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We introduce and investigate a multiscale model for the propagation of rupture fronts in friction. Taking
advantage of the correlation length for the motion of individual contacts in elastic theory, we introduce collective
contacts which can be characterized by a master equation approach. The problem of the dynamics of a chain
of those effective contacts under stress is studied. We show that it can be reduced to an analog of the Frenkel-
Kontorova model. In some limits this allows us to derive analytical solutions for kinks describing the rupture
fronts. Numerical simulations are used to study more complex cases.
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I. INTRODUCTION

Friction between two solids results from multiple contacts
which break under stress and form again elsewhere later.
Although they are far from being fully understood, the basic
laws of these phenomena can be discussed in terms of the
statistics of these local contacts, which can be viewed at
different scales, from the atomic contacts involved in atomic
force microscopy (AFM) studies to micro- or millimeter
asperities between two macroscopic solids. At macro- or
mesoscales, the modeling of friction can be done by describing
the evolution of a distribution that characterizes the stress of
the individual contacts, in terms of a master equation (ME)
that governs the space-time evolution of this distribution [1,2].
However, the onset of the frictional slip is difficult to describe
because the overall motion is preceded by local precursors. The
motion starts at weak points, causing localized fractures at the
interface between the solids in contacts. Experiments point out
the importance of three different types of detachment fronts:
(i) Rayleigh (surface sound) fronts, (ii) slow detachment fronts,
and (iii) fast fronts [3]. These fronts propagate with different
speeds, and appear to play a role in the onset of sliding at the
scale of the laboratory experiments as well as at the scale of
faults in earthquakes.

The idea that local ruptures are important for friction is
not new. For instance, the “waves of detachment” observed
by Schallamach [4] correspond to this phenomenon. However,
the physics behind the propagation of the different modes of
friction fronts is not yet understood.

In this work we propose a multiscale model to describe the
fronts at the onset of friction, which describes the breaking
and formation of contacts which may themselves result from
many events at a smaller scale. The statistical description of
those small-scale events defines the properties of the effective
contacts which enter in the description of the front observed
experimentally. Section II introduces this model and shows
how it can be reduced to a standard soliton-bearing model, a
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modified version of the Frenkel-Kontorova (FK) model. Using
a continuum limit approximation, Sec. III derives analytical
results which are tested by numerical simulations in Sec. IV.
Section V discusses the results and possible extensions of this
work.

II. THE FK-ME MODEL

A. A decomposition of the physical problem of friction

As schematically shown in Fig. 1(a), when two macroscopic
objects are brought into contact, they only touch each other at a
discrete set of points, labeled by an index i, while large parts of
the interface are actually separated by a distance which is well
above the range of the interatomic interactions. The mechanics
of the interface must take into account two phenomena: (1) the
properties of the individual contacts themselves, which are
stretched by an amount xi when a shear stress is applied to the
interface, and (2) the deformation of the underlying substrate,
which may deform to redistribute the shear stresses σi among
the individual contacts.

Elastic theory introduces a characteristic size λc for which
the interface may be considered as rigid [5,6]. The calculation
of λc requires the solution of the three-dimensional elastic
problem, but this concept can be understood from simple
qualitative arguments. When an asperity, characterized by an
elastic constant ki , is displaced by δx, the resulting local stress
is σ ≈ ki δx/a2, where a2 is the area per contact. It induces a
strain ε = σ/E of the interface, where E is the Young modulus
of the material. For another asperity at distance � this induces
a displacement δ� ≈ ε� = �(kiδx)/(a2E). This displacement,
which is small as long as � is small enough, can be neglected
up to � = λc for which δ� ≈ δx, i.e., the distortion of the
interface is of the order of the stretching of the asperities. This
gives λc ≈ a2E/ki . For a material such as steel, λc is in the
range 10–100 μm, a value that is large compared to the typical
distance between asperities; however it is important to notice
that the actual value of λc can vary widely, depending on the
geometry of the interface and conditions of an experiment. To
get an estimate, let us consider a contact of cylindrical shape
of radius r and height h. The elastic constant of this flexible
“rod” is [7] ki = 3EI/h3, where I = πr4/4 is an effective
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FIG. 1. (Color online) Schematic view explaining the decompo-
sition of the friction problem into elements that are studied separately.
(a) Contact of a rough interface with a flat substrate. We consider the
bulk material (rectangle) and the interfacial rough layer, which has
many asperities in contact with the substrate. (b) The reduced model.
Asperities are correlated over a length λc and form a “λ contact”
composed of asperities, having elastic constants ki , and a piece of
material, between the asperities and the bottom of the bulk volume,
having an elasticity kλ. The nth λ contact is attached to the bulk
material at position un. The bulk material is described by an elastic
constant g that corresponds to its deformation along the interface, and
the elastic constant K , which is associated to its shear deformation
when its top surface is subjected to some shear stress.

