
Simultaneous Branch and Warp Interweaving for Sustained GPU
Performance

Nicolas Brunie
Kalray and ENS de Lyon
nicolas.brunie@kalray.eu

Caroline Collange
Universidade Federal de Minas Gerais

caroline.collange@dcc.ufmg.br

Gregory Diamos
NVIDIA Research

gdiamos@nvidia.com

Abstract

Single-Instruction Multiple-Thread (SIMT) micro-
architectures implemented in Graphics Processing Units
(GPUs) run fine-grained threads in lockstep by grouping
them into units, referred to as warps, to amortize the cost
of instruction fetch, decode and control logic over multi-
ple execution units. As individual threads take divergent
execution paths, their processing takes place sequen-
tially, defeating part of the efficiency advantage of SIMD
execution. We present two complementary techniques
that mitigate the impact of thread divergence on SIMT
micro-architectures. Both techniques relax the SIMD ex-
ecution model by allowing two distinct instructions to
be scheduled to disjoint subsets of the the same row of
execution units, instead of one single instruction. They
increase flexibility by providing more thread grouping
opportunities than SIMD, while preserving the affinity
between threads to avoid introducing extra memory di-
vergence. We consider (1) co-issuing instructions from
different divergent paths of the same warp and (2) co-
issuing instructions from different warps. To support (1),
we introduce a novel thread reconvergence technique
that ensures threads are run back in lockstep at control-
flow reconvergence points without hindering their ability
to run branches in parallel. We propose a lane shuffling
technique to allow solution (2) to benefit from inter-warp
correlations in divergence patterns. The combination
of all these techniques improves performance by 23%
on a set of regular GPGPU applications and by 40%
on irregular applications, while maintaining the same
instruction-fetch and processing-unit resource require-
ments as the contemporary Fermi GPU architecture.

1. Introduction

Graphics Processing Unit (GPU) architectures have
proven successful for general-purpose parallel comput-
ing in various applicative areas [27]. GPUs group
threads into packets, referred to as warps, and run them
in lockstep on SIMD units. Architectures based on
SIMD execution offer a potential efficiency advantage
by sharing a common pipeline front-end across mul-
tiple execution units. However, this execution model
only benefits applications whose control flow patterns
and memory access patterns present enough regularity.
Prior work has shown that the performance potential of
GPUs is vastly underexploited by many irregular appli-
cations [21, 15, 8].

Our goal is to broaden the applicability of GPU archi-
tectures by substantially improving their performance
on irregular applications, while maintaining their per-
formance on regular applications. To achieve this goal,
we introduce two complementary techniques that tackle
the divergence problem. They both reclaim SIMD lanes
that would have been left idle due to divergence to run
instructions of other threads. The first technique, that we
name Simultaneous Branch Interweaving (SBI), lever-
ages the inherent parallelism available between diver-
gent branches to co-issue instructions from the same
warp. The second technique, Simultaneous Warp Inter-
weaving (SWI), selects instructions from other partial
warps to fill the gaps left by divergence.

The idea behind SBI and SWI comes from realizing
that the benefits of SIMD execution arise from amortiz-
ing the cost of instruction fetch units, instruction decode
units and control logic across many execution units.
The two micro-architectures we propose maintain the



same ratio of instruction control units to execution units
as some existing GPU architectures, but relax the con-
straints of SIMD execution to better tolerate thread di-
vergence. Like Simultaneous Multi-Threading (SMT)
on superscalar processors [31], SBI and SWI increase
functional unit utilization by filling scheduling bubbles
thanks to fine-grained resource allocation to multiple
threads. Together, they improve performance by 40% on
a set of irregular applications, and also accelerate regular
applications by 23%.

We will first examine existing GPU micro-
architectures and define our baseline model in section 2.
We will then consider the SBI technique that simulta-
neously co-issues instructions from multiple branches,
with a focus on ways to achieve thread reconvergence in
section 3. The second technique, SWI, will be described
in section 4. Finally, we will quantify the performance
and overhead of the proposed solutions in section 5 and
review related work in section 6.

2. Background

Current-generation GPUs operate according to an im-
plicit SIMD execution model, also called SIMT (Sin-
gle Instruction, Multiple Threads) by NVIDIA. From
the programmer’s and compiler’s point of view, this
model is similar to SPMD (Single Program, Multiple
Data). The programmer writes a single program or
kernel. A large number of instances of the kernel (or
threads) are then run in parallel. During execution on
a GPU, transparent hardware mechanisms group threads
into warps, and execute their instructions in lockstep on
SIMD units [27]. The execution order of threads is un-
defined by the programming model unless the program-
mer uses explicit synchronization primitives.

