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Abstract. One of the most common and practical ways of representing
a real function on machines is by using a polynomial approximation. It
is then important to properly handle the error introduced by such an ap-
proximation. The purpose of this work is to offer certified error bounds
for a specific kind of rigorous polynomial approximation called Taylor
model. We carry out this work in the Coq proof assistant, with a special
focus on genericity and efficiency for our implementation. We give an
abstract interface for rigorous polynomial approximations, parametrized
by the type of coefficients and the implementation of polynomials, and
we instantiate this interface to the case of Taylor models with inter-
val coefficients, while providing all the machinery for computing them.
We compare the performances of our implementation in Coq with those
of the Sollya tool, which contains an implementation of Taylor models
written in C. This is a milestone in our long-term goal of providing fully
formally certified and efficient Taylor models.

Keywords: certified error bounds, Taylor models, Coq proof assistant,
rigorous polynomial approximation

1 Certified Approximation of Functions by Polynomials

It is frequently useful to be able to replace a given function of a real variable
by a simpler function, such as a polynomial, chosen to have values very close
to those of the given function, since such an approximation may be more com-
pact to represent and store but also more efficient to evaluate and manipulate.
As long as evaluation is concerned, polynomial approximations are especially
important. In general the basic functions that are implemented in hardware on
a processor are limited to addition, subtraction, multiplication, and sometimes

⋆ This research was supported by the TaMaDi project of the French ANR (ref. ANR-
2010-BLAN-0203-01).
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division. Moreover, division is significantly slower than multiplication. The only
functions of one variable that one may evaluate using a bounded number of addi-
tions/subtractions, multiplications and comparisons are piecewise polynomials:
hence, on such systems, polynomial approximations are not only a good choice
for implementing more complex mathematical functions, they are frequently the
only one that makes sense.

Polynomial approximations for widely used functions used to be tabulated
in handbooks [1]. Nowadays, most computer algebra systems provide routines
for obtaining polynomial approximations of commonly used functions. However,
when bounds for the approximation errors are available, they are not guaranteed
to be accurate and are sometimes unreliable.

Our goal is to provide efficient and quickly computable certified polynomial

approximations, i.e., polynomial approximations for which (i) the provided error
bound is tight and not underestimated, (ii) the framework is suitable for formal
proof (indeed, the computations are done in a formal proof checker), while re-
quiring computation times similar to those of a conventional C implementation.

1.1 Motivations

Most numerical systems depend on standard functions like exp, sin, etc., which
are implemented in libraries called libms, e.g.: CRlibm, glibc, Sun libmcr or
Intel’s libm. These libms must offer guarantees regarding the provided accu-
racy: they are of course heavily tested before being published, but for precisions
higher that single precision, an exhaustive test is impossible [16]. Hence a proof
of the behavior of the program that implements a standard function should come
with it, whenever possible. One of the key elements of such a proof would be the
guarantee that the used polynomial approximation is within some threshold from
the function. This requirement is even more important when correct rounding is
at stake. Most libms do not provide correctly rounded functions, although the
IEEE 754-2008 Standard for Floating-Point (FP) Arithmetic [20] recommends it
for a set of basic functions. Implementing a correctly rounded function requires
certified polynomial approximations at two important steps: when actually im-
plementing the function in a given precision, and—before that—when trying to
solve the table maker’s dilemma for that precision.

The 1985 version of the IEEE Standard for FP Arithmetic requires that
the basic operations (+, −, ×, ÷, and

√·) should produce correctly rounded

results, as if the operations were first carried out in infinite precision and these
intermediate results were then rounded. This contributed to a certain level of
portability and provability of FP algorithms. Until 2008, there was no such
analogous requirement for standard functions. The main impediment for this was
the table maker’s dilemma, which can be stated as follows: consider a function
f and a FP number x. In most cases, y = f(x) cannot be represented exactly.
The correctly rounded result is the FP number that is closest to y. Using a finite
precision environment, only an approximation ŷ to y can be computed. If that
approximation is not accurate enough, one cannot decide the correct rounding
of y from ŷ. Ziv [39] suggested to improve the accuracy of the approximation
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until the correctly rounded value can be decided. A first improvement over that
approach derives from the availability of tight bounds on the worst-case accuracy
required to compute some functions [23], which made it possible to write a libm

with correctly rounded functions, where correct rounding is obtained at modest
additional costs [35]. The TaMaDi project [30] aims at computing the worst-case
accuracy for the most common functions and formats. Doing this requires very
accurate polynomial approximations that are certified.

