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Abstract

Preserving memory locality is a major issue in highly-
multithreaded architectures such as GPUs. These archi-
tectures hide latency by maintaining a large number of
threads in flight. As each thread needs to maintain a pri-
vate working set, all threads collectively put tremendous
pressure on on-chip memory arrays, at significant cost
in area and power. We show that thread-private data in
GPU-like implicit SIMD architectures can be compressed
by a factor up to 16 by taking advantage of correlations
between values held by different threads. We propose
the Affine Vector Cache, a compressed cache design that
complements the first level cache. Evaluation by simu-
lation on the SDK and Rodinia benchmarks shows that a
32KB L1 cache assisted by a 16KB AVC presents a 59%
larger usable capacity on average compared to a single
48KB L1 cache. It results in a global performance in-
crease of 5.7% along with an energy reduction of 11% for
a negligible hardware cost.

1 Introduction

Modern Graphics Processing Units (GPUs) are increas-
ingly used as general-purpose data-parallel processors.
Their architecture obeys the implicit-SIMD execution
model, which is also called Single Instruction Multiple
Threads (SIMT) by NVIDIA. Implicit-SIMD processors
run multiple simultaneous threads in lockstep on repli-
cated ALUs, and let them share cooperatively an instruc-
tion fetch unit and a memory access unit. This gives them
the efficiency advantage of Single-Instruction, Multiple-
Data (SIMD) execution, while retaining a scalable multi-
thread programming model [14].

Current high-end GPUs maintain from 25000 to 80000
fine-grained threads in flight. They leverage this massive
explicit thread-level parallelism both through concurrent
execution to increase throughput and through interleaved
execution to hide latencies. However, the sheer number of
threads running simultaneously brings heavy contention

on the register files and caches [15]. For instance, the
NVIDIA Fermi architecture in its default configuration
shares a 128KB register file and a 16KB L1 cache among
a maximum of 1536 threads. In this configuration, each
thread has only 21 registers and 10 bytes of cached private
memory at its disposal.

Further increasing the size of the register file and caches
appears impractical, as current GPUs already dedicate sig-
nificant resources to register files and caches. On-chip
memory sizes range from 4MB (NVIDIA Fermi [21])
to 12MB (AMD GCN [9]) on current GPUs. When the
working set of each thread cannot fit in on-chip memory,
parallelism has to be throttled down, hindering the abil-
ity to hide memory latency, or external memory has to be
used, at a significant cost in power consumption [5, 16].

In order to relieve pressure on first-level caches, we
propose to complement the L1 cache with a new hardware
structure named the Affine Vector Cache (AVC). The AVC
stores blocks of memory that obey specific patterns named
affine vectors. Affine vectors consist of either a sequence
of equal integers, or a sequence of uniformly-increasing
integers. As we will see, affine vectors represent an aver-
age of 67% of the private memory traffic to the L1 cache
when 50% of each thread’s working set is allocated to the
register file, and can attain 100% on a class of applications
in the high-performance computing segment.

The AVC stores affine vectors using a compact encod-
ing scheme, reducing the load on the L1 cache for a small
area footprint. Our simulation results show that replac-
ing 16KB of cache space by a 16KB-AVC improves the
apparent cache capacity by more than half on a GPU ar-
chitecture modeled after NVIDIA Fermi [21]. As a conse-
quence, the AVC reduces dynamic energy consumption at
the board level by up to 39% (11% on average) in a high
register-pressure context. By reusing the existing cache
memory arrays, we keep the area overhead negligible.

We first give an overview of implicit-SIMD architec-
tures and introduce inter-thread correlation patterns in
section 2. We then conduct a suitability analysis by char-
acterizing dynamic load and store traffic to thread-private
memory in section 3. The proposed AVC architecture is

1



described in section 4. Finally, section 5 experimentally
evaluates the AVC and its impact on memory bandwidth
usage, power and performance, and quantifies the hard-
ware overhead.