Each thread may logically follow a differentiated
control flow path, even though it physically runs in lock-
step with other threads of the warp. To maintain the
illusion of differentiated control flow, most GPUs use
implicit instruction predication. The context associated
with future branches (PC and mask) are stored in a hard-
ware stack [22]. Entries are popped from the stack as
control flow reconverges. Reconvergence points are ex-
posed at the architectural level, and are inserted by the
compiler.

For scalability reasons, GPUs are made of several
independent warp processors, that we name Stream-
ing Multiprocessors (SMs). Multiple warps are main-
tained in flight in each SM, and their execution is in-
terleaved at the granularity of an instruction for latency
tolerance purposes. Recent GPU architectures such as

NVIDIA Fermi have several clusters per SM, in a way
that is reminiscent of clustered multi-threaded architec-
tures [11, 19]. Each cluster has its own instruction fetch
unit and scheduling logic [27]. This enables the sharing
of instruction caches, data caches and lesser-used func-
tional units at a coarse granularity, while keeping the
warp width small enough to tolerate thread divergence.

Baseline We consider in this paper a baseline SM
micro-architecture closely inspired by Fermi, outlined
in Figure 1. Like Fermi, it handles branch divergence
using a hardware stack. Warps are split into two warp
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Figure 1. Baseline SM micro-architecture.

pools, respectively made of warps with even identifiers
and warps with odd identifiers. Each pool has dedicated
independent scheduling resources. Each clock cycle,
one instruction from each pool is fetched from the cache
and fed into an instruction buffer comprising one entry
per warp. Two instruction schedulers pick one ready
instruction each from their associated instruction buffer
and issue it. Each instruction scheduler selects its oldest
instruction [25]. Dependencies between instructions are
tracked using a scoreboard. It consists of a table indexed
by warp ID, where each entry contains the destination
register IDs of the instructions in flight for the warp [7].
When a new instruction is decoded, its source and desti-
nation register IDs are compared against the scoreboard
entries for its warp. The dependency bit vector that is
produced by comparisons is kept in the instruction buffer
alongside the decoded instruction. When an instruction
is retired, both the scoreboard and the instruction buffer
entry are updated to mark the dependency as cleared.
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Instructions whose dependency mask reach zero are eli-
gible for scheduling.

The pipeline back-end consists of four groups of
SIMD units. To balance throughput and hardware cost,
the SIMD width may be lower than the warp width. In
this case, the warp is broken down into several waves
sent through the pipeline. Operand buffers perform
throughput matching between the register file and exe-
cution units. The Multiply-Add (MAD) units and Spe-
cial Function Units (SFU) respectively execute most
arithmetic instructions and transcendental functions as
in NVIDIA’s architectures [27]. The Load-Store Unit
(LSU) arbitrates access to a single 128-byte port to
the L1 cache. It can coalesce together multiple par-
allel accesses that fall within the same 128-byte cache
block. Memory instructions that encounter conflicts are
replayed with an updated activity mask reflecting the
transactions that remain to be issued.

We contrast the techniques proposed throughout this
paper with the baseline SIMT execution model on a sim-
ple example on figure 2. It depicts the execution pipeline
when an if-then-else block with 2 warps of 4 threads is
run. Each instruction is identified by its address, from
1 to 6. The if branch contains instructions 2 to 4, and
the else branch contains instruction 5. SBI improves
over the baseline SIMT by simultaneously scheduling
instructions from different branches. In figure 2(b), a
secondary scheduler issues instruction 5 of the else path
together with instruction 2. Optional reconvergence con-
straints can be applied to SBI to re-align threads when
control flow reconverges, as with instruction 6 of fig-
ure 2(c). SWI issues instructions from other warps, such
as instruction 2 of warp 2 together with instruction 3 of
warp 1 in figure 2(d). Finally, both techniques can be
combined, is in figure 2(e).

3. Simultaneous branch interweaving

In this section, we focus on extracting parallelism
from divergent branches of the same warp. Whether
a branch is divergent or not is generally only known
at runtime: hence, our approach is based on dynamic
scheduling. When control flow splits into two branches,
current SIMT architectures execute each branch sequen-
tially. However, branch paths are taken by disjoint sets
of threads. They are independent from each other and
can be executed in any order, including in parallel, with-
out violating the SIMT programming model.

