, then y+x′ = x, y is a multiple of 2k−p, and |x′| ≤ 2k−p.
The reason behind this is that Algorithm 7 is a variant of Fast2Sum. When double
roundings are allowed, we get the following result.

1 The FMA instruction evaluates expressions of the form xy+ z with one final rounding only.

Some issues related to double rounding 21

Property 5.1 (Rump, Ogita, and Oishi’s Extractscalar splitting algorithm in the pres-
ence of double rounding) If ex ≤ k then the values y and x′ computed by Algorithm 7
satisfy y+ x′ = x, y is a multiple of 2k−p, and |x′| ≤ 2k−p +2k−p−p′ .

Proof Algorithm 7 is Fast2Sum-with-double-rounding(σ ,x). Theorem 4.1 and Re-
mark 4.3 (since σ is a power of 2) imply that s + x′ = σ + x and y = s−σ , so that
y+ x′ = x.

Furthermore, s is a multiple of 2k−p (this is obtained by considering that either
|x| ≥ 2k−1, in which case x and therefore x+σ are multiple of 2k−p, or |x|< 2k−1, in
which case x+σ > 2k−1, hence, s≥ 2k−1, which implies that s is a multiple of 2k−p).

An immediate consequence is that y is a multiple of 2k−p. Now, the (possibly
double rounded) computed value of s satisfies

−2k−p−2k−p−p′ ≤ s− (x+σ)≤ 2k−p +2k−p−p′ ,

which implies
−2k−p−2k−p−p′ ≤ x′ ≤ 2k−p +2k−p−p′ .

ut

6 Consequences of Theorems 4.1 and 4.2 on summation algorithms

Many numerical problems require the computation of sums of a large number of FP
numbers. Several compensated summation algorithms use, either implicitly or explic-
itly, the Fast2Sum or 2Sum algorithms [14,24,25,22,26]. Therefore, when double
rounding may occur, it is of importance to know whether returning the FP number
nearest the error of a FP addition (instead of that error itself) may have an influence
on the behavior of these algorithms. There is a large literature on summation algo-
rithms: the purpose of this section is not to examine all published algorithms, just to
give a few examples.

6.1 The recursive sum algorithm and Kahan’s compensated summation algorithm in
the presence of double rounding

Before analyzing other summation methods, let us see what happens with the naive,
“recursive sum” algorithm, rewritten with double rounding.

Algorithm 8
r← a1
for i = 2 to n do

r← RNp(RNp+p′(r +ai))
end for
return r

A straightforward adaptation of the proof for the error bound of the usual recur-
sive sum algorithm without double rounding gives the following property.

22 Érik Martin-Dorel et al.

Property 6.1 The final value of the variable r returned by Algorithm 8 satisfies∣∣∣∣∣r− n

∑
i=1

ai

∣∣∣∣∣≤ γ
′
n−1

n

∑
i=1
|ai|.

Without double roundings, the bound is γn−1 ∑
n
i=1 |ai|. See Section 2.6 for a definition

of notations γk and γ ′k.
Kahan’s compensated summation algorithm, rewritten with double rounding, is

as follows.

Algorithm 9 (Kahan compensated summation algorithm)
s← a1
c← 0
for i = 2 to n do

y← RNp(RNp+p′(ai− c))
t← RNp(RNp+p′(s+ y))
c← RNp(RNp+p′(RNp(RNp+p′(t− s))− y))
s← t

end for
return s

Goldberg’s proof for Kahan’s algorithm [10] only uses the ε-model, so that adap-
tation to double rounding is straightforward (it suffices to replace u with u′), and we
immediately deduce that the value s returned by Algorithm 9 satisfies∣∣∣∣∣s− n

∑
i=1

ai

∣∣∣∣∣≤ (2u′+O(nu′2)
)
·

n

∑
i=1
|ai|

This makes Kahan’s compensated summation algorithm very “robust”: double round-
ings have little influence on the error bound. However, when ∑

n
i=1 |ai| is very large

compared to |∑n
i=1 ai|, the relative error of Kahan’s compensated summation algo-

rithm becomes large. A solution is to use Priest’s doubly compensated summation
algorithm [25]. For that algorithm, the excellent error bound 2u |∑n

i=1 ai| remains true
even in the presence of double rounding (the proof essentially assumes faithfully
rounded operations). However, it requires a preliminary sorting of the ai’s by magni-
tude.