2 Background

We will consider in this paper the case of a GPGPU archi-
tecture inspired from NVIDIA GPUs [19, 21], although
the AVC can benefit any implicit-SIMD architecture that
emphasizes inter-thread locality [13, 20].

2.1 Implicit SIMD

GPUs follow a single program, multiple data (SPMD)
programming model. Many parallel instances, or threads
running a single kernel are executed in parallel. The ex-
ecution order of threads is undefined outside of explicit
synchronization barriers.

To amortize the cost of instruction fetch and pipeline
control over multiple execution units, GPUs take advan-
tage of implicit SIMD execution. Threads are grouped
into so-called warps. All threads in a warp run in lock-
step, so that one instruction can be fetched and decoded
on behalf of multiple threads. Warps are typically com-
posed of 32 to 64 threads. Multiple warps are kept in flight
on each streaming multiprocessor (SM) to hide memory
and pipeline latency. Each SM has a physical register file
which is partitioned between all warps running on the SM.
The number of registers per thread r is set by the compiler,
following optional programmer-provided constraints. A
GPU chip has multiple independent SMs for scalability.

From the perspective of the hardware, each instruc-
tion can be thought of as operating on warp-sized vec-
tors as in an explicit SIMD processor. Each register is
formed by a vector of data words d = (d0, d1 . . . dn−1),
where n is the warp size. We assume that each word
is 32-bit wide. As each thread inside a warp may en-
counter control flow statements leading to different ex-
ecution paths, threads of a warp are allowed to diverge,
then reconverge at a later time. Threads are individu-
ally disabled as the SM sequentially runs through all paths
taken by at least one thread. All instructions are implicitly
predicated by a hardware-managed activity mask m that
indicates the activity status of each thread of the warp:
m = (m0,m1 . . .mn−1),mi ∈ {0, 1}, where mi = 1
means thread i is active.

2.2 Memory layout

Memory is split into distinct spaces, which include at least
a global memory space shared among all running threads,
and a thread-private memory space. We will focus on the
private memory space for the remainder of this paper, as it
constitutes the primary target for affine compression. The
private memory space contains thread-private data such
as the call stack1. The private spaces of threads are inter-
leaved on a word-by-word basis in physical memory. This
interleaved layout emphasizes inter-thread spacial locality
by assigning consecutive memory locations to threads that
run simultaneously on the same SM.

Warp size, interleaving stride and cache block size are
adjusted so that memory accesses of all threads in a warp
fall within the same cache when they all request the same
private address. The operating system or device driver
maps private address ranges so that no false sharing of pri-
vate memory occurs between the caches of different SMs.
Private memory does not impose any cache coherence re-
quirement beyond presenting a consistent view of mem-
ory to each thread. We assume 128-byte cache blocks,
32-wide warps and 4-byte interleaving as in the NVIDIA
Fermi GPU architecture [22].

When threads of a warp request different private ad-
dresses, as can happen with indirect array indexing,
threads are serialized so the memory access is broken
down into multiple transactions [22]. Thus, all memory
accesses can be reduced to individual transactions per-
formed on a data vector predicated by a subset of the ac-
tivity mask.

2.3 Inter-thread data correlation

Implicit SIMD execution and warp width are essentially
micro-architectural features that are not exposed in the
programming model. The concept of scalar variables
in explicit-SIMD architectures has no equivalent in the
implicit-SIMD model. Instead, scalar variables such as
loop counters and memory addresses are duplicated and
computed independently by all threads, leading to uni-
form and affine vectors.

Following the terminology from [6], we categorize
warp-sized vectors of data d associated with activity
masks m into three classes:

Uniform di = c when mi is set
Affine di = b+ i× s when mi is set
Generic Non-affine (implies non-uniform)

1We refer here to the memory space known as local in CUDA and as
private in OpenCL, which is implemented using off-chip scratch buffers
on AMD GPUs
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Uniform and affine vectors have been shown to repre-
sent together 44% of register reads and 28% of register
write-backs in some GPU computing applications, even
when conservatively assuming the activity mask to be all
ones [6]. However, this analysis is restricted to the reg-
ister file, and does not consider memory traffic. In this
paper, we assess the presence of affine vectors in memory
transfers.