3.1. Enabling parallel branch execution

Decoupling the execution of concurrent branch paths
requires additional hardware support beyond conven-
tional stack-based reconvergence. Dynamic Warp Sub-
division was proposed to enable the shared instruc-
tion scheduler to interleave the execution of instructions
from each path [24]. This technique improves memory
latency hiding by providing more memory-level paral-
lelism. Instruction throughput is not affected or may de-
crease, as the execution of individual instructions hap-
pens sequentially as in SIMT. Warps are decomposed
into multiple warp-splits, which correspond to different
paths concurrently taken. Each warp-split has its own
divergence stack and is scheduled independently from
the others. Reconvergence is made possible using a ded-
icated hardware table and/or by comparing the Program
Counters (PCs) of each warp-split. However, current
stack-based reconvergence systems do not allow several
branches to be executed in parallel. The stack-based al-
gorithm has to be complemented by heuristics, which
provide no guarantee on when reconvergence will occur.

To work around these issues, we advocate to switch
from stack-based reconvergence to thread-frontier based
reconvergence [10]. Diamos et al. have shown that PC-
based reconvergence can be made optimal in the sense
that it always reconverge at the earliest possible point,
given hardware support for a sorted heap and compiler
support for laying out the code in the order dictated
by thread frontier analysis [10]. It works by always
scheduling the warp-split of minimal PC1. Like stack-
based reconvergence, thread frontier reconvergence runs
divergent branches sequentially. However, we show it is
amenable to parallel execution by relaxing the schedul-
ing constraints.

We refer to the Common PCs as CPCs to avoid am-
biguities. In addition to the first minimum of thread
PCs (CPC1 = min(PCi)), we also compute the second
minimum when it exists (CPC2 = min(PCi,PCi 6=
CPC1)). As a consequence, we have the order CPC1 <
CPC2 < PCi,PCi /∈ {CPC1,CPC2}. We will re-
fer to the warp-splits whose PC is CPC1 and CPC2 as
the primary and the secondary warp-split, respectively.
We will assume throughout the next section that both
minimums are available at all times. Concrete hardware
implementations and their tradeoffs will be described in
section 3.4.

1We assume in this work that thread-frontier priorities are implic-
itly encoded in the program order.
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(a) SIMT (b) SBI (c) SBI with constraints (d) SWI (e) SBI+SWI

Figure 2. Comparison of the contents of the execution pipeline using classic SIMT, Simultane-
ous Branch Interleaving with optional contraints, Simultaneous Warp Interleaving, and both.

3.2. SBI architecture

SBI can be implemented with minimal modifications
to our baseline architecture if the warp size is doubled
to 64 threads. Instead of two warp pools of 32-wide
warps, a single warp pool contains entries for two 64-
wide warp-splits. The left-hand front-end depicted on
figure 3 is essentially unchanged. It schedules instruc-
tion I1 following CPC1. The second front-end issues
instruction I2 following CPC2 of the same warp. In-
struction delivery is extended to broadcast both instruc-
tion I1 and I2 to all processing lanes. Per-lane multi-
plexing selects which instruction to execute according
to individual bits in the warp-split predication masksm1

and m2.

Register file

I1 I2

Transpose network, operand buffering

L1I$

Scheduler

Fetch-Decode

Instruction buffer

Fetch-Decode

Instruction buffer

wid

MAD SFU
×64 ×8

64× 32

LSU
×32

m1(i) I1 I2

Lane i

Ii

32× 32

...
...

...
...

8× 32

Figure 3. Simultaneous Branch Interweav-
ing micro-architecture.

3.3. Ensuring reconvergence

Warp-split desynchronization Greedy scheduling
may delay reconvergence by continuously letting a sec-
ondary warp-split run ahead of the primary warp-split,
as in figure 2(b). In this example, the secondary sched-
uler issues instruction 6 early for threads 2 and 3 of warp
1. Several cycles later, the primary scheduler then is-
sues the same instruction for threads 1 and 4. As long
as the secondary warp-split does not encounter resource
conflicts, warp-splits can continue running out-of-sync
from each other. This desynchronization can lead to
power consumption increase through redundant instruc-
tion fetch, and conflicts for memory resources [20].

Selective synchronization barrier We consider in
this section a conservative policy, which prevents par-
allel execution of divergent branches to happen past the
reconvergence point. We emit a synchronization in-
struction at each reconvergence point. Its payload is the
address PCdiv of the divergence point, which we de-
fine as the last instruction of the immediate dominator.
The thread-frontier aware program layout ensures that
each reconvergence point occurs at a higher address in
the code than the divergence point [10]. Synchroniza-
tion instructions are treated as selective synchronization
barriers among warp-splits. The secondary warp-split is
suspended if CPC1 ∈ [PCdiv,PCrec], and can continue
otherwise, where PCrec is the address of the reconver-
gence point.

