
HAL Id: ensl-00651985
https://ens-lyon.hal.science/ensl-00651985v3

Preprint submitted on 17 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource control and strong normalisation
Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, Silvia Likavec

To cite this version:
Silvia Ghilezan, Jelena Ivetic, Pierre Lescanne, Silvia Likavec. Resource control and strong normali-
sation. 2011. �ensl-00651985v3�

https://ens-lyon.hal.science/ensl-00651985v3
https://hal.archives-ouvertes.fr

Resource control and strong normalisation

S. Ghilezan ∗1, J. Ivetić †1, P. Lescanne ‡2, and S. Likavec §3

1University of Novi Sad, Faculty of Technical Sciences, Serbia
2University of Lyon, École Normal Supérieure de Lyon, France

3Dipartimento di Informatica, Università di Torino, Italy

May 17, 2013

Abstract

We introduce the resource control cube, a system consisting of eight intuitionistic lambda calculi with either
implicit or explicit control of resources and with either natural deduction or sequent calculus. The four calculi of
the cube that correspond to natural deduction have been proposed by Kesner and Renaud and the four calculi that
correspond to sequent lambda calculi are introduced in this paper. The presentation is parameterized with the set of
resources (weakening or contraction), which enables a uniform treatment of the eight calculi of the cube. The simply
typed resource control cube, on the one hand, expands the Curry-Howard correspondence to intuitionistic natural
deduction and intuitionistic sequent logic with implicit or explicit structural rules and, on the other hand, is related to
substructural logics.

We propose a general intersection type system for the resource control cube calculi. Our main contribution is
a characterisation of strong normalisation of reductions in this cube. First, we prove that typeability implies strong
normalisation in the “natural deduction base” of the cube by adapting the reducibility method. We then prove that
typeability implies strong normalisation in the “sequent base” of the cube by using a combination of well-orders and
a suitable embedding in the “natural deduction base”. Finally, we prove that strong normalisation implies typeability
in the cube using head subject expansion. All proofs are general and can be made specific to each calculus of the cube
by instantiating the set of resources.

Keywords: lambda calculus, sequent calculus, resource control, intersection types, strong normalisation

1998 ACM Subject Classification: F.4.1 [Mathematical Logic]: Lambda calculus and related systems, F.3.1
[Specifying and Verifying and Reasoning about Programs]: Logics of programs, F.3.2 [Semantics of Programming
Languages]: Operational semantics, F.3.3 [Studies of Program Constructs]: Type structure

Introduction
Curry–Howard correspondence or formulae-as-types and proofs-as-programs paradigm [How80], establishes a funda-
mental connection between various logical and computational systems. Simply typed λ-calculus provides the compu-
tational interpretation of intuitionistic natural deduction where simplifying a proof corresponds to a program execu-
tion. The correspondence between sequent calculus derivations and natural deduction derivations is not a one-to-one
map: several cut-free derivations correspond to one normal derivation [BG00]. Starting from Griffin’s extension
of the Curry–Howard correspondence to classical logic [Gri90], this connection has been extended to other calculi
and logical systems. For instance, Parigot’s λµ-calculus [Par92] corresponds to classical natural deduction and as
∗Email: gsilvia@uns.ac.rs
†Email: jelenaivetic@uns.ac.rs
‡Email: pierre.lescanne@ens-lyon.fr
§Email: likavec@di.unito.it

1

such inspired investigation into the relationship between classical logic and theories of control in programming lan-
guages [Par97, dG94, OS97, Bie98, AH03, HG08]. In the realm of sequent calculus, Herbelin’s λ-calculus [Her95]
and Espı́rito Santo’s λGtz-calculus [Esp07a] correspond to intuitionistic sequent calculus, whereas Barbanera and Be-
rardi’s symmetric calculus [BB96] and Curien and Herbelin’s λµµ̃-calculus [CH00] correspond to its classical variants.
An extensive overview of this subject can be found in [SU06, GL09].

Our intention is to bring this correspondence to the calculi with control operators, namely erasure and duplication,
which correspond to weakening and contraction on the logical side. The wish to control the use of variables in a λ-
term can be traced back to Church [Chu41] who introduced the λI-calculus. According to Church, the variables bound
by λ abstraction should occur in the term at least once. More recently, following the ideas of linear logic [Gir87],
van Oostrom [vO01] proposed to extend the λ-calculus, and Kesner and Lengrand [KL07] proposed to extend the
λx-calculus with explicit substitution, with operators to tightly control the use of variables (resources). Resource
control in sequent calculus corresponding to classical logic was proposed in [Ž07]. Resource control both in λ-
calculus and λx-calculus is proposed in [KR09, KR11], whereas resource control for sequent λ-calculus is proposed
in [GILŽ11, GILL11]. Like in the λI-calculus, bound variables must still occur in the term, but if a variable x is not
used in a term M this can be expressed by using the expression x�M where the operator � is called erasure (aka
weakening). In this way, the term M does not contain the variable x, but the term x�M does. Similarly, a variable
should not occur twice. If nevertheless, we want to have two positions for the same variable, we have to duplicate
it explicitly, using fresh names. This is done by using the operator x <x1

x2 , called duplication (aka contraction)
which creates two fresh variables x1 and x2. Extending the classical λ-calculus and the sequent λ-calculus λGtz with
explicit erasure and duplication provides the Curry–Howard correspondence for intuitionistic natural deduction and
intuitionistic sequent calculus with explicit structural rules, as investigated in [KL07, KR09, KR11, GILŽ11]. The
notation used in this paper is along the lines of [Ž07] and close to [vO01].

A different approach to the resource aware lambda calculus, motivated mostly by the development of the process
calculi, was investigated by Boudol in [Bou93]. Instead of extending the syntax of λ-calculus with explicit resource
operators, Boudol proposed a non-deterministic calculus with a generalised notion of application. In his work, a
function is applied to a structure called a bag, having the form (Nm1

1 |...|N
mk
k) in which Ni, i = 1, ...,k are resources

and mi ∈ N∪{∞}, i = 1, ...,k are multiplicities, representing the maximum possible number of the resource usage. In
this framework, the usual application is written as MN∞. The theory was further developed in [BCL99], connected to
linear logic via differential λ-calculus in [ER03] and even typed with non-idempotent intersection types in [PR10].

Our contribution is inspired by Kesner and Lengrand’s [KL07] and Kesner and Renaud’s [KR09, KR11] work on
resource operators for λ-calculus. The linear λlxr calculus of Kesner and Lengrand introduces operators for substi-
tution, erasure and duplication, preserving at the same time strong normalisation, confluence and subject reduction
property of its predecessor λx [BR95]. This approach is then generalised in Kesner and Renaud’s Prismoid of Re-
sources [KR09, KR11] by considering various combinations in which these three operators are made explicit or im-
plicit. In this paper we introduce the notion of resource control cube, consisting of two systems λR and λGtz

R , which
can be seen as two opposite sides of the cube (see Figure 1). In λR we consider four calculi, each of which is obtained
by making erasure (aka weakening) or duplication (aka contraction) explicit or implicit. In λGtz

R we consider the four
sequent style counterparts of the λR -calculi. We will call the λR system the natural deduction ND-base of the cube,
and the λGtz

R system the sequent LJ-base of the cube1. Explicit control of erasure and duplication leads to decomposing
of reduction steps into more atomic ones, thus revealing details of computation which are usually left implicit. Since
erasing and duplicating of (sub)terms essentially changes the structure of a program, it is important to see how this
mechanism really works and to be able to control this part of computation.

Let us turn our attention to type assignment systems for various term calculi. The basic type assignment system
is the one with simple types in which the only forming operator is an arrow→. Among many extensions of this type
assignment system, the one that characterises the largest class of terms, is the extension with intersection types, where
a new type forming operator ∩ is introduced. The principal feature of this operator is the possibility to assign two
different types to a certain term at the same time. The intersection types have been originally introduced in [CDC78,
Sal78, CDC80, Pot80, CDCV80] in order to characterise termination properties of various term calculi [vB92, Gal98,
Ghi96]. The extension of Curry–Howard correspondence to other formalisms brought the need for intersection types

1We are aware that our notation is not symmetric, since Gtz is specified explicitly for the LJ-base but ND is not for the ND-base. This was a
conscious decision because ND-base contains ordinary λ-calculus where correspondence with natural deduction is not explicitly written.

2

Figure 1: Resource control cube

into many different settings [DGL08, Kik07, Mat00, Nee05].
We introduce the intersection types into all eight calculi of the resource control cube. Our intersection type as-

signment systems λR ∩ and λGtz
R ∩ integrate intersections into logical rules, thus preserving syntax-directedness of the

systems. We assign a restricted form of intersection types to terms, namely strict types, therefore eliminating the need
for pre-order on types. Using these intersection type assignment systems we manage to completely characterise strong
normalisation in the cube by proving that terms in all calculi in both bases enjoy the strong normalisation property if
and only if they are typeable. While this characterization is well-known for the pure λ-calculus and λGtz-calculus, it is
a new result for the other six calculi of the cube. The paper proves the characterization in a modular way, presenting
one uniform proof for the first four calculi in natural deduction style, and one uniform proof for the four sequent
style calculi. Concerning the sequent calculus, to the best of our knowledge, there is no literature on explicit resource
control operators for λGtz-calculus, nor on the connection to intersection types (except for the initial version of this
work presented in [GILL11]).

The rest of the paper is organised as follows. In Section 1 we introduce the untyped resource control cube which
consists of eight calculi λR and λGtz

R with different combinations of explicit/implicit control operators of weakening
and contraction. Basic type assignment systems with simple types for these calculi are given in Section 2. Intersection
type assignment systems with strict types are introduced in Section 3. By adapting the reducibility method to explicit
resource control operators, we first prove that typeable terms are strongly normalising in λR -calculi of the ND-base
in Section 4. Next, we prove that typeability implies strong normalization in λGtz

R -calculi of the LJ-base by using a
combination of well-orders and a suitable embedding of λGtz

R -terms into λR -terms which preserves types and enables
the simulation of all the reductions in λGtz

R -calculi by the operational semantics of the λR -calculi. Finally, in Section 5,
we prove that strong normalisation implies typeability in both systems using head subject expansion. We conclude in
Section 6.

Contents
1 Untyped resource control cube 4

1.1 Resource control lambda calculi λR . 4
1.2 The comparison of the resource control cube and the prismoid of resources 8
1.3 Resource control sequent lambda calculi λGtz

R . 9
1.4 Strong normalisation and substitution . 13

3

2 Simple types for resource control cube 15

3 Intersection types for resource control cube 17
3.1 Intersection types for λR . 17
3.2 Intersection types for λGtz

R . 18

4 Typeability⇒ SN in all systems of the resource control cube 21
4.1 Typeability⇒ SN in λR ∩ . 21
4.2 Typeability⇒ SN in λGtz

R ∩ . 26

5 SN⇒ Typeability in all systems of the resource control cube 31
5.1 SN⇒ Typeability in λR ∩ . 32
5.2 SN⇒ Typeability in λGtz

R ∩ . 33

6 Conclusions 34

1 Untyped resource control cube

1.1 Resource control lambda calculi λR

In this section we present four calculi obtained by adding contraction and weakening to the λ-calculus either as explicit
or implicit operators. We denote these four calculi by λR , where R ⊆ {c,w} and c, w denote explicit contraction and
weakening, respectively. The presented system operationally corresponds to the four calculi of the so-called implicit
base of Kesner and Renaud’s prismoid [KR09], as will be showed in Section 1.2. We use a notation along the lines
of [Ž07] and close to [vO01]. It is slightly modified w.r.t. [KR09] in order to emphasize the correspondence between
these calculi and their sequent counterparts.2 For the convenience of the reader and to avoid repetition, we present all
the calculi in a uniform way. This implies that some constructions or features are part of one calculus and not of the
others. When a feature occurs in a calculus associated with the operator r ∈ R and is ignored elsewhere, we put this
feature between brackets indexed by the symbol r. For instance, if we write [x∈ Fv(f)]w, this means that the condition
x ∈ Fv(f) appears only in the calculus which contains explicit weakening, as seen from the index w.

In order to define the terms of the calculus, we introduce a syntactic category called pre-terms. A pre-term can
be a variable, an abstraction, an application, a contraction or a weakening. The abstract syntax of the λR pre-terms is
given by the following:

Pre-terms f ::= x |λx. f | f f |x <x1
x2 f |x� f

where x ranges over a denumerable set of term variables
The list of free variables of a pre-term f , denoted by Fv[f], is defined as follows (where l,m denotes appending

two lists and l \ x denotes removing all occurrences of an element from a list):

Fv[x] = x; Fv[λx. f] = Fv[f]\ x; Fv[f g] = Fv[f],Fv[g];
[Fv[x� f] = x,Fv[f]]w ;[

Fv[x <x1
x2 f] =

{
Fv[f], x1 /∈ Fv[f] and; x2 /∈ Fv[f]

x,(Fv[f]\{x1,x2}), x1 ∈ Fv[f] or x2 ∈ Fv[f]

]
c

The set of free variables, denoted by Fv(f), is extracted out of the list Fv[f], by un-ordering the list and removing
multiple occurrences of each variable, if any. The set of bound variables of a pre-term f , denoted by Bv(f), contains
all variables of f that are not free in it, i.e. Bv(f) =Var(f)\Fv(f). In x <x1

x2 f , the duplication binds the variables x1
and x2 in f and introduces a fresh variable x if at least one of x1,x2 is free in f . In x� f , the variable x is free. In order
to avoid parentheses, we let the scope of all binders extend to the right as much as possible.

The sets of λR -terms, denoted by ΛR , are subsets of the set of pre-terms and are defined by the inference rules
given in Figure 2. In the reminder of the paper, we will use M,N,P... to denote terms. We also use the notation

2Note that in [KR09], instead of considering the sequent counterparts, the authors consider the so called explicit base, i.e. the four corresponding
calculi with explicit substitutions.

4

X �M for x1� ... xn�M and X <Y
Z M for x1 <

y1
z1 ... xn <

yn
zn M, where X , Y and Z are lists of size n, consisting of

all distinct variables x1, ...,xn,y1, ...,yn,z1, ...,zn. If n = 0, i.e., if X is the empty list, then X �M = X <Y
Z M = M.

In particular, given a term N, we use a specific notation: Fv[N] <
Fv(N1)
FV N2

M[N/x1,N/x2]. Assume that N has the list
Fv(N) = (z1, ...,zp) as free variables. We write N as N(z1, ...,zp) and N1 and N2, as the term in which the variables
have been renamed with fresh variables. I.e., N1 = N(z1,1, ...z1,p) and N2 = N(z2,1, ...z2,p).

Fv[N]<
Fv(N1)
FV N2

M[N/x1,N/x2]

is by definition:
z1 <

z1,1
z2,1 ...zp <

z1,p
z2,p M[N(z1,1, ...z1,p)/x1][N(z2,1, ...z2,p)/x2].

Note that due to the equivalence relation defined in Figure 5, we can use these notations also for a set of triple of
variables, all distinct.

x ∈ ΛR
(var)

f ∈ ΛR [x ∈ Fv(f)]w
λx. f ∈ ΛR

(abs)
f ∈ ΛR g ∈ ΛR [Fv(f)∩Fv(g) = /0]c

f g ∈ ΛR
(app)

f ∈ ΛR x /∈ Fv(f)
x� f ∈ ΛR

(w ∈ R) (era)

f ∈ ΛR x1 6= x2 x /∈ Fv(f)\{x1,x2} [x1,x2 ∈ Fv(f)]w
x <x1

x2 f ∈ ΛR
(c ∈ R) (dup)

Figure 2: λR -terms

Example 1 Pre-terms λx.y and y <
y1
y2 x are λR -terms only if w /∈ R . Similarly, pre-terms λx.xx and x� λy.yy are

λR -terms only if c /∈ R .

In what follows we use Barendregt’s convention [Bar84] for variables: in the same context a variable cannot be
both free and bound. This applies to binders like λx.M which binds x in M, x <x1

x2 M which binds x1 and x2 in M, and
also to the implicit substitution M[N/x] which can be seen as a binder for x in M.