Beside the Table Maker’s Dilemma, the implementation of correctly rounded
elementary functions is a complex process, which includes finding polynomial
approximations for the considered function that are accurate enough to allow
for correct rounding. Obtaining good polynomial approximations is detailed
in [10,9,12]. In the same time, the approximation error between the function
and the polynomial is very important since one must make sure that the ap-
proximation is good enough. The description of a fast, automatic and certifiable
process was given in [21].

In the context of implementing a standard function, we are interested in
finding polynomial approximations for which, given a degree n, the maximum
error between the function and the polynomial is minimum: this “minimax ap-
proximation” has been broadly developed in the literature and its application to
function implementation is discussed in detail in [12,31]. Usually this approxi-
mation is computed numerically [36], so an a posteriori error bound is needed.
Obtaining a tight bound for the approximation error reduces to computing a
tight bound for the supremum norm of the error function over the considered in-
terval. Absolute error as well as relative errors can be considered. For the sake of
simplicity, in this paper, we consider absolute errors only (relative errors would
be handled similarly). Our problem can be seen as a univariate rigorous global
optimization problem, however, obtaining a tight and certified interval bound
for the supremum norm of the error function presents issues unsuspected at a
first sight [14], so that techniques like interval arithmetic and Taylor models are
needed. An introduction to these concepts is given below.

Interval arithmetic and Taylor models. The usual arithmetic operations and
functions are straightforwardly extended to handle intervals. One use of interval
arithmetic is bounding the image of a function over an interval. Interval calcu-
lations frequently overestimate the image of a function. This phenomenon is in
general proportional to the width of the input interval. We are therefore inter-
ested in using thin input intervals in order to get a tight bound on the image of
the function. While subdivision methods are successfully used in general, when
trying to solve this problem, one is faced with what is known in the literature of
interval-based methods as a “dependency phenomenon”: since function f and its
approximating polynomial p are highly correlated, branch and bound methods
based on using intervals of smaller width to obtain less overestimation, end up
with an unreasonably high number of small intervals. To reduce the dependency,
Taylor models are used. They are a basic tool for replacing functions with a poly-
nomial and an interval remainder bound, on which basic arithmetic operations
or bounding methods are easier.
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1.2 Related work

Taylor models [25,33,26] are used in rigorous global optimization problems [25,5,14,6]
and validated solutions of ODEs [32] with applications to critical systems like
particles accelerators [6] or robust space mission design [24]. Freely available im-
plementations are scarce. One such implementation is available in Sollya [13],
which handles univariate functions only, but provides multiple-precision support
for the coefficients. It was used for certifying supremum norms of approximation
errors in [14]. However, this remains a C implementation that does not provide
formally proved Taylor models, although this would be necessary for having a
completely certified algorithm.

There were several attempts to formalize Taylor model in proof assistants.
An implementation of multivariate Taylor models is presented in [40]. They are
implemented on top of a library of exact real arithmetic, which is more costly
than FP arithmetic. Also, the purpose of that work is different than ours. It
is appropriate for multivariate polynomials with small degrees, while we want
univariate polynomials and high degrees. There are no formal proofs for that im-
plementation. The work in [11] presents an implementation of univariate Taylor
models in the PVS theorem prover. Though formally proved, this implementa-
tion contains ad-hoc models for only a few functions (exp, sin, arctan) and it
is not efficient enough for our needs, as it is unable to produce Taylor mod-
els of degree higher than 6. The work in [15] presents another formalization
of Taylor models in Coq. It uses polynomials with FP coefficients. However,
the coefficients are axiomatized, so we cannot compute the actual Taylor model
in that implementation. We can only talk about the properties of the involved
algorithms.

Our purpose is to provide a modular implementation of univariate Taylor mod-
els in Coq, which is efficient enough to produce very accurate approximations of
elementary real functions. We start by presenting in Section 2 the mathematical
definitions of Taylor models as well as efficient algorithms used in their imple-
mentation. We then present in Section 3 the Coq implementation. Finally we
evaluate in Section 4 the quality of our implementation, both from the point of
view of efficient computation and of numerical accuracy of the results.

