
HAL Id: ensl-00644408
https://ens-lyon.hal.science/ensl-00644408v2

Submitted on 2 Dec 2011 (v2), last revised 8 Jul 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some issues related to double roundings
Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller

To cite this version:
Érik Martin-Dorel, Guillaume Melquiond, Jean-Michel Muller. Some issues related to double round-
ings. 2011, pp.42. �ensl-00644408v2�

https://ens-lyon.hal.science/ensl-00644408v2
https://hal.archives-ouvertes.fr

Some issues related to double roundings

Érik Martin-Dorel

École Normale Supérieure de Lyon, Université de Lyon, Lab. LIP

Guillaume Melquiond
INRIA

Jean-Michel Muller∗

CNRS, Université de Lyon, Laboratoire LIP

Draft — July 2011

Abstract

Double rounding is a phenomenon that may occur when different
floating-point precisions are available on a same system, or when perform-
ing scaled operations whose final result is subnormal. Although double
rounding is, in general, innocuous, it may change the behavior of some
useful small floating-point algorithms. We analyze the potential influence
of double roundings on the Fast2Sum and 2Sum algorithms, on some sum-
mation algorithms, and Veltkamp’s splitting. We also show how to handle
possible double roundings when performing scaled Newton-Raphson divi-
sion iterations (to avoid possible underflow problems).

Keywords: floating-point arithmetic; double roundings; correct rounding; 2Sum;
Fast2Sum; summation algorithms; scaled division iterations.

1 Introduction

1.1 Double roundings and similar problems

When several floating-point formats are supported in a given environment, it
is sometimes difficult to know in which format some operations are performed.
This may make the result of a sequence of arithmetic operations somewhat
difficult to predict, unless adequate compilation switches are selected. This
is an issue addressed by the recent IEEE 754-2008 standard for floating-point
arithmetic [14], so the situation might become more clear in the future. How-
ever, current users have to face the problem. For instance, the C99 standard
states [15, Section 5.2.4.2.2]:
∗This work is partly supported by the TaMaDi project of the French Agence Nationale de

la Recherche

1

the values of operations with floating operands and values subject to
the usual arithmetic conversions and of floating constants are evaluated
to a format whose range and precision may be greater than required by
the type.

To simplify, assume the various declared variables of a program are of the
same format. Two phenomenons may occur when a wider format is available in
hardware (a typical example is the “double extended format” available on Intel
processors, for variables declared in the double precision/binary64 format):

• for implicit variables (such as the result of “a+b” in the expression “d =
(a+b)*c”), it is not clear in which format they are computed. It may be
preferable in most cases to compute them in the wider format;

• explicit variables may be first computed in the wider format, and then
rounded to their destination format. This sometimes leads to a subtle
problem called “double rounding” in the literature. Consider the following
C program [25]:

double a = 1848874847.0;

double b = 19954562207.0;

double c;

c = a * b;

printf("c = %20.19e\n", c);

return 0;

Depending on the processor and the compilation options, we will either ob-
tain 3.6893488147419103232e+19 or 3.6893488147419111424e+19 (which
is the double-precision/binary64 number closest to the exact product). Let
us explain this. The exact value of a*b is 36893488147419107329, whose
binary representation is

64 bits︷ ︸︸ ︷
100︸ ︷︷ ︸

53 bits

10000000000 01

If the product is first rounded to the “double-extended precision” format
that is available on INTEL processors, we get (in binary)

64 bits︷ ︸︸ ︷
100︸ ︷︷ ︸

53 bits

10000000000×4

Then, if that intermediate value is rounded to the double-precision desti-
nation format, this gives (using the round-to-nearest-even rounding mode)

100︸ ︷︷ ︸
53 bits

× 213

= 3689348814741910323210,

2

In most applications, these phenomenons are innocuous. However, they may
make the behavior of some numerical programs difficult to predict (interesting
examples are given by Monniaux [24]).

Most compilers offer options that prevent this problem. For instance, on
a Linux/Debian Etch 64-bit Intel platform, with GCC, the -march=pentium4
-mfpmath=sse compilation switches force the results of operations to be com-
puted and stored in the 64-bit Streaming SIMD Extension (SSE) registers. How-
ever, such solutions have drawbacks:

• they significantly restrict the portability of numerical programs: e.g., it is
difficult to make sure that one will always use algorithms such as 2Sum
or Fast2Sum (see Section 2.2), in a large code, with the right compilation
switches;

• they may have a bad impact on the performances of programs, as well
as on their accuracy, since in most parts of a numerical program, it is in
general more accurate to perform the intermediate calculations in a wider
format.

Hence, it is of interest to examine which properties of some basic computer
arithmetic building blocks remain true when some intermediate operations may
be performed in a wider format and/or when double roundings may occur. When
these properties suffice, the obtained programs will be much more portable
and “robust”. Interestingly enough, as shown by Boldo and Melquiond, double
roundings could be avoided if the wider precision calculations were implemented
in a special rounding mode called rounding to odd [4]. Unfortunately, as we are
writing this paper, rounding to odd is not implemented in floating-point units.

Also, with the four arithmetic operations and the square root, one may rather
easily find conditions on the precision of the wider format under which double
roundings are innocuous. Such conditions have been explicited by Figueroa [9,
10] (who mentions in his paper that they probably have been given by Kahan
in a course he gave in 1988). For instance, in binary floating-point arithmetic,
if the “target” format is of precision p ≥ 4 and the wider format is of precision
p+p′ double roundings are innocuous for addition if p′ ≥ p+1, for multiplication
and division if p′ ≥ p, and for square root if p′ ≥ p+ 2. Notice that in the most
frequent case (namely, p = 53 and p′ = 11) these conditions are not satisfied.
For Euclidean division, the problem was addressed by Lefèvre [20].

Double roundings may also cause a problem in binary to decimal conversions.
Solutions are given by Goldberg [11], and by Cornea et al [6].

A double rounding problem may also occur, even without available wider
format, when performing scaled division iterations: to avoid overflow or un-
derflow problems, one may multiply one of the operands of a division by some
adequately chosen power of 2. A scaling of the final result is therefore required:
if the final result is not in the subnormal range, that scaling is errorless. Oth-
erwise, this induces a second rounding. We will give examples of this problem
in section 6, as well as a way of avoiding it.

3

When the rounding mode (or direction) is towards, +∞, −∞ or 0, one may
easily check that double roundings cannot change the result of a calculation. As
a consequence, in this paper, we will focus on “round to nearest” only.

This paper is organized as follows:

• Section 2 defines some notation, recalls the standard “epsilon model” for
bounding errors of floating-point operations, and the classical 2Sum and
Fast2Sum algorithms; and finally gives some preliminary remarks that will
be useful later on;

• Section 3 analyzes the behavior of the Fast2Sum and 2Sum algorithms
in the presence of double roundings. The main results of that section
are Theorems 2 and 4, that show that even if Fast2Sum or 2Sum can
no longer always return the error of a floating-point addition (because
that error is not always exactly representable), they will always return the
floating-point number nearest that error;

• Fast2Sum and 2Sum are basic building blocks of many summation algo-
rithms. In Section 5, we give some implications of the results obtained in
the previous two sections to the behavior of these algorithms;

• Section 4.1 analyzes the behavior of a Veltkamp/Dekker’s splitting algo-
rithm in the presence of double roundings. That splitting algorithm allows
to express’ a precision-p floating-point number as the sum of a precision-s
and a precision-(p − s) numbers. This is an important step of Dekker’s
multiplication algorithm. This may also be useful for some summation
algorithms;

• Finally, Section 6 shows how to deal with the double roundings that may
occur when scaling Newton-Raphson-like division iterations to avoid un-
derflows.

2 Notation, background material and prelimi-
nary remarks

2.1 Notation

2.1.1 Basic parameters of a floating-point format

Assuming extremal exponents emin and emax, a finite precision-p binary floating-
point (FP) number x is a number of the form

x = M · 2e−p+1, (1)

where M and e are integers such that{
|M | ≤ 2p − 1
emin ≤ e ≤ emax

(2)

4

The number M of largest absolute value such that (1) and (2) hold is called
the integral significand of x, and (when x 6= 0) the corresponding value of e is
called the exponent of x.

2.1.2 Even, odd, normal and subnormal numbers, underflow

We will say that a finite floating-point number is even (resp. odd) if its integral
significand is even (resp. odd). A FP number is normal if the absolute value
of its integral significand is larger than or equal to 2p−1. A FP number that is
not normal is called subnormal. A subnormal number has exponent emin and
its absolute value is less than 2emin .

Concerning underflow, we will follow here the rule for raising the underflow
flag of the default exception handling of the IEEE 754-2008 standard [14], and
say that an operation induces an underflow when the result is both subnormal
and inexact.

2.1.3 Target format, wider internal format, roundings

Throughout the paper, we assume a precision-p target binary format, and a
precision-(p+ p′) wider “internal” format. When we just write that a number x
is a floating-point number without explicitly giving its precision, we mean that
it is a precision-p FP number. We assume that the set of possible exponents
of the wider format contains the set of possible exponents of the target format,
and in the following, emin and emax denote the extremal exponents of the target
format.

RNk(u) means u rounded to the nearest precision-k FP number (assuming
round to nearest even: if u is exactly halfway between two consecutive precision-
k FP numbers, RNk(u) is the one of these two numbers that is even). When k
is omitted, it means that k = p.

We say that ◦ is a faithful rounding if (i) when x is a FP number, ◦(x) = x,
and (ii) when x is not a FP number, ◦(x) is one of the two FP numbers that
surround x.

We also say that a number x fits in k bits if it is equal to a precision-k
FP number, or, equivalently, if in the bit string S constituted by the binary
representation of x there is a chain of at most k consecutive bits that contains
all the nonzero bits of S.

2.1.4 ulp notation, midpoints

If |x| ∈ [2e, 2e+1), with e ≤ emax we define ulpp(x) as the number

2max(e,emin)−p+1.

When there is no ambiguity on the considered precision, we omit the “p” and
just write “ulp(x)”. Roughly speaking, ulp(x) is the distance between two
consecutive FP numbers in the neighborhood of x (but this last definition lacks
rigor when |x| is near a power of 2).

5

A precision-p midpoint is a number exactly halfway between two consecutive
precision-p FP numbers. Notice that if x and y are real numbers, with x 6= y,
if there is no midpoint between x and y then RN(x) = RN(y). Notice that:

• if x is a nonzero FP number, and if |x| is not a power of 2, then the two
midpoints that surround x are x− 1

2 ulp(x) and x+ 1
2 ulp(x);

• if |x| is a power of 2 strictly larger than 2emin and less than or equal to
2emax then the two midpoints that surround x are x − sign(x) · 1

4 ulp(x)
and x+ sign(x) · 1

2 ulp(x).

2.1.5 Double roundings and double rounding slips

In the literature, the term “double rounding” either just means that two round-
ings occurred, or means that two roundings occurred and that this changed the
result. To distinguish between these two events, we will say that, when the
arithmetic operation x>y appears in a program:

• a double rounding occurs if what is actually performed is

RNp (RNp+p′(x>y)) ,

• a double rounding slip occurs if a double rounding occurs and the obtained
result differs from RNp(x>y).