moment of inertia of a section. We get

λc = 4

3π

a2

r

(
h

r

)3

. (1)

Interestingly the result only depends on the geometry of the
interface, and not on the nature of the material, stiff or soft.
This is because the stiffness of the material enters both in the
rigidity of a contact and in the rigidity of the interface. But,
for this geometry, owing to the third power of the h/r term,
λc can vary widely, surfaces with a deeper corrugation giving
a larger λc. Things would become even more complex if one
considers lubricated friction, for which the elastic properties
of the contact can become different from that of the bulk, or if
one takes into account the fact that the geometry of the contacts
(for instance the ratio h/r) depends on pressure.

As shown in Fig. 1(b), if the substrate can be considered as
rigid in a region of size λc, this allows us to split the friction
problem in two parts. At the smallest scale one can study the
collective behavior of a set of contacts attached to a “rigid
body” of typical size λc, which is itself related to the bulk by
an elastic spring of rigidity kλ describing the elastic response
of the part of material that is between the asperities and the
bulk. We henceforth call λ contact this set of microscopic
contacts. At a larger scale the elastic deformation of the sliding
block cannot be ignored. The λ contacts are elastically coupled
through the deformation of the bulk.

Therefore the friction problem can be approached in two
steps: (a) study the collective behavior of the individual
contacts to determine the effective properties of the λ contact,
such as its breaking threshold, or the relation between its
stretching and the shear stress applied between the bulk and the
underlying substrate; and (b) study the collective behavior of
the λ contacts taking into account the elasticity of the sliding
block. This approach can be considered as a variant of the
usual finite element method of elasticity to the problem of
friction. The λ contacts are the finite elements that have to be

connected to each other, and to another element which is the
elastic bulk, to describe the complete system.

B. Characteristics of a λ contact

A λ contact is an effective contact which involves many
individual contacts. Its properties are therefore determined by
the statistics of the individual events occurring at the level
of each of those individual contacts, i.e., the sequence of
breakings and reattachments and by the elastic properties of
the material forming the λ contact, schematized by a particular
color in Fig. 1(a). As shown earlier [1,2] the collective
properties of many contacts connected to a rigid substrate
can be described in terms of a ME. We denote by Xn the
displacement of the rigid block corresponding to the center
of the nth λ contact. In this section we shall drop the index
n as we are considering a given λ contact. Let us denote by
xi the stretching of the local contacts i which belong to the
λ contact. The statistical ME approach does not intend to
study the individual xi but instead to describe the evolution of
the distribution of stretchings xi as a function of the position
X of the rigid block. We denote by Q(x,X) this normalized
distribution. The friction force at the level of the λ contact is
the sum of the elastic forces at all the local asperities, i.e.,

F (X) = Nλ〈ki〉
∫ +∞

−∞
dx x Q(x; X), (2)

where Nλ is the average number of individual contacts forming
a λ contact and ki the elastic constant of an individual contact.
Writing the balance between the contacts that break when
the rigid block is moved by �X and the contacts that attach
again after breaking, leads to an integrodifferential equation
for Q(x; X) [1,2],

∂Q(x; X)

∂x
+ ∂Q(x; X)

∂X
+ P (x)Q(x; X)

= R(x)
∫ +∞

−∞
dξ P (ξ )Q(ξ ; X), (3)

where P (x)�X is the fraction of contacts that break when the
position of the block changes from X to X + �X. It is related
to the statistical properties of the individual contacts, which
are characterized by a threshold xc, which is the stretching
above which they break. If Pc(xc) is the normalized probability
distribution at which individual contacts break, one has [1,2]

P (x) = Pc(x)

/ ∫ ∞

x

dξ Pc(ξ ). (4)

R(x) is the distribution of the stretching of the individual
contacts when they attach again after breaking. In the simplest
case one can assume that it is simply the Dirac delta distribution
R(x) = δ(x).