2 Presentation of the Taylor Models

2.1 Definition, Arithmetic

A Taylor model (TM) of order n for a function f which is supposed to be n+ 1
times differentiable over an interval [a, b], is a pair (T,∆) formed by a polynomial
T of degree n, and an interval part ∆, such that f(x) − T (x) ∈ ∆,∀x ∈ [a, b].
The polynomial can be seen as a Taylor expansion of the function at a given
point. The interval ∆ (called interval remainder) provides an enclosure of all
the approximation errors encountered (truncation, roundings).
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For usual functions, the polynomial coefficients and the error bounds are
easily computed using the Taylor-Lagrange formula and recurrence relations
satisfied by successive derivatives of the functions (see Section 2.3). When using
the same approach for composite functions, the error we get for the remainder
is too pessimistic [14]. Hence, an arithmetic for Taylor models was introduced:
simple algebraic rules like addition, multiplication and composition with TMs
are applied recursively on the structure of function f , so that the final model
obtained is a TM for f over [a, b]. Usually, this algebra of TMs offers a much
tighter error bound than the one directly computed for the whole function [14].

For example, the addition in this algebra is defined as follows: let two TMs
of order n for two functions f1 and f2, over [a, b]: (P1,∆1) and (P2,∆2). The
sum of two models is an order n TM for f1 + f2 over [a, b] and is obtained by
adding the two polynomials and the remainder bounds: (P1,∆1) + (P2,∆2) =
(P1+P2,∆1+∆2). For multiplication and composition, similar rules are defined.

We follow the definitions in [21,14], and represent the polynomial T with
tight interval coefficients. This choice is motivated by the ease of programming
(rounding errors are directly handled by the interval arithmetic) and also by the
fact that we want to ensure that the true coefficients of the Taylor polynomial lie
inside the corresponding intervals. This is essential for applications that need to
handle removable discontinuities [14]. For our formalization purpose, we recall
and explain briefly in what follows the definition of valid Taylor models [21, Def.
2.1.3], and refer to [21, Chap. 2] for detailed algorithms regarding operations
with Taylor models for univariate functions.

2.2 Valid Taylor Models

A Taylor model for a function f is a pair (T,∆). The relation between f and
(T,∆) can be rigorously formalized as follows.

Definition 1. Let f : I → R be a function, x0 be a small interval around an

expansion point x0. Let T be a polynomial with interval coefficients a0, . . . ,an

and ∆ an interval. We say that (T,∆) is a Taylor model of f at x0 on I when







x0 ⊆ I,
0 ∈∆,
∀ξ0 ∈ x0,∃α0 ∈ a0, . . . , αn ∈ an,∀x ∈ I,∃δ ∈∆, f(x)−

n∑

i=0

αi (x− ξ0)i = δ.

Informally, this definition says that there is always a way to pick some values αi in
the intervals ai in such that the difference between the resulting polynomial and
f around x0 is contained in ∆. This validity is the invariant that is preserved
when performing operations on Taylor models (addition, multiplication, etc.).
Obviously, once a Taylor model (T,∆) is computed, if needed, one can get rid
of the interval coefficients ai in T by picking arbitrary αi and accumulating in
∆ the resulting errors.
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2.3 Computing the Coefficients and the Remainder

We are now interested in an automatic way of providing both the coefficients
a0, . . . ,an and ∆ of Definition 1 for basic functions. It is classical to use the
following

Lemma 1 (Taylor-Lagrange Formula). If f is n+ 1 times differentiable on

a domain I, then we can expand f in its Taylor series around any point x0 ∈ I
and we have: ∀x ∈ I, ∃ξ between x0 and x such that

f(x) =

(
n∑

i=0

f (i)(x0)
i!

(x− x0)i
)

︸ ︷︷ ︸

T (x)

+
f (n+1)(ξ)
(n+ 1)!

(x− x0)n+1

︸ ︷︷ ︸

∆(x,ξ)

.

Computing interval enclosures a0, . . . ,an, for the coefficients of T , reduces to
finding enclosures of the first n derivatives of f at x0 in an efficient way. The same
applies for computing∆ based on an interval enclosure of the n+1 derivative of f
over I. However, the expressions for successive derivatives of practical functions
typically become very involved with increasing n. Fortunately, it is not necessary
to generate these expressions for obtaining values of {f (i)(x0), i = 0, . . . , n}. For
basic functions, formulas are available since Moore [29] (see also [19]).There one
finds either recurrence relations between successive derivatives of f , or a simple
closed formula for them. And yet, this is a case-by-case approach, and we would
like to use a more generic process, which allows us to deal with a broader class
of functions in a more uniform way suitable to formalization.