In the following, we investigate the potential influence of double rounding on
some sophisticated summation algorithms. For most of these algorithms, the proven
error bounds (without double rounding) are of the form∣∣∣∣∣computed sum −

n

∑
i=1

ai

∣∣∣∣∣≤ u ·

∣∣∣∣∣ n

∑
i=1

ai

∣∣∣∣∣+α ·
n

∑
i=1
|ai|.

Rump, Ogita, and Oishi exhibit a family of algorithms for which, without double
rounding, α has the form O(nK2−K p). As we will see, that property will be (roughly)
preserved when K = 2. However, for the more subtle algorithms (for which K ≥ 3),
double rounding may ruin that property.

Some issues related to double rounding 23

6.2 Rump, Ogita and Oishi’s cascaded summation algorithm in the presence of
double rounding

The following algorithm was independently introduced by Pichat [23] and by Neu-
maier [20].

Algorithm 10 (Pichat-Neumaier summation algorithm)
s← a1
e← 0
for i = 2 to n do

if |s| ≥ |ai| then
(s,ei)← Fast2Sum(s,ai)

else
(s,ei)← Fast2Sum(ai,s)

end if
e← RN(e+ ei)

end for
return RN(s+ e)

To avoid tests, the algorithm of Pichat and Neumaier can be rewritten using the
2Sum algorithm. This gives the cascaded summation algorithm of Rump, Ogita, and
Oishi [22]:

Algorithm 11 (Rump, Ogita, and Oishi’s Cascaded Summation algorithm)
s← a1
e← 0
for i = 2 to n do

(s,ei)← 2Sum(s,ai)
e← RN(e+ ei)

end for
return RN(s+ e)

Both algorithms return the same result. In the following, we therefore focus on
Algorithm 11 only. More precisely, we are interested here in analyzing the behavior
of that algorithm, with double rounding allowed:

Algorithm 12 (Algorithm 11 with double rounding)
s← a1
e← 0
for i = 2 to n do

(s,ei)← 2Sum-with-double-rounding(s,ai)
e← RNp(RNp+p′(e+ ei))

end for
return RNp(RNp+p′(s+ e))

We have the following result.

24 Érik Martin-Dorel et al.

Theorem 6.1 Assume p≥ 8, p′ ≥ 4, and n−1 <
1

2u′
. The final value σ returned by

Algorithm 12 satisfies∣∣∣∣∣σ − n

∑
i=1

ai

∣∣∣∣∣ ≤ (2−p +2−p−p′ +2−2p−p′
)
·

n

∑
i=1

ai

+ 2−2p ·
(
4n2−10n−5

)
·
(

1+2−p′+1 +
3

200

)
·

n

∑
i=1
|ai|.

The proof of Theorem 6.1 is very similar to the proof of the error bound of Al-
gorithm 11(i.e., the bound of the classical, double-rounding-free, algorithm). In that
classical case, the term in front of ∑

n
i=1 ai is u = 2−p, and the term in front of ∑

n
i=1 |ai|

is γ2
n−1. Hence the Cascaded Summation algorithm is “robust” and can be used safely,

even when double rounding may happen: the error bound is slightly larger but remains
of the same order of magnitude.

However, more subtle algorithms, that return a more accurate result (assuming no
double rounding) when (∑n

i=1 |ai|)/|∑n
i=1 ai|is very large, may be of less interest when

double rounding may happen, unless we have some additional information on the in-
put data that allows one to make sure there will be no problem. Consider for instance
the K-fold summation algorithm of Rump, Ogita, and Oishi, defined as follows.

Algorithm 13 (VecSum(a), where a = (a1,a2, . . . ,an))
p← a
for i = 2 to n do

(pi, pi−1)← 2Sum(pi, pi−1)
end for
return p

Algorithm 14 (Rump, Ogita and Oishi’s K-fold summation algorithm)
for k = 1 to K−1 do

a← VecSum(a)
end for
c = a1
for i = 2 to n−1 do

c← RN(c+ai)
end for
return RN(an + c)

If double roundings are not allowed, Rump, Ogita, and Oishi show that if 4nu < 1,
the final result σ returned by Algorithm 14 satisfies∣∣∣∣∣σ − n

∑
i=1

ai

∣∣∣∣∣≤ (u+ γ
2
n−1)