(a very similar definition can be given for an unary function such as
√
x).

2.1.6 The “standard model”, or “ε-model”

In the FP literature, many properties are shown using the “standard model”, or
“ε-model”, i.e., the fact that unless underflow or overflow occur, the computed
result of an arithmetic operation a>b satisfies:

RN(a>b) = (a>b)(1 + ε1) =
a>b

1 + ε2
,

where |ε1|, |ε2| ≤ u, with u = 2−p (when > is the addition, that property is
always true unless overflow occurs). When double roundings may occur, we get
a very similar property (just by using the fact that two consecutive roundings,
one in precision p+ p′ and one in precision p, are performed):

Property 1 (ε-model with double roundings). Let a and b be precision-p FP
numbers, and let > ∈ {+,−,×,÷}.

• if no underflow occurs, then

RNp (RNp+p′(a>b)) = (a>b) · (1 + ε1) =
a>b

1 + ε2
, (3)

where |ε1|, |ε2| ≤ u′, with u′ = 2−p + 2−p−p
′
+ 2−2p−p′ ;

6

• if the result of a floating-point addition a+ b has absolute value less than
2emin , then

RNp (RNp+p′(a+ b)) = (a+ b)

exactly, which implies that for > = +, (3) always holds, unless overflow
occurs.

Since (when p′ is large enough), the bound u′ is only slightly larger than u,
most properties that can be shown using the ε-model only will remain true in
the presence of double roundings (possibly with somewhat larger error bounds).

2.1.7 u, θk and γk notations

In [13, page 67], Higham defines notations θk and γk that turn out to be very
useful in error analysis. We will very slightly adapt them to the context of
double roundings.

Define u = 2−p and u′ = 2−p + 2−p−p
′
+ 2−2p−p′ . For any integer k, θk will

denote a quantity of absolute value bounded by

γk =
ku

1− ku
,

and θ′k will denote a quantity of absolute value bounded by

γ′k =
ku′

1− ku′
.

2.2 The 2Sum, Fast2Sum algorithms

The 2Sum algorithm was first introduced by Dekker [7]. It allows one to compute
the error of a floating-point addition. Without double roundings, that algorithm
is

Algorithm 1 (Fast2Sum(a, b)).
s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)

We have the following result.

Theorem 1 (Fast2Sum algorithm ([7], and Theorem C of [19], page 236)).
Assume the floating-point system being used has radix β ≤ 3, subnormal numbers
available, and provides correct rounding with rounding to nearest.

Let a and b be FP numbers, and assume that the exponent of a is larger than
or equal to that of b (this condition might be difficult to check, but of course, if
|a| ≥ |b|, it will be satisfied). Algorithm 1 computes two FP numbers s and t
that satisfy the following:

• s+ t = a+ b exactly;

7

• s is the floating-point number that is closest to a+ b.

When we do not know in advance whether ea ≥ eb or not (or when the radix
is not 2, but we do not deal with that case in this paper), it may be preferable
to use the following algorithm, due to Knuth [19] and Møller [23].

Algorithm 2 (2Sum(a, b)).
s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)

Knuth shows that, if a and b are normal FP numbers, then for any radix β,
provided that no underflow or overflow occurs, a + b = s + t. Boldo et al. [3]
give a formal proof of this algorithm in radix 2, and show that underflow does
not hinder the result.

2.3 Some preliminary remarks

Let us first notice something about Fast2Sum.

Remark 1. The proof of Fast2Sum (see for instance the one given in [25]) relies
on the fact that if s equals RN(a + b), then the variables z and t of algorithm
Fast2Sum are computed exactly (i.e., s − a and b − z are FP numbers). This
implies that the same result will be obtained if these variables are computed in
a wider format, or with double roundings (or with a directed rounding mode).
Incidently, this shows (at least in common languages) that an explicit declaration
of variable z is unnecessary, and that in a program, one may safely replace z =
s-a; t = b-z by t = b-(s-a).

It is well known that (unless overflow occurs), the error of a rounded-to-
nearest floating-point addition of two precision-p numbers is a precision-p num-
ber (it is precisely that error that is computed by Algorithms 1 and 2). When
double roundings slips occur, the results of sums are very slightly different from
rounded to nearest sums. This difference, although it is very small, sometimes
suffices to make the error not representable. More precisely,

Remark 2. Assume a double rounding slip occurs when evaluating the sum s
of two precision-p FP numbers a and b, i.e.,

s = RNp(RNp+p′(a+ b)) 6= RNp(a+ b)

then, if p′ ≥ 1 and p′ ≤ p the error r = a+ b− s of that floating-point addition
may not be exactly representable in precision-p arithmetic.

To show this, it suffices to consider

a = 1xxxx · · ·x︸ ︷︷ ︸
p−3 bits

01

8

where xxxx · · ·x is any (p − 3)-bit bit-chain. The number a is a p-bit integer,
thus exactly representable in precision-p FP arithmetic. Also consider,

b = 0.0 111111 · · · 1︸ ︷︷ ︸
p ones

=
1
2
− 2−p−1.

The number b is equal to (2p−1)·2−p−1, hence it is a precision-p floating-pont
number too.

We have:
a+ b = 1xxxx...x01︸ ︷︷ ︸

p bits

.0 111111...1︸ ︷︷ ︸
p bits

,

so that if 1 ≤ p′ ≤ p,

u = RNp+p′(a+ b) = 1xxxx...x01.100...0,

The “round to nearest even” rule thus implies

s = RNp(u) = 1xxxx...x10 = a+ 1

Therefore,

s− (a+ b) = a+ 1− (a+
1
2
− 2−p−1) =

1
2

+ 2−p−1 = 0. 10000 · · · 01︸ ︷︷ ︸
p+1 bits

,

which is not exactly representable in precision-p FP arithmetic. �

Remark 3. Assume we compute w = RNp(RNp+p′(u+ v)), where u and v are
precision-p, radix-2, FP numbers of exponents eu and ev, with eu ≥ ev. If p′ ≥ 2
and a double-rounding slip occurs in that computation, then

eu − p− 1 ≤ ev ≤ eu − p′, (4)

and
ew ≥ ev + p′ + 1. (5)

Proof of (4).
First, if eu − p− 1 > ev (i.e., eu − p− 2 ≥ ev), then

|v| < 2ev+1 ≤ 2eu−p−1 =
1
4

ulp(u).

Also, p′ ≥ 2 implies that u− 1
4 ulp(u) and u+ 1

4 ulp(u) are precision-(p+ p′) FP
numbers. Therefore,

u− 1
4

ulp(u) ≤ RNp+p′(u+ v) ≤ u+
1
4

ulp(u).

Therefore,

9

• if |u| is not a power of 2 then RNp+p′(u + v) cannot be a precision-p
midpoint. The final result follows from Remark 5 below;

• if |u| = 2eu exactly, then |u| − 1
4 ulp(u) is a midpoint (it is the only one

between |u| − 1
4 ulp(u) and |u| + 1

4 ulp(u)), but ev ≤ eu − p − 2 implies
|v| < 2eu−p−1 = 1

4 ulp(u), so that the real value of u + v is between the
midpoint µ = u− sign(u) · 1

4 ulp(u) and u. Since RNp (RNp+p′(µ)) = u =
RNp (RNp+p′(u)) and the roundings are monotonic functions, we have
RNp (RNp+p′(u+ v)) = RN(u + v) = u, so that no double rounding slip
occurs.

Second, if ev > eu − p′, then u + v can be written 2ev−p+1 (2eu−evMu +Mv),
where Mu and Mv are the integral significands of u and v, and the integer
2eu−evMu +Mv satisfies∣∣2eu−evMu +Mv

∣∣ ≤ 2p
′−1(2p − 1) + (2p − 1) ≤ 2p+p

′
− 1.

Therefore u + v is exactly representable in precision p + p′, so that no double
rounding slip can occur.
Proof of (5).
Let k be the integer such that 2k ≤ |u + v| < 2k+1. The monotonicity of the
rounding functions implies that

2k ≤ |RNp(RNp+p′(u+ v))| ≤ 2k+1,

therefore, ew is equal to k or k + 1. Since u + v does not fit into p + p′ bits
(otherwise there would not be a double rounding slip) and u + v is a multiple
of 2ev−p+1, we deduce

• if ew = k then ulpp+p′(u+v) > eb−p+1, therefore ew−p−p′+1 > eb−p+1,
which implies ew ≥ ev + p′ + 1,

• if ew = k+1 then ulpp+p′(u+v) > eb−p+1, therefore (ew−1)−p−p′+1 >
eb − p+ 1, which implies ew ≥ ev + p′ + 2.

�

Notice that the condition “p′ ≤ p” in Remark 2 is necessary. More precisely,

Remark 4. If p′ ≥ p + 1 then a double rounding slip cannot occur when com-
puting a+ b, i.e., we always have

RNp (RNp+p′(a+ b)) = RNp(a+ b).

(this is a classical result [9, 10]. A sketch of the proof is the following—
Assume, without l.o.g., that |a| ≥ |b|: if eb ≥ ea − p − 1 then a + b fits in at
most 2p+ 1 bits, so that as soon as p′ ≥ p+ 1, RNp+p′(a+ b) = a+ b exactly;
and if eb < ea − p − 1, then Equation (4) in Remark 3 implies that no double
rounding slip can occur).

10

Remark 5. Assume, p′ ≥ 1, if a double rounding slip occurs when evaluating
a>b (where > is any operation) then RNp+p′(a>b) is a precision-p midpoint,
i.e., a number exactly halfway between two consecutive precision-p FP numbers.

The proof of Remark 5 is common arithmetic folklore, and just uses the fact
that roundings are monotonic functions. Let us give it anyway for the sake
of completeness. If RNp(a>b) 6= RNp(RNp+p′(a>b)) then there is a precision-p
midpoint, say µ, between a>b and RNp+p′(a>b). That number satisfies |(a>b)−
µ| ≤ |(a>b)− RNp+p′(a>b)|. µ fits in (p+1) bits. Since p′ ≥ 1, it is a precision-
(p + p′) FP number. Since by definition RNp+p′(a>b) is a a precision-(p + p′)
FP number nearest a>b, we have:

• either there is only one precision-(p + p′) FP number nearest a>b (i.e.,
a>b is not a precision-(p + p′) midpoint), in such a case we necessarily
have RNp+p′(a>b) = µ;

• or a>b is a precision-(p+p′) midpoint. In such a case, if RNp+p′(a>b) 6= µ,
then either µ is above a>b and RNp+p′(a>b) is below a>b, or µ is below
a>b and RNp+p′(a>b) is above a>b: in any case, µ cannot be between
a>b and RNp+p′(a>b), which is a contradiction. �

An immediate consequence of Remark 5 (due to the round-to-nearest-even
rule) is the following.

Remark 6. Assume, p′ ≥ 1, if a double rounding slip occurs when evaluating
a>b then the returned result RNp (RNp+p′(a>b)) is an even FP number.

In our proofs, we will also frequently use the following, well-known, result.