The idea behind selective synchronization is to al-
low parallel execution across outer branches of nested
control-flow blocks, while still ensuring synchronization
at the end of inner blocks. We illustrate this idea on
the control-flow graph of figure 4, which consists of two
nested if-then-else blocks. Basic blocks are labeled from
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Figure 4. Control flow graph laid out by PC
order, with divergence and reconvergence
point annotations.

A to G. The vertical axis denotes the program-counter
order. We suppose the secondary warp-split has just
reached the F block, so that CPC2 = PCrec. It encoun-
ters a synchronization instruction that points at PCdiv,
the last instruction of block C. We distinguish two cases.

1. PCdiv < CPC1 < PCrec. The secondary warp-
split is suspended until the primary warp-split,
which is currently in D or E, reaches the reconver-
gence point at the beginning of the F block.

2. CPC1 ≤ PCdiv. As CPCs are strictly ordered,
no other warp-split has its PC between PCdiv and
PCrec. Synchronization for the inner if-then-else
block is achieved, and the execution of the sec-
ondary warp-split can continue through F. This
way, blocks B and F are free to run in parallel,
which does not delay reconvergence.

Though we illustrated this technique on an if-then-else
nest, it can be applied to other control structures such
as loop nests as well. Unstructured control flow may
involve multiple divergence points for a single reconver-
gence point. Our choice of the immediate dominator is
conservative as it may place the divergence point earlier
than strictly necessary. While it means that opportunities
for parallel execution may be missed, it guarantees that
synchronization will occur at the reconvergence point.

No additional hardware is needed to release warp-
splits from their wait-state. As the primary warp-split
reaches the synchronization point, its CPC1 matches the
CPC2 of the secondary warp-split, causing both warp-
splits to be merged together as the new primary warp-
split.

3.4. Implementation

Sorted heap We use a sorted-heap based implemen-
tation as proposed by Fung et al. [15] and Diamos et
al. [10] to store warp-splits. Each warp-split context is
an entry (CPC,m, v) containing the program counter,
the activity mask and a valid bit. Contexts are arranged
into a Hot Context Table (HCT) and a Cold Context Ta-
ble (CCT), as outlined in figure 5(a). The HCT is in-
dexed by the warp identifier and contains the two active
contexts of each warp, as well as a pointer to the next
inactive context in the CCT. The CCT is organized as a
linked list of contexts per warp, where each entry has a
pointer to the next element. Another linked list contains
free blocks. All lists share the same CCT.

Each table is managed by a separate unit. The HCT
sorter unit is responsible for keeping the first two en-
tries of each warp sorted, and merge them as needed. It
receives the updated CPC1 and CPC2 from the PC up-
date logic. When divergence occurs, it also receives an
additional CPC3 from the branch and memory arbitra-
tion logic. We enforce the restriction that at most one
divergence (branch or memory) can happen each cycle.
It guarantees that at most one new warp-split can be cre-
ated each cycle. The HCT sorter consists of a sorting
network that can compact and merge entries (fig. 5(b)).
During the first stage, entries (CPC1,CPC2,CPC3) are
sorted, compacted and merged into CPC′

1 < CPC′
2 <

CPC′
3, and their valid bits are updated. If three valid

entries remain after compaction (v′3 = 1), then the third
entry is inserted into the CCT. If there is one valid entry
only (v′2 = 0), the second entry is popped from the CCT.

Likewise, the CCT is kept sorted by a dedicated unit
that also handles insertions. While the HCT runs syn-
chronously with the pipeline, insertions in the CCT are
asynchronous. The sideband sorter is a state machine
that walks linked lists in the CCT to perform an inser-
tion sort. In the worst case, an insertion can take 64
non-pipelined cycles. However, warp-split order in the
heap does not affect execution correctness ; it is only an
optimization that avoids unnecessary thread divergence.
In case the sideband sorter is unable to keep up with
insertions of new warp-split, the sorted heap will be de-
graded into a stack, where popping the top entry will
just return the last inserted entry. Interestingly, this de-
graded mode matches the behavior of divergence stacks
used on today’s GPUs. Prior work has also shown that
the heap size including hot entries rarely exceed 3 in real
programs, so even an O(n2) sorting algorithm is ade-
quate [10].
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Scoreboard As warp-splits diverge and reconverge,
individual threads may “jump” from one warp-split to
the other, creating data dependencies between instruc-
tions. Conversely, register read/write dependencies be-
tween non-intersecting warp-splits should be ignored.
The brute-force approach to dependency tracking would
store the execution mask of each instruction in the
pipeline alongside its scoreboard entry. To reduce stor-
age requirements, we compute instead dependencies be-
tween instructions by taking the transitive closure of the
warp-split divergence-convergence graph.

t

t− 1

22: mul r1, r1, 5 25: add r3, r1, 2

I1
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Figure 6. Divergence-convergence graph
and dependency matrices for an example
instruction sequence.