In the simplified view of Fig. 1, the rigid block formed by a
set of individual contacts grouped into a λ contact is connected
to the bulk by an elastic spring kλ, which represents the average
flexibility of the material which is between the asperities of
the λ contact and the bottom surface of the bulk. We denote
by u the point of the bulk to which the λ contact is attached,
i.e., the elastic energy associated to the overall deformation of
the λ contact is 1

2kλ(u − X)2. If we neglect dynamics within
a λ contact, u and X evolve together, up to a constant, so
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FIG. 2. (Color online) Schematic picture showing the propaga-
tion of the friction fronts generated at weak points in the center of the
system. The thick (red) lines represent λ contacts which have been
stretched by the shear. The (blue) dotted lines represent λ contacts
which have relaxed by sliding. As time grows the relaxed region
extends and its boundaries make two kinks separating domains where
the λ contacts are in different states.

that we can express the force exerted by the λ contact on the
bulk as F (u), where the function F is determined by Eq. (2).
Qualitatively we expect F (u) to be a growing function of u,
up to a threshold uc for which the λ contact reaches a local
elastic instability and starts to slide. This releases the stress
on the asperities and the effective contacts form again. The
friction force on a λ contact is therefore periodic because it
results from a stick slip at the scale of the λ contact. The exact
function F (u), which may be complex, has to be derived from
the ME approach and the properties of the individual contacts.
An example is shown in Fig. 3 below and studied in Sec. IV.

C. The model of the interface

Let us consider a one-dimensional view of the interface in
the direction of the applied stress, i.e., a chain of λ contacts.
They are coupled by the elasticity of the bulk. We denote
by g the corresponding elastic constant [Fig. 1(b)]. The top
surface of the block is driven at a velocity vd . This applies
a shear stress to the block, which is transmitted to each λ

contact by the shear elasticity of the block, described by
the harmonic coupling constant K . And, as discussed above,
the λ contact n is coupled “frictionally” with the bottom
substrate by a nonlinear force F (un). The equation of motion of
the chain of λ contacts is therefore

mün + mηu̇n − g(un+1 + un−1 − 2un) + F (un) + Kun = f,

(5)

where m is an effective mass and η is a friction coefficient that
describes all mechanisms for energy transfer away from the
interface. The driving force f is chosen to be

f (t) = K(vdt + xini) (6)

(xini will only be used in the numerical simulations; it reduces
the simulation time by initiating the calculation with a nonzero
force). In Eq. (6) all λ contacts are assumed to be the same. The
surface of a solid is of course never perfectly homogeneous,
but, as the λ contacts are effective contacts involving many
individual asperities, in comparison with individual asperities,
the width of their distribution of breaking thresholds is
reduced by a factor 1/

√
Nλ, which makes this approximation

reasonable.

FIG. 3. (Color online) Typical evolution of the chain of contacts.
The nearest neighboring contacts interact elastically with the constant
g = 5. The interaction with the substrate is modeled by the function
(see inset) F (u) = k[tanh(u) + 1.5e−u sin(3u)] for 0 � u < uc = 1
and periodically prolonged for other values of u (k = 1). All contacts
are driven through the springs of the elastic constant K = 0.07, their
ends moving with the velocity vd = 10−4. The motion is overdamped
(m = 1, η = 100). To initiate the breaking, two central contacts
interact with the substrate with smaller values of the elastic constant,
k′ = 0.5 (when the kinks begin to move, the central contacts restore
their values to k = 1; to speed up the simulation, we used xini = 16.9).
The curves show the kinks centers (defined as places where the atomic
velocity is maximal). The chain has length N = 3000 with periodic
boundary condition; when the kinks reach the ends and collide, they
annihilate.

As discussed above, in this multiscale approach the sub-
strate force F (u) has to be derived from the solution of the ME
approach applied to a λ contact. The general case can only be
studied numerically (see Sec. IV below). A typical evolution
of the chain is shown in Figs. 2–4. In these calculations the
friction front is initiated by starting with two weaker λ contacts
at the center of the system. As soon as the front is created the
parameters at those sites are restored to their normal values. As
schematized in Fig. 2 the dynamics starts by the relaxation of
these two λ contacts which slide. This causes an extra stress on
the neighboring contacts, which tend to slide too, and then the
sliding events propagate as a kink and an antikink that move
away from each other, extending the initial relaxed domain.
Our purpose in this work is to describe the type of collective
phenomena that occur when those fronts propagate, to provide
an analytical understanding in some simplified cases, and to
characterize the properties of the fronts and their relations with
the experiments observing rupture fronts in friction.