Remark 7 (Sterbenz Lemma [35]). If a and b are positive FP numbers, and

a

2
≤ b ≤ 2a,

then a − b is a floating-point number (which implies that it will be computed
exactly, whatever the rounding).

Finally, the following result will be used later on to prove that even when
the error of a floating-point addition is not exactly representable because of a
double rounding slip, as soon as p′ ≥ 2, we are anyway able to compute the
floating-point number nearest that error.

Remark 8. Let a and b be precision-p FP numbers, and define

s = RNp (RNp+p′ (a+ b)) .

The number r = a + b − s fits in at most p + 2 bits, so that as soon as p′ ≥ 2,
we have

RNp (RNp+p′ (a+ b− s)) = RNp(a+ b− s). (6)

11

Proof
Without l.o.g., we assume ea ≥ eb. First, we already know that if no dou-
ble rounding slip occurs when computing s, namely if RNp (RNp+p′ (a+ b)) =
RNp(a + b), then a + b − s is a precision-p FP number. In such a case, (6)
is obviously true. So let us assume that RNp (RNp+p′ (a+ b)) 6= RNp(a + b).
Equation (4) in Remark 3 implies therefore that eb ≥ ea − p− 1.

Since a and b are both multiple of 2eb−p+1, we easily deduce that a+b−s too
is a multiple of 2eb−p+1. Also, since |a| and |b| are less than (2p − 1) · 2ea−p+1,
|a + b| is less than (2p − 1) · 2ea−p+2, so that (since roundings are monotonic
functions and (2p− 1) · 2ea−p+2 is an FP number) s too is of absolute value less
than or equal to (2p − 1) · 2ea−p+2, therefore es ≤ ea + 1.

From all this, we deduce that a + b− s is a multiple of 2eb−p+1 of absolute
value less than or equal to

2−p+es + 2−p−p
′+es ≤ 2−p+ea+1 + 2−p−p

′+ea+1 ≤ 2eb+2 + 2eb−p′+2.

Hence, r = a + b − s fits in at most p + 2 bits, therefore, as soon as p′ ≥ 2,
RNp+p′(a+ b− s) = a+ b− s. q.e.d. �

3 Behavior of Fast2Sum and 2Sum in the pres-
ence of double roundings

3.1 Fast2Sum and double roundings

Remark 2 implies that Algorithms Fast2Sum and 2Sum cannot always return
the exact value of the error when the addition RN(a+ b) is replaced by

RNp (RNp+p′(a+ b)) ,

i.e., when a double rounding occurs, because that error is not always exactly
equal to a floating-point number.

And yet, we may try to bound the difference between the exact error and
the returned number t (indeed, we will prove that t is the FP number nearest
the exact error). Let us analyze how algorithm Fast2Sum behaves when double
roundings are allowed. Assume ea ≥ eb, we will consider that what is actually
performed is

Algorithm 3 (Fast2Sum-with-double-roundings(a, b)).
s← RNp (RNp+p′(a+ b))
z ← ◦(s− a)
t← RNp (RNp+p′(b− z)) or RNp(b− z)

where ◦(u) means either RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), or any
faithful rounding (this is not important, as we will see that s − a is exactly
representable in precision-p FP arithmetic, so that it will be computed exactly,

12

whatever the rounding: this means that in a program, one may safely replace z
= s-a; t = b-z by t = b-(s-a)).

Define ea, eb, and es as the floating-point exponents of a, b, and s, and
Ma, Mb, and Ms as their significands. We assume ea ≥ eb (that condition
will be satisfied if |a| ≥ |b|). Notice that this implies es ≤ ea + 1, since |s| ≤
2·max{|a|, |b|} ≤ 2·(2p−1)·2ea−p+1. Without l.o.g., we assume s ≥ 0 (otherwise
if suffices to change the signs of a and b). We have

a = Ma · 2ea−p+1,

with |Ma| ≤ 2p − 1, and similar relations for b and s. Also, notice that

2p−1 ≤ s

2es−p+1
≤ 2p − 1

implies

2p−1 − 1
4
≤ RNp+p′(a+ b)

2es−p+1
< 2p − 1

2
,

which implies

2p−1 − 1
4
− 2−p

′−2 ≤ a+ b

2es−p+1
< 2p − 1

2
+ 2−p

′−1.

1. if es = ea + 1, define δ = ea − eb. We have,

a+ b = 2es−p+1

(
Ma

2
+

Mb

2δ+1

)
,

from which we deduce

RNp+p′(a+ b) = 2es−p+1

(
Ma

2
+

Mb

2δ+1
+ ε

)
,

where |ε| ≤ 2−p
′−1. Therefore, we have,

Ms =
⌈
Ma

2
+

Mb

2δ+1
+ ε

⌋
,

where duc is the integer nearest to u (with round-to-even choice in case of
a tie). Now, define µ = 2Ms −Ma. We have,

Mb

2δ
− 1− 2−p

′
≤ µ ≤ Mb

2δ
+ 1 + 2−p

′
.

Since µ is an integer, δ ≥ 0, and |Mb| ≤ 2p − 1, if p′ ≥ 1, then either
|µ| ≤ 2p − 1, or µ = ±2p. In both cases, since s− a = µ · 2ea−p+1, s− a is
exactly representable in precision p.

2. if es ≤ ea, define δ1 = ea − eb. We have

a+ b =
(
2δ1Ma +Mb

)
· 2eb−p+1.

13

• if es ≤ eb then s = a+b exactly, since s is obtained by rounding a+b
first to the nearest multiple of 2es−p−p′+1—or to the nearest multiple
of 2es−p−p′ in case |a + b| is less than 2es − 2es−p−p′−1—which is a
divisor of 2eb−p+1, and then to the nearest multiple of 2es−p+1 (which
is a divisor of 2eb−p+1 too). These two rounding operations left it
unchanged since it is already a multiple of 2eb−p+1. Hence in the case
es ≤ eb, s− a = b is exactly representable;

• if es > eb, let us define δ2 = es − eb. We have,

s =
⌈
2δ1−δ2Ma + 2−δ2Mb + ε

⌋
· 2es−p+1,

where |ε| ≤ 2−p
′−1. This implies

|s− a| ≤
(

2−δ2Mb +
1
2

+ 2−p
′−1

)
· 2es−p+1.

Also, since es ≤ ea, s−a is a multiple of 2es−p+1. We therefore have,

s− a = K · 2es−p+1,

where K is an integer satisfying

|K| ≤ 2−δ2 |Mb|+
1
2

+ 2−p
′−1 < 2p−1 + 1 < 2p − 1.

(as soon as p ≥ 3 and p′ ≥ 1, which holds in all cases of practical
interest). Hence, s−a is exactly representable in precision-p floating-
point arithmetic.

We have shown that in all cases, s−a is exactly representable in precision-p FP
arithmetic. Hence, variable z of the algorithm will be exactly computed (and
the way it is rounded—correct rounding to precision p, correct rounding to an
“extended”, precision-(p+ p′) format, double rounding, directed rounding—has
no influence on this). Now, from z = s − a, we immediately deduce b − z =
(a+ b)− s = r, so that

t = RNp (RNp+p′(r)) .

Using Remark 8, we immediately deduce

t = RNp (r) .

In other words, each time r is exactly representable (which happens every
time a double rounding slip does not occur when computing a + b), we get it
exactly; and when r is not exactly representable, we get the precision-p FP
number nearest to r. The following theorem summarizes the obtained results.

Theorem 2. Assume a binary target floating-point format of precision p ≥ 3,
assume a binary format of precision p+ p′, with p′ ≥ 2, is available. If a and b
are precision-p numbers, with ea ≥ eb (that condition will be satisfied if |a| ≥ |b|),
and if no overflow occurs, then the sequence of calculations

14

s← RNp (RNp+p′(a+ b))
z ← ◦(s− a)
t← �(b− z)

(where ◦(u) means either RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), and �(u)
means either RNp (RNp+p′(u)) or RNp(u)) satisfies the following property:

• z = s− a exactly (this will be useful later on in the paper);

• if no double rounding slip occurred when computing s (in other words, if
s = RNp(a+ b)), then t = (a+ b− s) exactly;

• otherwise, t = RNp(a+ b− s).

3.2 2Sum and double roundings

The following preliminary lemma is directly adapted from Lemma 4 in Shewchuk’s
paper [34].

Lemma 3. Let a and b be precision-p binary floating-point numbers. Let s =
RNp (RNp+p′(a+ b)) or RNp(a + b). If |s| < min{|a|, |b|} then s = a + b (that
is, s is computed exactly).

Proof. Define σ = a+b. Without loss of generality, we assume that min{|a|, |b|} =
|b|. Define eb as the exponent of b and Mb as its integral significand (i.e.,
b = Mb · 2eb−p+1). Since a and b are both multiples of 2eb−p+1, σ is a multiple
of 2eb−p+1 too. Also, due to the monotonicity of rounding, |s| < |b| implies
|σ| < |b|. An immediate consequence is that σ/2eb−p+1 is an integer of absolute
value less than |Mb| ≤ 2p− 1. This implies that σ is a precision-p floating-point
number. Therefore RNp+p′(σ) = σ, and RN(σ) = σ, so that s = σ, q.e.d. �

We will analyze the following algorithm

Algorithm 4 (2Sum-with-double-roundings(a, b)).
(1) s← RNp(RNp+p′(a+ b)) or RNp(a+ b)
(2) a′ ← RNp(RNp+p′(s− b)) or RNp(s− b)
(3) b′ ← ◦(s− a′)
(4) δa ← RNp(RNp+p′(a− a′)) or RNp(a− a′)
(5) δb ← RNp(RNp+p′(b− b′)) or RNp(b− b′)
(6) t← RNp(RNp+p′(δa + δb)) or RNp(δa + δb)

where ◦(u) is either RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), or any faithful
rounding (indeed, we will show that s− a′ is a precision-p FP number, so that
b′ will be computed exactly).

First, let us raise the following point:

Remark 9. Assuming p′ ≥ 2, if the variables a′ and b′ of Algorithm 4 satisfy
a′ = a and b′ = s− a′ exactly, then t = RN(a+ b− s).

15

Proof.
If a′ = a then δa = 0. Also, b′ = s − a′ = s − a implies b − b′ = a + b − s, so
that δb = RNp(RNp+p′(a+ b− s)). This gives

t = RNp(RNp+p′(a+ b− s)) = RNp(a+ b− s),

using Remark 8 �

Let us now analyze Algorithm 4.

3.2.1 Behavior of Algorithm 4 in the case |b| ≥ |a|

In the case |b| ≥ |a|, lines (1), (2), and (4) of Algorithm 4 constitute Fast2Sum-
with-double-roundings(b, a), i.e., Agorithm 3, called with input values (b, a). A
consequence of this (see Theorem 2) is that the computation of line (2) is exact,
which implies a′ = s − b and δa = RNp(a + b − s). Also, a′ = s − b implies
s− a′ = b, so that b′ = b exactly and δb = 0. All this implies

t = RNp(a+ b− s).