Recurrence Relations for D-finite Functions. An algorithmic approach exists for
finding recurrence relations between the Taylor coefficients for a large class of
functions that are solutions of linear ordinary differential equations (LODE) with
polynomial coefficients, usually called D-finite functions. The Taylor coefficients
of these functions satisfy a linear recurrence with polynomial coefficients [38].
Most common functions are D-finite, while a simple counter-example is tan. For
any D-finite function it is possible to generate the recurrence relation directly
from the differential equation that defines the function, see for example the Gfun

module in Maple [37]. From the recurrence relation, the computation of the first
n coefficients is done in linear time. Let us take a simple example and consider
f = exp. It satisfies the LODE f ′ = f , f(0) = 1, which gives the following
recurrence for the Taylor coefficients (cn)n∈N: (n + 1)cn+1 − cn = 0, c0 = 1,
whose solution is cn = 1

n! .
This property lets us include in the class of basic functions all the D-finite

functions. We will see in Section 3.2 that this allows us to provide a uniform
and efficient approach for computing Taylor coefficients, suitable for formaliza-
tion. We note that our data structure for that is recurrence relation + initial

conditions and that the formalization of the isomorphic transformation from the
LODE + initial conditions, used as input in Gfun is subject of future research.
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3 Formalization of Taylor Models in Coq

We provide an implementation5 of Taylor models that is efficient enough to pro-
duce very accurate approximation polynomials in a reasonable amount of time.
Moreover, the work is carried out in the Coq proof assistant, which provides a
formal setting where we will be able to certify our implementation.

One of our goals with this implementation is to be as generic as possible. We
thus remark that a Taylor model is just an instance of a more general object
called rigorous polynomial approximation (RPA). For a function f , a RPA is a
pair (T,∆) where T is a polynomial and ∆ an interval containing the approxi-
mation error between f and T . We can choose Taylor polynomials for T and get
Taylor models but other types of approximation are also available like Cheby-
shev models, based on Chebyshev polynomials. This generic rigorous polynomial
approximation structure will look like:

Structure rpa := { approx: polynomial; error: interval }

In this structure, we also want genericity not only for polynomial with respect
to the type of its coefficients and to its physical implementation but also for
the type for intervals. Users can then experiment with different combinations
of datatypes. Also, this genericity lets us factorize our implementation and will
hopefully facilitate the proofs of correctness.

We implement Taylor models as an instance of a generic RPA following what
is presented in Section 2. Before describing our modular implementation, we
present the Coq proof assistant, the libraries we have been using and how com-
putation is handled.

3.1 The Coq proof assistant

Coq [4] is an interactive theorem prover that combines a higher-order logic and
a richly-typed functional programming language. Thus, Coq provides an expres-
sive language for defining not only mathematical objects but also datatypes and
algorithms and for stating and proving their properties. The user builds proofs
in Coq in an interactive manner. These proofs are then machine-checked by the
relatively small kernel of the prover.

Real numbers in Coq are axiomatized. From the initial set of axioms that
gives the structure of complete Archimedean field, all the standard definitions
of analysis with their usual properties are derived [27]. However, since these
numbers are axiomatized, we cannot compute with them. There are several im-
plementations of computable real numbers that are suitable for computing. The
work [8] describes a library for multiple-precision FP arithmetic. Based on this
library, an interval arithmetic library is defined in [28] and implements intervals
with FP. The libraries [34] and [22] provide an arbitrary precision real arithmetic.
Doing proofs directly on these computable objects is very difficult. The formal

5 The Coq development is available at
http://tamadi.gforge.inria.fr/CoqApprox/

http://tamadi.gforge.inria.fr/CoqApprox/
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certification method chosen in all the above cases is linking the computable
reals to an axiomatized formalization of real numbers. So doing a formal proof
amounts to saying an implementation is correct with respect to a given abstract,
mathematical object defined in the system. We want to follow the same idea in
our Taylor model development: implement a computable Taylor model for a
given function and formally certify it with respect to the abstract formalization
of that function in Coq. This can be done by using Definition 1 and Coq’s
standard real number functions.