We define the dependency matrices D(t1, t2) be-
tween two scheduling cycles t1 and t2 such that
Di,j(t1, t2) is set when common threads execute Ii(t1)
and Ij(t2). I3 wraps all inactive entries in the
heap. Figure 6 illustrates the dependency matrices
on a divergence-convergence graph example. Along
with the destination registers of instructions I1 and I2,
each scoreboard entry k contains the dependency ma-
trix D(t − k, t) with the instructions waiting to be is-
sued. When new instructions are scheduled, depen-
dency matrices are multiplied by the dependency ma-
trix D(t, t+ 1) of the instruction just issued and shifted

by one position. Dependency bits are ANDed together
with the result of the register ID comparison to form the
dependency mask stored in the instruction buffer. The
complexity of the proposed scoreboard only depends
on the warp count, pipeline depth and instruction issue
width. It is not affected by the warp size.

4. Simultaneous warp interweaving

SBI improves throughput when branch paths are bal-
anced, but provides no benefit when the workload of
each thread of a warp is unbalanced, as with if blocks
with no else counterparts. We consider in this section Si-
multaneous Warp Interweaving, the counterpart of SBI
that schedules other warps in the gaps left by the first
scheduled warp. It is described in isolation with SBI in
this section, although both techniques can be combined.

Our asymmetric SM design is based on two cascaded
schedulers. As with SBI, the primary scheduler selects a
ready instruction I1 from the instruction buffer. The is-
sue of I1 is then delayed during one pipeline stage ded-
icated to secondary scheduling. The secondary sched-
uler receives the predicate mask m1 from the initial in-
struction and looks for a non-conflicting instruction I2.
The secondary instruction may be scheduled to the same
SIMD group as the primary instruction, as long as its
predicate mask m2 does not overlap with the primary
mask m1. Alternatively, it can be scheduled to another
free SIMD group, as in a conventional multiple-issue
SIMD processor. Both instructions I1 and I2 are then
issued simultaneously to the execution units. The main
idea consists in trading scheduler latency for execution
unit throughput. The front-end latency increases due to
cascaded scheduling. On the other hand, the utilization
rate of the back-end execution units benefits from the
additional scheduling opportunities created.

Lane shuffling Many parallel algorithms exhibit reg-
ular thread imbalance patterns inside each warp. For in-
stance, the first thread of each warp may receive a larger
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share of work than its neighbors. Such correlation in-
creases the likeliness of conflicts for execution lanes.
To turn the otherwise negative effect of correlations to
our advantage, we considered several static thread rear-
rangement heuristics, that we list on table 1. The phys-
ical lane id is computed from the thread-in-warp ID tid
and warp ID wid. ⊕ is the XOR operator and bitrev
is the bit-reversal function. The diagrams on the right
illustrate the effect on 4 warps of 4 threads each by plot-
ting the lane ID as a function of 4 × wid + tid. Inside
each warp, we apply a permutation to the thread-to-lane
mapping. At this point, this amounts to changing the
way their thread identifier is computed. It requires no
additional hardware nor data migration. The mapping

Table 1. Lane shuffle functions.

Name Function Illustration

Identity tid

MirrorOdd n − tid if wid odd, tid
otherwise

MirrorHalf n − tid if wid > m/2,
tid otherwise

Xor tid⊕ wid
XorRev tid⊕ bitrev(wid)

functions preserve memory locality and allow the same
memory coalescing opportunities as the straightforward
mapping. We found that XorRev provides the most con-
sistent performance gain across the applications consid-
ered (described in section 5).

Scheduler conflict avoidance As both schedulers op-
erate in parallel, the secondary scheduler on phase n
may pick the same instructions as the primary scheduler
on phase n + 1. Rather than prevent this situation by
introducing tighter coupling between the two schedulers
that would increase their complexity, we detect conflicts
a posteriori. After a conflict is identified, the instruction
copy selected by the primary warp is discarded, and its
execution mask set to empty. The other copy is issued
on phase n as the secondary warp. During the next cy-
cle, the secondary scheduler is free to select any ready
instruction, substituting itself to the primary scheduler.

As conflicts still restrict the scheduling choice and
decrease the overall power-efficiency, we ensure they
remain unlikely by avoiding correlations between the

scheduling policies of each scheduler. Primary schedul-
ing is based on instruction age, while secondary schedul-
ing uses a best-fit policy (maximize occupancy) with
pseudo-random tie-breaking.