Let us first consider a simplified case, when F (u) can be
approximated by the sawtooth shape, i.e., it is introduced as

F (u) = ku for 0 � u < uc (7)

and periodically prolonged for other values of u. In the
calculations, the shear force f depends on time, which
allows us to observe the properties of the fronts subjected to
different forces in a single simulation. However, the variation
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FIG. 4. (Color online) Typical evolution of the chain of contacts.
The interaction with the substrate is modeled by the function as
described by the function F (u) defined in the caption of Fig. 3. Color
map of atomic velocities for two values of the interaction between
the contacts: (a) g = 5 and (b) g = 25; other parameters as in Fig. 3.

is sufficiently slow to allow us to follow the kink propagation
long enough before f has changed in an appreciable way
(adiabatic approximation). This is correct if the change of the
driving force �f = Kvd �t during kink motion through the
chain, �t = L/v (L is the chain length and v is kink velocity),
is much lower than kuc, or

K/k � (v/vd )(uc/L). (8)

Let us define the function

F(u) = F (u) + Ku − f. (9)

The ground state of the chain is degenerate and determined by
the equation F(u) = 0. A graphical solution of this equation is
plotted in Fig. 5, where we also show the “effective potential”
Veff(u) = ∫

duF(u). Note that the ground-state solutions are
stable, because dF(u)/du = k + K > 0.

FIG. 5. (Color online) The effective FK-like “potential” Veff (u) =∫
duF(u) for uc = 1, k = 1, and K = 0.4 and different values of

the driving force: f = 0 (no driving), f = fm = Kuc (when the
second local minimum appears), f = fmin = ( 1

2 k + K)uc (the two
local minima are characterized by the same energy), and f = fmax =
(k + K)uc (the left minimum disappears). Inset shows graphical
solution of the equation F(u) = 0, or F (u) = f − Ku.

The case of a single kink is obtained if we let the right-hand
side (n → ∞) of the chain be unrelaxed, kuR + KuR = f , or

uR = f/(k + K), (10)

while the left-hand side (n → −∞) already undergone relax-
ation, k(uL − uc) + KuL = f , or

uL = (f + kuc)/(k + K), (11)

as shown in Fig. 2. The kink interpolates between these two
states, which correspond to different minima of the effective
potential.

As a result this model appears as a variant of the standard
Frenkel-Kontorova model [8]. We call it henceforth the FK-
ME model as a reminder of its double connection with the
Frenkel-Kontorova model and the master equation approach.
It is described by Eqs. (5)–(7) with the boundary conditions
given by Eqs. (10) and (11).

III. CONTINUUM-LIMIT APPROXIMATION

In a first approach, let the system be overdamped (ü = 0);
later on we shall remove this restriction. The continuum
approximation is a standard method to derive an approximate
solution of the Frenkel-Kontorova model. In this approxima-
tion the discrete index n is replaced by the continuous space
variable x, n → x = na where a is the spacing between the λ

contacts. The equation of motion takes the form

mηut − a2guxx + F(u) = 0, F(u)|x→±∞ = 0, (12)

where ut = ∂u/∂t and uxx = ∂2u/∂x2. We look for a solution
in the form of a wave of stationary profile (the solitary wave in
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the continuum limit of the FK model), u(x,t) = u(x − vt), so
that ut = −vu′ and uxx = u′′. In this case Eq. (12) becomes

mηvu′ + a2gu′′ = F(u). (13)

Introducing dimensionless variables w = u/uc and x = by

with a characteristic distance b = ga2/(mηv) so that d/dx =
b−1d/dy, we obtain

wy + wyy = G(w), (14)

where the indices designate first and second derivatives with
respect to y,

G(w) = ga2

(mηv)2uc

F(ucw), (15)

and the following boundary conditions are to be imposed
(wL,R = uL,R/uc):

y → −∞ : w → wL, G → 0, (16)

y → +∞ : w → wR, G → 0. (17)

Notice that

wL = wR + k/(k + K) (18)

and

wc = 1 . (19)