Implicit substitution M[N/x], where x /∈ Bv(M), is defined in Figure 3. In this definition, the following additional
assumptions must hold:

[Fv(M)∩Fv(N) = /0]c, [x ∈ Fv(M)]w

otherwise the substitution result would not be a well-formed term. In the same definition, terms N1 and N2 are obtained
from N by renaming all free variables in N by fresh variables, and M[N1/x1,N2/x2] denotes parallel substitution.3

Notice that substitution is created only in (β)-reduction, yielding that N is not any term, but the part of the term
(λx.M)N, therefore Barendregt’s convention applies to it. For that reason we don’t need side conditions like y /∈ Fv(N)
in the definition of (λy.M)[N/x].

In the following proposition, we prove that the substitution is well-defined.

Proposition 1 If M,N ∈ ΛR and x /∈ Bv(M), then M[N/x] ∈ ΛR , provided that [Fv(M)∩ Fv(N) = /0]c and [x ∈
Fv(M)]w.

3Note that the terms N1 and N2 do not have any free variables in common hence, it is not a problem to perform the substitution in parallel.

5

x[N/x] , N (y�M)[N/x] , {y}\Fv(N)�M[N/x], x 6= y
y[N/x] , y, x 6= y (x�M)[N/x] , Fv(N)\Fv(M)�M

(λy.M)[N/x] , λy.M[N/x], x 6= y (y <y1
y2 M)[N/x] , y <y1

y2 M[N/x], x 6= y
(MP)[N/x] , M[N/x]P[N/x] (x <x1

x2 M)[N/x] , Fv[N]<
Fv[N1]
Fv[N2]

M[N1/x1,N2/x2]

Figure 3: Substitution in λR -calculi

Proof: Proposition if proved together with auxiliary statement:
If M,N1,N2 ∈ ΛR , c ∈ R , Fv(N1)∩Fv(N2) = Fv(N1)∩Fv(M) = Fv(N2)∩Fv(M) = /0, x1 /∈ N2 and
x2 /∈ N1, then M[N1/x1,N2/x2] ∈ ΛR . 2

The operational semantics for four calculi that form the “natural deduction base” of the resource control cube are
given in Figures 4 and 5. Reduction rules of λR -calculi are given in Figure 4, whereas equivalences in are given in
Figure 5. Reduction rules specific for each calculus are given in Figure 6.

(β) (λx.M)N → M[N/x]

(γ0) x <x1
x2 y → y y 6= x1,x2

(γ
′

0) x <x1
x2 x1 → x

(γ1) x <x1
x2 (λy.M) → λy.x <x1

x2 M
(γ2) x <x1

x2 (MN) → (x <x1
x2 M)N, if x1,x2 /∈ Fv(N)

(γ3) x <x1
x2 (MN) → M(x <x1

x2 N), if x1,x2 /∈ Fv(M)

(ω1) λx.(y�M) → y� (λx.M), x 6= y
(ω2) (x�M)N → {x}\Fv(N)� (MN)
(ω3) M(x�N) → {x}\Fv(M)� (MN)

(γω1) x <x1
x2 (y�M) → y� (x <x1

x2 M), y 6= x1,x2
(γω2) x <x1

x2 (x1�M) → M[x/x2]

Figure 4: Reduction rules of λR -calculi

(ε1) x� (y�M) ≡ y� (x�M)
(ε2) x <x1

x2 M ≡ x <x2
x1 M

(ε3) x <y
z (y <u

v M) ≡ x <y
u (y <z

v M)
(ε4) x <x1

x2 (y <
y1
y2 M) ≡ y <y1

y2 (x <
x1
x2 M), x 6= y1,y2, y 6= x1,x2

Figure 5: Equivalences in λR -calculi

Which reductions in which system?

Generally speaking the reduction rules can be divided into four groups. The main computational step is β reduction.
The group of (γ) reductions exists only in the two calculi that contain contraction (i.e., if c ∈ R). These rules perform

6

λR -calculi reduction rules equivalences
λ /0 β

λc β, γ0, γ
′

0 , γ1,γ2,γ3 ε2,ε3,ε4
λw β, ω1,ω2,ω3 ε1
λcw β, γ1,γ2,γ3, ω1,ω2,ω3, γω1, γω2 ε1,ε2,ε3,ε4

Figure 6: ND base of the resource control cube

propagation of contraction into the expression. Similarly, (ω) reductions belong only to the two calculi containing
weakening (i.e., if w ∈ R). Their role is to extract weakening out of expressions. This discipline allows us to optimize
the computation by delaying duplication of terms on the one hand, and by performing erasure of terms as soon as
possible on the other. Finally, the rules in (γω) group explain the interaction between explicit resource operators that
are of different nature, hence these rules exist only if R = {c,w}. The rules (γ0) and (γ

′
0)

4 exist only if R = {c} and
they erase meaningless contractions.

Remark 1 Notice the asymmetry between the reduction rules of the calculi λc and λw, namely in λw there is no
counterpart of the (γ0) and (γ

′
0) reductions of λc. The reason can be tracked back to the definition of λR -terms

in Figure 2, where the definition of the weakening operator x� f does not depend on the presence of the explicit
contraction. It would be possible to define weakening where the condition x /∈ Fv(f) is not required if the contraction
is implicit. In that case, terms like x� x�M would exist, and the reduction (ω0) : x�M→M, if x ∈ Fv(M) would
erase this redundant weakening. The typing rule for this weakening would require multiset treatment of the bases Γ,
which is out of the scope of this paper.

Example 2 ((λx.x(x� y))z) The notation (x�M)N→{x}\Fv(N)�MN is a shorthand for two rules:

(x�M)N → x�MN if x /∈ FV (N)

(x�M)N → MN if x ∈ FV (N)

Similarly (y�M)[N/x], {y}\Fv(N)�M[N/x] is a shorthand for

(y�M)[N/x] , y�M[N/x], if x /∈ FV (N)

(y�M)[N/x] , M[N/x], if x ∈ FV (N)

Let us illustrate the subtlety of rules (ω1) and (ω2) dealing with � on an example in which w ∈ R .

(λx.x(x� y))z β−→ (x(x� y))[z/x]

= z(z� y)
ω3−−→ zy.

But we get also:

(λx.x(x� y))z ω3−−→ (λ.xy)z

β−→ zy

which is not surprising since λR is confluent.

4The rules (γ0) and (γ
′

0) correspond to the CGc rule in [KR09].

7

1.2 The comparison of the resource control cube and the prismoid of resources
In this subsection, we compare the two corresponding substructures of the resource control cube and the prismoid of
resources, namely ND-base of the cube and implicit base of the prismoid.

First, we will focus on differences between the particular elements of the two systems, and after that we will prove
that they are operationally equivalent. For the sake of uniformity, we will use our notation to write also the terms of
the prismoid.

The first difference is in the definition of free variables of the cube (Fv(M)), free variables of the prismoid (f v(M))
and positive free variables of the prismoid (f v+(M)). The relation among the three is f v+(M) ⊆ Fv(M) ⊆ f v(M),
which will be illustrated by the following example.

Example 3 Let M ≡ x <x1
x2 x1 <

x3
x4 y, which is a (well-formed) term when R = {c}. Fv(M) = {y} and f v+(M) = {y},

while f v(M) = {x,y}. Further, let N ≡ x <x1
x2 x1 <

x3
x4 x2�x3�x4�y, which is a (well-formed) term when R = {c,w}.

Now, Fv(N) = {x,y} and f v(N) = {x,y}, while f v+(N) = {y}.

The next difference is in the notion of substitution of the cube (M[N/x]) and the corresponding notion in the
prismoid’s implicit base (M{N/x}). We will distinguish cases for the particular subclasses of terms.

• In the case of λc-terms, the substitutions differ when M ≡ x <x1
x2 M1.

Let M ≡ x <x1
x2 y. Then, in the cube

(x <x1
x2 y)[N/x] , Fv(N)<

Fv(N1)
Fv(N2)

y[N1/x1,N2/x2] = Fv(N)<
Fv(N1)
Fv(N2)

y.

On the other side, in the prismoid, since x /∈ f v+(x <x1
x2 y) and w /∈ B , we have:

(x <x1
x2 y){N/x} := delx(x <

x1
x2 y) = y.

Since Fv(N) <
Fv(N1)
Fv(N2)

y reduces to y by several (γ0) reductions, we conclude that in this case substitution in the
cube is ”smaller” then the one in the prismoid.
Now, let M ≡ x <x1

x2 x1y. Then, in the cube

(x <x1
x2 x1y)[N/x] , Fv(N)<

Fv(N1)
Fv(N2)

(x1y)[N1/x1,N2/x2] = Fv(N)<
Fv(N1)
Fv(N2)

(N1y).

In the prismoid, since x ∈ f v+(x <x1
x2 x1y) (more precisely |x <x1

x2 x1y|+x = 1), we have:

(x <x1
x2 x1y){N/x} := delx(x <

x1
x2 x1y){{N/x}} = f v(N)<

f v(N1)
f v(N2)

(x1y)N1/x1N2/x2 = f v(N)<
f v(N1)
f v(N2)

(N1y).

Now, since we already showed that Fv(N) ⊆ f v(N), there are cases where the result of the substitution in
the prismoid has more contractions then the corresponding one in the cube. To be completely precise, let
N ≡ z <z′

z′′ w (yielding that N1 ≡ z1 <
z′
z′′ w1 and N2 ≡ z2 <

z′
z′′ w2). Now, in the cube Fv(N) = {w}, while in the

prismoid f v(N) = {z,w}. So,

(x <x1
x2 x1y)[z <z′

z′′ w/x] , w <w1
w2 ((z1 <

z′
z′′ w1)y),

while on the other side

(x <x1
x2 x1y){N/x} := z <z1

z2 w <w1
w2 ((z1 <

z′
z′′ w1)y).

But the latter reduces to the former term by one CGc reduction, hence in this case we conclude that substitution
in the prismoid is ”smaller” then the one in the cube.

8

• In the case of λw-terms, the substitutions differ when M ≡ λy.M1.
Let |M1|+x ≥ 2, for example M ≡ λy.((x� y)x)x. Then, in the cube:

(λy.((x� y)x)x)[N/x] , λy.((Fv(N)\Fv(y)� y)N)N,

while in the prismoid:

(λy.((x� y)x)x){N/x} := ((λy.((x� y)z)x){N/z}){N/x} = (delz(λy.((x� y)z)x){{N/z}}){N/x} =
(λy.((x� y)N)x){N/x} = delx(λy.((x� y)N)x){{N/x}} = (λy.(yN)x){{N/x}} = ((λy.y)N)N.

So, in the prismoid, we do not substitute for the variable that is introduced by weakening (those non-positive
occurrences of a variable are deleted during substitution execution, using delx) operator). Therefore, the result
of the substitution in the cube can have some extra weakenings comparing to the corresponding term in the
prismoid. But, λy.((Fv(N)\Fv(y)�y)N)N reduces to ((λy.y)N)N by a number of (ω2) reductions5. Again, we
conclude that the substitution in the cube is ”smaller” in this case.

• In the case of λ /0 and λcw terms substitutions do not differ.

From the analysis presented above, we can conclude that although substitution definitions in particular cases differ, two
systems work equally when we look the whole operational semantics, i.e. substitution + reductions + equivalencies.

1.3 Resource control sequent lambda calculi λGtz
R

An attempt of creating the sequent-style λ-calculus (i.e., the system corresponding to the Gentzen’s LJ system) was
proposed by Barendregt and Ghilezan in [BG00] by keeping the original syntax of λ-calculus and changing the type
assignment rules in accordance with the inference rules of LJ. The obtained simply typed λLJ-calculus, although
useful for giving a new simpler proof of the Cut-elimination theorem, was not in one-to-one correspondence with LJ.

Herbelin realised that, in order to achieve such a correspondence, significant changes in syntax should be made.
In [Her95], he proposed λ-calculus with explicit substitution, a new syntactic construct called a list and new operators
for creating and manipulating the lists. The role of the lists was to overcome the key difference between natural
deduction and sequent calculi, namely the associativity of applications. While in ordinary λ-calculus applications are
left-associated, i.e., (λx.M)N1N2...Nk ≡ ((((λx.M)N1)N2)...)Nk, in λ-calculus the application is right-associated, i.e.,
(λx.M)[N1,N2, ...,Nk]≡ (λx.M)(N1(N2...(Nk−1Nk))). The λ-calculus was the first formal calculus whose simply typed
version extended the Curry-Howard correspondence to the intuitionistic sequent calculus, more precisely, its cut-free
restriction LJT c f .

Relying on Herbelin’s work, Espı́rito Santo and Pinto developed λJm-calculus with generalised multiary applica-
tion [EP03] and later λGtz-calculus [Esp07a], the calculus that fully corresponds to Gentzen’s LJ. In the λGtz-calculus
one can also distinguish two kinds of expressions, namely terms and contexts, the later being the generalisation of the
lists from the λ-calculus.

In this section we present the syntax and the operational semantics of the four sequent calculi with explicit or
implicit resource control, denoted by λGtz

R , where R ⊆ {c,w} and c, w denote explicit contraction and weakening,
respectively. These four calculi are sequent counterparts of the four resource control calculi λR presented above, and
represent extensions of Espı́rito Santo’s λGtz-calculus.

The abstract syntax of the λGtz
R pre-expressions is the following:

Pre-terms f ::= x |λx. f | f c |x <x1
x2 f |x� f

Pre-contexts c ::= x̂. f | f :: c |x� c |x <x1
x2 c

where x,x1, . . . ,y, . . . range over a denumerable set of term variables.
A pre-term can be a variable, an abstraction, a cut (an application), a contraction or a weakening. Note that the

application is of the form f c. A pre-context is one of the following features: a selection x̂. f , which turns a term into

5In the analogous case M ≡ λy.(x(x� y))x we would use (ω3) reductions for the same purpose

9

a context by choosing an active variable; a context constructor f :: c (usually called cons) which expands a context
by introducing a term into the left-most position; a weakening on a pre-context or a contraction on a pre-context.
Pre-terms and pre-contexts are together referred to as pre-expressions and will be ranged over by E. Pre-contexts x�c
and x <x1

x2 c behave exactly like the corresponding pre-terms x� f and x <x1
x2 f in the untyped calculi, so they will not

be treated separately.
The set of free variables of a pre-expression E, denoted by Fv(E), is defined as follows:

Fv(x) = x; Fv(λx. f) = Fv(f)\{x}; Fv(f c) = Fv(f)∪Fv(c);
Fv(x̂. f) = Fv(f)\{x}; Fv(f :: c) = Fv(f)∪Fv(c);

[Fv(x�E) = {x}∪Fv(E)]w ;[
Fv(x <x1

x2 E) =
{

Fv(E), {x1,x2}∩Fv(E) = /0

{x}∪Fv(E)\{x1,x2}, {x1,x2}∩Fv(E) 6= /0

]
c

.

The sets of λGtz
R -expressions ΛGtz

R = TGtz
R ∪KGtz

R (where TGtz
R are the sets of λGtz

R -terms and KGtz
R are the sets of

λGtz
R -contexts) are the subsets of the set of pre-expressions, defined by the inference rules given in Figure 7.

We denote terms by t,u,v..., contexts by k,k′, ... and expressions by e,e′.

x ∈ TGtz
R

f ∈ TGtz
R [x ∈ Fv(f)]w

λx. f ∈ TGtz
R

f ∈ TGtz
R c ∈ KGtz

R [Fv(f)∩Fv(c) = /0]c

f c ∈ TGtz
R

f ∈ TGtz
R [x ∈ Fv(f)]w

x̂. f ∈ KGtz
R

f ∈ TGtz
R c ∈ KGtz

R [Fv(f)∩Fv(c) = /0]c

f :: c ∈ KGtz
R

f ∈ TGtz
R x /∈ Fv(f)

x� f ∈ TGtz
R

(w ∈ R)
c ∈ KGtz

R x /∈ Fv(c)

x� c ∈ KGtz
R

(w ∈ R)

f ∈ TGtz
R x1 6= x2 x /∈ Fv(f)\{x1,x2} [x1,x2 ∈ Fv(f)]w

x <x1
x2 f ∈ TGtz

R
(c ∈ R)

c ∈ KGtz
R x1 6= x2 x /∈ Fv(c)\{x1,x2} [x1,x2 ∈ Fv(c)]w

x <x1
x2 c ∈ KGtz

R
(c ∈ R)

Figure 7: λGtz
R -expressions

Example 4 - λx.x(y :: ẑ.z) belongs to all four sets ΛGtz
/0

, ΛGtz
c , ΛGtz

w and ΛGtz
cw ;

- λx.w(y :: ẑ.z) belongs to ΛGtz
/0

and ΛGtz
c ;

- λx.x(x :: ẑ.z) belongs to ΛGtz
/0

and ΛGtz
w ;

- λx.y(y :: ẑ.z) belongs only to the ΛGtz
/0

;

- λx.x� y(y :: ẑ.z) belongs only to ΛGtz
w ;

- λx.y <y1
y2 y1(y2 :: ẑ.z) belongs only to ΛGtz

c ;

10

- λx.x� y <y1
y2 y1(y2 :: ẑ.z) belongs only to ΛGtz

cw .