Limited associativity The secondary scheduler looks
for a ready instruction whose mask is a subset of the
free lane mask. This can be achieved using a Content-
Addressable Memory (CAM). Zero bits in masks are
interpreted as “don’t care” bits. As CAMs are power-
hungry structures [29], we consider set-associative
lookup techniques as an alternative. The mask inclu-
sion lookup hardware is similar to a cache tag lookup.
Instead of looking for an address, we look for the subset
of a mask. In a way similar to caches, tags can be parti-
tioned into multiple sets. A set-associative lookup only
searches through elements of a single set. The set in-
dex is computed from the low-order bits of the primary
warp identifier. The benefits of set-associative lookup
are two-fold. First, the need for large and expensive
CAMs is avoided. Second, the instruction buffer mem-
ory and scoreboard memory can each be partitioned into
separate banks, reducing the number of ports of the in-
struction buffer. Scheduling restrictions from the set-
associative design guarantee conflict-free access.

5. Evaluation

5.1. Performance evaluation

Methodology We used a cycle-accurate simulator of
the SM pipeline based on the Barra functional simula-
tor [3]. Simulation parameters are listed on table 2. We
follow the methodology of Gebhart et al. [16] by model-
ing a throughput-limited constant-latency memory, but
also simulate a local L1 data cache to better take into
account memory divergence effects [20]. We add one
extra pipeline stage in addition to scheduling stages to
account for the wire delay of instruction delivery.

We observed that NVIDIA’s CUDA compiler back-
end would generally lay out code in the exact same or-
der as the order dictated by divergence frontier anal-
ysis. In fact, we found only one CUDA kernel for
which a different order was used. We include it in
our evaluation as the TMD1 benchmark. This obser-
vation matches the results of the analysis conducted on
the SPEC INT 2000 by Collins et al. in the context of
control-flow reconvergence for out-of-order processors,
who find that 94% of reconvergence points are placed
below divergent branches [6]. The synchronization in-
structions described in section 3.3 are placed at the same
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Table 2. Micro-architecture parameters.
Parameter Baseline SBI SWI

Warps ×
warp-width

32× 32 16× 64 16× 64

Clock rate 1 GHz
Scheduler
latency

1 cycle 1 cycle 2 cycles

Instruction de-
livery latency

0 cycle 1 cycle 1 cycle

Execution
latency

8 cycles

Scoreboard 6 entries / warp
L1 cache 48K, 6-way, 128B blocks, 3 cycles
Memory 10 GB/s (1 SM), 330 ns

addresses as reconvergence markers in the Tesla binary
code. Divergence points are computed from Tesla’s di-
vergence instructions. We consider benchmarks from
CUDA benchmark of Rodinia [2] and applications from
the NVIDIA CUDA SDK [28], as well as two imple-
mentations of the Table Maker Dilemna (TMD) appli-
cation in computer arithmetic that exhibit highly irreg-
ular control flow [13]. We distinguish regular applica-
tion, whose average IPC with 64-wide warps is above
30, from irregular applications.

Summary Figure 7 summarizes the relative perfor-
mance of the baseline architecture, SBI with and with-
out constraints, SWI, and combinations of SBI and SWI.
We plot the number of thread instructions per cycle on
the SM. The peak IPC of the baseline architecture is 64,
as it is limited by the issue rate of two 32-wide warps.
SBI and SWI move the peak to 104, as processing units
can benefit from the increased relative instruction issue
bandwidth. For reference, we consider an implementa-
tion based of thread frontiers and 64-wide warps in the
comparison. On regular applications, SBI and SWI pro-
vide the advantage of wide warps by increasing the rel-
ative front-end bandwidth, resulting in average perfor-
mance increases of 15% and 25%, respectively. In this
case, the benefit comes from scheduling more instruc-
tions to distinct SIMD groups, rather than warp inter-
weaving per se. The benefits of SBI and SWI are fully
realized on irregular applications. Despite the larger
warp size and increased front-end latency in the case of
SWI, performance is respectively increased by 41% and
33% on average using SBI and SWI.

Specific benchmark discussion TMD1 performs
worse in our experiments, due to the improper code lay-
out issue mentioned above. TMD2 shows vastly im-
proved performance compared to stack-based execution,
even though the latter has dedicated break and return
support as the Tesla implementation does [14, 10]. It
illustrates the benefits of thread frontier-based reconver-
gence on unstructured control flow. As the TMD ap-
plication reflects properties of thread-frontier based re-
convergence rather than SBI and SWI, we do not take
it into account when computing the performance means.
Mandelbrot shows no noticeable performance variation
throughout the experiments. We found that a thread
block synchronization barrier instruction prevents warp-
splits from running ahead across iterations.