A standard method to solve an equation such as Eq. (14)
consists in introducing the function p(w) = wy ; then

wyy = d

dy
wy = d

dy
p(w) = dp

dw

dw

dy
= p

dp

dw
,

and Eq. (14) reduces to p (dp/dw) + p = G(w), or

dp(w)

dw
= −1 + G(w)

p(w)
, (20)

with the boundary conditions

p(wL,R) = 0 and G(wL,R) = 0. (21)

Using linear expansions near the boundaries,

G(w) = (w − wL,R)A, (22)

where

A ≡ dG(w)

dw

∣∣∣∣
w=wL,R

= ga2(k + K)

(mηv)2
(23)

and

p(w) = dp(w)

dw

∣∣∣∣
w=wL,R

(w − wL,R), (24)

we find that

dp

dw

∣∣∣∣
R

= −1

2
(1 + √

1 + 4A) < 0 (25)

and

dp

dw

∣∣∣∣
L

= 1

2
(
√

1 + 4A − 1) > 0. (26)

A solution of Eq. (20) with these boundary conditions only
exists for a certain value of the kink velocity v; this finally
determines the dependence v(f ).

For the sawtooth shape of F (u), Eq. (7), the solution has
the triangular shape: for wR � w � wc,

p(w) = pR(w) = − 1
2 (1 + √

1 + 4A)(w − wR), (27)

while for wc � w � wL,

p(w) = pL(w) = − 1
2 (

√
1 + 4A − 1)(wL − w). (28)

The continuity condition pR(wc) = pL(wc) gives us an equa-
tion for v:

√
1 + 4A = q + 1

q − 1
, (29)

where

q = wL − wc

wc − wR

> 1. (30)

It is convenient to introduce the parameter k∗ = f/uc. Then
we have

q = k∗ − K

k + K − k∗
= 1

β − 1
, (31)

where

β = k/(k∗ − K) = 1 + 1/q, (32)

and the continuity equation (the equation for v) reduces to

(mηv)2 = ga2(k + K)
(2 − β)2

β − 1
. (33)

For the kink moving to the right with a velocity v � 0, the
following inequality must be satisfied:

wR < wc < wL − 1
2 (wL − wR), (34)

which is equivalent to

k∗
k + K

< 1 <

1
2k + k∗
k + K

,

or k + K > k∗ > 1
2k + K , ∞ > q > 1 or 1 < β < 2.

The limit β = 2, or k∗ = 1
2k + K , corresponds to zero

kink velocity, v = 0, associated to the Griffith threshold for
fractures, i.e., the minimal force which supports the kink
motion:

fmin = (
1
2k + K

)
uc. (35)

The maximal force, for which a kink may exist, is defined
by the limit β = 1, or k∗ = k + K:

fmax = (k + K) uc. (36)

At higher forces, the barriers ofF(u) and the stationary ground
states disappear, and the whole chain of λ contacts is in a
sliding state. This is the case when the limit of the static friction
has been exceeded. For a smooth function F (u) instead of the
sawtooth shape used to get an analytical solution, this upper
limit is lowered (see Sec. IV below).

From Eq. (33) we can find the kink velocity as a function
of the driving force. At low velocities

v ≈ (f − fmin)/mkη, (37)
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where we introduced the effective kink mass

mk = m

/
4a

uc

√
g

k

(
1 + K

k

)
, (38)

while at f → fmax the velocity tends to infinity,

mηv ≈
√

gk(k + K)a2uc

(fmax − f )
. (39)

The latter limit should be corrected by taking into account
inertia effects. If we are no longer in the overdamped regime,
the term mü in Eq. (5) gives mv2u′′ for the solitary-wave
solution, so it can be incorporated if we substitute in the above
equations g → geff = g(1 − v2/c2

0), where c0 =
√

ga2/m is
the sound speed along the chain. This is the well-known
“relativistic” narrowing of kinks in Lorentz-invariant soliton
equations. The high-velocity limit now takes the form

v ≈ c0

/√
1 + mη2(fmax − f )

k(k + K)uc

. (40)

Above we have assumed that broken (detached) contacts
immediately reappear, i.e., are immediately bound again to
the substrate after relaxation. This is assumed in the choice of
the sawtooth expression for F (u). The detachment-attachment
events in our model are an analog of the opening-closing of
the crack in fracture mechanics. In a more general model we
have to take into consideration the aging of contacts, i.e., a
change of their parameters with time of contact. In the simplest
approximation the aging may be included by assuming that,
after they form again, the contacts keep a negligible friction
force F (u) ≈ 0 for some delay τ , and then recover the standard
friction force. During τ , which is a new parameter of the model,
the contact moves for a distance

l = vτ, (41)

and over this length the substrate force is kept to zero so that the
substrate force is now given by Eq. (7), F (u) = ku for 0 � u <

uc, and F (u) = 0 for uc � u < uc + l. The new function F (u)
is periodic with the period ud = uc + l. Because the substrate
force depends on the kink velocity v through Eq. (41), now the
problem has to be considered self-consistently.