The inductive definition of the meta operator of implicit substitution e[t/x], representing the substitution of free
variables, is given in Figure 8. In this definition, in case c ∈ R , the following condition must be satisfied:

Fv(e)∩Fv(t) = /0,

otherwise the substitution result would not be a well-formed term. In the same definition, terms t1 and t2 are obtained
from t by renaming all free variables in t by fresh variables.

x[t/x] , t y[t/x] , y
(λy.v)[t/x] , λy.v[t/x], x 6= y (y� e)[t/x] , {y}\Fv(t)� e[t/x], x 6= y
(vk)[t/x] , v[t/x]k[t/x] (x� e)[t/x] , Fv(t)\Fv(e)� e

(v :: k)[t/x] , v[t/x] :: k[t/x] (y <y1
y2 e)[t/x] , y <y1

y2 e[t/x], x 6= y
(ŷ.v)[t/x] , ŷ.v[t/x] (x <x1

x2 e)[t/x] , Fv(t)<Fv(t1)
Fv(t2)

e[t1/x1][t2/x2]

Figure 8: Substitution in λGtz
R -calculi

The computation over the set of λGtz
R -expressions reflects the cut-elimination process, and manages the explicit/implicit

resource control operators. Four groups of reductions in λGtz
R -calculi are given in Figure 9, while the equivalences are

given in Figure 10. Reduction rules and equivalences specific to each of the four term calculi forming the “LJ base”
of the resource control cube are given in Figure 11.

The first group consists of (β), (π), (σ) and (µ) reductions that exist in all four λGtz
R -calculi. (β) reduction is the

main computational step. In particular (β) creates a potential substitution, which is made actual by (σ). In that sense,
substitutions are controlled (i.e. can be delayed) although they are implicit. Note that this feature is not present in λR -
calculi since it is a consequence of the existence of contexts. For more details see [Esp07b]. Combination (β)+(σ) is
the traditional (β) in λ-calculus. Rule (π) simplifies the head of a cut (t is the head of tk). Rule (µ) erases the sequence
made of a trivial cut (a cut is trivial if its head is a variable) followed by the selection of the same variable. (µ) is
therefore a kind of garbage collection.

In (π) rule, the meta-operator @, called append, joins two contexts and is defined as:

(x̂.t)@k′ = x̂.tk′ (u :: k)@k′ = u :: (k@k′)
(x� k)@k′ = x� (k@k′) (x <y

z k)@k′ = x <y
z (k@k′).

If c ∈ R , the group (γ) in λGtz
R has three new reductions which handle the interaction between contraction and

selection and context construction. If w ∈ R , the group (ω) in λGtz
R has three new reductions which handle the

interaction between weakening and selection and context construction. Finally, the group (γω) in λGtz
R has two new

rules which handle in contexts the interaction between explicit resource operators of several nature.
We have presented the syntax and the reduction rules of λGtz

R , R ⊆ {c,w}, a family of four intuitionistic sequent
term calculi obtained by instantiating R . R = /0 gives the well-known lambda Gentzen calculus λGtz, proposed by
Espı́rito Santo [Esp07a], whose simply typed version corresponds to the intuitionistic sequent calculus with cut and
implicit structural rules, through the Curry-Howard correspondence. R = {c,w}, gives the resource control lambda
Gentzen calculus, λGtz

r , whose call-by-value version was proposed and investigated in [GILŽ11]. Simply typed λGtz
r

extends the Curry-Howard correspondence to the intuitionistic sequent calculus with explicit structural rules, namely
weakening and contraction. Finally, R = {c} and R = {w} give two new calculi, namely λGtz

c and λGtz
w . Those calculi

could be related to substructural logics, as this will be elaborated in the sequel.

11

(β) (λx.t)(u :: k) → u(x̂.tk)
(σ) t(x̂.v) → v[t/x]
(π) (tk)k′ → t(k@k′)
(µ) x̂.xk → k

(γ0) x <x1
x2 y → y y 6= x1,x2

(γ
′

0) x <x1
x2 x1 → x

(γ1) x <x1
x2 (λy.t) → λy.x <x1

x2 t
(γ2) x <x1

x2 (tk) → (x <x1
x2 t)k, if x1,x2 /∈ Fv(k)

(γ3) x <x1
x2 (tk) → t(x <x1

x2 k), if x1,x2 /∈ Fv(t)
(γ4) x <x1

x2 (ŷ.t) → ŷ.(x <x1
x2 t)

(γ5) x <x1
x2 (t :: k) → (x <x1

x2 t) :: k, if x1,x2 /∈ Fv(k)
(γ6) x <x1

x2 (t :: k) → t :: (x <x1
x2 k), if x1,x2 /∈ Fv(t)

(ω1) λx.(y� t) → y� (λx.t), x 6= y
(ω2) (x� t)k → {x}\Fv(k)� (tk)
(ω3) t(x� k) → {x}\Fv(t)� (tk)
(ω4) x̂.(y� t) → y� (x̂.t), x 6= y
(ω5) (x� t) :: k → {x}\Fv(k)� (t :: k)
(ω6) t :: (x� k) → {x}\Fv(t)� (t :: k)

(γω1) x <x1
x2 (y� e) → y� (x <x1

x2 e) x1 6= y 6= x2
(γω2) x <x1

x2 (x1� e) → e[x/x2]

Figure 9: Reduction rules of λGtz
R -calculi

(ε1) x� (y� e) ≡ y� (x� e)
(ε2) x <x1

x2 e ≡ x <x2
x1 e

(ε3) x <y
z (y <u

v e) ≡ x <y
u (y <z

v e)
(ε4) x <x1

x2 (y <
y1
y2 e) ≡ y <y1

y2 (x <
x1
x2 e), x 6= y1,y2, y 6= x1,x2

Figure 10: Equivalences in λGtz
R -calculi

λGtz
R -calculi reduction rules equivalences

λGtz
/0

β, π, σ, µ
λGtz
c β, π, σ, µ, γ0 - γ6 ε2,ε3,ε4

λGtz
w β, π, σ, µ, ω1 - ω6 ε1

λGtz
cw β, π, σ, µ, γ1 - γ6, ω1 - ω6, γω1, γω2 ε1 - ε4

Figure 11: LJ base of the resource control cube

12

1.4 Strong normalisation and substitution
Since the definition of substitution in λR and in λGtz

R is not classical, it is worth proving that if a term in which
other terms have been substituted is strongly normalising, the term itself is strongly normalising. First let us prove a
substitution lemma. Before we need another lemma on substitutions.

Lemma 1 If x /∈ Fv(M) then M[N/x] = M.

Proof: The proof woks by induction after noticing that only definitions:

(y�M)[N/x] , {y}\Fv(N)�M[N/x], x 6= y

(y <y1
y2

M)[N/x] , y <y1
y2

M[N/x], x 6= y

apply for weakening and contraction. 2

Lemma 2 (Substitution Lemma) M[N/x][P/y] = M[P/y][N[P/y]/x].

Proof: Notice first the traditional convention that x /∈ Fv(N), x /∈ Fv(P) and y /∈ Fv(P), which plays
obviously an essential role in the proof.

The proof is by induction on the structure of the terms and most of the cases are classical in λ-calculus.
We are going only to consider the cases which are specific to λR .

• M ≡ z�Q with x, y and z all different and z ∈ Fv(N). Then

(z�Q)[N/x][P/y] = Q[N/x][P/y]

= Q[P/y][N[P/y]/x] by induction
= z� (Q[P/y])[N[P/y]/x]

= (z�Q)[P/y][N[P/y]/x]

• M ≡ z�Q with x, y and z all different, z /∈ Fv(N) and z ∈ Fv(P). Then

(z�Q)[N/x][P/y] = (z�Q[N/x])[P/y]

= Q[N/x][P/y]

= Q[P/y][N[P/y]/x]

= z� (Q[P/y])[N[P/y]/x] by induction
= (z�Q)[P/y][N[P/y]/x]

• M ≡ z�Q with x, y and z all different, z /∈ Fv(N) and z /∈ Fv(P). Then

(z�Q)[N/x][P/y] = (z�Q[N/x])[P/y]

= z� (Q[N/x][P/y])

= z� (Q[P/y][N[P/y]/x])

= z� (Q[P/y])[N[P/y]/x] by induction
= (z�Q)[P/y][N[P/y]/x]

• M ≡ x�Q.

(x�Q)[P/y][N[P/y]/x] = (x�Q[P/y])[N[P/y]/x]

= (Fv(N[P/y])\Fv(Q[P/y]))� (Q[P/y])

= (Fv(N)∪Fv(P)\ y\Fv(Q)∪Fv(P)\ y)� (Q[P/y])

= Fv(N)\Fv(Q)� (Q[P/y])

= (Fv(N)\Fv(Q)�Q)[P/y] because x /∈ Fv(N)

= (x�Q)[N/x][P/y]

13

• M ≡ y�Q.

(y�Q)[P/y][N[P/y]/x] = ((Fv(P)\Fv(Q))�Q)[N[P/y]/x]

= (Fv(P)\Fv(Q))� (Q[N[P/y]/x])

= (Fv(P)\Fv(Q))� (Q[P/y][N[P/y]/x]) by Lemma 1 since y /∈ Fv(Q)

= (Fv(P)\Fv(Q))� (Q[N/x][P/y]) by induction
= (y�Q)[N/x][P/y]

• M ≡ z <z1
z2 Q with z, x and y all different and different of z1 and z2 by convention on bound variables.

(z <z1
z2

Q)[P/y][N[P/y]/x] = (z <z1
z2

Q[P/y])[N[P/y]/x]

= z <z1
z2
(Q[P/y][N[P/y]/x])

= z <z1
z2
(Q[N/x][P/y]) by induction

= (z <z1
z2

Q[N/x])[P/y]

= (z <z1
z2

Q)[N/x][P/y].

• M ≡ x <x1
x2 Q.

(x <x1
x2

Q)[N/x][P/y] = (Fv(N)<
Fv(N1)
Fv(N2)

Q)[N1/x2][N2/x2])[P/y]

= Fv(N)<
Fv(N1)
Fv(N2)

(Q[N1/x1][N2/x2])[P/y])

= Fv(N)<
Fv(N1)
Fv(N2)

(Q[P/y][N1[P/y]/x1][N2[P/y]/x2]) by induction

= (x <x1
x2

Q)[P/y][N[P/y]/x].

• M ≡ y <y1
y2 Q.

(y <y1
y2

Q)[N/x][P/y] = (y <y1
y2

Q[N/x])[P/y]

= Fv(P)<Fv(P1)
Fv(P2)

(Q[N/x][P1/y1][P2/y2])

= Fv(P)<Fv(P1)
Fv(P2)

(Q[P1/y1][P2/y2][N[P1/y1][P2/y2]/x])

by induction
= (y <y1

y2
Q)[P/y][N[P/y]/y].

2

Recall the concept of strong normalisation.

Definition 1 A λR -term M is called strongly normalising if and only if all reduction sequences starting with M termi-
nate. By a reduction sequence we mean a sequence of terms (Mi)i≥0 such that Mi→Mi+1 or Mi ≡Mi+1. We denote
the set of all strongly normalising λR -terms with SN R and the set of all closed strongly normalising λR -terms with
SN ◦

R .

Proposition 2 If M[N/x] ∈ SN R then M ∈ SN R .

Proof: The proof works by induction on the lexicographic product
λR−−→ × ⊇ i.e., on the reduction by

λR followed by the subterm relation. More precisely given a M assume M[N/x] ∈ SN R and assume
the lemma holds when the term is a contracted of M[N/x] ∈ SN R or a subterm of M and prove that
M ∈ SN R .

14

• If M ≡ x or M ≡ y, the result is trivial.

• If M ≡ λy.P, then λy.(P[N/x]) ∈ SN R , therefore P[N/x] ∈ SN R and by induction P ∈ SN R and
since abstraction creates no redex, λy.P ∈ SN R .

• If M ≡ (MP)[N/x]. Since (MP)[N/x] = M[N/x]P[N/x], we get that M ∈ SN R and P ∈ SN R by
induction. If M 6≡ λy.Q, M P ∈ SN R . If M ≡ λy.Q. We know that

(λy.Q)P[N/x] = (λy.Q[N/x])P[N/x]

which reduces to Q[N/x][P[N/x]/y], which is equal to Q[P/y][N/x], by the substitution lemma and
which in SN R by induction.

• If M≡ y�P and y∈Fv(N), then (y�P)[N/x] =P[N/x] (see discussion in Example 2). By induction
P ∈ SN R . Since no rule applies on the top of y�P, we conclude that y�P ∈ SN R .

• If M ≡ y�P and y /∈ Fv(N), then (y�P)[N/x] = y� (P[N/x]). y� (P[N/x]) ∈ SN R implies that
P[N/x], then by induction P ∈ SN R and since no rule applies on the top of y�P, we conclude that
y�P ∈ SN R .

• If M≡ x�P, then (x�P)[N/x] = Fv(N)\Fv(P)�P. If Fv(N)\Fv(P)�P∈ SN R then P∈ SN R ,
and like before, since no rule applies on the top of x�P, we conclude that x�P ∈ SN R .

• If M ≡ y <y1
y2 P with x 6= y, then y <y1

y2 (P[N/x]) ∈ SN R and P[N/x] ∈ SN R as well. By induction
P ∈ SN R . To conclude that y <y1

y2 P ∈ SN R we have to analyse all the cases where one of the rules
(γ) applies. Consider only two cases:

– P ≡ RS and x1,x2 /∈ FV (S), then (γ2) applies. Therefore M[N/x] ≡ y <
y1
y2 (R[N/x]S[N/x]) ∈

SN R . On the top y<y1
y2 (R[N/x]S[N/x]) reduces to (y<y1

y2 R[N/x])S[N/x] = (y<y1
y2 R)[N/x]S[N/x] =

((y <y1
y2 R)S)[N/x]. By induction (y <y1

y2 R)S ∈ SN R . Hence ∈ SN R since all its reducts are in
SN R .

– P≡ y1�R then (γω2) applies. Therefore M[N/x]≡ y <y1
y2 y1�R[N/x] ∈ SN R . Then R[N/x] ∈

SN R and by induction R ∈ SN R Let us prove that the head reduce of M = y <y1
y2 y1�R is in

SN R . By (γω2) we get R[y/y2] which is in SN R as just a renaming of R.

2

2 Simple types for resource control cube
In this section we summarise the type assignment systems that assign simple types to all eight calculi of the resource
control cube in a uniform way. Simple types for λGtz-calculus were introduced by Espı́rito Santo in [Esp07a]. As
far as resource control calculi are concerned, simple types were introduced to λlxr-calculus by Kesner and Lengrand
in [KL07] and to resource control lambda Gentzen calculus λGtz

r in [GILŽ11]. The syntax of types is defined as
follows:

Simple Types α,β ::= p | α→ β

where p ranges over an enumerable set of type atoms and α→ β are arrow types. We denote types by α,β,γ....

Definition 2

(i) A basic type assignment is an expression of the form x : α, where x is a term variable and α is a type.

(ii) A basis Γ is a set {x1 : α1, . . . ,xn : αn} of basic type assignments, where all term variables are different.
Dom(Γ) = {x1, . . . ,xn}.