3.2.2 Behavior of Algorithm 4 in the case |b| < |a| and |s| < |b|

If |b| < |a| and |s| < |b|, then Lemma 3 applies: s = a+ b exactly, which implies
a′ = a, b′ = b, and δa = δb = t = 0.

3.2.3 Behavior of Algorithm 4 in the case |b| < |a| and |s| ≥ |b|

Let us now assume |b| < |a| and |s| ≥ |b|. These inequalities have two important
consequences:

• we have s = (a+ b) · (1 + ε1) and a′ = (s− b) · (1 + ε2), with |ε1|, |ε2| ≤ u′
(we remind the reader that u′ = 2−p+2−p−p

′
+2−p−2p′ , see Section 2.1.7),

from which we easily deduce

a′ = (a+ aε1 + bε1) · (1 + ε2) = a · (1 + ε3),

with |ε3| ≤ 3u′+ 2u′2. An immediate consequence is that as soon as p ≥ 4
and p′ ≥ 1 (which holds in all practical cases), |a/2| ≤ |a′| ≤ |2a|, and
a and a′ have the same sign. Hence, from Sterbenz Lemma (Remark 7),
a − a′ is a precision-p floating-point number, which implies δa = a − a′
exactly. Also (which will be useful later on), e′a ≤ ea + 1.

• lines (2), (3), and (5) constitute Fast2Sum (with double roundings, i.e.,
Algorithm 3), called with input values (s,−b). This implies that b′ = s−a′
exactly, and δb = RNp(a′ − (s − b)). Moreover, Theorem 2 shows that
δb = a′− (s− b) exactly if no double rounding slip occurred in line (2): in
such a case, δa+δb = (a+b−s), which implies t = RNp(RNp+p′(a+b−s)) =
RNp(a+ b− s) (using Remark 8).

16

So, in the following, we assume that a double rounding slip occurred
in line (2), i.e., when computing s− b. Notice that this implies from Remark 6
that a′ is even. Notice that Equation (5) in Remark 3 implies that eb ≤ e′a−p′−1.

Also, we know that

• δa = a− a′ and b′ = s− a′ exactly;

• all variables (s, a′, b′, δa, δb, t) are multiples of 2eb−p+1.

Since a double rounding slip occurred in line (2), we have

s− b = a′ + i · 2e
′
a−p + j · ε,

where i = ±1 (or± 1
2 in the case a′ is a power of 2), j = ±1 and 0 ≤ ε ≤ 2e

′
a−p−p

′
.

Since b′ = s− a′ exactly, we deduce

b′ = b+ i · 2e
′
a−p + j · ε,

hence,
b− b′ = −i · 2e

′
a−p − j · ε,

so that, since it is a multiple of 2eb−p+1, b − b′ fits in at most (e′a − p) − (eb −
p + 1) + 1 = e′a − eb ≤ ea − eb + 1 bits. Hence, if ea − eb ≤ p − 1 then b − b′
is a precision-p floating-point number, therefore δb = b − b′ exactly. It follows
that δa + δb = a − a′ + b − b′ = a − a′ + b − (s − a′) = a + b − s, so that
t = RNp(RNp+p′(a+ b− s)) = RNp(a+ b− s) (using Remark 8).

Furthermore, if ea − eb ≥ p + 2, then one easily checks that s = a′ = a,
b′ = δa = 0, and t = δb = b, which is the desired result.

Hence the last case that remains to be checked is the case ea− eb ∈
{p, p + 1}. Notice that in that case, if a is not a power of 2, s is necessarily
equal to a−, a, or a+, where a− and a+ are the floating-point predecessor and
successor of a. If a is a power of 2, s can also be equal to a−− (when a > 0)
or a++ (when a < 0). To simplify the presentation, we now assume a > 0
(otherwise, it suffices to change the signs of a and b).

1. if a is not a power of 2, then s is equal to a−, a, or a+. Notice that
s = a− ⇒ a′ ≥ s (because in that case, b < 0), and s = a+ ⇒ a′ ≤ s.

• if |b| is not of the form ±2ea−p+ ε with |ε| ≤ 2ea−p−p′ , then there are
no double rounding slips in lines (1) and (2) of the algorithm;

• otherwise, if a is even, then (due to the round to nearest even round-
ing rule) s = a, and a′ = s = a, therefore Remark 9 implies t =
RNp(a+ b− s);

• otherwise, if a is odd, then (still due to the round to nearest even
rounding rule) s = a+ or a− and a′ = s, so that b′ = 0, which implies
δb = b and t = RNp(RNp+p′(a−a′+ b)) = RNp(RNp+p′(a+ b−s)) =
RNp(a+ b− s).

17

2. if a is a power of 2, i.e., a = 2ea . Notice again that s < a ⇒ a′ ≥ s
(because in that case, b < 0), and s > a⇒ a′ ≤ s.

• if b ≥ 0 , then s is equal to a, or a+.

– If s = a+ then if a′ = a+ there is no double rounding slip in
line (2) of the algorithm since a′ is odd (using Remark 6), and if
a′ = a then Remark 9 implies t = RNp(a+ b− s);

– now, if s = a then if a′ = a Remark 9 implies t = RNp(a+ b−s),
and if a′ = a− then (since a′ is odd) there is no double rounding
slip in line (2) of the algorithm (using Remark 6).

• if b < 0, then s is equal to a, a−, or a−−.

– if s = a then b ≥ −2ea−p−1 − 2ea−p−p′−1. In such a case, there
is no double rounding slip when computing s− b, i.e., in line (2)
of the algorithm;

– if s = a− then if a′ = a− then there is no double rounding slip
in line (2) since a− is odd, and if a′ = a then Remark 9 implies
t = RNp(a+ b− s);

– if s = a−− then if a′ = a− then there is no double rounding
slip in line (2) since a− is odd; if a′ = a then Remark 9 implies
t = RNp(a+ b− s); and a′ = a−− is impossible (s = a−− implies
−b ≥ 3 ·2ea−p−1−2ea−p−p′−1, from which we deduce s−b > a−,
which implies a′ ≥ a−).

We therefore deduce

Theorem 4. Assume a radix-2 target floating-point format of precision p ≥ 4,
assume that a format of precision p + p′, with p′ ≥ 2, is available. If a and b
are precision-p numbers, and if no overflow occurs, then Algorithm 4 satisfies
the following property:

• if no double rounding slip occurred when computing s (in other words, if
s = RNp(a+ b)), then t = (a+ b− s) exactly;

• otherwise, t = RNp(a+ b− s).

Notice that an immediate consequence of Theorems 2 and 4 is

Corollary 1. The values s and t returned by Algorithms 3 or 4 satisfy

(s+ t) = (a+ b)(1 + η),

with |η| ≤ 2−2p + 2−2p−p′ + 2−3p−p′ .

It may be of interest to notice that, even when a double rounding slip oc-
curred when computing s in fast2Sum or 2Sum, (a + b) − s will very often be
exactly representable. More exactly,

18

Remark 10. Assume p′ ≥ 2, let a and b be precision-p FP numbers, with
ea ≥ eb, such that

s = RNp (RNp+p′(a+ b)) 6= RNp(a+ b),

if a+ b− s is not a precision-p FP number, then eb = ea − p− 1.

Proof. Assume that a+ b− s is not a precision-p FP number. Without l.o.g.,
we assume a+ b ≥ 0. First, Remark 3 implies

ea − p− 1 ≤ eb ≤ ea − p′. (7)

Also, Remark 5 implies that RNp+p′(a+ b) has the form g+ 1
2 ulpp(g), where g

is a precision-p FP number, which means that

a+ b = g +
1
2

ulpp(g) + ε,

with
|ε| ≤ 1

2
ulpp+p′(g) and ε 6= 0.

Therefore, we have

s =
{
g if g is even
g+ = g + ulp(g) otherwise.

and

RNp(a+ b) =
{
g if ε < 0
g+ if ε > 0.

Hence, s and RNp(a+ b) differ in two cases:

1. if g is even and ε > 0, in which case

a+ b− s =
1
2

ulpp(g) + ε;

2. if g is odd and ε < 0, in which case

a+ b− s = −1
2

ulpp(g) + ε.

Now, notice that ε is an integer multiple of ulp(b). Eq. (7) implies that eg is
ea − 1, ea, or ea + 1. Furthermore,

• If eg = ea − 1, then 1/2 ulp(eg) = 2ea−p−1 ≤ 2eb , so that ±1/2 ulp(eg) + ε
is representable in precision-p FP arithmetic;

19

• If eg = ea, then the leftmost bit of the binary representation of± 1
2 ulpp(g)+

ε is of weight ≤ 2eg−p, whereas its rightmost nonzero bit has weight
≥ 2eb−p+1. Hence, if ± 1

2 ulpp(g) + ε is not a precision-p FP number then

eb − p+ 1 < (eg − p)− p+ 1,

which implies
eb ≤ ea − p− 1.

Combined with (7) this gives

eb = ea − p− 1.

• If eg = ea + 1, reasoning as previously, we find that if ± 1
2 ulpp(g) + ε is

not a precision-p FP number then

eb − p+ 1 < (eg − p)− p+ 1,

which implies
eb ≤ ea − p.

However, if eb ≤ ea − p, then |b| < ulpp(a) = 2ea−p+1, therefore (since
|a| ≤ (2p − 1) · 2ea−p+1), |a+ b| < 2ea+1, which implies

RNp+p′(a+ b) ≤ 2ea+1.

Hence, RNp+p′(a+b) cannot be of the form g+ 1
2 ulp(g)+ε, with eg = ea+1

and |ε| ≤ 1
2 ulpp+p′(g). �

A consequence of Remark 10 will be of interest when discussing the Rump,
Ogita and Oishi Splitting algorithm (useful for designing a summation algo-
rithm):

Remark 11. If a is a power of 2 (say, a = 2ea) and |b| ≤ a, then the values s
and t returned by Algorithm 3 or Algorithm 4 satisfy

t = a+ b− s

exactly.

Proof. Suppose we have t 6= a + b − s. We know that this cannot happen if
s = RNp(a+ b), so we necessarily have

RNp (RNp+p′(a+ b)) 6= RNp(a+ b),

and a+ b− s is not a FP number. Remark 10 implies eb = ea − p− 1, so that

|b| < 1
2

ulp(a).

20

• if b > 0 then the only case for which we may have a double rounding
slip (according to Remark 5, and the fact that a + b < a + 1

2 ulpp(a) ⇒
RNp+p′(a+ b) ≤ a+ 1

2 ulp(a)) is

RNp+p′(a+ b) = 2ea +
1
2

ulp(a),

• if b < 0 then then the only case for which we may have a double rounding
slip (still according to Remark 5, and the fact that a+ b > a− 1

2 ulp(a) =
a−, so that RNp+p′(a+ b) ≥ a−) is

RNp+p′(a+ b) = 2ea − 1
4

ulp(a).

In both cases, the round-to-nearest-even rounding rule implies s = 2ea =
a, so that a+ b− s = b, which contradicts the assumption that a+ b− s
is not a FP number. This proof is illustrated by Figure 1. �

one of these 2 values

a = 2ea

a + b is there

Double rounding slip
⇒ RNp+p′(a + b) is

Figure 1: This figure illustrates the fact that when a is a power of 2, we have t =
a + b− s exactly. Here, if a double rounding slip occurs, RNp+p′(a + b) can take two
possible values only, and for each of them s = a.