For ease of implementation, we will restrict strides of
affine vectors to powers of 2 and zero, and require the base
to be a multiple of stride. Restricted affine vectors are ei-
ther uniform or are such that di = (β+i)×2σ. Supporting
non-power-of-two strides provides little additional bene-
fit, as they account for less than 3% of affine vectors in the
GPGPU applications considered in the coming section.

3 Affine vectors in private memory
We conduct an experimental analysis on the characteris-
tics of private memory traffic with respect to affine vec-
tors.

3.1 Methodology
We consider a set of high-register-pressure benchmarks
from the NVIDIA CUDA SDK [23] and Rodinia [3]. Reg-
ister pressure was recognized to be a factor limiting per-
formance in several benchmarks of the Rodinia suite, such
as the Needleman-Wunsch application [3].

The optimal share of register-file space that should
be allocated to each thread depends on many parame-
ters which are both application-specific and architecture-
specific [22, 30]. Rather than opt for a single regis-
ter count for each application, we perform an exhaustive
analysis over the whole possible range of register counts.
Our intent is to evaluate scenarios where the capacity of
the physical register file and the capacity of the L1 cache
are re-balanced.

Each benchmark is compiled using NVIDIA’s com-
piler nvcc, with incrementally tighter register constraints.
Starting from the unconstrained register count rdefault, we
gradually reduce the register count until register alloca-
tion fails. The upper bound on register count rbase is the
minimal per-thread register count below which the com-
piler starts to spill variables to private memory. In general,
rbase will be slightly lower than rdefault. We only consider
kernels that exhibit medium-to-high register pressure, by
ensuring rbase ≥ 8. The two kernels of Needleman-
Wunsch are almost identical and gave similar results. We
show results for the first kernel only. The values obtained
for rdefault and rbase on the Tesla architecture are shown

for each kernel in the first two bars of figure 1. For ref-
erence, the default register counts obtained on the Fermi
architecture in 64-bit mode are shown on the third bar.

For each valid register count, benchmarks are simu-
lated on the Barra GPU simulator [4] to characterize the
memory traffic to private memory. Our baseline archi-
tecture is based on the NVIDIA Tesla architecture [19],
with a micro-architecture modeled after NVIDIA Fermi
GPUs [21], as the latter offer data caches. As the traf-
fic generated by private memory accesses is not affected
by the topology of the memory hierarchy, we perform the
analysis on a single-SM GPU model. Architectural pa-
rameters are summarized in Table 1.

Table 1: Characteristics of the baseline SM
Parameter Values

Warp size n = 32
Max warps wmax = 48
Total registers rtotal = 512
Private L1 48K, 6-way, pseudo-LRU

3.2 Application characterization

For each configuration, we count and classify dynamic
load and store instructions on private memory. The ra-
tios of zero, (non-zero) uniform, and (non-uniform) affine
transactions over all transactions are summarized in fig-
ure 1(b) for a register-file share of 50% of the working set
(r = 0.5 rbase). Ratios observed at other register pressure
points are similar. For r = 0.75 rbase, the average affine
ratio is 66%, while it is 67% at r = 0.5 rbase. We give
cumulative values for load and store transaction counts,
as their impact on memory-subsystem pressure is com-
parable. The averages are computed by giving the same
weight to all applications, regardless of the number of ker-
nels.

Kernels can be analyzed by realizing that registers are
used to retain two different kinds of data: i) Computa-
tion data are used directly in computations, as part of the
program data-flow, and are typically floating-point data.
ii) Control data are pointers, array indexes and loop coun-
ters, which are used primarily in address calculations and
comparisons that drive the control flow. Through manual
examination of the sources of affine vectors, we make the
empirical observation that affine vectors are most com-
monly found in control data.

Figure 2 plots the private memory traffic profile of se-
lected kernels, with global memory traffic for reference.
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(b) Traffic breakdown, for r = 0.5 rbase including original benchmarks
and 32-wide-block benchmarks (32).