(iii) A basis extension Γ,x : α denotes the set Γ∪{x : α}, where x 6∈Dom(Γ). Γ,∆ represents the disjoint union of the
two bases Γ and ∆.

(iv) Γ∪c ∆ denotes the standard union of the bases, if c /∈ R , and the disjoint union, if c ∈ R .

15

w /∈ R
Γ,x : α `R x : α

(Axiw)
w ∈ R

x : α `R x : α
(Axew)

Γ,x : α `R M : β

Γ `R λx.M : α→ β
(→R)

Γ `R M : α→ β ∆ `R N : β

Γ∪c ∆ `R MN : β
(→E)

Γ,x : α,y : α `R M : β c ∈ R
Γ,z : α `R z <x

y M : β
(Cont)

Γ `R M : β w ∈ R
Γ,x : α `R x�M : β

(Weak)

Figure 12: λR→: Simply typed λR -calculi

The type assignment systems λR→ for the natural deduction base (ND-base) of the resource control cube are given
in Figure 12.

The type assignment systems λGtz
R → for the sequent base (LJ-base) of the resource control cube are given in

Figure 13. In λGtz
R , we distinguish two sorts of type assignments:

- Γ ` t : α for typing a term and

- Γ;β ` k : α, a type assignment for typing a context, with a stoup. β is called the stoup.

The stoup is a specific place for the last base assignment. It occurs after a semi-colon. If we consider that the
computation is implemented by (β) and (σ), the formula in the stoup is where the computation actually takes place.

w /∈ R
Γ,x : α `R x : α

(Axiw)
w ∈ R

x : α `R x : α
(Axew)

Γ,x : α `R t : β

Γ `R λx.t : α→ β
(→R)

Γ `R t : α ∆;β `R k : γ

Γ∪c ∆;α→ β `R t :: k : γ
(→L)

Γ,x : α `R t : β

Γ;α `R x̂.t : β
(Sel)

Γ `R t : α ∆;α `R k : β

Γ∪c ∆ `R tk : β
(Cut)

Γ,x : α,y : α `R t : β c ∈ R
Γ,z : α `R z <x

y t : β
(Contt)

Γ `R t : β w ∈ R
Γ,x : α `R x� t : β

(Weakt)

Γ,x : α,y : α;β `R k : γ c ∈ R
Γ,z : α;β `R z <x

y k : γ
(Contk)

Γ;γ `R k : γ w ∈ R
Γ,x : α;β `R x� k : γ

(Weakk)

Figure 13: λGtz
R →: Simply typed λGtz

R -calculi

Simply typed λGtz
R -calculi implements intuitionistic sequent calculus cut elimination with implicit/explicit struc-

tural rules through the Curry-Howard correspondance. In particular, λGtz
/0
→ and λGtz

cw→ calculi correspond to the
intuitionistic implicative fragments of Kleene’s systems G3 and G1 from [Kle52], respectively, except that the ex-
change rule is made implicit here. The exchange rule could be made explicit by considering the bases as lists instead
of sets. The system λGtz

c → corresponds to the intuitionistic sequent calculus with explicit contraction and implicit

16

weakening, whereas the system λGtz
w → corresponds to the intuitionistic sequent calculus with explicit weakening and

implicit contraction.
Modifications of λR→ and λGtz

R → systems could provide computational interpretations of substructural logics,
different from the usual approach via linear logic. For instance, if one combines (Axew) axiom and the other rules
in w /∈ R modality, the resulting system would correspond to the logic without weakening i.e. to the variant of
relevance logic. Similarly, if we use ∪c as disjoint union together with the c /∈ R modality of the rest of the system,
correspondence with the variant of the logic without contraction i.e. affine logic is obtained. The properties of these
systems will not be investigated in this paper.

Although the systems λR→ and λGtz
R → enjoy subject reduction and strong normalisation, they (as expected) do not

assign types to all strongly normalising expressions, like λx.xx and λx.x :: x(ŷ.y). This is the motivation for introducing
intersection types in the next section.

3 Intersection types for resource control cube
In this section we introduce intersection type assignment which assign strict types to λR -terms and λGtz

R -expressions.
Intersection types for the λGtz-calculus were introduced in [EGI08]. Strict types were proposed in [vB92] and already
used in [EIL11] and [GILL11] for characterising of strong normalisation in λGtz-calculus and in λr and λGtz

r -calculi,
respectively.

The syntax of types is defined as follows:

Strict Types σ ::= p | α→ σ

Types α ::= ∩n
i σi

where p ranges over a denumerable set of type atoms and ∩n
i σi = σ1 ∩ ...∩σn, n ≥ 1. We denote types by α,β,γ...,

strict types by σ,τ,ρ,υ... and the set of all types by Types. We assume that the intersection operator is idempotent,
commutative and associative, and that it has priority over the arrow operator. Hence, we will omit parenthesis in
expressions like (∩n

i τi)→ σ.
The definition of a basic type assignment, a basis and a basis extension is analogous to the one given in Section 2.

The type assignments are of the form
x1 : α1, ...,xn : αn `M : σ

so that only strict types are assigned to terms.

Definition 3

(i) A union of bases with intersection types is defined in the standard way:

Γt∆ = {x : α | x : α ∈ Γ & x /∈ Dom(∆)}
∪ {x : α | x : α ∈ ∆ & x /∈ Dom(Γ)}
∪ {x : α∩β | x : α ∈ Γ & x : β ∈ ∆}.

(ii) Γtc ∆ represents Γt∆, if c /∈ R , and the disjoint union Γ,∆ otherwise.

3.1 Intersection types for λR

The type assignment systems λR ∩ for the natural deduction ND-base base of the resource control cube are given in
Figure 14. The rules that correspond to each of the four λR ∩-systems are given in Figure 15.

All systems are syntax-directed i.e. the intersection operator is incorporated into already existing rules of the
simply-typed systems. Intersection elimination is managed by the axioms (Axiw), (Axew) and the contraction rule
(Cont), whereas the intersection introduction is performed by the arrow elimination rule (→E). Notice that in the
(→E) rule, Dom(∆1) = . . . = Dom(∆n). The explicit contraction is naturally connected to intersection, because if
some data is used twice, once as data of type α and once as data of type β, that data should be of type α∩β.

The proposed systems satisfy the following properties.

17

w /∈ R
Γ,x : ∩n

i σi `R x : σi
(Axiw)

w ∈ R
x : ∩n

i σi `R x : σi
(Axew)

Γ,x : α `R M : σ

Γ `R λx.M : α→ σ
(→I)

Γ `R M : ∩n
i τi→ σ ∆1 `R N : τ1 ... ∆n `R N : τn

Γtc (∆1t ...t∆n) `R MN : σ
(→E)

Γ,x : α,y : β `R M : σ c ∈ R
Γ,z : α∩β `R z <x

y M : σ
(Cont)

Γ `R M : σ w ∈ R
Γ,x : α `R x�M : σ

(Weak)

Figure 14: λR ∩: λR -calculi with intersection types

λR ∩-systems type assignment rules
λ /0∩ (Axiw), (→I), (→E)
λc∩ (Axiw), (→I), (→E), (Cont)
λw∩ (Axew), (→I), (→E), (Weak)
λcw∩ (Axew), (→I), (→E), (Cont), (Weak)

Figure 15: Four ND intersection type systems

Proposition 3 (Generation lemma for λR ∩)

(i) For w /∈ R : Γ `R x : τ iff there exist σi, i = 1, . . . ,n such that x : τ∩ (∩n
i σi) ∈ Γ.

(ii) For w ∈ R : Γ `R x : τ iff there exist σi, i = 1, . . . ,n such that x : τ∩ (∩n
i σi) = Γ.

(iii) Γ `R λx.M : τ iff there exist α and σ such that τ≡ α→ σ and Γ,x : α `R M : σ.

(iv) Γ `R MN : σ iff Γ = Γ′ tc ∆, ∆ = ∆1 t . . .t∆n and there exist τi, i = 1, . . . ,n such that Γ′ `R M : ∩n
i τi→ σ

and for all i ∈ {1, . . . ,n}, ∆i `R N : τi.

(v) Γ `R x�M : σ iff there exist Γ′,β such that Γ = Γ′,x : β and Γ′ `R M : σ.

(vi) Γ `R z <x
y M : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ′,x : α,y : β `R M : σ.

Proof: The proof is straightforward since all the rules are syntax-directed. 2

Proposition 4 (Substitution lemma for λR ∩) If Γ,x : ∩n
i τi `R M : σ and for all i ∈ {1, . . . ,n}, ∆i `R N : τi, then

Γtc (∆1t ...t∆n) `R M[N/x] : σ.

Proposition 5 (Subject equivalence for λR ∩) For every λR -term M: if Γ `R M : σ and M ≡M′, then Γ `R M′ : σ.

Proposition 6 (Subject reduction for λR ∩) For every λR -term M: if Γ `R M : σ and M→M′, then Γ `R M′ : σ.

3.2 Intersection types for λGtz
R

The type assignment systems λGtz
R ∩ for the sequent LJ-base base of the resource control cube are given in Figure 16.

The rules that correspond to each of the four λGtz
R ∩-systems are given in Figure 17.

18

As in λR ∩, no new rules are added compared to λGtz
R → in order to manage intersection. In the style of sequent

calculus, left intersection introduction is managed by the axioms (Axiw), (Axew) and the contraction rules (Contt) and
(Contk), whereas the right intersection introduction is performed by the cut rule (Cut) and left arrow introduction rule
(→L). In these two rules Dom(Γ1) = . . .= Dom(Γn).

In order to explain the rule (→L) in more details let us consider a simple case n = 2 and m = 2.

Γ1 `R t : σ1 Γ2 `R t : σ2 ∆;τ1∩ τ2 `R k : ρ

(Γ1tΓ2)tc ∆;(σ1∩σ2→ τ1)∩ (σ1∩σ2→ τ2) `R t :: k : ρ
(→L)

Although one would expect in the stoup σ1∩σ2→ τ1∩τ2, this is not a type according to the definition of intersec-
tion types at the beginning of this section. Therefore the corresponding type in the stoup is (σ1∩σ2→ τ1)∩(σ1∩σ2→
τ2). This difficulty does not exist in natural deduction, because natural deduction is isomorphic to a fragment of λGtz,
where the selection rule (Sel) is restricted to x̂.x. In that fragment the (→L) rule would be simpler with strict types in
the stoup. Hence, the presented (Sel) and (→L) rules keep the full power of the sequent calculus.

w /∈ R
Γ,x : ∩n

i σi `R x : σi
(Axiw)

w ∈ R
x : ∩n

i σi `R x : σi
(Axew)

Γ,x : α `R t : σ

Γ `R λx.t : α→ σ
(→R)

Γ,x : α `R t : σ

Γ;α `R x̂.t : σ
(Sel)

Γ1 `R t : σ1 ... Γn `R t : σn ∆;∩m
j τ j `R k : ρ

(Γ1t ...tΓn)tc ∆;∩m
j (∩n

i σi→ τ j) `R t :: k : ρ
(→L)

Γ1 `R t : σ1 ... Γn `R t : σn ∆;∩n
i σi `R k : τ

(Γ1t ...tΓn)tc ∆ `R tk : τ
(Cut)

Γ,x : α,y : β `R t : σ c ∈ R
Γ,z : α∩β `R z <x

y t : σ
(Contt)

Γ `R t : σ w ∈ R
Γ,x : α `R x� t : σ

(Weakt)

Γ,x : α,y : β;γ `R k : σ c ∈ R
Γ,z : α∩β;γ `R z <x

y k : σ
(Contk)

Γ;γ `R k : σ w ∈ R
Γ,x : α;γ `R x� k : σ

(Weakk)

Figure 16: λGtz
R ∩: λGtz

R -calculi with intersection types

λR ∩-systems type assignment rules
λ /0∩ (Axiw), (→R), (→L), (Sel), (Cut)
λc∩ (Axiw), (→R), (→L), (Sel), (Cut), (Contt), (Contk)
λw∩ (Axew), (→R), (→L), (Sel), (Cut), (Weakt), (Weakk)
λcw∩ (Axew), (→R), (→L), (Sel), (Cut), (Contt), (Contk), (Weakt), (Weakk)

Figure 17: Four LJ intersection type systems

The proposed systems satisfy the following properties.

Proposition 7 (Generation lemma for λGtz
R ∩)

(i) For w /∈ R : Γ `R x : τ iff there exist σi, i = 1, . . . ,n such that x : τ∩ (∩n
i σi) ∈ Γ.

19

(ii) For w ∈ R : Γ `R x : τ iff there exist σi, i = 1, . . . ,n such that x : τ∩ (∩n
i σi) = Γ.

(iii) Γ `R λx.t : τ iff there exist α and σ such that τ≡ α→ σ and Γ,x : α `R t : σ.

(iv) Γ;α `R x̂.t : σ iff Γ,x : α `R t : σ.

(v) Γ `R tk : σ iff Γ = Γ′tc ∆, Γ′ = Γ′1t ...tΓ′n and there exist τi, i = 1, . . . ,n such that for all i ∈ {1, . . . ,n}, the
following holds Γ′i `R t : τi, and ∆;∩n

1τi `R k : σ.

(vi) Γ;γ `R t :: k : ρ iff Γ = Γ′tc ∆, Γ′ = Γ′1t ...tΓ′n, γ≡∩m
j (∩n

i σi→ τ j) and for all i ∈ {1, . . . ,n}, the following
holds Γ′i `R t : σi and ∆;∩m

j τ j ` k : ρ .

(vii) Γ `R x� t : σ iff there exist Γ′,β such that Γ = Γ′,x : β and Γ′ `R t : σ.

(viii) Γ;γ ` x� k : σ iff there exist Γ,β such that Γ = Γ′,x : β and Γ;γ `R k : σ.

(ix) Γ `R z <x
y t : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ′,x : α,y : β `R t : σ.

(x) Γ;ε `R z <x
y k : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β and

Γ,x : α,y : β;ε `R k : σ.

Proof: The proof is straightforward since all the rules are syntax-directed. 2

Proposition 8 If e→ e′, then Fv(e)⊇ Fv(e′) and if w ∈ R, Fv(e) = Fv(e′).

Proposition 9

(i) If Γ `R t : σ , then Dom(Γ)⊇ Fv(t) and if w ∈ R , Dom(Γ) = Fv(t).

(ii) If Γ;α `R k : σ , then Dom(Γ)⊇ Fv(k) and if w ∈ R Dom(Γ) = Fv(k).

Proposition 10 (Substitution lemma for λGtz
R ∩)

(i) If Γ,x : ∩n
i τi `R t : σ and for all i, ∆i `R u : τi, then Γtc (∆1t ...t∆n) `R t[u/x] : σ.

(ii) If Γ,x : ∩n
i τi;α `R k : σ and for all i, ∆i `R u : τi, then Γtc (∆1t ...t∆n);α `R k[u/x] : σ.

Proposition 11 (Append lemma) If Γ;α `R k : τi for all i, and ∆;∩n
i τi `R k′ : σ, then Γtc ∆;α `R k@k′ : σ.

Proposition 12 (Subject equivalence for λGtz
R ∩)

(i) For every λGtz
R -term t: if Γ `R t : σ and t ≡ t ′, then Γ `R t ′ : σ.

(ii) For every λGtz
R -context k: if Γ;α `R k : σ and k ≡ k′, then Γ;α `R k′ : σ.

Proposition 13 (Subject reduction for λGtz
R ∩)

(i) For every λGtz
R -term t: if Γ `R t : σ and t→ t ′, then Γ `R t ′ : σ.

(ii) For every λGtz
R -context k: if Γ;α `R k : σ and k→ k′, then Γ;α `R k′ : σ.