The right-hand boundary condition, Eq. (10), remains
unchanged, while the left-hand condition for the relaxed part
of the chain now takes the form

uL = (f + kud )/(k + K), (42)

and Eq. (18) is to be modified correspondingly,

wL = wR + k/(k + K) + wd, (43)

where wd = l/uc = vτ/uc.
For the sawtooth shape of the substrate force, the solution

of Eq. (20) now consists of three linear pieces:

p(w) = − 1
2 (1 + √

1 + 4A)(w − wR) (44)

for wR � w � wc = 1,

p(w) = − 1
2 (

√
1 + 4A − 1)(wL − w) (45)

FIG. 6. The function p(w), Eqs. (44)–(46).

for wc + wd � w � wL, and p(w) = constant − w in be-
tween, where G(w) = 0,

p(w) = 1 − 1
2 (1 + √

1 + 4A)(1 − wR) − w (46)

for wc + wd � w � wL, where we made it continuous at the
point w = wc = 1. The solution p(w) is shown in Fig. 6.
Then, the continuity condition at w = wc + wd again gives us
an equation for v:

√
1 + 4A = qd + 1

qd − 1
, (47)

where now

qd = wL − 1

1 + wd − wR

. (48)

Finally, we can derive the kink shape from the equation
wy = p(w), or y = constant + ∫

dw/p(w). The kink moving
with the velocity v has different shapes at the right-hand
(unrelaxed) side, x > xk = vt ,

u(x) = uR + (uc − uR) e−βR (x−xk ), (49)

and at the left-hand (relaxed) side, x < xk ,

u(x) = uL − (uL − uc) eβL(x−xk ), (50)

where

βR = (1 + √
1 + 4A)/2b (51)

and

βL = (
√

1 + 4A − 1)/2b. (52)

The results, derived in the continuum-limit approximation,
can be corrected from discreteness effects when the kink width
is not large compared to the lattice spacing. This effect is well
known in dislocation theory [8]. A narrow dislocation is not
free to move in a crystal lattice but instead it is subjected
to a periodic potential, with the period of the lattice and an
amplitude known as the Peierls-Nabarro (PN) barrier. The
exact calculation of the PN barrier requires the solution of
the discrete set of differential equations (5) instead of the
continuous partial differential equation (12). However, a good
approximation of the discreteness effects can be obtained by
substituting the continuum solutions (49) and (50) into the
discrete motion equation (5). The discreteness effects imply
that a force fPN, adds to the minimal threshold for kink motion,
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FIG. 7. (Color online) The initial driving force fini, Eq. (58), as
a function of the spring constants k′ of the two central contacts for
different values of K and g as shown in the legend. The symbols
show simulation results.

which for the discrete chain becomes fmin + fPN. As a result
the minimal kink velocity becomes nonzero,

vmin ≈ fPN/mkη. (53)

IV. SIMULATION

The continuum-limit approximation is accurate for the case
of strong interaction between the contacts, g � 1; in the
opposite limit one has to use computer simulation. We solved
Eq. (5) by the Runge-Kutta method. As the initial state, we took
the chain of length N (typically N = 3 × 103 or N = 3 × 104)
with periodic boundary conditions and all contacts relaxed, but
the threshold breaking value for two central contacts (n = 0,1)
was set to k′, lower than for the other contacts chosen as k = 1,
as discussed above (Fig. 2). We set uc = 1 for all contacts.
Then, as the driving force increases, the two central contacts
break first and initiate two solitary waves of subsequent contact
breaking which propagate in opposite directions through the
chain as schematized in Fig. 2. To speed up the beginning of
this process, we used xini > 0 in Eq. (6).

Typical scenarios are shown in Figs. 3 and 4. The value
k′ of the lower threshold of the central contacts determines
the driving force that initiates the rupture front, and therefore
the kink velocity. The lower this threshold, the lower the
force for which the motion starts. Figure 7 shows the value of
the driving force that initiates the front versus k′.