Figure 1: Memory traffic analysis.

We discuss specific aspects of the benchmarks in the fol-
lowing paragraphs.

Persistent computation data The CFD kernel is
compute-intensive and has a working set mostly made of
computation data. Conversely, its memory access patterns
are straightforward and can be computed from few ad-
dresses. This accounts for the modest affine vector ratio
observed on Figure 1(b) and Figure 2(a).

Non warp-aligned memory blocking Backprop,
Hotspot and SRAD access memory by blocks of 16 × 16
words. As a result, 32-wide vectors of memory addresses
are the concatenation of two disjoint 16-wide affine vec-
tors, and are not affine vectors. We believe this choice of
blocking dimensions is also the result of an optimization
for the Tesla architecture, which has a 16-wide memory
pipeline and a limited 16KB shared memory [22].

The applications were manually modified to use thread
blocks of size 32 × 32. The results obtained with these
updated benchmarks are shown on the right side of fig-
ure 1(b). The average affine ratio increases to 80%. These
results suggests that current GPU computing applications
may benefit from considering affine vectors at 16-word
granularity. We consider 32-wide affine vectors in this
paper as it simplifies the discussion, though the AVC can
be generalized to vector sizes which are sub-multiples of
the warp size, to offer a different tradeoff of accuracy to
compression-ratio.

Persistent control data, local computation data Com-
putation data in Hotspot, Heartwall and Needleman-

Wunsch are live only at local scope. The inner loop body
consists in one or a few memory loads which are followed
by computations, then by one or more memory stores. All
variables that persist across inner loop iterations are made
of control data.

As an extreme point, Needleman-Wunsch kernels suffer
from significant register pressure, and require 47 registers
each on Fermi in 64-bit mode. Surprisingly, we find that
3 registers are enough to hold all generic vectors in each
thread’s private working set.

Address space expansion We observe on Figure 1(a)
that kernels suffer from higher register pressure when
compiled for Fermi than when compiled for Tesla. We
found the register pressure increase is primarily caused
by 64-bit addressing, which requires all pointers to oc-
cupy two 32-bit registers. Compared to Fermi in 32-bit
mode, Needleman-Wunsch kernels require 20 additional
registers each and Heartwall requires 12 additional regis-
ters when compiled in 64-bit mode. Aside from pointer
size, we found that instruction set differences bear little
impact on register allocation. The 32 high-order bits of
64-bit virtual addresses are highly likely to be constant in
current applications. Thus, we expect the additional reg-
isters to be mostly made of uniform vectors.

The analysis conducted in this section shows that pri-
vate memory traffic presents a very high amount of re-
dundancy, and hints that private memory is highly com-
pressible. On average, affine vectors account for 66% of
memory traffic to the private memory space on unaltered
benchmarks. When benchmark parameters are adjusted to
better fit the micro-architecture model, this ratio reaches
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Figure 2: Private memory traffic profiles of selected representative kernels. Private memory transactions are classified
among affine and generic vectors and are normalized by the execution rate. The Global column offers the amount of
memory traffic to the global memory space as reference, without distinction between affine and generic data.

80%.

4 Affine vector cache
We describe in this section the organization and the work-
ings of the AVC.

4.1 Cache organization
The AVC complements the L1 cache of each SM. Figure
3 outlines the new cache hierarchy. Stores are forwarded
either to the AVC or the L1 cache depending on whether
the affine encoding succeeds. On loads, both cache tags
are looked up. If a match is found in the AVC tags, the
base b and stride s are retrieved from the AVC data ar-
ray, then decoded to an expanded vector d. Data fills and
write-backs with the lower levels of the memory hierarchy
are handled in a symmetric way.

Figure 3: Overall architecture of the AVC and L1 cache.