20

Proof: The property is stable by context. Therefore we can assume that the reduction takes place at the
outermost position of the term t (resp. of the context k). Here we just show several cases. We will use GL
as an abbreviation for Generation lemma for λGtz

R ∩ (Lemma 7).
Case (β): Let Γ `R (λx.t)(u :: k) : σ. We are showing that Γ′ `R u(x̂.tk) : σ.
From Γ `R (λx.t)(u :: k) : σ and from GL(v) it follows that Γ = Γ′′tc ∆, Γ′′ = Γ′′1 t ...tΓ′′m and that there
is a type ∩m

j τ j such that for all j = 1, . . . ,m, Γ′′j `R λx.t : τ j, and ∆;∩m
j τ j `R u :: k : σ. From GL(iii)

we have that for all j = 1, . . . ,m, τ j ≡ α j → ρ j and Γ′′j ,x : α j `R t : ρ j. From GL(vi) it follows that
∆ = ∆′ tc ∆′′, ∆′ = ∆′1 t ...t∆′n, ∆′i `R u : σi and ∆′′;∩m

j ρ j `R k : σ, for ∩m
j τ j ≡ ∩m

j (∩n
i σi→ ρ j). Also,

we conclude that α j ≡ ∩n
i σi. Now,

∆
′
1 `R u : σ1 ... ∆

′
n `R u : σn

Γ
′′
1 ,x : ∩n

i σi `R t : ρ1 ... Γ
′′
m,x : ∩n

i σi `R t : ρm ∆
′′;∩m

j ρ j ` k : σ
(Cut)

Γ
′′tc ∆

′′,x : ∩n
i σi `R tk : σ

(Sel)
Γ
′′tc ∆

′′;∩n
i σi `R x̂.tk : σ

(Cut)
Γ
′′tc ∆

′′tc (∆′1t ...t∆
′
n) `R u(x̂.tk) : σ.

which is exactly what we wanted, since Γ = Γ′′tc ∆′′tc (∆′1t ...t∆′n).
Case (γ6): Let Γ,x : α;β `R x <x1

x2 (t :: k) : σ. We are showing that Γ,x : α;β ` t :: x <x1
x2 k : σ.

From Γ,x : α;β `R x <x1
x2 (t :: k) : σ by GL(x) we have that α ≡ γ∩ δ and Γ,x1 : γ,x2 : δ;β `R (t ::

k) : σ. Next, GL(vi) and the reduction side-condition x1,x2 /∈ Fv(t) imply that Γ = Γ′1 t ...t Γ′n,Γ
′′,

β≡ ∩m
j (∩n

i τi→ ρ j), Γ′i `R t : τi for i = 1...n and Γ′′,x1 : γ,x2 : δ;∩m
j ρ j `R k : σ. Now,

Γ
′
1 `R t : τ1 ... Γ

′
n `R t : τn

Γ
′′,x1 : γ,x2 : δ;∩m

j ρ j `R k : σ
(Contk)

Γ
′′,x : γ∩δ;∩m

j ρ j `R x <x1
x2

k : σ
(→L)

Γ
′
1t ...tΓ

′
n,Γ
′′,x : γ∩δ;∩m

j (∩n
i τi→ ρ j) `R t :: x <x1

x2
k : σ

which is exactly what we needed.
Case (ω4): Let Γ,y : α;β `R x̂.y� t : σ. We are showing that Γ,y : α;β `R y� x̂.t : σ.
From Γ,y : α;β `R x̂.y� t : σ by GL(iv) we have that Γ,y : α,x : β `R y� t : σ and afterwards by GL(viii)
that Γ,x : β `R t : σ. Now,

Γ,x : β `R t : σ
(Sel)

Γ;β `R x̂.t : σ
(Weakk)

Γ,y : α;β `R y� x̂.t : σ.

2

4 Typeability⇒ SN in all systems of the resource control cube

4.1 Typeability⇒ SN in λR ∩
The reducibility method is a well known approach for proving reduction properties of λ-terms typeable in different
type assignment systems. It was introduced by Tait [Tai67] for proving the strong normalisation property of simply
typed λ-calculus. It was developed further to prove strong normalisation property of various calculi in [Tai75, Gir71,
Kri90, Ghi96], confluence of βη-reduction in [Kol85, Sta85] and to characterise certain classes of λ-terms such as
strongly normalising, normalising, head normalising, and weak head normalising terms by their typeability in various
intersection type systems in [Gal98, DCHM00, DCG03, DCGL04].

The principal idea of the reducibility method is to connect the terms typeable in a certain type assignment system
with the terms satisfying certain reduction properties (e.g., strong normalisation, confluence). To this aim, types are
interpreted by suitable sets of lambda terms which satisfy certain realizability properties. Then the soundness of type
assignment with respect to these interpretations is obtained. As a consequence of soundness, every typeable term
belongs to the interpretation of its type, and as such satisfies a desired reduction property.

21

In the remainder of the paper we consider ΛR to be the applicative structures whose domains are λR -terms and
where the application is just the application of λR -terms. In addition, Λ◦R is the set of closed λR -terms. We first recall
some notions from [Bar92].

Definition 4 For M ,N ⊆ Λ◦R , we define M // N ⊆ Λ◦R as

M // N = {M ∈ Λ
◦
R | ∀N ∈M MN ∈N }.

First of all, we introduce the following notion of type interpretation.

Definition 5 (Type interpretation) The type interpretation [[−]]R : Types→ 2Λ◦R is defined by:

(I1) [[p]]R = SN ◦
R , where p is a type atom;

(I2) [[∩n
i σi]]

R = ∩n
i [[σi]]

R ;

(I3) [[α→ σ]]R = [[α]]R // [[σ]]R .

Next, we introduce the notion of saturation property, obtained by modifying the saturation property given in [Bar92].

Definition 6 A set X ⊆ SN ◦
R is called R -saturated if it satisfies the following two properties:

• INH(X): (∃n≥ 0) (∀p≥ n) λx1 . . .λxp.λy.y ∈ X .

• SATβ(X): (∀n≥ 0)(∀M1, . . . ,Mn ∈ SN ◦
R)(∀N ∈ SN ◦

R)
M[N/x]M1 . . .Mn ∈ X ⇒ (λx.M)NM1 . . .Mn ∈ X .

Proposition 14 Let M ,N ⊆ Λ◦R .

(i) SN ◦
R is R -saturated.

(ii) If M and N are R -saturated, then M // N is R -saturated.

(iii) If M and N are R -saturated, then M ∩N is R -saturated.

(iv) For all types ϕ ∈ Types, [[ϕ]]R is R -saturated.

Proof:

(i) SN ◦
R ⊆ SN ◦

R and the condition INH(SN ◦
R) trivially hold.

For SATβ(SN ◦
R), suppose that

M[N/x]M1 . . .Mn ∈ SN ◦
R and N,M1, . . . ,Mn ∈ SN ◦

R .

We have to prove that
(λx.M)NM1 . . .Mn ∈ SN ◦

R .

Since M[N/x] is a subterm of a term in SN ◦
R , we know that M ∈ SN ◦

R . By assumption, N,M1, . . . ,Mn ∈
SN ◦

R , so the reductions inside of these terms terminate. After finitely many reduction steps, we ob-
tain

(λx.M)NM1 . . .Mn→ . . .→ (λx.M′)N′M′1 . . .M
′
n

where M→M′, N→N′, M1→M′1, . . . ,Mn→M′n. After contracting (λx.M′)N′M′1 . . .M
′
n to M′[N′/x]M′1 . . .M

′
n,

we obtain a reduct of M[N/x]M1 . . .Mn ∈ SN ◦
R . Hence, also the initial term (λx.M)NM1 . . .Mn ∈

SN ◦
R .

22

(ii) First, we prove that M // N ⊆ SN ◦
R . Suppose that M ∈ M // N . Then, for all N ∈

M , MN ∈N . Since M is R -saturated, INH(M) holds and we have that

(∃n≥ 0) (∀p≥ n) λx1 . . .λxp.λy.y ∈M , hence

(∃n≥ 0) (∀p≥ n) M(λx1 . . .λxp.λy.y) ∈N ⊆ SN ◦
R .

From here we can deduce that M ∈ SN ◦
R .

Next, we prove that INH(M // N) holds i.e.

(∃n≥ 0) (∀p≥ n) λx1 . . .λxp.λy.y ∈M // N .

By the induction hypothesis N is R -saturated, hence INH(N) and SAT(N) hold. Since INH(N)
holds, we have that

(∃n≥ 0) (∀p≥ n) λx1 . . .λxp.λy.y ∈N .

By taking p = n+1 we obtain that for all N ∈M ,

(λx1 . . .λxnλxn+1.λy.y)N→ λx1 . . .λxnλy.y

By INH(N) we get that λx1 . . .λxnλy.y∈N and then by SAT(N) we get that (λx1 . . .λxnλxn+1.λy.y)N ∈
N .

(λx1 . . .λxnλxn+1.λy.y) ∈M // N .

Similarly, we can prove the above property for all p≥ n+1, i.e.

(λx1 . . .λxp.λy.y) ∈M // N .

Finally, for SATβ(M // N), suppose that

M[N/x]M1 . . .Mn ∈M // N and N,M1, . . . ,Mn ∈ SN ◦
R .

This means that for all P ∈M
M[N/x]M1 . . .MnP ∈N .

But N is R -saturated, so SATβ(N) holds and we have that for all P ∈N

(λx.M)NM1 . . .MnP ∈N

This means that (λx.M)NM1 . . .Mn ∈M // N .

(iii) M ∩N ⊆ SN ◦
R is straightforward.

For INH(M ∩N), since INH(M) and INH(N) hold we have that

(∃n1 ≥ 0) (∀p1 ≥ n1) λx1 . . .λxp1 .λy.y ∈M

(∃n2 ≥ 0) (∀p2 ≥ n2) λx1 . . .λxp2 .λy.y ∈N .

By taking n = max(n1,n2) we obtain

(∃n≥ 0) (∀p≥ n) λx1 . . .λxp.λy.y ∈M ∩N , i.e. INH(M ∩N) holds.

SATβ(M ∩N) is straightforward.

(iv) By induction on the construction of ϕ ∈ Types.

– If ϕ≡ p, p is type atom, then [[ϕ]]R = SN ◦
R , so it is R -saturated using (i).

23

– If ϕ ≡ α→ σ, then [[ϕ]]R = [[α]]R // [[σ]]R . Since [[α]]R and [[σ]]R are R -saturated by IH,
we can use (ii).

– If ϕ ≡ ∩n
i σi, then [[ϕ]]R = [[∩n

i σi]]
R = ∩n

i [[σi]]
R and for all i = 1, . . . ,n, [[σi]]

R are R -saturated
by IH, so we can use (iii).

2

We further define a valuation of terms [[−]]Rρ : ΛR →Λ◦R and the semantic satisfiability relation |=R which connects
the type interpretation with the term valuation.

Definition 7 Let ρ : var→Λ◦R be a valuation of term variables in Λ◦R . Then, for the term M ∈ΛR with free variables

Fv(M) = {x1, . . . ,xn}, the term valuation [[−]]Rρ : ΛR → Λ◦R is defined as follows

[[M]]Rρ = M[ρ(x1)/x1, . . . ,ρ(xn)/xn].

Lemma 3

(i) [[MN]]Rρ ≡ [[M]]Rρ [[N]]Rρ .

(ii) [[λx.M]]Rρ N→ [[M]]R
ρ(N/x), where N ∈ Λ◦R .

(iii) [[x�M]]Rρ ≡ [[M]]Rρ .

(iv) [[z <x
y M]]Rρ ≡ [[M]]R

ρ(N/x,N/y) where N = ρ(z) ∈ Λ◦R .

Proof:

(i) Straightforward from the definition of substitution given in Figure 3.

(ii) If Fv(λx.M) = {x1, . . . ,xn}, then
[[λx.M]]Rρ N ≡ (λx.M)[ρ(x1)/x1, . . . ,ρ(xn)/xn]N→ (M[ρ(x1)/x1, . . . ,ρ(xn)/xn])[N/x]≡
M[ρ(x1)/x1, . . . ,ρ(xn)/xn,N/x].
The last equivalence holds, since all ρ(xi) are closed terms so x 6∈ FV (ρ(xi)).

(iii) If Fv(M) = {x1, . . . ,xn}, then
[[x�M]]Rρ ≡ (x�M)[ρ(x)/x,ρ(x1)/x1, . . . ,ρ(xn)/xn]≡
Fv(ρ(x))�M[ρ(x1)/x1, . . . ,ρ(xn)/xn]≡ [[M]]Rρ ,
since Fv(ρ(x)) = /0 because ρ(x) ∈ Λ◦R .

(iv) If Fv(M) = {x1, . . . ,xn} and we denote ρ(z) = N ∈ Λ◦R , then

[[z <x
y M]]Rρ ≡ (z <x

y M)[ρ(z)/z,ρ(x1)/x1, . . . ,ρ(xn)/xn]≡
Fv(N)<

Fv(N1)
Fv(N2)

M[N1/x,N2/y,ρ(x1)/x1, . . . ,ρ(xn)/xn]≡
M[N/x,N/y,ρ(x1)/x1, . . . ,ρ(xn)/xn]≡ [[M]]R

ρ(N/x,N/y)
since N ∈Λ◦R , hence Fv(N) = /0, N1 = N2 = N (no renaming takes place) and Fv(N1) = Fv(N2) = /0.

2

Definition 8

(i) ρ |=R M : α ⇐⇒ [[M]]Rρ ∈ [[α]]R ;

(ii) ρ |=R Γ ⇐⇒ (∀(x : α) ∈ Γ) ρ(x) ∈ [[α]]R ;

(iii) Γ |=R M : α ⇐⇒ (∀ρ) (ρ |=R Γ⇒ ρ |=R M : α).

Proposition 15 (Soundness of λR ∩) If Γ `R M : α, then Γ |=R M : α.

24

Proof: By induction on the derivation of Γ `R M : α.

• The last rule applied is (Axiw). Suppose that ρ |= Γ,x : ∩n
1σi. From here we deduce that ρ(x) ∈

[[∩n
1σi]]

R = ∩n
1[[σi]]

R which means that for all i ∈ {1, . . . ,n},ρ(x) ∈ [[σi]]
R .

• (Axew). Similar to the previous case.
• The last rule applied is (→I), i.e.,

Γ,x : α `R M : σ⇒ Γ `R λx.M : α→ σ.

By the IH Γ,x : α |=R M : σ. Suppose that ρ |=R Γ and we want to show that ρ |=R λx.M : α→ σ.
We have to show that

[[λx.M]]Rρ ∈ [[α→ σ]]R = [[α]]R // [[σ]]R i.e.

∀N ∈ [[α]]R . [[λx.M]]Rρ N ∈ [[σ]]R .

Suppose that N ∈ [[α]]R . Then, let us consider a new valuation ρ′ = ρ(N/x), which can be con-
structed because N is a closed term. We have that ρ′ |=R Γ,x : α since ρ |=R Γ, x 6∈ Γ and ρ′(x) =
N ∈ [[α]]R . Then by the IH ρ′ |=R M : σ, hence we can conclude that [[M]]R

ρ′ ∈ [[σ]]R . Applying

Lemma 3(ii) we get [[λx.M]]Rρ N → [[M]]R
ρ′ . Since [[M]]R

ρ′ ∈ [[σ]]R and [[σ]]R is saturated, we obtain

[[λx.M]]Rρ N ∈ [[σ]]R .
• The last rule applied is (→E), i.e.,

Γ `R M : ∩n
1τi→ σ, ∆1 `R N : τ1 . . . ∆n `R N : τn⇒ Γtc (∆1t . . .t∆n) `R MN : σ.