Constraints When applied to SBI in isolation, con-
straints have negligible (less than 0.1%) effect on per-
formance, as seen on figure 8(a). However, constraints
reduce the number of instruction issued by 1.3% on reg-
ular applications and by 5.5% on irregular applications.
SWI takes advantage of the execution resources freed
to improve execution throughput : SortingNetworks is
2.4% faster when reconvergence constraints are applied
to the combination of SBI and SWI. On the other hand,
BFS and Histogram benefit from running threads ahead
past reconvergence points and their performance is held
back by reconvergence constraints. Overall, the perfor-
mance impact is modest: we found that most applica-
tions have explicit synchronization barriers in their main
loop, which enforce warp-split synchronization regard-
less of reconvergence constraints.

Lane shuffling Figure 8(b) illustrates the effect of
the lane shuffling policies listed on table 1 on irregu-
lar applications. Speedup of the XorRev policy over
Linear ranges from -1.8% (3dfd, not shown) to +7.7%
(Needleman-Wunsch). The geometric mean is respec-
tively +0.3% and +1.4% on regular and irregular appli-
cations. While the improvements are small, they come
at essentially no extra cost.

Set-associative matching Figure 9 quantifies the per-
formance impact of reduced lookup associativity of SWI
on irregular applications. We find that associativity
bears a moderate impact on performance: even a direct-
mapped configuration achieves at least 85% of the per-
formance of the fully-associative configuration. Com-
pared to the baseline, direct-mapped SWI achieves a
speedup of 26%, while fully-associative SWI achieves
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Figure 7. Performance of SBI, SWI, and combination of SBI and SWI, with a thread-frontier
based 64-wide warp implementation for reference.

34%. On regular applications, the performance differ-
ence is even thinner, as even fully associative lookup
finds few warp interweaving opportunities. Direct-
mapped SWI achieves 96% of the fully-associative per-
formance, maintaining an 18% speedup over the base-
line.

5.2. Hardware overhead

We now estimate the hardware cost of SBI and SWI.
Table 3 summarizes the main hardware requirements
of each technique. We conservatively assume that the
fully-populated CCT can accommodate 8 entries per
warp, totaling 10 warp-splits per warp with the HCT.
Prior work suggests that the CCT could be made smaller
with no significant performance impact [24, 10]. The
baseline implementation uses a stack with 3 blocks of 4
entries of 64-bit each per warp.

To deliver two instructions to each lane, the fanout of
the instruction broadcast network is increased by a fac-
tor of two, and additional wiring is needed. The width
of a half-datapath on Fermi is 0.65mm from our mea-
surements on a die photography. This distance is within
reach of single clock cycle at 1GHz. The register file
needs to be extended to support two distinct addresses.
The overhead can be bound by the cost of breaking the
register file into one bank per lane, which was estimated
at 0.722mm2 in 90nm for a 8192-entry register file by
Fung et al. [15]. Accounting for process scaling and
register file size differences, our conservative estimate is
0.57mm2. We synthesized the other major components
of the design using a production RTL compiler with a
gate library from a state-of-the-art process technology.
To allow comparison with the baseline implementation,

area results are scaled to the older 40nm process used
by Fermi. Results are reported on table 4. A Fermi
SM being 15.6 mm2 from measurements on a publicly-
available die photograph, the respective area overheads
of SBI, SWI and both are 3.0%, 2.9% and 3.7%.

6. Related work

Dynamic warp formation (DWF) mitigates the im-
pact of divergence by dynamically building warps [15].
While it improves the utilization of execution units, it
may act at the expense of memory divergence and thread
reconvergence may be delayed [14, 20]. SBI and SWI
preserve memory access locality by keeping threads of
the same warp together, and reconvergence constraints
guarantee that threads reconverge. DWS [24] was dis-
cussed in section 3.1. SBI goes beyond DWS by run-
ning concurrent branches simultaneously rather than in-
terleaved in time, with the same execution resources re-
quirements. The reconvergence policy and constraints
we propose may be applied to both DWF and DWS.

Block Compaction [14] and Large Warps [26] rely
on coarser scheduling units than the warps of today’s ar-
chitectures and compact successive pipeline waves. Our
work is orthogonal to these approaches, as SBI and SWI
could be used together with compaction of larger warps.
Thread frontiers [10] define an optimal execution order
of basic blocks that ensures early reconvergence for ar-
bitrary control flow, assuming sequential execution of
branch path. We generalize it to parallel execution of
basic blocks for the same warp. Control-flow reconver-
gence was extensively studied in the context of super-
scalar processors to reduce branch misprediction penal-
ties [6, 1]. Al-Zawawi et al. use a control-flow stack
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Table 3. Summary of the hardware requirements for each proposed technique.
Component Baseline SBI SWI SBI+SWI