4.2 Fine-grained coherence data

When a store instruction is predicated by a partially-set
activity mask, it only writes to a subset of the destina-
tion cache block. Conventional caches implement partial
writes to a cache block by ensuring the cache has own-
ership over the cache block considered and modifying
the cached copy. However, random writes are generally
not possible inside an affine vector. A read-modify-write
implementation would produce a partially-affine vector,
which would be considered as generic and excluded from
the AVC. We found the read-modify-write solution essen-
tially nullifies the benefits of the AVC on kernels with di-
vergent control-flow such as LUD, and did not retain this
option.

We propose instead to generalize predication to all
memory transactions, and maintain cache coherence data
at word-granularity (Figure 4). Read and write transac-
tions are accompanied by the access mask m. The AVC is
essentially equivalent to a sectored cache [25] with word-
sized cache blocks.2 Each cache line is subdivided into
16 vectors, and each vector is made of 32 cache blocks.
Each block corresponds to one memory word and has one
associated valid bit validi. Valid bits of a vector make a
valid mask valid. The data itself is stored in the compact
form (b, s), where log2(s) is stored on 3 bits with a special
value for s = 0. and associated with each vector. Valid bit
masks valid are stored inside the data array rather than the
tag array, in order to maintain the same tag lookup latency
as the baseline cache architecture.

2We name line the part of the cache associated with a tag and block
the part associated with a valid bit.
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Figure 4: Contents of the tags and arrays of the AVC and L1 cache.

4.3 Cache access protocol
Unlike a conventional sectored cache, the AVC supports
vectorized transactions, which access several blocks con-
currently inside a vector. A vector is partially valid when
its companion valid mask is partially set. Thus, a vector-
ized transaction can lead to both a (partial) cache hit and a
(partial) cache miss. Figure 5 gives an example of a partial
read miss. Partial misses are handled by first servicing the
hit request, then replaying the instruction on behalf of the
threads that encountered a miss. This partial-replay mech-
anism is similar to the one used to deal with bank conflicts
on SIMD architectures with scatter-gather support [26].

The key idea behind mask-based coherency control is
that the scope of variables is correlated with the struc-
ture of control flow in structured programming languages.
A variable which is assigned at a given nesting level is
likely to be used at the same or deeper nesting levels. This
means that the activity mask of a load is likely to be a sub-
set of the mask of the preceding store, and partial AVC
hits are expected to be infrequent.

Cache coherency Every valid bit in the AVC indicates
that the corresponding copy in the L1 is invalid. When a
vector is evicted from the AVC, any partial copy present
in the L1 must also be invalidated. Partial vectors from
the AVC and L1 cache are merged together when written
back, according to the valid mask of the vector from the
AVC.

Conflicts A conflict happens when two partial vectors
with different base and stride are mapped to the same vec-
tor in the AVC. The two following situations lead to con-
flicts:

1. Affine data written to the AVC conflict with the cur-
rent AVC contents.

2. An AVC vector fill initiated by a read transaction
conflicts with cached data.

Conflicts cause the older partial vector to be evicted from
the AVC and replaced by the younger one. Any L1 partial
copy is also invalidated and merged on the memory side.

Algorithm 1 details the processing of read transactions.
In our formalism, the AVC Lookup operation returns a
flag hit which is set on a line hit, in addition to the valid
mask valid, base b and stride s. Likewise, the Encode
operation returns a flag affine which is set when the input
was successfully encoded into an affine vector (b, s).

The handling of write operations is summarized in Al-
gorithm 2. Writes may update an affine vector by writ-
ing additional components without altering the base and
stride. This situation happens in the case of extraneous
thread divergence, as the instructions are executed twice
with non-overlapping activity masks [13]. This case is
handled using a comparator on the compact encoding. It
can be considered as a form of silent store [18], although
it does affect the valid bit mask.

Algorithm 1 Processing of a read request (a,m)

(hita, valid, b, s)← AVC.Lookup(a,m)
(hitg,d)← L1.Lookup(a)
if hita and (m ∧ valid) 6= 0 then
d← Decode(b, s) {AVC hit}
if m ∧ ¬valid 6= 0 then

Replay(m ∧ ¬valid) {Partial miss}
end if

else if not hitg then
d← Memory.Read(a) {Miss, fill}
(b, s, affine)← Encode(d,m)
if affine then

AVC.Replace(a, b, s,m)
else

L1.Replace(a,d)
end if

end if
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Figure 5: Access sequence on a partial read miss.