In order to have efficient Taylor models it is important to explain how com-
putation works in Coq. The logic of Coq is computational in the sense that
it is possible to write programs in Coq that can be directly executed within
the logic. This is why the result of a computation with a correct algorithm can
always be trusted. Thanks to recent progress in Coq’s evaluation mechanism [7],
a program in Coq runs as fast as an equivalent version written directly (and
compiled) in OCaml. There are some restrictions to the programs that can be
executed in Coq: they must always terminate and be purely functional, i.e., no
side-effects are allowed. This is the case for all the above mentioned computable
real libraries. Moreover, they are defined within Coq on top of the multiple-
precision arithmetic library based on binary tree described in [18]. So only the
machine modular arithmetic (32 or 64 bits depending on the machine) is used
in the computations in Coq.

For our development of Taylor models we must use polynomials with coeffi-
cients being some kind of computable reals. In particular, following the descrip-
tion in Section 2, we use intervals with FP bounds given by [28] as coefficients.
Since the interval and FP library are proved correct, so is the arithmetic on
our coefficients. By choosing a functional implementation for polynomials (e.g.,
lists), we then obtain Taylor models that are directly executable within Coq. In
the next section we describe in detail this modular implementation.

3.2 A Modular Implementation of Taylor Models

Our generic implementation takes advantage of Coq’s module system that pro-
vides a mechanism for grouping related Coq objects together. First, abstract
interfaces called Module Types are defined. Then concrete “instances” of these
abstract interfaces are created by providing an implementation for all the fields
of the Module Type. Furthermore, the definition of Modules can be parametrized
by other Modules. These parametrized modules are crucial to factorize code in
our structures.

Abstract polynomials, coefficients and intervals. We describe abstract
interfaces for polynomials and for their coefficients using Coq’s Module Type.
The interface for coefficients contains the common base of all the computable
real numbers we may want to use. Usually coefficients of a polynomial are taken
in a ring. We cannot do this here. For example, addition of two intervals is not
associative. Therefore, the abstract interface for coefficients contains only the
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required operations (addition, multiplication, etc.) where some basic properties
(associativity, distributivity, etc.) are ruled out. The case of abstract polynomi-
als is similar. They are also a Module Type but this time parametrized by the
coefficients. The interface contains only the operations on polynomials (addition,
evaluation, iterator, etc.) with the properties that are satisfied by all common
instantiations of polynomials.

For intervals, we directly use the abstract interface provided by the Coq.Interval

library [28].

Rigorous polynomial approximations. We are now able to give the defini-
tion of our rigorous polynomial approximation.

Module RigPolyApprox (C : BaseOps)(P : PolyOps C)(I : IntervalOps).

Structure rpa : Type := RPA { approx : P.T; error : I.type }.

The module is parametrized by C (the coefficients), by P (the polynomials with
coefficients in C), and by I (the intervals).

Generic Taylor polynomials. Before implementing our Taylor models, we use
the abstract coefficients and polynomials to implement generic Taylor polyno-
mials. These polynomials are computed using an algorithm based on recurrence
relations as described in Section 2.3. This algorithm can be implemented in a
generic way. It takes as argument the relation between successive coefficients,
the initial conditions and outputs the Taylor polynomial.

We detail the example of the exponential, which was also presented in Sec-
tion 2.3. The Taylor coefficients (cn)n∈N satisfy

(n+ 1)cn+1 − cn = 0 ⇐⇒ cn+1 =
cn
n+ 1

The corresponding Coq code is

Definition exp_rec (n : nat) u := tdiv u (tnat n).

where tdiv is the division on our coefficients and tnat is an injection of integers
to our type of coefficients. We then implement the generic Taylor polynomial for
the exponential around a point x0 with the following definition.

Definition T_exp n x0 := trec1 exp_rec (texp x0) n.

In this definition, trec1 is the function in the polynomial interface that is in
charge of producing a polynomial of size n from a recurrence relation of or-
der 1 (here, exp_rec) and an initial condition (here, texp x0, the value of the
exponential at x0). The interface also contains trec2 and trecN for produc-
ing polynomials from recurrences of order 2 and order N with the appropriate
number of initial conditions. Having specific functions for recurrences of order 1
and 2 makes it possible to have optimized implementations for these frequent
recurrences. All the functions we currently dispose of in our library are in fact de-
fined with trec1 and trec2. We provide generic Taylor polynomials for constant
functions, identity, x 7→ 1

x
,
√·, 1√

· , exp, ln, sin, cos, arcsin, arccos, arctan.