4 Splitting algorithms in the presence of double
roundings

4.1 Veltkamp’s splitting algorithm in the presence of dou-
ble roundings

In some applications (for instance to implement Dekker’s multiplication algo-
rithm, that allows one to express the product of two FP numbers exactly as the

21

unevaluated sum of two FP numbers), we need to “split” a radix-β, precision-p
floating-point number x into two FP numbers xh and x` such that, for a given
s ≤ p− 1, xh fits in p− s digits, x` fits in s digits, and x = xh + x` exactly.

Veltkamp’s algorithm (Algorithm 5) can be used for that purpose [7]. It uses
a floating-point constant C equal to βs + 1 (which is exactly representable in
precision-p floating-point arithmetic, as soon as s ≤ p− 1).

Algorithm 5 (Split(x,s): Veltkamp’s algorithm, presented here for a radix-β
floating-point format.).
Require: C = βs + 1
γ ← RN(C · x)
δ ← RN(x− γ)
xh ← RN(γ + δ)
x` ← RN(x− xh)

Boldo [1] shows that for any radix β and any precision p, provided that
C · x does not overflow, the algorithm works. Moreover, if β = 2, then x`
actually fits in s − 1 bits, which is an important feature when one wishes to
implement Dekker’s product algorithm with a binary floating-point format of
odd precision. Let us see what happens if double roundings may occur. More
precisely, assuming β = 2, we will analyze the following algorithm:

Algorithm 6 (Split(x,s): Veltkamp’s algorithm with possible double roundings.
x is a radix-2, precision-p floating-point number.).
Require: C = 2s + 1

(1) γ ← RNp(C · x) or RNp(RNp+p′(C · x))
(2) δ ← RNp(x− γ) or RNp(RNp+p′(x− γ))
(3) xh ← ◦(γ + δ)
(4) x` ← ◦(x− xh)

where ◦(u) can be either RNp(u), RNp+p′(u), or RNp(RNp+p′(u)), or any faith-
ful rounding (indeed, we will show that γ+δ and x−xh are precision-p floating-
point numbers, so that xh and x` will be computed exactly).

Theorem 5. Assuming binary floating-point arithmetic. If 2 ≤ s ≤ p − 2,
p ≥ 5, p′ ≥ 2 and no overflow occurs, then the values xh and x` returned by
Algorithm 6 satisfy:

• x = xh + x`;

• xh fits in p− s bits;

• x` fits in s bits.

Notice that we can no longer be sure that x` fits in s − 1 bits (unless no
double rounding slip occurs at step (2)). This is illustrated by the following
example: assume p = 11, p′ = 3, s = 5, and x = 104110 = 100000100012.
We run algorithm 6 with rounding RNp(RNp+p′(·)) at steps (1) and (2). We
successively find:

22

• γ = 3436810 = 10000110010000002;

• δ = −3334410 = −10000010010000002;

• xh = 102410 = 100000000002;

• x` = 1710 = 100012, which fits in 5 bits, but does not fit in 4 bits.

Proof of Theorem 5
Without loss of generality, we assume x > 0. Also, in the following, we assume
that x is not a power of 2 (otherwise, the analysis of Algorithm 6 is straightfor-
ward). This gives

2ex + 2ex−p+1 ≤ x ≤ 2ex+1 − 2ex−p+1,

where ex is the floating-point exponent of x. Furthermore, one may easily
check that when x = 2ex+1 − 2ex−p+1, the algorithm returns a correct result
(if s+ 1 ≤ p′, then there is no double rounding slip when computing γ, we get
γ = 2ex+s+1 + 2ex+1− 2ex+s−p+2, δ = −(2ex+s+1− 2ex+s−p+2), xh = 2ex+1 and
x` = −2ex−p+1; and if s ≥ p′, there is a double rounding slip when computing
γ, we get γ = 2ex+s+1 + 2ex+1, δ = −2ex+s+1, xh = 2ex+1 and x` = −2ex−p+1).
Therefore, in the following, we assume

2ex + 2ex−p+1 ≤ x ≤ 2ex+1 − 2ex−p+2.

Without difficulty, we find

γ = (2s + 1) · x+ ε1,

with |ε1| ≤ 2ex+s−p+1 + 2ex+s−p−p′+1. We have

|x− γ| ≤ 2s · x+ |ε1|
≤ 2s

(
2ex+1 − 2ex−p+2

)
+ 2ex+s−p+1 + 2ex+s−p−p′+1

< 2ex+s+1

(as soon as p′ ≥ 1), from which we deduce

δ = RNp(RNp+p′(x− γ)) = x− γ + ε2,

with |ε2| ≤ 2ex+s−p + 2ex+s−p−p′ . Furthermore, |x − γ| ≥ 2s(2ex + 2ex−p+1) −
(2ex+s−p+1 + 2ex+s−p−p′+1). This implies

|x− γ| ≥ 2ex+s(1− 2−p−p
′+1).

Therefore, because of the monotonicity of rounding, as soon as p′ ≥ 2, |δ| ≥
RNp(RNp+p′ [2ex+s · (1− 2−p−p

′+1)]) = 2ex+s. This implies that δ is a multiple
of 2ex+s−p+1.

Let us now focus on the computation of xh. So far, we have obtained

−δ = −x+ γ − ε2 = 2sx+ ε1 − ε2,

23

and
γ = (2s + 1)x+ ε1,

with
|ε1| ≤ 2ex+s−p+1 + 2ex+s−p−p′+1 ≤ (2s−p+1 + 2s−p−p

′+1) · x

and
|ε2| ≤ (2s−p + 2s−p−p

′
) · x.

Therefore

2s

2s + 1
· 1− 2−p+2 − 2−p−p

′+2

1 + 2−p+1 + 2−p−p′+1
≤
∣∣∣∣ δγ
∣∣∣∣ ≤ 2s

2s + 1
· 1 + 2−p+2 + 2−p−p

′+2

1− 2−p+1 − 2−p−p′+1
,

So that as soon as p ≥ 5, p′ ≥ 1, and s ≥ 2, |γ| and |δ| are within a factor 2
from each other. Hence, since γ and δ clearly have opposite signs, we deduce
from Remark 7 that xh = γ + δ is computed exactly. Also, since γ and δ are
multiples of 2ex+s−p+1, xh is multiple of 2ex+s−p+1 too. Moreover,

xh = x+ ε2 ≤
(
2ex+1 − 2ex−p+1

)
+
(

2ex+s−p + 2ex+s−p−p′
)

< 2ex+1 + 2ex+s−p+1,

which implies:

• either xh < 2ex+1, in which case, since xh is a multiple of 2ex+s−p+1, it
fits in p− s bits;

• or xh ≥ 2ex+1, but the only possible value that is both multiple of
2ex+s−p+1 and less than 2ex+1 + 2ex+s−p+1 is 2ex+1, which fits in 1 bit.

Therefore, in any case, xh fits in at most p− s bits.
There now remains to focus on the computation of x`. Since |x − xh| =

|ε2| ≤ 2ex+s−p + 2ex+s−p−p′ ≤ x · (2s−p + 2s−p−p
′
), we easily find that as soon

as s ≤ p − 2, one can apply Sterbenz’ Lemma (Remark 7) and deduce that
x` = x− xh is computed exactly.

Hence, we have x = xh + x`. Furthermore,

|x`| = |ε2| ≤ 2ex+s−p + 2ex+s−p−p′ ,

and (since both x and xh are multiples of 2ex−p+1), x` is a multiple of 2ex−p+1

too. From this we deduce that x` fits in s bits. q.e.d. �

(notice that if s ≤ p′ + 1 there is no multiple of 2ex−p+1 between 2ex+s−p

and 2ex+s−p + 2ex+s−p−p′ . In such a case, x` is necessarily less than or equal to
2ex+s−p, and we deduce that it fits in s− 1 bits).

24

4.2 Application to the computation of exact products

An important consequence of Theorem 5 is that if the precision p is an even
number, then Dekker’s product algorithm [7] can be used (the proof of Dekker’s
product given for instance in [25] pages 137-139 shows that all operations but
those of the Veltkamp’s splitting in Dekker’s algorithm are exact operations, so
that they are not hindered by double roundings).

Dekker’s product algorithm requires 17 operations. Notice that if a fused
multiply-add (FMA) instruction is available,1 there is a much better way of
expressing the product of two FP numbers as the unevaluated sum of two FP
numbers, that works even in the presence of double roundings. That way can
be traced back at least to Kahan [18]. One may find a good presentation in [27].
More precisely (once adapted to the context of double roundings),

Theorem 6. Assume a precision-p FP number system of minimum exponent
emin. Let x and y be floating-point numbers of exponents ex and ey. If ex+ey ≥
emin +p−1 and the product xy does not overflow, and if ◦ is any faithful round-
ing (including RNp(·), RNp(RNp+p′(·)),. . .), then the sequence of calculations
(algorithm 2MultFMA):
πh ← RNp(RNp+p′(xy)) or RNp(xy)
π` ← ◦(xy − πh)

will return two precision-p floating-point numbers πh and π` such that xy =
πh + π`.

The proof just uses the fact (see Theorem 2 in [2]) that for any faithful round-
ing ◦, the number xy − ◦(xy) is a precision-p floating-point number, provided
that ex + ey ≥ emin + p− 1 and that xy does not overflow.

4.3 Rump, Ogita, and Oishi’s Extractscalar splitting al-
gorithm

In [33], Rump, Ogita, and Oishi introduce a splitting algorithm, that makes
it possible to split an input floating-point number x into two parts y and x′,
such that x = y + x′ exactly, y is a multiple of some given power of 2, and the
absolute value of x′ is less than or equal to that power of 2. They use that
splitting algorithm for designing clever summation methods. We will now see
that most properties of their splitting algorithm are preserved in the presence of
double roundings. Rewritten with double roundings, Rump, Ogita, and Oishi’s
Extractscalar splitting algorithm is

Algorithm 7 (Extrascalar-with-dble-rounding(σ, x): Rump, Ogita, and Oishi’s
splitting algorithm with possible double roundings. σ = 2k, and x is a radix-2,
precision-p floating-point number.).
s← RNp(RNp+p′(x+ σ))
y ← RNp(RNp+p′(s− σ))

1The FMA instruction evaluates expressions of the form xy + z with one final rounding
only.

25

x′ ← RNp(RNp+p′(x− y))
return (y, x′)

When there are no double roundings, Rump, Ogita, and Oishi show that if
the exponent of x, ex, satisfies k − p ≤ ex ≤ k then y + x′ = x exactly, y is a
multiple of 2k−p, and |x′| ≤ 2k−p. The reason behind this is that Algorithm 7 is
a variant of Fast2Sum. When double roundings are allowed, we get the following
result.