Algorithm 2 Processing of a write request (a,m,d)

(b, s, affine)← Encode(d,m)
if affine then

(hit, valid, b′, s′)← AVC.Lookup(a,m)
if hit and (valid ∧ ¬m) 6= 0 and (b, s) 6= (b′, s′)
then

L1.Invalidate(a,m) {Conflict: writeback dirty
data}
AVC.Invalidate(a, b, s,m)

end if
AVC.Write(a,m,b, s)

else
L1.Write(a,m, d)

end if

5 Evaluation
We evaluate the effect of the AVC on memory pressure,
examine the hardware implementation and overhead and
study the impact on performance and board-level power.

5.1 Memory pressure analysis
We carry a sensitivity analysis across the 4 cache con-
figurations listed on Table 2. All caches use a tree-based
pseudo LRU replacement policy, and the other parameters
are identical to those listed table 1. To allow a fair com-
parison, configurations are selected such that the area and
power requirements of tag arrays and data arrays are vir-
tually identical across all configurations. The remaining
differences will be quantified in section 5.2.

The primary objective of the AVC is to relax pressure
on memory bandwidth. Accordingly, the metric used for
evaluation is the memory traffic to lower-level caches gen-
erated by fills and writebacks of the AVC and L1 cache
(referred as memory traffic in the rest of this section). We
define rcache as the smallest register count such that mem-
ory traffic is below one access every 10 000 instructions,

Table 2: Cache configurations studied

Configuration L1 cache AVC

Baseline 48K, 6-way –
1 40K, 5-way 8K, direct-mapped
2 32K, 4-way 16K, 2-way
3 24K, 3-way 24K, 3-way

at which point we consider it as negligible. The values of
rcache are given on table 3 for each configuration.

Overall, the cache pressure reductions gained from the
AVC are consistent with the amount of affine vectors in
private memory traffic observed in section 3. On average
over all applications, the combined cache can fit respec-
tively 3.7, 4.3 and 3.7 additional registers under config-
uration 1, 2 and 3 compared to the baseline. This cor-
responds to respective increases of 50%, 59% and 50% in
total cache capacity. Profiles of selected kernels are shown
in figure 6. The private memory traffic is zero for Back-
prop2, not shown, in any configuration, since its working
set fits entirely in the smallest L1 cache.

Bandwidth amplification We observe in figure 6(d)
that bandwidth pressure in Heartwall increases under con-
figurations 1 and 2 with 7 registers. This seemingly sur-
prising fact (Heartwall’s private memory traffic is 100%
affine from Figure 1(b)) is explained by conflict misses
in the lowest-associative AVC configurations. Conflict
misses are especially detrimental to performance in a
compressed sectored cache, as they require decoding and
eviction of whole cache lines, resulting in a bandwidth
amplification effect on the memory side. Possible solu-
tions include i) increasing the associativity of the AVC, ii)
adding an affine-aware victim cache, iii) combining the
AVC and L1 tags in a skewed set-associative cache [27].
Alternatively, extending the affine compression to lower
cache levels and memory would eliminate the bandwidth
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Figure 6: Classification of cumulative fills and writebacks on private memory.

amplification effect altogether.

5.2 Hardware implementation
In addition to the conventional cache hardware, the AVC
design includes encoding and decoding units.

Encoding unit The main difficulty in encoding arises
from the activity mask. The stride computation has to ig-
nore the inactive components of the input vector, which
are not known statically. This makes the computation
challenging to implement efficiently in hardware.