∣∣∣∣∣ n

∑
i=1

ai

∣∣∣∣∣+ γ
K
2n−2

n

∑
i=1
|ai|. (6.1)

If a double rounding slip occurs in the first call to VecSum, an error as large as
2−2p max |ai| may be produced. Hence, it will not be possible to show a final error
bound better than 2−2p max |ai| ≥ (2−2p/n) ·∑n

i=1 |ai| when double roundings are al-
lowed. In practice (since double rounding slips are not so frequent, and do not always

Some issues related to double rounding 25

change the result of 2Sum when they occur), the K-fold summation algorithm will
almost always return a result that satisfies a bound close to the one given by (6.1),
but exceptions may occur. Consider the following example (with n = 5, but easily
generalizable to any larger value of n):

(a1,a2,a3,a4,a5) =
(

2p−1 +1,
1
2
−2−p−1,−2p−1,−2,

1
2

)
and assume that Algorithm 14 is run with double rounding, with 1 ≤ p′ ≤ p. In the
first addition of the first 2Sum of the first call to VecSum (i.e., when adding a1 and
a2), a double rounding slip occurs, so that immediately after this first Fast2Sum,
p2 = 2p−1 + 2 and p1 = −1/2, so that p1 + p2 6= a1 + a2. At the end of the first
call to VecSum, the returned vector is (−1/2,0,0,0,1/2) , so that Algorithm 14 will
return 0 whatever the value of K, whereas the exact sum of the ai’s is−2−p−1. Hence
(since ∑ |ai|= 2p +4−2−p−1 ≈ 2p), the final error of Algorithm 14 is approximately
2−2p−1

∑ |ai|, whatever the value of K.
This example shows that, if we wish to get error bounds with a magnitude of the

same order as the one given by (6.1) when using the K-fold summation algorithm
with K ≥ 3, we need to select compilation switches that prevent double rounding
from occurring, unless we have additional information on the input data that allows
one to show that Fast2Sum and 2Sum will return an exact result, even in the presence
of double rounding.

Rump, Ogita, and Oishi suggest another summation algorithm that returns faith-
fully rounded sums when run without double rounding [27]. It is based on the splitting
algorithm discussed in Section 5.3. Using Property 5.1, one may adapt their summa-
tion algorithm, so that it can return faithfully rounded sums, even in the presence of
double rounding.

7 Conclusion and future work

We have considered the possible influence of double rounding on several algorithms
of the floating-point literature: Fast2Sum, 2Sum, Veltkamp’s splitting, 2MultFMA,
and some summation algorithms. Although most of these algorithms do not behave
exactly as when there are no double roundings, they still have interesting properties
that can be exploited in an useful way. Depending on the applications, these proper-
ties may suffice, or specific compilation options should be chosen to prevent double
rounding.

Proofs in computer arithmetic are somewhat complex: they are frequently based
on the enumeration of many possible cases, so that one may very easily overlook one
of these cases. To avoid this problem and get more confidence in our proofs, we are
working on the formal proof of our theorems using the COQ proof assistant [1]. COQ
provides an expressive language for defining not only mathematical objects but also
datatypes and algorithms and for stating and proving their properties. The user builds
proofs in COQ in an interactive manner. The formal proof of Theorem 4.1 and of the
various properties that we have used to prove it in this paper is completed. We are
now working on the formal proof of Theorem 4.2.

26 Érik Martin-Dorel et al.

Acknowledgements We are extremely grateful to the anonymous referees, whose suggestions have been
very helpful for revising this paper. Especially, one of them suggested a drastic simplification of the proof
of Theorem 4.1.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Cal-
culus of Inductive Constructions. Texts in Theoretical Computer Science. Springer (2004)

2. Boldo, S.: Pitfalls of a full floating-point proof: example on the formal proof of the Veltkamp/Dekker
algorithms. In: U. Furbach, N. Shankar (eds.) Proceedings of the 3rd International Joint Conference
on Automated Reasoning, Lecture Notes in Computer Science, vol. 4130, pp. 52–66 (2006)

3. Boldo, S., Daumas, M.: Representable correcting terms for possibly underflowing floating point
operations. In: J.C. Bajard, M. Schulte (eds.) Proceedings of the 16th Symposium on Com-
puter Arithmetic, pp. 79–86. IEEE Computer Society Press, Los Alamitos, CA (2003). DOI
10.1109/ARITH.2003.1207663