Property 2 (Rump, Ogita, and Oishi’s Extractscalar splitting algorithm in
the presence of double roundings). If k − p ≤ ex ≤ k then the values y and x′

computed by Algorithm 7 satisfy y+x′ = x exactly, y is a multiple of 2k−p, and
|x′| ≤ 2k−p + 2k−p−p

′
.

Proof. Notice that Algorithm 7 is Fast2Sum-with-double-roundings(σ, x). The-
orem 2 and Remark 11 (since σ is a power of 2) imply that s+ x′ = σ + x and
y = s− σ exactly, so that y + x′ = x.

Furthermore, s is a multiple of 2k−p (this is obtained by considering that
either |x| ≥ 2k−1, in which case x and therefore x + σ are multiple of 2k−p, or
|x| < 2k−1, in which case x + σ > 2k−1, hence, s ≥ 2k−1, which implies that s
is a multiple of 2k−p).

An immediate consequence is that y is a multiple of 2k−p. Now, the (possibly
double rounded) computed value of s satisfies

−2k−p − 2k−p−p
′
≤ s− (x+ σ) ≤ 2k−p + 2k−p−p

′
,

which implies
−2k−p − 2k−p−p

′
≤ x′ ≤ 2k−p + 2k−p−p

′
.

�

5 Consequences of Theorems 2 and 4 on sum-
mation algorithms

Many numerical problems require the computation of sums of lots of many FP
numbers. Several compensated summation algorithms use, either implicitely or
explicitely, the Fast2Sum or 2Sum algorithms [17, 30, 31, 28, 32]. As a conse-
quence, when double roundings may occur, it is of importance to know if the
fact that we can only guarantee that we return the FP number nearest the error
of a FP addition (instead of that error itself) may have an influence on the be-
havior of these algorithms. There is a huge literature on summation algorithms:
the purpose of this section is not to examine all published algorithms, just to
give a few examples.

Before analyzing other summation methods, let us see what happens with
the naive, “recursive sum” algorithm.

26

5.1 The recursive sum algorithm and Kahan’s compen-
sated summation algorithm in the presence of double
roundings

Let us consider the naive, recursive-sum algorithm, rewritten with double round-
ings.

Algorithm 8.
r ← a1

for i = 2 to n do
r ← RNp(RNp+p′(r + ai))

end for
return r

A straightforward adaptation of the proof for the error bound of the usual
recursive sum algorithm without double roundings gives

Property 3. The final value of the variable r returned by Algorithm 8 satisfies∣∣∣∣∣r −
n∑
i=1

ai

∣∣∣∣∣ ≤ γ′n−1

n∑
i=1

|ai|.

Without double roundings, the bound is γn−1

∑n
i=1 |ai|. See Section 2.1.7

for a definition of notations γk and γ′k.
Kahan’s compensated summation algorithm, rewritten with double round-

ings, is as follows

Algorithm 9.
s← a1

c← 0
for i = 2 to n do
y ← RNp(RNp+p′(ai − c))
t← RNp(RNp+p′(s+ y))
c← RNp(RNp+p′(RNp(RNp+p′(t− s))− y))
s← t

end for
return s

Goldberg’s proof for this algorithm [11] only uses the ε-model, so that adap-
tation to double roundings is straightforward (it suffices to replace u by u′ in
the ε-model), and we will immediately deduce that the final value s provided
by Algorithm 9 satisfies∣∣∣∣∣s−

n∑
i=1

ai

∣∣∣∣∣ ≤ (2u′ +O(nu′2)
)
·
n∑
i=1

|ai|

(see Section 2.1.7 for a definition of notations u and u′). This makes Kahan’s
compensated summation algorithm very “robust”: double roundings have little

27

influence on the error bound. However, when
∑n
i=1 |ai| is very large in front

of |
∑n
i=1 ai|, the relative error of Kahan’s compensated summation algorithm

becomes large. A solution is to use Priest’s doubly compensated summation al-
gorithm [31]. For that algorithm, the excellent error bound 2u |

∑n
i=1 |ai|| will

remain true even in the presence of double roundings (the proof essentially as-
sumes faithfully rounded operations). However, it requires a preliminary sorting
of the ai’s by magnitude.

In the following, we investigate the potential influence of double roundings
on some sophisticated summation algorithms. For most of these algorithms, the
proven error bounds (without double roundings) are of the form∣∣∣∣∣ computed sum −

n∑
i=1

ai

∣∣∣∣∣ ≤ u ·
∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣+ α ·
n∑
i=1

|ai|.

Rump, Ogita, and Oishi exhibit a family of algorithms for which, without double
roundings, α has the form O(nK2−Kp). As we will see, that property will be
(roughly) preserved when K = 2. However, for the more subtle algorithms—for
which K ≥ 3—, double roundings may ruin that property.

5.2 Rump, Ogita and Oishi’s cascaded summation algo-
rithm in the presence of double roundings

The following algorithm was independently introduced by Pichat [29] and Neu-
maier [26].

Algorithm 10.
s← a1

e← 0
for i = 2 to n do

if |s| ≥ |ai| then
(s, ei)← Fast2Sum(s, ai)

else
(s, ei)← Fast2Sum(ai, s)

end if
e← RN(e+ ei)

end for
return RN(s+ e)

To avoid tests, the algorithm of Pichat and Neumaier can be rewritten using
the 2Sum algorithm. This gives the cascaded summation algorithm of Rump,
Ogita, and Oishi [28]:

Algorithm 11.
s← a1

e← 0
for i = 2 to n do

(s, ei)← 2Sum(s, ai)

28

e← RN(e+ ei)
end for
return RN(s+ e)

Notice that both algorithms will return the same result. In the following, we
therefore focus on Algorithm 11 only. More precisely, we will be interested here
in analyzing the behaviour of that algorithm, with double roundings allowed.
That is, we will consider

Algorithm 12 (Rump, Ogita and Oishi’s Cascaded Summation algorithm).

s← a1

e← 0
for i = 2 to n do

(s, ei)← 2Sum-with-double-roundings(s, ai)
e← RNp(RNp+p′(e+ ei))

end for
return RNp(RNp+p′(s+ e))

Define si as the value of variable s after the loop of index i (namely, s1 = a1,
and for i ≥ 2, si = 2Sum-with-double-roundings(si−1, ai)). One easily finds s2 + e2 = (a1 + a2)(1 + η(2))

si + ei = (si−1 + ai)(1 + η(i))
|ei| ≤ u′(1 + u)|si|,

with |η(i)| ≤ 2−2p + 2−2p−p′ + 2−3p−p′ (from Corollary 1). Therefore,

sn + (en + en−1 + · · ·+ e2)

= (sn + en) + (en−1 + en−2 + · · ·+ e2)

= (sn−1 + an)(1 + η(n)) + (en−1 + en−2 + · · ·+ e2)

= an(1 + η(n)) + sn−1η
(n) + (sn−1 + en−1) + (en−2 + · · ·+ e2)

= an(1 + η(n)) + sn−1η
(n) + (sn−2 + an−1)(1 + η(n−1)) + (en−2 + · · ·+ e2)

= · · ·
= an(1 + η(n)) + an−1(1 + η(n−1)) + · · ·+ a3(1 + η(3))

+sn−1η
(n) + sn−2η

(n−1) + · · ·+ s2η
(3)

+(s2 + e2)

=
n∑
i=3

ai(1 + η(i)) +
(n)∑
i=3

si−1η
(i) + (a1 + a2)(1 + η(2)),

From which we deduce

sn +
n∑
i=2

ei =
n∑
i=1

ai + η ·
n∑
i=1

|ai|+ η′
n∑
i=2

|si|, (8)

29

with |η|, |η′| ≤ 2−2p + 2−2p−p′ + 2−3p−p′ .
Let |E| be obtained by computing

∑n
i=2 ei by the recursive summation al-

gorithm (possibly with double roundings), from Property 3, we have∣∣∣∣∣E −
n∑
i=2

ei

∣∣∣∣∣ ≤ γ′k ·
n∑
i=2

|ei|. (9)

Let us now bound
∑n
i=2 |ei|. We already have

|ei| ≤
(

2−p + 2−p−p
′
+ 2−2p + 2−2p−p′

)
· |si|.

Now,
|s2| ≤ (|a1|+ |a2|) · (1 + γ′1),

so that
|s3| ≤ [(|a1|+ |a2|)(1 + γ′1) + |a3|] · (1 + γ′1)

< (|a1|+ |a2|+ |a3|) · (1 + γ′2),

and, by induction

|sj | < (|a1|+ |a2|+ · · ·+ |aj |) · (1 + γ′j−1)
< (|a1|+ |a2|+ · · ·+ |an|) · (1 + γ′n−1).

Therefore,
n∑
i=2

|si| ≤ (n− 1) · (1 + γ′n−1) ·
n∑
i=1

|ai|, (10)

which implies

n∑
i=2

|ei| ≤ (n− 1)(1 + γ′n−1)
(

2−p + 2−p−p
′
+ 2−2p + 2−2p−p′

) n∑
i=1

|ai|. (11)

Hence,
n∑
i=1

ai = sn + E + ρ, (12)

where

|ρ| <

(
n∑
i=1

|ai|

)
× κ, (13)

with

κ = η + (n− 1) · (1 + γ′n−1)
·
(
η′ +

(
2−p + 2−p−p

′
+ 2−2p + 2−2p−p′

)
γ′n−2

)
.

(14)

We remind the reader that γ′n−2 = (n−2)u′/(1−(n−2)u′). Assuming p ≥ 8
and p′ ≥ 4, we find(

2−p + 2−p−p
′
+ 2−2p + 2−2p−p′

)
u′ ≤ 2−2p + 2−2p−p′+1 +

2−2p

100
. (15)

30

Let us now assume |(n − 1)u′| < 1/2, which implies 1/(1 − (n − 2)) < 2.
From (15), we deduce

(
2−p + 2−p−p

′
+ 2−2p + 2−2p−p′

)
γ′n−2

≤ (2n− 4) ·
(

2−2p + 2−2p−p′+1 +
2−2p

100

)
.

(16)

Similarly, still assuming p ≥ 8 and p′ ≥ 4,

|η′| ≤ 2−2p + 2−2p−p′ + 2−3p−p′

< 2−2p + 2−2p−p′+1.
(17)

By combining (16) and (17), we obtain

∣∣∣η′ + (2−p + 2−p−p
′
+ 2−2p + 2−2p−p′

)
γ′n−2

∣∣∣
< (2n− 3) ·

(
2−2p + 2−2p−p′+1 +

2−2p

100

)
.

Our assumption |(n− 1)u′| < 1/2 implies γ′n−1 < 1, therefore the term

(n− 1)(1 + γ′n−1)

in (13) is less than (2n− 2). From all this, we deduce that the term[
η + (n− 1)(1 + γ′n−1) ·

(
η′ +

(
2−p + 2−p−p

′
+ 2−2p + 2−2p−p′

)
γ′n−2

)]
in (13) is less than

(
4n2 − 10n− 5

)
·
(

2−2p + 2−2p−p′+1 +
2−2p

100

)
. (18)

Now, from (12), the final value, say σ, returned by Algorithm 12, satisfies

σ = (sn + E) · (1 + θ′), with |θ′| ≤ u′,

=

(
n∑
i=1

ai − ρ

)
(1 + θ′).

using(18), this implies∣∣∣∣∣σ −
n∑
i=1

ai

∣∣∣∣∣ ≤ u′ ·

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣
+ (1 + u′)

(
4n2 − 10n− 5

)(
2−2p + 2−2p−p′+1 +

2−2p

100

) n∑
i=1

|ai|.