However, we found that activity masks are dense, such
that vectors have consecutive active components. Affine
vectors with non-dense activity masks that have more than
one bit set represent less than 0.1% of all affine vectors in
our experiments. The proposed encoding unit estimates
the stride by performing pair-wise xor operations between
vector elements: s = d2i⊕d2i+1, where v2i = v2i+1 = 1.
The xor comes from a subtracter in which most of the
logic was optimized away by taking advantage of the
alignment constraint of affine vectors. A priority encoder
then selects the stride corresponding to the first valid pair
of elements. The base b is computed from the estimated
stride s and the value di of the first active vector compo-

nent i as b = di−i ·s. The candidate pair (b, s) is then run
through the decoding unit and compared with the source
vector under the activity mask.

Decoding unit The decoding unit computes di = b+ i ·
s, which can be implemented by broadcasting b and s to
all lanes, left-shifting each lane ID i according to s, then
summing the result with b on each lane.

Overhead estimation The decoding unit is made of a
row of thirty-two 5-by-3-bits shifters and 32-bit adders.
A 32-bit adder heavily optimized for power can be imple-
mented with a latency of 500 ps and dynamic energy of
1 pJ on a 90 nm process [24]. Accordingly, we conser-
vatively bound the latency of the decoding unit to 1 ns,
including routing. It fits within the timing budget of a sin-
gle clock cycle given frequency targets of GPU architec-
tures. From the same sources, the dynamic energy of both
the encoding and decoding unit is estimated under 100 pJ.
The AVC valid bits need to be accessed in addition to the
tags and L1 data arrays. Estimations using CACTI [29]
point to an access energy of 10 pJ for a 64-bit wide 16KB
SRAM in 45 nm. The overall dynamic energy overhead
is well under 1 nJ per access under the most conservative
assumptions.
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Table 3: Tolerable register pressure for various cache con-
figurations. * Indicates the minimal allocatable register
count was reached.

Benchmark rbase rcache

B 1 2 3

Backprop2 12 7* 7* 7* 7*
CFD2 35 30 27 26 27
FDTD3D 22 13 14 14 14
SRAD2 12 6 7 6 7
SRAD1 10 8 8 8 8
Backprop1 13 7* 7* 7* 7*
Hotspot 27 17 14 9 14
FastWalshTransform2 8 5 4 4 4
BlackScholes 17 9 5 5 5
FastWalshTransform3 11 7 4 3* 4
Heartwall 25 10 9 9 8
LUD3 16 10 6 6 6
Needleman-Wunsch1 24 22 3* 3* 3*
BinomialOptions 14 7 6* 6* 6*

Extrapolating from a published ALU design [12] and
accounting for process scaling, our conservative back-of-
the-envelope area estimate is 80 µm2 for both the encod-
ing and decoding units in a 40 nm process. The additional
5 Kbits of SRAM cells account for another 1000 µm2 ac-
cording to detailed CACTI results [29]. A Fermi SM built
on a 40 nm process is 15.6 mm2 by our measurements on
a die micrograph, so the area overhead is in the order of
10−4. Increase in static power is expected to be commen-
surate with the difference in area.

5.3 Power-performance analysis

We simulate a single-SM GPU modeled after the Fermi
micro-architecture at cycle level, based on available in-
formation [21, 31]. Dynamic power is estimated us-
ing a trace-driven linear model calibrated from micro-
benchmark results [5], following a methodology inspired
by Hong and Kim [16]. Relative power of Needleman-
Wunsch, Backprop, Hotspot and SRAD are within 20%
of experimental power measurements [3].

We focus on the 32K L1 + 16K AVC configuration, for
r = 0.5 rbase. The overhead considered for the AVC con-
figuration is 1 extra cycle and (conservatively) 1 nJ per
access. We assume that no decoding bypass exists, so the
latency overhead applies to both affine and non-affine pri-
vate memory loads. Figure 7(a) shows the performance
of the AVC configuration normalized by baseline perfor-
mance.

Kernels bound by memory throughput like FDTD3D,
CFD and FastWalshTransform show some performance
improvements. Performance of other kernels such as
Needleman-Wunsch is not significantly affected, as multi-
threading is able to hide the extra memory latency. How-
ever, memory accesses have a notable impact in terms of
energy consumption, as found in figure 7(b). Heartwall
encounters a slowdown of 0.3% with the AVC, due to the
bandwidth amplification effect described section 5. Over-
all, performance improves by 5.7%, while energy is re-
duced by 11%.