10 Brisebarre,Joldes,Martin-Dorel,Mayero,Muller,Paşca,Rideau,Théry

Taylor models. We implement Taylor models on top of the RPA structure
by using polynomials with coefficients that are intervals with FP bounds [28],
according to Section 2. For the interval error, we also use intervals with FP
bounds. However, we are still generic with respect to the implementation of
polynomials.

In a Taylor model for a basic function (exp, sin, etc.), polynomials are in-
stances of the generic Taylor polynomials implemented with the help of recur-
rence relations described above. The remainder is computed with the help of
the Taylor-Lagrange formula in Lemma 1. For this computation, thanks to the
parametrized module, we reuse the generic recurrence relations. The order-n
Taylor model for the exponential on interval X expanded at the small interval
X0 is as follows:

Definition TM_exp (n : nat) X X0 :=

RPA (T_exp n X0) (Trem T_exp n X X0).

We implement Taylor models for the addition, multiplication, and composi-
tion of two functions by arithmetic manipulations on the Taylor models of the
two functions, as described in Section 2. Here is the example of addition:

Definition TM_add (Mf Mg : rpa) :=

RPA (P.tadd (approx Mf) (approx Mg))

(I.add (error Mf) (error Mg)).

The polynomial approximation is just the sum of the two approximations and
the interval error is the sum of the two errors. Multiplication is almost as in-
tuitive. We consider the truncated multiplication of the two polynomials and
we make sure that the error interval takes into account the remaining parts of
the truncated multiplication. Composition is more complex. It uses addition and
multiplication of Taylor polynomials. Division of Taylor models is implemented
in term of multiplication and composition with the inverse function x 7→ 1/x.
The corresponding algorithms are fully described in [21].

Discussion on the formal certification of Taylor models. The Taylor
model Module also contains a version of Taylor polynomials defined with ax-
iomatic real number coefficients. These polynomials are meant to be used only
in the formal verification when linking the computable Taylor models to the
corresponding functions on axiomatic real numbers. This link is given by Defini-
tion 1 of a valid Taylor model given in Section 2.2. The definition can be easily
formalized in the form of a predicate validTM. The theorem of correctness for
the Taylor model of the exponential TM_exp then establishes the link between
the model and the exponential function Rexp that is defined in the real library.

Lemma TM_exp_correct :

forall X X0 n, validTM X X0 (TM_exp n X X0) Rexp.

Our goal is to formally certify our implementation of Taylor models. We
want proofs that are generic, so a new instantiation of the polynomials of the
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Taylor models would not require changing the proofs. In a previous version of
our Coq development we had managed to prove correct Taylor models for some
elementary functions and addition. No proofs are available yet for the version
presented here but adapting the proofs to this new setting should be possible.

4 Benchmarks

We want to evaluate the performances of our Coq implementation of Taylor
models. For this we compare them to those of Sollya [13], a tool specially
designed to handle such numerical approximation problems.

The Coq Taylor models we use for our tests are implemented with poly-
nomials represented as simple lists with a linear access to its coefficients. The
coefficients of the approximation polynomial in our instantiation of Coq Taylor
models as well as the interval errors are implemented by intervals with multiple-
precision FP bounds as available in the Coq.Interval library described in [28].
Note that because we need to evaluate the initial conditions for recurrences,
only the basic functions already implemented in Coq.Interval can have their cor-
responding Taylor models.

In Sollya, polynomials have interval coefficients and are represented by
a (coefficient) array of intervals with multiple-precision FP bounds. Sollya’s
autodiff() function computes interval enclosures of the successive derivatives
of a function at a point or over an interval, relying on interval arithmetic com-
putations and recurrence relations similar to the ones we use in our Coq devel-
opment. Thus, we use it to compute the Taylor models we are interested in.

Timings, accuracy and comparisons

We compare the Coq and the Sollya implementations presented above on a
selection of several benchmarks. Table 1 gives the timings as well as the tightness
obtained for the remainders. These benchmarks have been computed on a 4-core
computer, Intel(R) Xeon(R) CPU X5482 @ 3.20GHz.

Each cell of the first column of Table 1 contains a target function, the pre-
cision in bits used for the computations, the order of the TM, and the interval
under consideration. When “split” is mentioned, it means that the interval has
been subdivided into a specified amount of intervals of equal length (1024 subin-
tervals for instance in line 3) and that a TM has been computed over each
subinterval. Each TM is expanded at the middle of the interval. The symbols
RDt(ln 4), resp. RUt(ln 2), denote ln(4) rounded toward −∞, resp. ln(2) rounded
toward +∞, using precision t.