By the IH Γ |=R M : ∩n
1τi→ σ, ∆1 |=R N : τ1, . . . ,∆n |=R N : τn. Suppose that ρ |=R Γtc (∆1t . . .t

∆n), in order to show [[MN]]Rρ ∈ [[σ]]R . Then for all x : α ∈ Γtc (∆1t . . .t∆n), ρ(x) ∈ [[α]]R . This
means that

if x : α ∈ Γ and x 6∈ Dom(∆1)∩ . . .∩Dom(∆n), then ρ(x) ∈ [[α]]R ;
if there is i, such that x : αi ∈ ∆i and x 6∈ Dom(Γ)∩Dom(∆ j), j 6= i, then ρ(x) ∈ [[αi]]

R ;
if x : α∩α1∩ . . .∩αn and x : α ∈ Γ, x : α1 ∈ ∆1, . . . ,x : αn ∈ ∆n, then ρ(x) ∈ [[α]]R ∩ [[α1]]

R ∩ . . .∩
[[αn]]

R .
From this we deduce that ρ |=R Γ,ρ |=R ∆1, . . . ,ρ |=R ∆n. From ρ |=R Γ, using the IH we deduce
that [[M]]Rρ ∈ [[∩n

1τi → σ]]R = [[∩n
1τi]]

R → [[σ]]R . From ρ |=R ∆1, . . . ,ρ |=R ∆n, using the IH we
deduce that [[N]]Rρ ∈ [[τ1]]

R , . . . , [[N]]Rρ ∈ [[τn]]
R . This means that [[N]]Rρ ∈∩n

i [[τi]]
R
ρ = [[∩n

i τi]]
R
ρ . Using

Lemma 3(i) we obtain that [[M]]Rρ [[N]]Rρ = [[MN]]Rρ ∈ [[σ]]R .
• The last rule applied is (Weak), i.e.,

Γ `R M : α⇒ Γ,x : β `R x�M : α.

By the IH Γ |=R M : α. Suppose that ρ |=R Γ,x : β⇔ ρ |=R Γ and ρ |=R x : β. From ρ |=R Γ and
Γ |=R M : α we obtain [[M]]Rρ ∈ [[α]]R . But [[x�M]]Rρ = [[M]]Rρ by Lemma 3(iii), hence [[x�M]]Rρ ∈
[[α]]R .
• The last rule applied is (Cont), i.e.,

Γ,x : α,y : β `R M : σ⇒ Γ,z : α∩β `R z <x
y M : σ.

By the IH Γ,x : α,y : β |=R M : σ. Suppose that ρ |=R Γ,z : α∩β, in order to prove [[z <x
y M]]Rρ ∈

[[σ]]R . This means that ρ |=R Γ and ρ |=R z : α∩β⇔ ρ(z) ∈ [[α]]R and ρ(z) ∈ [[β]]R . For the sake
of simplicity let ρ(z) ≡ N ∈ Λ◦R . We define a new valuation ρ′ such that ρ′ = ρ(N/x,N/y). Then

ρ′ |=R Γ,x : α,y : β since x,y 6∈ Dom(Γ), N ∈ [[α]]R and N ∈ [[β]]R . By the IH [[M]]R
ρ′ ∈ [[σ]]R . By

the definition of term valuation (Definition 7) and Lemma 3(iv) we obtain [[M]]R
ρ′ = [[M]]R

ρ(N/x,N/y) =

[[z <x
y M]]Rρ , since ρ(z) = N. Hence, [[z <x

y M]]Rρ ∈ [[σ]]R .

25

2

Lemma 4 Let [[−]]Rρ : ΛR → Λ◦R be a term valuation. Then

[[M]]Rρ ∈ SN ⇒ M ∈ SN .

Proof: The proof is straightforward since although the terms M and [[M]]Rρ are different, the latter is an
instantiation of the former [[M]]Rρ = M[N/x,N/y,ρ(x1)/x1, . . . ,ρ(xn)/xn]. This is a well-known property
in λ-calculus and adding contraction and weakening still preserves this property. For this reason, the
strong normalisation property is preserved. 2

Theorem 1 (SN for λR ∩) If Γ `R M : α, then M is strongly normalizing, i.e. M ∈ SN .

Proof: Suppose Γ `R M : α. By Proposition 15 Γ |=R M : α. According to Definition 8(iii), this means
that for all ρ such that ρ |=R Γ we have that ρ |=R M : α. Suppose Γ = {x1 : α1, . . .xk : α1k}. Since for
each αi by Proposition 14(iv), [[αi]]

R is saturated, this implies that the property INH([[αi]]
R). Thus for

each [[αi]]
R

(∃ni ≥ 0) (∀p≥ ni) λx1 . . .λxp.λy.y ∈ [[αi]]
R .

Let us obtain a particular valuation ρ0 so that for each xi ∈ Dom(Γ)

ρ0(xi) = λx1 . . .λxni .λy.y

Since INH([[αi]]
R) it follows that ρ0(xi)∈ [[αi]]

R for all xi : αi ∈ Γ. Therefore, by Definition 8(ii) ρ0 |=R Γ

and by Definition 8(iii) ρ0 |=R M : α. Now by Definition 8(i) we can conclude that [[M]]Rρ0 ∈ [[α]]R . By
Proposition 14(iv) [[α]]R ⊆ SN ◦

R , so by applying Lemma 4 we get M ∈ SN ◦
R .

2

There are a few differences with respect to the traditional reducibility method presented in [Bar92]. First of all,
the interpretation of types only contains closed λR -terms, as opposed to all λ-terms. Next, instead of VAR condition
which ensures that the saturated sets contain variables, we introduce the condition INH which ensures that the terms
of the form λ1 . . .λp.λy.y belong to all R -saturated sets. Further, valuations map variables to closed terms and term
valuations map λR -terms to closed λR -terms.. Finally, in the proof of Theorem 1, instead of the valuation ρ0(x) = x
which maps all the variables to themselves, we need a valuation ρ0(x) = λx1 . . .λxn.λy.y. that maps every variable to a
closed term (which is provided by INH([[β]]R)).

4.2 Typeability⇒ SN in λGtz
R ∩

In this subsection, we prove the strong normalisation property of the λGtz
R -calculi with intersection types. The termina-

tion is proved by showing that the reductions on the sets ΛGtz
R of the typeable λGtz

R -expressions are included in particular
well-founded relations, which we define as the lexicographic products of several well-founded component relations.
The first ones are based on the mappings of λGtz

R -expressions into λR -terms. We show that these mappings preserve
types and that all λGtz

R -reductions can be simulated by the reductions or identities of the corresponding λR -calculi. The
other well-founded orders are based on the introduction of quantities designed to decrease a global measure associated
with specific λGtz

R -expressions during the computation.

Definition 9 The mappings b cR : TGtz
R → ΛR are defined together with the auxiliary mappings b cRk : KGtz

R →
(ΛR → ΛR) in the following way:

bxcR = x bx̂.tcRk (M) = (λx.btcR)M
bλx.tcR = λx.btcR bt :: kcRk (M) = bkcRk (MbtcR)

bx� tcR = x�btcR bx� kcRk (M) = {x}\Fv(M)�bkcRk (M)

bx <y
z tcR = x <y

z btcR bx <y
z kcRk (M) = x <y

z bkcRk (M)

btkcR = bkcRk (btcR)

26

Lemma 5

(i) Fv(t) = Fv(btcR), for t ∈ TGtz
R .

(ii) bv[t/x]cR = bvcR [btcR /x], for v, t ∈ TGtz
R .

Proof: The proof directly yields from Definition 9 and the substitution definitions.
2

We prove that the mappings b cR and b cRk preserve types. In the sequel, we use `λR to denote derivations in
λR ∩. The notation ΛR (Γ`

λR
α) stands for {M | M ∈ ΛR & Γ `λR M : α}.

Proposition 16 (Type preservation with b cR)

(i) If Γ `R t : σ, then Γ `λR btc
R : σ.

(ii) If Γ;∩n
jτ j `R k : σ, then bkcRk : ΛR (Γ′j`λR

τ j)→ΛR (ΓtcΓ′`
λR

σ), for all j ∈ {1, . . . ,n} and for some Γ′ = Γ′1t ...tΓ′n.

Proof: The proposition is proved by simultaneous induction on derivations. We distinguish cases accord-
ing to the last typing rule used.

• Cases (Axiw), (Axew), (→R), (Weakt) and (Contt) are easy, because the system λR ∩ has exactly the
same rules.

• Case (Sel): the derivation ends with the rule

Γ′,x : α `R t : σ

Γ′;α `R x̂.t : σ
(Sel)

By IH we have that Γ′,x : α `λR btc
R : σ. For any M ∈ ΛR such that Γ′′ `λR M : α, for some Γ′′, we

have

Γ
′,x : α `λR btc

R : σ
(→I)

Γ
′ `λR λx.btcR : α→ σ Γ

′′ `λR M : α
(→E)

Γ
′tc Γ

′′ `λR (λx.btcR)M : σ

Since (λx.btcR)M = bx̂.tcRk (M), we conclude that bx̂.tcRk : ΛR (Γ′′`
λR

α)→ ΛR (Γ′tcΓ′′`
λR

σ).

• Case (→L): the derivation ends with the rule

Γ1 `R t : σ1 ... Γn `R t : σn ∆;∩m
j τ j ` k : ρ

Γtc ∆;∩m
j (∩n

i σi→ τ j) `R t :: k : ρ
(→L)

where Γ = Γ1 t ...tΓn. By IH we have that Γi `λR btc
R : σi, for i = 1...n. For any M ∈ ΛR such

that Γ′j `λR M : ∩n
i σi→ τ j, j = 1, . . . ,m we have

Γ′j `λR M : ∩n
i σi→ τ j Γ `λR btc

R : σi

Γtc Γ′j `λR MbtcR : τ j
(→E)

From the right-hand side premise in the (→L) rule, by IH, we get that bkcRk is the function with
the scope bkcRk : ΛR (Γ′′′j `λR

τ j)→ ΛR (Γ′′′tcΓ′′`
λR

ρ), for Γ′′′ = Γ′′′1 t ...tΓ′′′n . For Γ′′′ ≡ Γtc Γ′ and by

taking MbtcR as the argument of the function bkcRk , we get Γtc ∆tc Γ′ `λR bkc
R
k (MbtcR) : ρ. Since

bkcRk (MbtcR) = bt :: kcRk (M), we have that Γtc ∆tc Γ′ `λR bt :: kcRk (M) : ρ. This holds for any M
of the appropriate type, yielding
bt :: kcRk : ΛR (Γ′`

λR
∩n

i σi→τ j)→ ΛR (Γtc∆tcΓ′`
λR

ρ), which is exactly what we need.

27

• Case (Cut): the derivation ends with the rule

Γ1 `R t : τ1 . . .Γn `R t : τn ∆;∩τn
i `R k : σ

(Γt . . .tΓn)tc ∆ `R tk : σ
(Cut)

By IH we have that Γ `λR btc
R : τi and bkcRk : ΛR (Γ′`

λR
τi)→ ΛR (Γ′,∆`

λR
σ) for all i = 1, . . . ,n. Hence,

for any M ∈ Λ
λR such that Γ′ `λR M : τi, Γ′tc ∆ `λR bkc

R
k (M) : σ holds. By taking M ≡ btcR and

Γ′ ≡ Γ, we get Γ,∆ `λR bkc
R
k (btcR) : σ. But bkcRk (btcR) = btkcR , so the proof is done.

• Case (Weakk): the derivation ends with the rule

Γ;β `R k : σ

Γ,x : α;β `R x� k : σ
(Weakk)

By IH we have that bkcRk is the function with the scope bkcRk : ΛR (Γ′`
λR

β)→ ΛR (ΓtcΓ′`
λR

σ), meaning

that for each M ∈ Λ
λR such that Γ′ `λR M : β holds Γ′tc Γ′′ `λR bkc

R
k (M) : σ. Now, we can apply

(Weak) rule:
Γtc Γ′ `R bkcRk (M) : σ

Γtc Γ′,x : α `R x�bkcRk (M) : σ

(Weak)

Since x�bkcRk (M) = bx�kcRk (M), this means that bx�kcRk : ΛR (Γ′`
λR

β)→ ΛR (ΓtcΓ′,x:α`
λR

σ), which
is exactly what we wanted to get.

• Case (Contk): similar to the case (Weakk), relying on the rule (Cont) in λR .

2

For the given encoding b cR , we show that each λGtz
R -reduction step can be simulated by λR -reduction or identity.

In order to do so, we first prove the following lemmas by induction on the structure of the contexts. The proofs of
Lemma 7 and Lemma 8 also use Regnier’s σ reductions, investigated in [Reg94].

Lemma 6 If M→λR M′, then bkcRk (M)→λR bkc
R
k (M′).

Lemma 7 bkcRk ((λx.P)N)→λR (λx.bkcRk (P))N.

Lemma 8 If M ∈ ΛR and k,k′ ∈ KGtz
R , then bk′cRk ◦bkc

R
k (M)→λR bk@k′cRk (M).

Lemma 9

(i) If x /∈ Fv(k), then (bkcRk (M))[N/x] = bkcRk (M[N/x]).

(ii) If x,y /∈ Fv(k), then z <x
y (bkc

R
k (M))→λR bkc

R
k (z <x

y M).

(iii) bkcRk (x�M)→λR {x}\Fv(k)�bkcRk (M).

Now we can prove that the reduction rules of λGtz
R -calculi can be simulated by the reduction rules or identities in

the corresponding λR -calculi. Moreover, the equivalences of λGtz
R -calculi are preserved in λR -calculi.

Theorem 2 (Simulation of λGtz
R -reductions by λR -reductions)

(i) If a term M→M′, then bMcR →λR bM
′cR .

(ii) If a context k→ k′ by γ6 or ω6 reduction, then bkcRk (M)≡ bk′cRk (M), for any M ∈ ΛR .

28

(iii) If a context k→ k′ by some other reduction, then bkcRk (M)→λR bk
′cRk (M), for any M ∈ ΛR .

(iv) If M ≡M′, then bMcR ≡λR bM
′cR , and if k ≡ k′, then bkcRk (M)≡λR bk

′cRk (M), for any M ∈ ΛR .

Proof: Without losing generality, we prove the statement only for the outermost reductions. The rules
γ0,γ

′
0,γ1,γ2,γ3, ω1,ω2,ω3, γω1, γω2 are simulated by the corresponding rules of λR . For the remaining

rules we have:

(β) (λx.t)(u :: k)→ u(x̂.tk).

On the one hand bMcR = b(λx.t)(u :: k)cR = bu :: kcRk (bλx.tcR) = bkcRk ((λx.btcR)bucR)

On the other hand, bM′cR = bu(x̂.tk)cR = bx̂.tkcRk (bucR) = (λx.btkcR)bucR =

(λx.bkcRk (btcR))bucR . So, bMcR →λR bM
′cR by Lemma 7.

(σ) T (x̂.v)→ v[T/x].

bMcR = bT (x̂.x)cR = bx̂.xcRk (bTcR) = (λx.bvcR)(bTcR),

bM′cR = bv[T/x]cR = bvcR [bTcR /x] by Lemma 5, so bMcR →λR bM
′cR by β-reduction in the

λR -calculus.

(π) (tk)k′→ t(k@k′)

bMcR = b(tk)k′cR = bk′cRk (btkcR) = bk′cRk (bkcRk (btcR))

bM′cR = bt(k@k′)cR = bk@k′cRk (btcR).

Applying Lemma 8 we get that bMcR →λR bM
′cR .

(µ) x̂.xk→ k.
This reduction reduces context to context, so we have:
bx̂.xkcRk (M) = (λx.bxkcR)(M) = (λx.bkcRk (x))(M).

This reduces to bkcRk (M) by β-reduction in the λR -calculus.

(γ4) x <x1
x2 (ŷ.t)→ ŷ.(x <x1

x2 t)

bKcRk (M) = x <x1
x2 (λy.btcR)M.

On the other hand,
bK′cRk (M) = (λy.x <x1

x2 btcR)M.

So bMcR →λR bM
′cR by the rule γ2.

(γ5) x <x1
x2 (t :: k)→ (x <x1

x2 t) :: k, if x1,x2 /∈ Fv(k)

bKcRk (M) = x <x1
x2 (bkc

R
k (MbtcR)).

bK′cRk (M) = bkcRk (M(x <x1
x2 btcR)).

x1,x2 /∈ Fv(k) implies x1,x2 /∈ Fv(bkcRk (M)) so we can apply Lemma 9 followed by reduction γ3

and conclude that bKcRk (M)→λR bK
′cRk (M).

(γ6) x <x1
x2 (t :: k)→ t :: (x <x1

x2 k), if x1,x2 /∈ Fv(t)

bKcRk (M) = bx <x1
x2 (t :: k)cRk (M) = x <x1

x2 bkc
R
k (MbtcR).

On the other hand,
bK′cRk (M) = bt :: (x <x1

x2 k)cRk (M) = x <x1
x2 bkc

R
k (MbtcR).

So bKcRk (M) = bK′cRk (M).