Let us consider first the case of the simplified sawtooth
shape for F (u), Eq. (7). In this case the force that initiates the
motion can be calculated exactly.

In the symmetric stationary state just before the beginning
of the kinks motion, the equations of motion take the form

−g(un+1 + un−1 − 2un) + (k + K)un = f for n � 2

(54)

and

−g(u2 − u1) + (k′ + K)u1 = f for n = 1. (55)

The general solution of Eq. (54) is un = U + Aρn−1 and,
to cancel the site-independent parts we have to choose U =
f/(k + K). Then Eq. (54) reduces to a quadratic equation for
ρ. Only the solution ρ < 1 is meaningful to avoid a divergence
of un so that we get

ρ = 1 − α[
√

1 + 2/α − 1] with α = (K + k)/(2g).

(56)

The threshold for the motion is obtained when u1 reaches
the value u1 = uc = 1. Then Eq. (55) for site n = 1 gives
an expression for u2 = U + Aρ, so that it determines the
amplitude factor A

Aρg = (k′ + K + g) − f [1 + g/(K + k)]. (57)

Finally Eq. (54), written for site n = 2 can be used to extract
f , which is the minimal force necessary to initiate the motion
as it raises u1 to the threshold uc. We get

fini =
[
g − (k′ + K + g)

(
2 − ρ + k + K

g

)]
/[

ρ

(
1 + g

K + k

)
− 3 − g

K + k
− K + k

g

]
, (58)

where ρ is given by Eq. (56).
Figure 7 shows how fini depends on k′. The theoretical

results are well verified by the simulations.
As soon as the kink motion is initiated, the k values of the

central contacts are restored to the same value as for other
contacts (otherwise these contacts would act as a source for
creation of new pairs of kinks). Because the driving force
increases with time according to Eq. (6), the kink velocity
increases too, as shown in Fig. 3. In order to avoid kink
acceleration, we used the following algorithm: as soon as kink
motion is initiated at t = tb, we begin to move the substrate in
the opposite direction, vd > 0 → vb < 0, so that the driving
force linearly decreases with time [see Fig. 8(b)], and the
average chain velocity 〈ẋi〉 = N−1 ∑

i ẋi decreases as well
[Fig. 8(c)] until the motion stops [Fig. 8(a)]. In a single
simulation this algorithm allows us to find the dependence
of the kink velocity defined as

v = n−1
k N (〈ẋi〉 − v̄), (59)

where nk = 2 is the number of moving kinks in the chain and
v̄ = u̇L,R = vbK/(k + K) is the background velocity on the
driving force f . These dependences are presented in Fig. 9
for two values of the coupling constant g. They are in good
agreement with the predictions of Eqs. (33) and (37).

However, in the discrete lattice, contrary to the continuum-
limit approximation, the velocity of the kink oscillates during
the motion as demonstrated in Fig. 8(d). This is the conse-
quence of the periodic PN potential. The stronger the elastic
interaction between the contacts, the larger the kink width
[compare Figs. 4(a) and 4(b)], which results in smaller kink
oscillations [compare Figs. 9(a) and 9(b)], which also leads
to a smaller minimal kink velocity. Simulations for different
delay times τ show that this parameter has only a marginal
effect on the curves v(f ).

In the general case, the λ contacts are characterized
by a smooth dependence F (u) which follows from the
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FIG. 8. (Color online) Evolution of the chain of N = 3000
contacts. The nearest neighboring contacts interact elastically with
the constant g = 25; the interaction with the substrate is modeled
by the sawtooth function (7) with k = 1 and uc = 1. All contacts
are driven through the springs of the elastic constant K = 0.07, their
ends moving with the velocity vd = 10−4. The motion is overdamped
(m = 1, η = 100). To initiate the breaking, two central contacts
interact with the substrate with smaller spring constants, k′ = 0.5.
To speed up the simulation, we used xini = 13.5. When the kinks
motion begins at t = tb, the elastic constants of the central contacts
recover their values to k = 1, and the driving velocity changes its sign,
vd → vb = −2 × 10−4. (a) shows the kinks centers (defined as places
where the atomic velocity is maximal), (b) shows the driving force,
Eq. (6), and (c) shows the average chain velocity 〈ẋi〉 = N−1

∑
i ẋi .