Columns 2 and 3 give the total duration of the computations (for instance, the
total time for computing the 1024 TMs of the third line) in Coq and Sollya re-
spectively. Columns 4 and 5 present an approximation error obtained using Coq

and Sollya, while the last column gives, as a reference, the true approximation
error, computed by ad-hoc means (symbolically for instance), of the function
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by its Taylor polynomial. Note that when “split” is mentioned, the error pre-
sented corresponds to the one computed over the last subinterval (for instance,
[2− 1/256, 2] for the arctan example). For simplicity, the errors are given using
three significant digits.

Table 1. Benchmarks and timings for our implementation in Coq.

Execution time Approximation error
Coq Sollya Coq Sollya Mathematical

exp

prec=120, deg=20
I=[1,RD53(ln 4)]
no split

7.40s 0.01s 7.90× 10−35 7.90× 10−35 6.57× 10−35

exp

prec=120, deg=8
I=[1,RD53(ln 4)]
split in 1024

20.41s 3.77s 3.34× 10−39 3.34× 10−39 3.34× 10−39

exp

prec=600, deg=40
I=[RU113(ln 2), 1]
split in 256

38.10s 16.39s 6.23× 10−182 6.22× 10−182 6.22× 10−182

arctan

prec=120, deg=8
I=[1, 2]
split in 256

11.45s 1.03s 7.43× 10−29 2.93× 10−29 2.85× 10−29

exp× sin

prec=200, deg=10
I=[1/2, 1]
split in 2048

1m22s 12.05s 6.92× 10−50 6.10× 10−50 5.89× 10−50

exp/sin
prec=200, deg=10
I=[1/2, 1]
split in 2048

3m41s 13.29s 4.01× 10−43 9.33× 10−44 8.97× 10−44

exp ◦ sin

prec=200, deg=10
I=[1/2, 1]
split in 2048

3m24s 12.19s 4.90× 10−47 4.92× 10−47 4.90× 10−47

In terms of accuracy, we can see that the Coq and Sollya results are close.
We have done other similar checks and obtained the same encouraging results
(the error bounds returned by Coq and Sollya have the same orders of magni-
tude). This, of course, does not prove anything but is nevertheless very reassur-
ing. Proving the correctness of an implementation that produces large bounds
would be meaningless.

In term of execution time, Coq is 6 to 10 times slower than Sollya which
is reasonable. This factor gets larger when composition is used. One possible
explanation is that composition implies lots of polynomial manipulations and
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the implementation of polynomials as simple lists in Coq maybe too naive. An
interesting alternative could be to use persistent arrays [2] to have more efficient
polynomials. Another possible improvement is at algorithmic level: while faster
algorithms for polynomial multiplication exist [17], currently in all TMs related
works O(n2) naive multiplication is used. We could improve that by using a
Karatsuba based approach, for instance.

5 Conclusion and Future Works

In this paper, we have described an implementation of Taylor models in the
Coq proof assistant. Two main issues have been addressed. The first one is
genericity. We wanted our implementation to be applicable to a large class of
problems. This motivates our use of modules in order to get this flexibility. The
second issue is efficiency. Working in a formal setting has some impact in term of
efficiency. Before starting proving anything, it was then crucial to evaluate if the
computational power provided by the Coq system was sufficient for our needs.
The results given in Section 4 clearly indicate that what we have is clearly worth
proving formally.

We are in the process of proving the correctness of our implementation. Our
main goal is to prove the validity theorem given in Section 2 formally. This is
tedious work but we believe it should be completed in a couple of months. As we
aim at a complete formalization, a more subtle issue concerns the Taylor models
for the basic functions and in particular how the model and its corresponding
function can be formally related. This can be done in an ad-hoc way, deriving the
recurrence relation from the formal definition. An interesting future work would
be to investigate a more generic approach, trying to mimic what is provided by
the Dynamic Dictionary of Mathematical Functions [3] in a formal setting.

Having Taylor models is an initial step in our overall goal of getting certified
worst-case accuracy for common functions and formats. Much more work needs
to be done. A natural next step is to couple our models with some positivity test
for polynomials, for example some sums of squares technique. This would give
us an automatic way of verifying polynomial approximations formally. It would
also provide another way of evaluating the quality of our Taylor approximations.
If they reveal to be not accurate enough for our needs, we could always switch to
some better kinds of approximants such as Chebyshev truncated series thanks
to our generic setting.
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