(ω4) x̂.(y� t)→ y� (x̂.t), x 6= y

bKcRk (M) = bx̂.(y� t)cRk (M) = (λx.y�btcR)M.

bK′cRk (M) = by� (x̂.t)cRk (M) = y� (λx.btcR)M.

So bKcRk (M)→λR bK
′cRk (M) by the rule ω2.

29

(ω5) (x� t) :: k→{x}\Fv(k)� (t :: k)

bKcRk (M) = b(x� t) :: kcRk (M) = bkcRk (Mbx� tcR) = bkcRk (Mx�btcR).

bK′cRk (M) = b{x}\Fv(k)�(t :: k)cRk (M) = ({x}\Fv(k))\Fv(M)�bt :: kcRk (M) = ({x}\Fv(k))\
Fv(M)�bkcRk (MbtcR).

Applying the rule ω3 of λR and Lemma 9 we get that

bKcRk (M)→λR bK
′cRk (M).

(ω6) t :: (x� k)→{x}\Fv(t)� (t :: k)

bKcRk (M)= bt :: (x�t)cRk (M)= bx�kcRk (MbtcR)= {x}\Fv(MbtcR)�bkcRk (MbtcR)= bK′cRk (M).

The proof of (iv) is trivial, since the equivalences of λGtz
R -calculi and λR -calculi coincide.

2

The previous proposition shows that β, π, σ, µ, γ0 - γ5, ω1 - ω5, γω1 and γω2 λGtz
R -reductions are interpreted by

λR -reductions and that γ6 and ω6 λGtz
R -reductions are interpreted by an identity in the λR . Since the set of equivalences

of the two bases of the resource control cube coincide, they are trivially preserved. If one wants to prove that there is
no infinite sequence of λGtz

R -reductions one has to prove that there cannot exist an infinite sequence of λGtz
R -reductions

which are all interpreted as identities. To prove this, one shows that if a term is reduced with such a λGtz
R -reduction,

it is reduced for another order that forbids infinite decreasing chains. This order is itself composed of several orders,
free of infinite decreasing chains (Definition 11).

Definition 10 The functions S R , || ||Rc , || ||Rw : ΛGtz
R → N are defined in Figure 18.

S R (x) = 1 ||x||Rc = 0 ||x||Rw = 1
S R (λx.t) = 1+S R (t) ||λx.t||Rc = ||t||Rc ||λx.t||Rw = 1+ ||t||Rw

S R (x� e) = 1+S R (e) ||x� e||Rc = ||e||Rc ||x� e||Rw = 0
S R (x <y

z e) = 1+S R (e) ||x <y
z e||Rc = ||e||Rc +S R (e) ||x <y

z e||Rw = 1+ ||e||Rw
S R (tk) = S R (t)+S R (k) ||tk||Rc = ||t||Rc + ||k||Rc ||tk||Rw = 1+ ||t||Rw + ||k||Rw

S R (x̂.t) = 1+S R (t) ||x̂.t||Rc = ||t||Rc ||x̂.t||Rw = 1+ ||t||Rw
S R (t :: k) = S R (t)+S R (k) ||t :: k||Rc = ||t||Rc + ||k||Rc ||t :: k||Rw = 1+ ||t||Rw + ||k||Rw

Figure 18: Definitions of S R (e), ||e||Rc , ||e||Rw

Lemma 10 For all e,e′ ∈ λGtz
R :

(i) If e →γ6 e′, then ||e||Rc > ||e′||Rc .

(ii) If e →ω6 e′, then ||e||Rc = ||e′||Rc .

(iii) If e ≡ e′, then ||e||Rc = ||e′||Rc .

Lemma 11 For all e,e′ ∈ λGtz
R :

(i) If e →ω6 e′, then ||e||Rw > ||e′||Rw .

(ii) If e ≡ e′, then ||e||Rw = ||e′||Rw .

30

Now we can define the following orders based on the previously introduced mappings and norms.

Definition 11 We define the following strict orders and equivalences on ΛGtz
R ∩:

(i) t >λR t ′ iff btcR →+
λR
bt ′cR ; t =λR t ′ iff btcR ≡ bt ′cR ;

k >λR k′ iff bkcRk (M)→+
λR
bk′cR (M) for every M ∈ ΛR ;

k =λR k′ iff bkcRk (M)≡ bk′cRk (M) for every M ∈ ΛR ;

(ii) e >c e′ iff ||e||Rc > ||e′||Rc ; e =c e′ iff ||e||Rc = ||e′||Rc ;

(iii) e >w e′ iff ||e||Rw > ||e′||Rw ; e =w e′ iff ||e||Rw = ||e′||Rw ;

A lexicographic product of two orders >1 and >2 is usually defined as follows ([BN98]):
a >1 ×lex >2 b ⇔ a >1 b or (a =1 b and a >2 b).

Definition 12 We define the relations�R on ΛGtz
R as the lexicographic products:

�R = >λR ×lex >c ×lex >w .

The following proposition proves that the reduction relation on the set of typed λGtz
R -expressions is included in the

given lexicographic product�R .

Proposition 17 For each e ∈ ΛGtz
R : if e→ e′, then e�R e′.

Proof: The proof is by case analysis on the kind of reduction and the structure of�R .
If e→ e′ by β, σ, π, µ, γ0, γ

′
0 , γ1 γ2, γ3, γ4 γ5, ω1, ω2, ω3 ω4 or ω5, γω1, γω2, reduction, then e >λR e′ by

Proposition 2.
If e→ e′ by γ6, then e =λR e′ by Proposition 2, and e >c e′ by Lemma 10.
Finally, if e→ e′ by ω6, then e =λR e′ by Proposition 2, e =c e′ by Lemma 10 and e >w e′ by Lemma 11.
2

SN of → is another terminology for the well-foundedness of the relation → and it is well-known that a relation
included in a well-founded relation is well-founded and that the lexicographic product of well-founded relations is
well-founded.

Theorem 3 (Strong normalization) Each expression in ΛGtz
R ∩ is SN.

Proof: The reduction→ is well-founded on ΛGtz
R ∩ as it is included (Proposition 17) in the relation�R

which is well-founded as the lexicographic product of the well-founded relations >λR , >c and >w. The
relation >λR is based on the interpretation b cR : ΛGtz

R → ΛR . By Proposition 16 typeability is preserved
by the interpretation b cR and→λR is SN (i.e., well-founded) on ΛR ∩ (Section 4.1), hence >λR is well-
founded on ΛGtz

R ∩. Similarly, >c and >w are well-founded, as they are based on interpretations into the
well-founded relation > on the set N of natural numbers.

2

5 SN⇒ Typeability in all systems of the resource control cube
Let us turn our attention to the most unique property of intersection types systems that all strongly normalising terms
are typeable by intersection types. We will prove this property first for λR -terms and then for λGtz

R -terms.

31

5.1 SN⇒ Typeability in λR ∩
We want to prove that if a λR -term is SN, then it is typeable in the system λR ∩. We proceed in two steps:

1. we show that all λR -normal forms are typeable and

2. we prove the head subject expansion property.

First, let us observe the structure of the λR -normal forms, given by the following abstract syntax:

Mn f ::= x |λx.Mn f |xM1
n f ...M

n
n f |λx.x�Mn f

|x <x1
x2 Mn f Nn f , if x1 ∈ Fv(Mn f), x2 ∈ Fv(Nn f)

Wn f ::= x�Mn f |x�Wn f

Notice that it is necessary to distinguish normal forms Wn f since the term λx.y�Mn f is not a normal form, i.e.
λx.y�Mn f →ω1 y�λx.Mn f .

Proposition 18 λR -normal forms are typeable in the system λR ∩.

Proof: By an easy induction on the structure of Mn f and Wn f . Notice that the typing rules for introducing
the explicit resource control operators change only the left-hand side of the sequents while the types of
the expressions on the right-hand side stay unchanged. 2

Proposition 19 (Inverse substitution lemma) Let Γ `R M[N/x] : σ and N typeable. Then, there are Γ′, ∆ = ∆1 t
...t∆n and τi, i = 1, ...,n such that Γ = Γ′tc ∆, ∆i `R N : τi for all i = 1, . . . ,n and Γ′,x : ∩n

i τi `R M : σ.

Proof: By induction on the structure of M. We will just show the basic case and the cases related to
resource operators.

• Basic case:
- M ≡ x. Then M[N/x] = x[N/x] = N. For Γ′ ≡ /0, ∆ ≡ Γ and τi ≡ σ we get ∆ `R N : σ from the
premise and x : ∩n

i σi `R x : σ from the axiom.
- M ≡ y. Then M[N/x] = y[N/x] = y. This case is possible only if w /∈ R , so we can assume that
Γ = Γt∆, where ∆ `R N : τ, from the premise that N is typeable, and Γ `R y : σ from the implicit
weakening axiom.

• Case M ≡ x�M′. Then M[N/x] = (x�M′)[N/x] = Fv(N) \ Fv(M′)�M′. From the premise
Γ `R (x�M′)[N/x] : σ we have Γ `R Fv(N) \Fv(M′)�M′ : σ, hence by the generation lemma
Γ′ `R M′ : σ, for Γ′ = Γ \ (Fv(N) \Fv(M′)). Now, for an arbitrary type α, we have Γ′,x : α `R
x�M′ : σ. From the premise that N is typeable, knowing that w ∈ R , we get ∆ `R N : β where
Dom(∆) = Fv(N). The proposition is proved by taking α≡ β.

• Case M ≡ y�M′. Then M[N/x] = (y�M′)[N/x] = {y} \Fv(N)�M′[N/x]. From Γ `R {y} \
Fv(N)�M′[N/x] : σ by generation lemma, we have that Γ′ = Γ \ ({y} \Fv(N)),y : α and Γ′ `R
M′[N/x] : σ. Now, by IH we get that Γ′ = Γ′′tc ∆, ∆ = ∆1t ...t∆n, ∆i `R N : τi for all i = 1, . . . ,n
and Γ′′,x : ∩n

i τi `R M′ : σ. Since y /∈M′, we get Γ′′,y : α,x : ∩n
i τi `R y�M′ : σ.

• Case M ≡ y <y1
y2 M′ and x 6= y. Then M[N/x] = (y <y1

y2 M′)[N/x] = y <y1
y2 M′[N/x]. From the premise

Γ `R y <y1
y2 M′[N/x] : σ using the generation lemma we get that Γ = Γ′,y : α∩β and Γ′,y1 : α,y2 :

β `R M′[N/x] : σ. By IH we get that Γ′ = Γ′′tc ∆, ∆ = ∆1t ...t∆n, ∆i `R N : τi for all i = 1, . . . ,n
and Γ′′,y1 : α,y2 : β,x :∩n

i τi `R M′ : σ. Using (Cont) rule we get Γ′′,y : α∩β,x :∩n
i τi `R y<y1

y2 M′ : σ.

• Case M ≡ x <x1
x2 M′. Then M[N/x] = (x <x1

x2 M′)[N/x] = Fv(N) <
Fv(N1)
Fv(N2)

M′[N1/x1,N2/x2]. From

the premise Γ `R Fv(N) <
Fv(N1)
Fv(N2)

M′[N1/x1,N2/x2] : σ, using the generation lemma we get that for
Fv(N) = {y1, ...,yn} holds Γ = Γ′,y1 : α1∩β1, ...,yn : αn∩βn and Γ′,y′1 : α1,y′′1 : β1, ...,y′n : αn,y′′n :
βn `R M[N1/x1,N2/x2] : σ. Applying IH two times, we obtain Γ′ = Γ′′ tc ∆′ tc ∆′′, where ∆′ =
∆′1t ...t∆′n and ∆′′ = ∆′′1t ...t∆′′n , ∆′i `R N1 : τ′i for all i = 1, . . . ,n, ∆′′i `R N2 : τ′′i for all i = 1, . . . ,n,

32

and Γ′′,y′1 : α1,y′′1 : β1, ...,y′n : αn,y′′n : βn,x1 : ∩n
i τ′i,x2 : ∩n

i τ′′i `R M′ : σ. Since N1 and N2 are obtained
by renaming N we have that∩n

i τ′i≡∩n
i τ′′i ≡∩n

i τi, ∆i `R N : τi for all i= 1, . . . ,n and for ∆i =∆′itc∆′′i .
Finally, by (Cont) rule we get Γ′′,y′1 : α1,y′′1 : β1, ...,y′n : αn,y′′n : βn,x : ∩n

i τi `R x <x1
x2 M′ : σ and the

proof is done.

2

Proposition 20 (Head subject expansion) For every λR -term M: if M→M′, M is contracted redex and Γ`R M′ : σ ,
then Γ `R M : σ, provided that if M ≡ (λx.N)P→β N[P/x]≡M′, P is typeable.

Proof: By the case study according to the applied reduction. 2

Theorem 4 (SN⇒ typeability) All strongly normalising λR -terms are typeable in the λR ∩ system.

Proof: By induction on the length of the longest reduction path out of a strongly normalising term M, with
a subinduction on the size of M. We also use Proposition 5.

• If M is a normal form, then M is typeable by Proposition 18.

• If M is itself a redex, let M′ be the term obtained by contracting the redex M. M′ is also strongly
normalising, hence by IH it is typeable. Then M is typeable, by Proposition 20. Notice that, if
M ≡ (λx.N)P→β N[P/x]≡M′, then, by IH, P is typeable - since the length of the longest reduction
path out of P is not larger than that of M, and the size of P is smaller than the size of M.

• Next, suppose that M is not itself a redex nor a normal form. Then M is of one of the following
forms: λx.N, λx.x�N, xN1...Nm, x�N, or x <x1

x2 NP, x1 ∈ Fv(N), x2 ∈ Fv(P) (in each case some
Ni or P are not in normal form). Ni and P are typeable by IH, as subterms of M. Then, it is easy to
build the typing for M.

2

5.2 SN⇒ Typeability in λGtz
R ∩

Finally, we want to prove that if a λGtz
R -term is SN, then it is typeable in the system λGtz

R ∩. We follow the procedure
used in Section 5.1. The proofs are similar to the ones in Section 5.1 and are omitted.

The abstract syntax of λGtz
R -normal forms is the following:

tn f ::= x |λx.tn f |x(tn f :: kn f) |λx.x� tn f |x <y
z y(tn f :: kn f)

kn f ::= x̂.tn f | tn f :: kn f | x̂.x� tn f |x <y
z (tn f :: kn f), y ∈ Fv(tn f),z ∈ Fv(kn f)

wn f ::= x� en f |x�wn f

We use en f for any λGtz
R -expression in normal form.

Proposition 21 λGtz
R -normal forms are typeable in the system λGtz

R ∩.

Proof: The proof goes by an easy induction on the structure of en f . 2

The following two lemmas explain the behavior of the meta operators [/] and @ during expansion.

Lemma 12 (Inverse substitution lemma)

(i) Let Γ `R t[u/x] : σ and u typeable. Then, there exist ∆ = ∆1t ...t∆n and ∩n
i τi, i = 1, ...,n such that ∆i `R u : τi

for all i = 1, . . . ,n and Γ′,x : ∩τi `R t : σ, where Γ = Γ′tc ∆.

(ii) Let Γ;α `R k[u/x] : σ and u typeable. Then, there exist ∆ = ∆1 t ...t ∆n and ∩n
i τi, i = 1, ...,n such that

∆i `R u : τi for all i = 1, . . . ,n and Γ′,x : ∩τi;α `R k : σ, where Γ = Γ′tc ∆.

Proof: The proof goes straightforward by mutual induction on the structure of terms and contexts. 2

33

Lemma 13 (Inverse append lemma) If Γ;α `R k@k′ : σ, then Γ = Γ′tc Γ′′ where Γ′ = Γ′1t ...tΓ′n and there is a
type ∩n

i τi, i = 1, ...,n such that Γ′i;α `R k : τi for all i = 1, . . . ,n and Γ′′;∩n
i τi `R k′ : σ.

Proof: The proof goes by the induction on the structure of the context k.
2

Now we prove that the type of an expression is preserved during the expansion.

Proposition 22 (Head subject expansion)

(i) For every λGtz
R -term t: if t→ t ′, t is contracted redex and Γ `R t ′ : σ , then Γ `R t : σ.