Our baseline architecture has no L2 data cache, al-
though some GPUs do [21]. However, accessing the dis-
tributed L2 cache through the on-chip interconnect also
consumes significant energy. The L2 aggregate capacity
is also lower than the aggregate L1 capacity.

6 Related work
Cache compression that exploits regular patterns, such as
Frequent Value Cache [32], Frequent Pattern Cache [1]
or Zero-content Augmented Caches [10] has been stud-
ied for single-processor and multi-core architectures. This
area of research has focused on compressing patterns that
can appear out of context, such as small integers or zeroes,
or leveraging correlations between different variables of
the same thread. By contrast, the AVC takes advantage of
correlations between several instances of the same pro-
gram variable owned by different threads. Prior work
uses this inter-thread data correlation effect to reduce the
power consumption of the register files and datapaths on
GPUs [6], or to improve the throughput of SMT CPUs [8].
We exploit the same effect in a different way by targeting
data caches. The Mergeable cache architecture proposed
by Biswas et al. merges identical cache lines belonging
to different processes [2]. It targets coarse-grained multi-
process workloads, while the AVC addresses fine-grained
GPU multi-threading.

As memory bandwidth is a major concern in GPU de-
sign, a rich panel of memory compression techniques have
been proposed or implemented for GPUs, notably lossless
compression of the frame-buffer for power saving pur-
poses [17, 28]. A memory channel compression scheme
that may be in use in some contemporary GPUs identifies
vectors that contain only 1, 2 or 4 distinct scalars to save
memory bandwidth [11]. These techniques target off-chip
memory rather than caches, so they are orthogonal to the
AVC.

Intel’s Larrabee project [26] and AMD’s Graphics Core
Next (GCN) project [9] describe graphics-oriented archi-
tectures based on explicit-SIMD cores. Both architectures
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Figure 7: Performance and energy consumption of the 32K L1+16K AVC configuration relative to the baseline 48K
L1 configuration, for r = 0.5rbase.

provide a scalar unit and a scalar register file, acting in
complement with the SIMD unit and register file. GCN
also envisions a dedicated cache for scalar data. While
the scalar cache serves a similar purpose as the AVC, it
only operates on data that was marked explicitly as scalar
by the compiler.

7 Conclusion
High-throughput implicit-SIMD architectures maintain a
large number of thread contexts in flight, placing tremen-
dous pressure on register files and local memory. How-
ever, we show that significant correlations exist between
instances of long-lived thread-private variables, leading to
affine vectors in memory. Under register pressure con-
straints allowing half of thread-private data to fit in the
register file, we observe on average that 67% of the re-
maining half is composed of affine vectors. By exploit-
ing this source of redundancy, an AVC replacing 33% of
the L1 cache increases the total effective cache capacity
by 59%, saving 11% of energy. As a microarchitectural
feature, the AVC has no impact on the instruction set and
software stack, and preserves the implicit-SIMD program-
ming model. It can opportunistically detect affine vec-
tors in complex and dynamic applications and it tolerates
control-flow divergence.

The insights gained throughout our study suggest that
two directions could be followed to apply inter-thread data
correlations to parallel architectures. First, the compiler
could be made aware of the AVC by prioritizing spills of
variables that can be identified as affine through a static di-
vergence analysis [7]. Second, affine compression could
be extended upwards, to the register file, and downwards
in the memory hierarchy, to lower-level caches and mem-
ory. In addition to the further compression benefits it

would enable, it would eliminate the overhead of encod-
ing and decoding affine data.

While on-line hardware data compression has been tra-
ditionally centered on improving the usable capacity of
memories, we expect the focus to shift to link compres-
sion techniques that aim at reducing the amount of on-chip
and off-chip communication. Data compression on mem-
ory traffic should become increasingly relevant with the
advent of highly-parallel, highly-integrated architectures,
as power and bandwidth become scarce resources.
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