31

An elementary calculation, still assuming p ≥ 8 and p′ ≥ 4, shows that

(1 + u′) ·
(

2−2p + 2−2p−p′+1 +
2−2p

100

)
≤ 2−2p + 2−2p−p′+1 +

3 · 2−2p

200
,

which gives

Theorem 7. Assuming p ≥ 8, p′ ≥ 4, and n <
1

2u′
, the final value σ returned

by Algorithm 12 satisfies∣∣∣∣∣σ −
n∑
i=1

ai

∣∣∣∣∣ ≤ (
2−p + 2−p−p

′
+ 2−2p−p′

)
·
n∑
i=1

ai

+ 2−2p ·
(
4n2 − 10n− 5

)
·
(

1 + 2−p
′+1 +

3
200

)
·
n∑
i=1

|ai|.

In that case, the final result is not so different from the classical, double-
rounding-free, result (in that classical case, the term if front of

∑n
i=1 ai is u =

2−p, and the term in front of
∑n
i=1 |ai| is γ2

n−1). Hence the Cascaded Summation
algorithm is “robust” and can be used safely, even when double roundings may
happen: the error bound is slightly larger but remains of the same order of
magnitude.

However, more subtle algorithms, that return a more accurate result (as-
suming no double roundings) when |

∑n
i=1 |ai|/

∑n
i=1 ai| is very large, may be

of less interest when double roundings may happen, unless we have additional
information on the input data that allow to make sure there will be no prob-
lem. Consider for instance the K-fold summation algorithm of Rump, Ogita
and Oishi, defined as follows.

Algorithm 13 (VecSum(a), where a = (a1, a2, . . . , an)).
p← a
for i = 2 to n do

(pi, pi−1)← 2Sum(pi, pi−1)
end for
return p

Algorithm 14 (K-fold summation algorithm).
for k = 1 to K − 1 do
a← VecSum(a)

end for
c = a1

for i = 2 to n− 1 do
c← RN(c+ ai)

end for
return RN(an + c)

If double roundings are not allowed, Rump, Ogita, and Oishi show that if

32

4nu < 1, the final result σ returned by Algorithm 14 satisfies∣∣∣∣∣σ −
n∑
i=1

ai

∣∣∣∣∣ ≤ (u+ γ2
n−1)

∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣+ γK2n−2

n∑
i=1

|ai|. (19)

If a double-rounding slip occurs in the first call to VecSum, an error as large as
2−2p max |ai| may be produced. Hence, it will not be possible to show a final
error bound better than 2−2p max |ai| ≥ 2−2p

n

∑n
i=1 |ai| when double roundings

are allowed. In practice (since double rounding slips are not so frequent, and do
not always change the result of 2Sum when they occur), the K-fold summation
algorithm will almost always return a result that satisfies a bound close to the
one given by (19), but exceptions may occur. Consider the following example
(with n = 5, but easily generalizable to any larger value of n):

(a1, a2, a3, a4, a5) =
(

2p−1 + 1,
1
2
− 2−p−1,−2p−1,−2,

1
2

)
and assume that Algorithm 14 is run with double roundings, with 1 ≤ p′ ≤ p.
One may easily check that in the first addition of the first 2Sum of the first call
to VecSum (i.e., when adding a1 and a2), a double rounding slip occurs, so that
immediately after this first Fast2Sum, p2 = 2p−1 + 2 and p1 = −1/2, so that
p1 + p2 6= a1 + a2. At the end of the first call to VecSum, the returned vector is(

−1
2
, 0, 0, 0,

1
2

)
so that Algorithm 14 will return 0 whatever the value of K, whereas the exact
sum of the a′is is −2−p−1. Hence (since

∑
|ai| = 2p + 4− 2−p−1 ≈ 2p), the final

error of Algorithm 14 is approximately 2−2p−1
∑
|ai|, whatever the value of K.

This example shows that if we wish to be sure of getting error bounds of the
order of magnitude of the one given by (19) when using the K-fold summation
algorithm with K ≥ 3, we need to select compilation switches that prevent
double roundings from occurring, unless we have additional information on the
input data (such as all values having the same order of magnitude) that allow
to use Remark 10 to show that Fast2Sum and 2Sum will return an exact result,
even in the presence of double roundings.

Rump, Ogita, and Oishi suggest another summation algorithm, that returns
faithfully rounded sums when run without double roundings [33]. It is based
on the splitting algorithm discussed in Section 4.3. Using property 2, one may
adapt their summation algorithm, so that it can return faithfully rounded sums,
even in the presence of double roundings.

33

6 Double roundings with scaled division itera-
tions

6.1 Scaled division iterations

As previously, we assume a radix-2, precision-p, floating-point system that is
compliant with the IEEE 754-2008 Standard for Floating-Point Arithmetic [14].
We denote emin and emax the extremal exponents of that system. We also
assume that an FMA instruction is available, and that the ambient rounding
mode is round to nearest (this is the only one for which double-rounding slips
occur).

Many algorithms have been suggested for performing divisions, the most
common being digit-recurrence algorithms [8] and variants of the Newton–
Raphson iteration [21]. Here, assuming we wish to evaluate the quotient b/a
of two floating-point numbers, we focus on algorithms that first provide an ap-
proximation y to 1/a and an initial approximation q to the quotient b/a, and
refine it using the following “correcting step” [22]:

r = RN (b− aq),
q′ = RN (q + ry), (20)

Under some conditions made explicit in Theorem 9—roughly speaking, if q and
y are close enough to b/a and 1/a, respectively, and no underflow occurs—, then
q′ = RN(b/a).

In the applications of that property presented in the literature, the approxi-
mations y and q are obtained through variants of the Newton-Raphson iteration
(indeed, (20) can be viewed as one Newton-Raphson step), but they might as
well result from other means. What matters in this paper is that the correcting
step (20) is used.

What makes the method working is the following lemma, which shows that
under some conditions, r = b − aq exactly. That lemma can be traced back to
Kahan [18] or Markstein [22]. The presentation we give here is close to that of
Boldo and Daumas [2, 25].

Lemma 8 (Computation of division residuals using an FMA). Assume a and b
are precision-p, radix-2, floating-point numbers, with a 6= 0 and |b/a| below the
overflow threshold. If q is defined as

• b/a if it is exactly representable;

• one of the two floating-point numbers that surround b/a otherwise;

then
b− aq

is exactly computed using one FMA instruction, with any rounding mode, pro-

34

vided that
ea + eq ≥ emin + p− 1,

and

q 6= α or |b/a| ≥ α
2 ,

(21)

where ea and eq are the exponents of a and q and α = 2emin−p+1 is the smallest
positive subnormal number.

For this result to be applicable, we need ea + eq ≥ emin + p − 1. This
condition will be satisfied if eb ≥ emin + p. Other conditions will be needed for
the correcting iterations to work (see Theorem 9 below). Also, the intermediate
iterations used for computing q and y may require the absence of over/underflow.
All this gives somewhat complex conditions on a and b, that can very roughly
be summarized as “the quotient and the residual r must be far enough from the
underflow and overflow thresholds”. More precisely,

Theorem 9 (Markstein [22, 5, 21, 12]). Assume a precision-p binary floating-
point arithmetic, and let a and b be normal numbers. If

• q is a faithful approximation to b/a, and

• q is not in the subnormal range, and

• eb ≥ emin + p, and

• y approximates 1/a with a relative error less than 2−p, and

• the calculations
r = ◦(b− aq), q′ = ◦(q + ry)

are performed using a given rounding mode ◦, taken among round to near-
est even, round toward zero, round toward −∞, round toward +∞,

then q′ is exactly ◦(b/a) (that is, b/a rounded according to the same rounding
mode ◦).

Notice that if r and q′ are first computed in a wider format, of precision
p + p′, and then rounded to the precision-p destination format, we have no
guarantee that q′ = ◦(b/a): r will be computed correctly anyway (since b − aq
is a precision-p FP number), but a double rounding slip in the computation of
q′ may suffice to hinder the result. An example is:

• p = 53 (double precision/binary64 format), p + p′ = 64 (Intel “double-
extended” format);

• b = 252 + 251 + 1 and a = 253 − 2;

• q = (3 · 251 + 3)/(253) (notice that q = RN53(b/a));

• y = RN53(1/a) = (252 + 1)/2105,

35

for which we get

• r = b− aq = (−251 + 3)/252;

• RN53(RN64(q + ry)) = (3 · 250 + 1)/252) 6= RN53(b/a).

So it is necessary to make sure that the computation of q′ is directly per-
formed in precision p, without a double rounding. But even that may not suffice,
as we are now going to see. Let us now assume that we only use precision p.

Given arbitrary FP inputs a and b, a natural way to make sure that the
conditions of Theorem 9 be satisfied is to scale the iterations. This can be done
as follows: a quick preliminary checking on the exponents of a and b determines
if the conditions of Theorem 9 may not be satisfied, or if there is some risk
of over/underflow in the iterations that compute y and q. If this is the case,
operand a, or operand b is multiplied by some adequately chosen power of 2, to
get new, scaled, operands a∗ and b∗ such that the division b∗/a∗ is performed
without any problem. An alternate, possibly simpler, solution is to always scale:
for instance, we chose a∗ and b∗ equal to the significands of a and b, i.e., we
momentarily set their exponents to zero. In any case, we assume that we now
perform a division b∗/a∗ such that:

• for that “scaled division”, the conditions of Theorem 9 are satisfied;

• the exact quotient b/a is equal to 2σb∗/a∗, where σ is an integer straight-
forwardly deduced from the scaling.

Assuming now that the scaled iterations return a scaled approximate quo-
tient q∗ and a scaled approximate reciprocal y∗, we perform a scaled correcting
step

r = RN (b∗ − a∗q∗),
q′ = RN (q∗ + ry∗),

Notice that q′ is in the normal range (i.e., its absolute value is larger than
or equal to 2emin): the scaling was partly done in order to make this sure. If
2σq′ is a floating-point number (e.g., if |2σq′| ≥ 2emin), then we clearly should
return 2σq′. The trouble may occur when 2σq′ falls in the subnormal range:
if 2σq′ is not a FP number, we cannot just return RN(2σq′) because a double
rounding slip might occur and lead to the delivery of a wrong result. Consider
the following example. Assume the floating-point format being considered is
binary32 (that format was called single precision in the previous version of
IEEE 754: precision p = 24, extremal exponents emin = −126 and emax = 127).
Consider the two floating-point input values (the significands are represented in
binary):{

b = 1.000000000011000110011012 × 2−113 = 839495710 × 2−136,
a = 1.000000000000110110011002 × 223 = 839034810.