(ii) For every λGtz
R -context k: if k→ k′, k is contracted redex and Γ;α `R k′ : σ , then Γ;α `R k′ : σ.

Proof: The proof goes by the case study according to the applied reduction. 2

Theorem 5 (SN⇒ typeability) All strongly normalising λGtz
R expressions are typeable in the λGtz

R ∩ systems.

Proof: The proof is by induction over the length of the longest reduction path out of a strongly normalising
expression e, with a subinduction on the size of e. We also use Proposition 12. 2

The complete characterisation of strongly normalising terms by intersection types

• in the natural deduction ND-base of the resource control cube is a corollary to Theorem 1 and 4

• in the sequent LJ-base of the resource control cube is a corollary to Theorem 3 and 5.

Theorem 6 (Complete characteristation of SN)

- A λR -term is strongly normalising if and only if it is typeable in λR ∩.

- A λGtz
R -term is strongly normalising if and only if it is typeable in λGtz

R ∩.

6 Conclusions
In this paper, we proposed intersection type assignment systems for λR and λGtz

R -calculi, two systems of lambda
calculi parametrized with respect to R ⊆ {c,w}, where c is a contraction and w is a weakening. These two families
of lambda calculi form the so-called resource control cube. Four λR -calculi form the “natural deduction base” of
the cube, corresponding to the “implicit base” of [KR09], whereas “the sequent base” contains four λGtz

R -calculi,
generalization of `λGtz-calculus of [GILŽ11]. In each base, the calculi differ by the implicit/explicit treatment of the
resource operators contraction and weakening.

The intersection type systems proposed here, for resource control lambda and sequent lambda calculus, give a
complete characterisation of strongly normalising terms for all eight calculi of the resource cube. We propose general
proofs for each base handled by various side conditions in some cases. In order to prove the strong normalisation of
typeable resource lambda terms, we use an appropriate modification of the reducibility method. The same property
for resource sequent lambda expressions is proved by using a well-founded lexicographic order based on suitable
embedding into the former calculi. This paper expands the range of the intersection type techniques and combines
different methods in the strict types environment. Unlike the approach of introducing non-idempotent intersection into
the calculus with some kind of resource management [PR10], our intersection is idempotent.

It would be interesting to investigate the relation between the resource control enabled via explicit operators used
here and the approach used in [PR10], where the resources are managed via applicative bags with multiplicities.
Another direction will involve the investigation of the use of intersection types in constructing models for sequent
lambda calculi, since intersection types are known powerful means for building models of lambda calculus ([BCDC83,
DCGL04]). On the other hand it should be noticed that the substitutions in our λGtz

R -calculi are implicit. Considering

34

explicit susbtitutions would complete the sequent part of the cube as Kesner and Renaud have done for λR in their
prismoid.

Furthermore, resource control lambda and sequent lambda calculi are good candidates to investigate the compu-
tational content of substructural logics [SHD93], both in natural deduction and sequent calculus. The motivation for
these logics comes from philosophy (Relevant and Affine Logic), linguistics (Lambek Calculus) and computing (Lin-
ear Logic). The basic idea of resource control is to explicitly handle structural rules, so that the absence of (some)
structural rules in substructural logics such as weakening, contraction, commutativity, associativity can possibly be
handled by resource control operators. This is in the domain of further research.

From a more pragmatic perspective, resources need to be controlled tightly in computer applications. For instance,
Kristoffer Rose has undertaken the description of compilers by rules with binders [Ros11b, Ros11a]. He noticed
that the implementation of substitutions of linear variables by inlining is efficient, whereas substitutions of duplicated
variables require a cumbersome and time consuming mechanism, based on pointers. It is therefore important to
precisely control duplications. On the other hand, strong control of erasing does not require a garbage collector and
prevents memory leaking. Another line of application of resource control is related to object-oriented languages.
Alain Mycroft [Myc11] presented resource aware type-systems for multi-core program efficiency. In this framework
an identified “memory isolation” property enables multi-core programs to avoid slowdown due to cache contention.
The existing work on Kilim and its isolation-type system is related to both substructural types and memory isolation.

Finally, the two calculi with both resource control operators explicit, namely λCW of [KR09] and `λGtz-calculus of
[GILŽ11] deserve particular attention. Due to the multiplicative style of the typing rules, and the reductions’ orien-
tation of propagating the contraction in the term and extracting the weakening out of the term, these calculi exhibit
optimization in terms of the minimal total size of the bases used for the type assignments. The consequences of this
property, particularly for the implementation related issues, should be investigated.

Acknowledgements Above all, our gratitude goes to two anonymous referees for the present submission. Their
extensive and detailed comments helped us tremendously to improve our work. We would also like to thank Dragiša
Žunić for fruitful discussion.

References
[AH03] Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators. In J. C. M. Baeten, J. K.

Lenstra, and G. J. Woeginger J. Parrow, editors, 30th International Colloquium on Automata, Languages
and Programming, ICALP ’03, volume 2719 of LNCS, pages 871–885. Springer, 2003.

[Bar84] H. P. Barendregt. The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam, revised
edition, 1984.

[Bar92] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, editors,
Handbook of Logic in Computer Science, pages 117–309. Oxford University Press, UK, 1992.

[BB96] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction. Inform. Com-
put., 125(2):103–117, 1996.

[BCDC83] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the completeness of
type assignment. J. Symb. Logic, 48(4):931–940 (1984), 1983.

[BCL99] G. Boudol, P.-L. Curien, and C. Lavatelli. A semantics for lambda calculi with resources. Mathematical
Structures in Computer Science, 9(4):437–482, 1999.

[BG00] H. P. Barendregt and S. Ghilezan. Lambda terms for natural deduction, sequent calculus and cut-elimination.
J. Funct. Program., 10(1):121–134, 2000.

[Bie98] G. M. Bierman. A computational interpretation of the λµ-calculus. In L. Brim, J. Gruska, and J. Zlatuska,
editors, 23rd International Symposium on Mathematical Foundations of Computer Science, MFCS ’98,
volume 1450 of LNCS, pages 336–345. Springer, 1998.

35

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, UK, 1998.

[Bou93] G. Boudol. The lambda-calculus with multiplicities (abstract). In E. Best, editor, 4th International Confer-
ence on Concurrency Theory, CONCUR ’93, volume 715 of LNCS, pages 1–6. Springer, 1993.

[BR95] R. Bloo and K. H. Rose. Preservation of strong normalisation in named lambda calculi with explicit substi-
tution and garbage collection. In Computer Science in the Netherlands, CSN ’95, pages 62–72, 1995.

[CDC78] M. Coppo and M. Dezani-Ciancaglini. A new type-assignment for lambda terms. Archiv für Mathematische
Logik, 19:139–156, 1978.

[CDC80] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the λ-calculus.
Notre Dame J. Formal Logic, 21(4):685–693, 1980.

[CDCV80] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and λ-calculus semantics. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 535–560. Academic Press, London, 1980.

[CH00] P.-L. Curien and H. Herbelin. The duality of computation. In 5th International Conference on Functional
Programming, ICFP’00, pages 233–243. ACM Press, 2000.

[Chu41] A. Church. The Calculi of Lambda-Conversion. Princeton University Press, Princeton, 1941.

[DCG03] M. Dezani-Ciancaglini and S. Ghilezan. Two behavioural lambda models. In H. Geuvers and F. Wiedijk,
editors, Types for Proofs and Programs, volume 2646 of LNCS, pages 127–147. Springer, 2003.

[DCGL04] M. Dezani-Ciancaglini, S. Ghilezan, and S. Likavec. Behavioural Inverse Limit Models. Theor. Comput
Sci., 316(1–3):49–74, 2004.

[DCHM00] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama. Compositional characterization of λ-terms using
intersection types. In 25th International Symposium on Mathematical Foundations of Computer Science,
MFCS ’00, volume 1893 of LNCS, pages 304–314. Springer, 2000.

[dG94] Ph. de Groote. On the relation between the λµ-calculus and the syntactic theory of sequential control. In
F. Pfenning, editor, 5th International Conference on Logic Programming and Artificial Reasoning, LPAR’94,
volume 822 of LNCS, pages 31–43. Springer, 1994.

[DGL08] D. J. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the Curien-Herbelin
symmetric lambda calculus: extending the Coppo-Dezani heritage. Theor. Comput Sci., 398:114–128, 2008.

[EGI08] J. Espı́rito Santo, S. Ghilezan, and J. Ivetić. Characterising strongly normalising intuitionistic sequent terms.
In International Workshop TYPES’07 (Selected Papers), volume 4941 of LNCS, pages 85–99. Springer,
2008.

[EIL11] J. Espı́rito Santo, J. Ivetić, and S. Likavec. Characterising strongly normalising intuitionistic terms. Funda-
menta Informaticae, 2011. to appear.

[EP03] J. Espı́rito Santo and L. Pinto. Permutative conversions in intuitionistic multiary sequent calculi with cuts.
In 6th International Conference on Typed Lambda Calculi and Applications, TLCA ’03, volume 2071 of
LNCS, pages 286–300, 2003.

[ER03] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theor. Comput. Sci., 309(1-3):1–41, 2003.

[Esp07a] J. Espı́rito Santo. Completing Herbelin’s programme. In S. Ronchi Della Rocca, editor, 9th International
Conference on Typed Lambda Calculi and Applications, TLCA ’07, volume 4583 of LNCS, pages 118–132.
Springer, 2007.

36

[Esp07b] J. Espı́rito Santo. Delayed substitutions. In F. Baader, editor, 18th International Conference on Term
Rewriting and Applications, RTA’07, LNCS, pages 169–183. Springer, 2007.

[Gal98] J. Gallier. Typing untyped λ-terms, or reducibility strikes again! Ann. Pure Appl. Logic, 91:231–270, 1998.

[Ghi96] S. Ghilezan. Strong normalization and typability with intersection types. Notre Dame J. Formal Logic,
37(1):44–52, 1996.

[GILL11] S. Ghilezan, J. Ivetić, P. Lescanne, and S. Likavec. Intersection types for the resource control lambda
calculi. In A. Cerone and P. Pihlajasaari, editors, 8th International Colloquium on Theoretical Aspects of
Computing, ICTAC ’11, volume 6916 of LNCS, pages 116–134. Springer, 2011.

[GILŽ11] S. Ghilezan, J. Ivetić, P. Lescanne, and D. Žunić. Intuitionistic sequent-style calculus with explicit structural
rules. In 8th International Tbilisi Symposium on Language, Logic and Computation, volume 6618 of LNAI,
pages 101–124, 2011.

[Gir71] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à l’elimination des
coupures dans l’analyse et la théorie des types. In J. E. Fenstad, editor, 2nd Scandinavian Logic Symposium,
pages 63–92. North-Holland, 1971.

[Gir87] J.-Y. Girard. Linear logic. Theor. Comput Sci., 50:1–102, 1987.

[GL09] S. Ghilezan and S. Likavec. Computational interpretations of logics. In Z. Ognjanović, editor, Collection of
Papers, special issue Logic in Computer Science 20(12), pages 159–215. Mathematical Institute of Serbian
Academy of Sciences and Arts, 2009.

[Gri90] T. Griffin. A formulae-as-types notion of control. In 9th Annual ACM Symposium on Principles Of Pro-
gramming Languages, POPL ’90, pages 47–58. ACM Press, 1990.

[Her95] H. Herbelin. A lambda calculus structure isomorphic to Gentzen-style sequent calculus structure. In L. Pa-
cholski and J. Tiuryn, editors, Computer Science Logic, CSL ’94, volume 933 of LNCS, pages 61–75.
Springer, 1995.

[HG08] H. Herbelin and S. Ghilezan. An approach to call-by-name delimited continuations. In 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’08, pages 383–394. ACM
Press, 2008.

[How80] W. A. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, London, 1980.

[Kik07] K. Kikuchi. Simple proofs of characterizing strong normalisation for explicit substitution calculi. In
F. Baader, editor, 18th International Conference on Term Rewriting and Applications, RTA’07, volume
4533 of LNCS, pages 257–272. Springer, 2007.

[KL07] D. Kesner and S. Lengrand. Resource operators for lambda-calculus. Inform. Comput., 205(4):419–473,
2007.

[Kle52] S. C. Kleene. Introduction to Metamathematics. North-Holland, Amsterdam, 1952.

[Kol85] G. Koletsos. Church-Rosser theorem for typed functionals. J. Symb. Logic, 50:782–790, 1985.

[KR09] D. Kesner and F. Renaud. The prismoid of resources. In R. Královič and D. Niwiński, editors, 34th
International Symposium on Mathematical Foundations of Computer Science, MFCS ’09, volume 5734 of
LNCS, pages 464–476. Springer, 2009.

[KR11] D. Kesner and F. Renaud. A prismoid framework for languages with resources. Theor. Comput. Sci.,
412(37):4867–4892, 2011.

37

[Kri90] J.-L. Krivine. Lambda-calcul types et modèles. Masson, Paris, 1990.

[Mat00] R. Matthes. Characterizing strongly normalizing terms of a λ-calculus with generalized applications via
intersection types. In J. Rolin et al., editor, ICALP Workshops 2000. Carleton Scientific, 2000.

[Myc11] A. Mycroft. Using Kilim’s Isolation Types for Multicore Efficiency. Invited talk at FoVeOOS 2011 - 2nd
International Conference on Formal Verification of Object-Oriented Software, October 2011.

[Nee05] P. M. Neergaard. Theoretical pearls: A bargain for intersection types: a simple strong normalization proof.
J. Funct. Program., 15(5):669–677, 2005.

[OS97] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional computation with control.
In 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’97, pages
215–227. ACM, 1997.

[Par92] M. Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In
A. Voronkov, editor, 3rd International Conference on Logic Programming and Automated Reasoning, LPAR
’92, volume 624 of LNCS, pages 190–201. Springer, 1992.

[Par97] M. Parigot. Proofs of strong normalisation for second order classical natural deduction. J. Symb. Logic,
62(4):1461–1479, 1997.

[Pot80] G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 561–577.
Academic Press, London, 1980.

[PR10] M. Pagani and S. Ronchi Della Rocca. Solvability in resource lambda-calculus. In C.-H. L. Ong, editor, 13th
International Conference on Foundations of Software Science and Computational Structures, FOSSACS
2010, volume 6014 of LNCS, pages 358–373. Springer, 2010.

[Reg94] L. Regnier. Une équivalence sur les lambda-termes. Theor. Comput Sci., 126(2):281–292, 1994.

[Ros11a] K H. Rose. CRSX - Combinatory Reduction Systems with Extensions. In Manfred Schmidt-Schauß, editor,
22nd International Conference on Rewriting Techniques and Applications, RTA’11, volume 10 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 81–90. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2011.

[Ros11b] K. H. Rose. Implementation Tricks That Make CRSX Tick. Talk at IFIP 1.6 workshop, RDP’2011, May
2011.

[Sal78] P. Sallé. Une extension de la théorie des types en lambda-calcul. In G. Ausiello and C. Böhm, editors,
5th International Conference on Automata, Languages and Programming, ICALP ’78, volume 62 of LNCS,
pages 398–410. Springer, 1978.

[SHD93] P. Schroeder-Heister and K. Došen. Substructural Logics. Oxford University Press, UK, 1993.

[Sta85] R. Statman. Logical relations and the typed λ-calculus. Inform. Control, 65:85–97, 1985.

[SU06] M. H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard isomorphism. Studies in Logic and the
Foundations of Mathematics, 149. Elsevier, 2006.

[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Logic, 32:198–212, 1967.

[Tai75] W. W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor, Logic Colloquium,
volume 453 of Lecture Notes in Mathematics, pages 240–251. Springer, 1975.

[vB92] S. van Bakel. Complete restrictions of the intersection type discipline. Theor. Comput Sci., 102(1):135–163,
1992.

38

[vO01] V. van Oostrom. Net-calculus. Course notes, http://www.phil.uu.nl/ oostrom/oudonderwijs/cmitt/00-
01/net.ps, 2001.

[Ž07] D. Žunić. Computing with sequents and diagrams in classical logic - calculi ∗X , dX and c©X . Phd thesis,
École Normale Supérieure de Lyon, December 2007.

39