4. Boldo, S., Daumas, M., Moreau-Finot, C., Théry, L.: Computer validated proofs of a toolset for
adaptable arithmetic. Tech. rep., École Normale Supérieure de Lyon (2001). Available at http:
//arxiv.org/pdf/cs.MS/0107025

5. Boldo, S., Melquiond, G.: Emulation of FMA and correctly rounded sums: proved algorithms using
rounding to odd. IEEE Transactions on Computers 57(4), 462–471 (2008)

6. Cornea, M., Harrison, J., Anderson, C., Tang, P.T.P., Schneider, E., Gvozdev, E.: A software imple-
mentation of the IEEE 754R decimal floating-point arithmetic using the binary encoding format. IEEE
Transactions on Computers 58(2), 148–162 (2009)

7. Dekker, T.J.: A floating-point technique for extending the available precision. Numerische Mathe-
matik 18(3), 224–242 (1971)

8. Figueroa, S.A.: When is double rounding innocuous? ACM SIGNUM Newsletter 30(3) (1995)
9. Figueroa, S.A.: A rigorous framework for fully supporting the IEEE standard for floating-point arith-

metic in high-level programming languages. Ph.D. thesis, Department of Computer Science, New
York University (2000)

10. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys 23(1), 5–47 (1991). An edited reprint is available at http://www.physics.
ohio-state.edu/~dws/grouplinks/floating_point_math.pdf from Sun’s Numerical Com-
putation Guide; it contains an addendum Differences Among IEEE 754 Implementations, also avail-
able at http://www.validlab.com/goldberg/addendum.html.

11. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia, PA
(2002)

12. IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008
(2008). Available at http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

13. International Organization for Standardization: Programming Languages – C. ISO/IEC Standard
9899:1999, Geneva, Switzerland (1999)

14. Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun. ACM 8(1), 40
(1965). DOI 10.1145/363707.363723

15. Kahan, W.: Lecture notes on the status of IEEE-754 (1996). PDF file accessible at http://www.cs.
berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

16. Knuth, D.: The Art of Computer Programming, vol. 2, 3rd edn. Addison-Wesley, Reading, MA (1998)
17. Møller, O.: Quasi double-precision in floating-point addition. BIT 5, 37–50 (1965)
18. Monniaux, D.: The pitfalls of verifying floating-point computations. ACM TOPLAS 30(3),

1–41 (2008). A preliminary version is available at http://hal.archives-ouvertes.fr/
hal-00128124

19. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V., Melquiond, G., Revol, N.,
Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston (2010). ACM
G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9

20. Neumaier, A.: Rundungsfehleranalyse einiger Verfahren zur Summation endlicher Summen. ZAMM
54, 39–51 (1974). In German

21. Nievergelt, Y.: Scalar fused multiply-add instructions produce floating-point matrix arithmetic prov-
ably accurate to the penultimate digit. ACM Transactions on Mathematical Software 29(1), 27–48
(2003)

Some issues related to double rounding 27

22. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM Journal on Scientific Com-
puting 26(6), 1955–1988 (2005). DOI 10.1137/030601818

23. Pichat, M.: Correction d’une somme en arithmétique à virgule flottante. Numerische Mathematik 19,
400–406 (1972). In French

24. Priest, D.M.: Algorithms for arbitrary precision floating point arithmetic. In: P. Kornerup, D.W. Mat-
ula (eds.) Proceedings of the 10th IEEE Symposium on Computer Arithmetic (Arith-10), pp. 132–144.
IEEE Computer Society Press, Los Alamitos, CA (1991)

25. Priest, D.M.: On properties of floating-point arithmetics: Numerical stability and the cost of accurate
computations. Ph.D. thesis, University of California at Berkeley (1992)

26. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part II: Sign, K-fold faithful and
rounding to nearest. SIAM Journal on Scientific Computing (2005–2008). Submitted for publication

27. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part I: Faithful rounding. SIAM
Journal on Scientific Computing 31(1), 189–224 (2008). DOI 10.1137/050645671

28. Shewchuk, J.R.: Adaptive precision floating-point arithmetic and fast robust geometric predicates.
Discrete Computational Geometry 18, 305–363 (1997). URL http://link.springer.de/link/
service/journals/00454/papers97/18n3p305.pdf

29. Sterbenz, P.H.: Floating-Point Computation. Prentice-Hall, Englewood Cliffs, NJ (1974)