The number b/a is equal to

0.1000000000010010000000000000101101001111011001100100000010 · · ·×2−135,

36

so that the correctly-rounded, subnormal value that must be returned when
computing b/a should be

RN(b/a) = 0.00000000010000000000101× 2−126.

Now, if, to be able to use Theorem 9, b was scaled, for instance by multiplying
it by 2128 to get a value b∗, the exact value of b∗/a would be

0.1000000000010010000000000000101101001111011001100100000010 · · · × 2−7,

which would imply that the computed correctly rounded approximation to b∗/a
would be

q′ = 1.00000000001001000000000× 2−8.

Multiplied by 2σ = 2−128, this result would be equal equal to

1.00000000001001000000000× 2−136,

which means—since it is in the subnormal range: remember that emin = −126—
that, after rounding it to the nearest (even) floating-point number, we would
get

0.00000000010000000000100× 2−126 6= RN(b/a).

This phenomenon may appear each time the scaled result q′, once multiplied by
2σ, is exactly equal to a (subnormal) midpoint [16], i.e., a value exactly halfway
between two consecutive floating-point numbers. Notice that if we just use this
scaled result q′ without any other information, it is impossible to deduce if the
exact, infinitely precise, result is above or below the midpoint, so it is hopeless
to try to return a correctly rounded value.

Fortunately, intermediate values computed during the last correction itera-
tion contain enough information to allow for a correctly rounded final result, as
we are now going to see.

6.2 Avoiding double roundings in scaled division itera-
tions

As stated in the previous section, we assume we have performed the correcting
step:

r = RN (b∗ − a∗q∗),
q′ = RN (q∗ + ry∗),

and that the scaled operands a∗, b∗, as well as the approximate scaled quotient
q∗ and scaled reciprocal y∗ satisfy the conditions of Theorem 9. We assume that
the scaling was such that the exact quotient b/a is equal to 2σb∗/a∗. We assume
that we are interested in quotients rounded to the nearest (our method will work
for both tie-breaking rules of IEEE 754-2008: round to nearest “even” as well
as round to nearest “away”). Notice that with the other, “directed”, rounding
modes, there is no double rounding problem. To simplify the presentation,
we assume that a and b (and, therefore, a∗, b∗, y∗, q∗ and q′) are positive

37

(separately handling the signs of the input operands is straightforward). Since
q∗ is a faithful approximation to b∗/a∗, we deduce that

q− <
b∗

a∗
< q+,

where q− and q+ are the floating-point predecessor and successor of q∗. Also,
since q′ = RN(b∗/a∗), we immediately deduce that q′ ∈ {q−, q, q+}. This is
illustrated by Figure 2.

excluded

q− q∗ q+

area where b∗/a∗ can be located,
the endpoints q− and q+ being

Figure 2: The number q∗ is a faithful rounding of b∗/a∗: this means that q− <
b∗/a∗ < q+, where q− and q+ are the floating-point predecessor and successor of q∗.

As stated before, a double rounding slip may occur when 2σq′ is a (subnor-
mal) midpoint of the considered floating-point format. In such a case, in order
to return a correctly rounded quotient, one must know if the exact quotient b/a
is strictly below, equal to, or strictly above that midpoint. Of, course, this is
equivalent to knowing if b∗/a∗ is strictly below, equal to, or strictly above q′.
Lemma 8 says that r = b∗ − a∗q∗ exactly. Therefore, when 2σq′ is a midpoint:

1. if r = 0 then q′ = q∗ = b∗/a∗, hence b/a = 2σq′ exactly. Therefore, one
should return RN(2σq′);

2. if q′ 6= q∗ and r > 0 (which implies q′ = q+), then q′ overestimates b∗/a∗.
Therefore, one should return 2σq′ rounded down. This is illustrated by
Figure 3;

3. if q′ 6= q∗ and r < 0 (which implies q′ = q−), then q′ underestimates b∗/a∗.
Therefore, one should return 2σq′ rounded up;

4. if q′ = q∗ and r > 0, then q′ underestimates b∗/a∗. Therefore, one should
return 2σq′ rounded up. This is illustrated by Figure 4;

5. if q′ = q∗ and r < 0, then q′ overestimates b∗/a∗. Therefore, one should
return 2σq′ rounded down.

When 2σq′ is not a midpoint, one should of course return RN(2σq′).
Therefore, in all cases, we are able to find which value is to be returned.

38

q′

q− q∗ q+

b∗/a∗

Figure 3: The number q′ is equal to q+. In this case, the “residual” r was positive,
and—since q− < b∗/a∗ < q+—, q′ is an overestimation of b∗/a∗.

q′

q− q∗ q+

b∗/a∗

Figure 4: The number q′ is equal to q∗. In this case, the “residual” r was positive,
and q′ is an underestimation of b∗/a∗.

7 Conclusion

We have considered the possible influence of double roundings on several algo-
rithms of the floating-point literature: Fast2Sum, 2Sum, Veltkamp’s splitting,
2MultFMA, division correction iterations. Although most of these algorithms
do not behave exactly as when there are no double roundings, they still have
interesting properties that can be exploited in an useful way. Depending on the
considered applications, these properties may suffice, or specific compilation
options should be chosen to prevent double roundings.

References

[1] S. Boldo. Pitfalls of a full floating-point proof: example on the formal proof
of the Veltkamp/Dekker algorithms. In U. Furbach and N. Shankar, editors,
Proceedings of the 3rd International Joint Conference on Automated Rea-
soning, volume 4130 of Lecture Notes in Computer Science, pages 52–66,
2006.

[2] S. Boldo and M. Daumas. Representable correcting terms for possibly
underflowing floating point operations. In J.-C. Bajard and M. Schulte,
editors, Proceedings of the 16th Symposium on Computer Arithmetic, pages
79–86. IEEE Computer Society Press, Los Alamitos, CA, 2003.

39

[3] S. Boldo, M. Daumas, C. Moreau-Finot, and L. Théry. Computer validated
proofs of a toolset for adaptable arithmetic. Technical report, École Nor-
male Supérieure de Lyon, 2001. Available at http://arxiv.org/pdf/cs.
MS/0107025.

[4] S. Boldo and G. Melquiond. Emulation of FMA and correctly rounded
sums: proved algorithms using rounding to odd. IEEE Transactions on
Computers, 57(4):462–471, April 2008.

[5] M. Cornea, R. A. Golliver, and P. Markstein. Correctness proofs outline for
Newton–Raphson-based floating-point divide and square root algorithms.
In Koren and Kornerup, editors, Proceedings of the 14th IEEE Symposium
on Computer Arithmetic (Adelaide, Australia), pages 96–105. IEEE Com-
puter Society Press, Los Alamitos, CA, April 1999.

[6] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang, E. Schneider, and
E. Gvozdev. A software implementation of the IEEE 754R decimal floating-
point arithmetic using the binary encoding format. IEEE Transactions on
Computers, 58(2):148–162, 2009.

[7] T. J. Dekker. A floating-point technique for extending the available preci-
sion. Numerische Mathematik, 18(3):224–242, 1971.

[8] M. D. Ercegovac and T. Lang. Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publishers, Boston,
MA, 1994.

[9] S. A. Figueroa. When is double rounding innocuous? ACM SIGNUM
Newsletter, 30(3), July 1995.

[10] S. A. Figueroa. A Rigorous Framework for Fully Supporting the IEEE Stan-
dard for Floating-Point Arithmetic in High-Level Programming Languages.
PhD thesis, Department of Computer Science, New York University, 2000.

[11] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–47, March 1991.
An edited reprint is available at http://www.physics.ohio-state.
edu/~dws/grouplinks/floating_point_math.pdf from Sun’s Numeri-
cal Computation Guide; it contains an addendum Differences Among
IEEE 754 Implementations, also available at http://www.validlab.com/
goldberg/addendum.html.

[12] J. Harrison. Formal verification of IA-64 division algorithms. In M. Aagaard
and J. Harrison, editors, Proceedings of the 13th International Conference
on Theorem Proving in Higher Order Logics, TPHOLs 2000, volume 1869 of
Lecture Notes in Computer Science, pages 234–251. Springer-Verlag, 2000.

[13] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, PA, 2nd edition, 2002.

40

[14] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008. available at http://ieeexplore.
ieee.org/servlet/opac?punumber=4610933.

[15] International Organization for Standardization. Programming Languages –
C. ISO/IEC Standard 9899:1999, Geneva, Switzerland, December 1999.

[16] C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Panhaleux. Midpoints
and exact points of some algebraic functions in floating-point arithmetic.
IEEE Transactions on Computers, 60(2), February 2011.

[17] W. Kahan. Pracniques: further remarks on reducing truncation errors.
Commun. ACM, 8(1):40, 1965.

[18] W. Kahan. Lecture notes on the status of IEEE-754. PDF file
accessible at http://www.cs.berkeley.edu/~wkahan/ieee754status/
IEEE754.PDF, 1996.

[19] D. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
Reading, MA, 3rd edition, 1998.

[20] V. Lefèvre. The Euclidean division implemented with a floating-point di-
vision and a floor. Research report RR-5604, INRIA, June 2005.

[21] P. Markstein. IA-64 and Elementary Functions: Speed and Precision.
Hewlett-Packard Professional Books. Prentice-Hall, Englewood Cliffs, NJ,
2000.

[22] P. W. Markstein. Computation of elementary functions on the IBM
RISC System/6000 processor. IBM Journal of Research and Development,
34(1):111–119, January 1990.

[23] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50,
1965.

[24] D. Monniaux. The pitfalls of verifying floating-point computations. ACM
TOPLAS, 30(3):1–41, 2008. A preliminary version is available at http:
//hal.archives-ouvertes.fr/hal-00128124.

[25] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol,
Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2010. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1.,
ISBN 978-0-8176-4704-9.

[26] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summation
endlicher Summen. ZAMM, 54:39–51, 1974. In German.

[27] Y. Nievergelt. Scalar fused multiply-add instructions produce floating-point
matrix arithmetic provably accurate to the penultimate digit. ACM Trans-
actions on Mathematical Software, 29(1):27–48, 2003.

41

[28] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM
Journal on Scientific Computing, 26(6):1955–1988, 2005.

[29] M. Pichat. Correction d’une somme en arithmétique à virgule flottante.
Numerische Mathematik, 19:400–406, 1972. In French.

[30] D. M. Priest. Algorithms for arbitrary precision floating point arith-
metic. In P. Kornerup and D. W. Matula, editors, Proceedings of the
10th IEEE Symposium on Computer Arithmetic (Arith-10), pages 132–144.
IEEE Computer Society Press, Los Alamitos, CA, June 1991.

[31] D. M. Priest. On Properties of Floating-Point Arithmetics: Numerical
Stability and the Cost of Accurate Computations. PhD thesis, University
of California at Berkeley, 1992.

[32] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
part II: Sign, K-fold faithful and rounding to nearest. SIAM Journal on
Scientific Computing, 2005–2008. Submitted for publication.

[33] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summa-
tion part I: Faithful rounding. SIAM Journal on Scientific Computing,
31(1):189–224, 2008.

[34] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast ro-
bust geometric predicates. Discrete Computational Geometry, 18:305–363,
1997.

[35] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

42