RF Single-decoder Segmented Segmented Segmented
Scoreboard 2× 24× 48-bit 24× 144-bit 2× 24× 48-bit 24× 288-bit
Scheduler Symmetric Warp-split Associative lookup Associative lookup
Warp pool/HCT 2× 24× 64-bit 24× 201-bit 24× 104-bit 24× 201-bit, banked
Stack/CCT 144× 256-bit 128× 104-bit 128× 104-bit 128× 104-bit
Insn. buffer 48× 64-bit 48× 64-bit 24× 64-bit, dual-ported 48× 64-bit, dual-ported

Table 4. Area of each component.
Area (×1000 µm2)

Component Baseline SBI SWI SBI+SWI

RF – +570 +570 +570
Scoreboard 87.6 65.6 87.6 131.2
Scheduler – – +27.4 +27.4
HCT 66.8 88.8 43.8 88.8
CCT 584.4 480.8 480.8 480.8
Insn. Buffer 52.8 52.8 33.4 67.4

Total 791.6 1258 1243 1365.6
Overhead – 466.4 451.4 574

and PC comparisons to detect reconvergence in a check-
pointing micro-architecture [1]. Stack updates happen
in program order, so parallel path traversal was not con-
sidered.

Architectures originating from vector processors that
blend together thread-level, data-level and instruction-
level parallelism have been proposed [12, 18, 30]. These
approaches also leverage a data-parallel computing sub-
strate while allowing more flexible means of execution.
The problems to address differ between these works and
SBI/SWI, as the former use an explicit vector program-
ming model and the latter are based on an SIMD model
with implicit predication.

Minimal Multi Threading shares identical instruc-
tions across threads in an out-of-order SMT architec-
ture [23]. Control-flow reconvergence is detected by
comparing the PC histories of threads. The out-of-order
micro-architecture described runs 4 threads, targeting a
significantly different design point than the 1536-thread
in-order GPU architecture we consider.

Glew outlines a Dual Instruction, Multiple Threads
(DIMT) micro-architecture in a talk [17]. DIMT con-
sists in issuing two different instructions to a wider ar-
ray of execution units. SBI can be considered as an im-
plementation of the DIMT idea. However, no discus-

sion is made in [17] about concrete implementations,
nor about ways to achieve reconvergence. These two
issues and SWI are the main contributions of the present
work. Dasika et al. propose Divergence-Folding [8],
which improves utilization of functional units by stati-
cally scheduling instructions from different branch paths
to subsets of the same datapath. Divergence-Folding
uses two functional units and two RF write ports per
lane, while SBI shares the same execution and RF re-
sources and relies on dynamic scheduling.

In addition to sharing instructions, recent works also
factor out common computations or common data across
threads [4, 5, 9, 23]. We expect that SBI and SWI can be
combined with data-sharing techniques to improve their
flexibility in the face of data divergence.

7. Conclusion

We presented and evaluated two complementary
techniques that leverage the computational power of
GPU architectures that is underexploited due to branch
and memory divergence. Each technique performs fine-
grained execution resource allocation by incorporating
one additional form of parallelism. SBI takes advan-
tage of branch-level parallelism across SIMD instruc-
tions that are guaranteed not to overlap. Two prob-
lems that arise consist in ensuring the reconvergence of
warp-splits and tracking instruction dependencies. We
overcome them by respectively introducing reconver-
gence constraints and an improved scoreboard design.
SWI exploits warp-level parallelism. Instructions from
different warps are guaranteed to be free of dependen-
cies. The difficulty lies in finding instructions with non-
overlapping activity masks. We solve it using a set-
associative mask lookup and improve warp affinity us-
ing lane shuffling.

Both SBI and SWI execute threads of close identifiers
together, in order to preserve memory access patterns
and their locality. These techniques rely on full dynamic
scheduling and require minimal compiler involvement.
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Figure 8. Effect of constraints and lane
shuffling on respective performance of
SBI and SWI (irregular applications).

SBI and SWI complement each other. SBI works best
on irregular workloads, achieving an average speedup of
41%. Regular workloads benefit most from SWI, which
accelerates their execution by 25%. The combination of
both techniques retain most of their individual advan-
tages, leading to respective speedups of 40% and 23%
on irregular and regular workloads.

Remaining work includes developing robust adaptive
policies to schedule warps, perform lane shuffling and
decide when running ahead is beneficial. Flexibility may
be improved further by allowing more decoupling be-
tween lanes, without compromising efficiency. We ex-
pect to see more blurring of the lines between SIMT and
clustered SMT architectures in the future, as each archi-
tecture incorporates successful aspects of the other.
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