What appears as a thick line actually corresponds to the velocity
oscillations, which are not resolved due to the large time range covered
by this figure. Pannel (d) shows the details in a smaller time domain.
(d) demonstrates the oscillation of the velocity due to PN barriers.

master-equation approach, instead of the sawtooth shape. An
elastic instability, i.e., a stick-slip behavior of the λ contacts
occurs only if K � −dF (u)/du|u=uc

. Figure 10 shows the
effect of various distributions Pc(u) of the breaking threshold
of the individual contacts. When this distribution reduces to
a Dirac delta function, F (u) given by the master equation is
simply the sawtooth function assumed for the above simulation
results. When the distribution gets broader, the function F (u)
becomes smooth. The equation K + dF (u)/du = 0 defines
the threshold displacement uth and the force Fth = F (uth), for
which a λ contact breaks. The effect of a smooth function F (u)
over the force-velocity curves for the kinks v(f ) is shown in
Fig. 11. The basic effect of a smoother function F (u) is to
decrease the minimal velocity (53) of the rupture fronts.

V. DISCUSSION

The FK-ME model used here is quite close to the well-
known one-dimensional (1D) Burridge-Knopoff model of
earthquakes with a velocity-weakening friction law [9]. The

FIG. 9. (Color online) Kink velocity (normalized on the sound
velocity c0) versus the driving force for (a) g = 5 (xini = 12.5, vb =
−4 × 10−6) and (b) g = 25 (xini = 13.5, vb = −2 × 10−5); N = 3 ×
104, other parameters as in Fig. 8. The interaction with the substrate
is modeled by the sawtooth function (7) with k = 1 and uc = 1. Blue
solid and red dashed lines correspond to Eqs. (33) and (37). What
appears as thick lines actually corresponds to velocity oscillations
[see Fig. 8(d)], which are not resolved due to the large force range
covered by the present figure.

difference lies in the substrate friction force F . Instead of
the friction law of a single contact or a phenomenological
velocity-dependent function, we incorporate the collective
effects which occur in a set of contacts that are interconnected
by a bulk material that is rigid on the short spatial scale λc. This
allows much richer behaviors for F (u), which can, for instance,
include temperature effects and the aging properties of the
collective contacts. Applying the methods developed for the
standard FK model to this system allows us to make analytical
predictions for the rupture fronts, which are analogous to the
solitons of the FK model in the presence of discreteness effects.
There are nevertheless significant differences. In the FK model,
which corresponds to F(u) ∝ sin u, the effective potential has
degenerate minima. In the continuum limit this implies that
solitons can move in the positive or negative direction even
at vanishingly small velocities, without a driving force. The
FK-ME model is different because F(u) = F (u) + Ku − f

[see Eq. (9)] is constructed from a function F (u) which is
always positive. This implies that kinks/antikinks can only
move from relaxed to unrelaxed regions and that a nonzero
force fmin is required to have two degenerate minima in
the effective potential of the model (Fig. 5), and allow a
kink motion even in the continuum limit. In the presence of
discreteness the minimal force is increased by the amount fPN

required to overcome the PN barrier, and this also implies
a nonzero minimal velocity for the kinks. The importance
of this minimal force, and velocity, is an important result
of this study because it shows how a model that stays
fairly simple, but incorporates the complexities arising from
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FIG. 10. (Color online) (a) Gaussian distribution of static thresh-
olds Pc(u), (b) the function F (u) obtained from solution of the master
equation, and (c) the function F ′(u) for us = 1 and three values of
the dispersion �us = 0, 0.1, and 0.3. Points indicate displacements
where the elastic instability occurs.

the collective behavior of individual contacts, can exhibit a
rupture mode reminiscent of the “slow rupture mode” observed
experimentally [3]. Moreover, the analysis in terms of a
variant of the FK model allows us to propose some analytical
understanding of these slow rupture modes.

In spite of the differences between the FK-ME model
discussed here and the standard FK model, the analogies could
perhaps be exploited to proceed further:

(1) The driven FK model exhibits hysteresis when the force
increases and then decreases [8,10]. The same was observed in
large-scale crack simulation [11], and thus could be observed
in friction too.

(2) The effects of nonzero temperature may be considered
as well. One may predict that at T > 0 the sliding kinks will
experience an additional damping, while the immobile (below
threshold) kinks will slowly move (creep) due to thermally
activated jumps.

(3) As shown in Refs. [8,12], in the FK model fast driven
kinks begin to oscillate due to excitation of a shape mode, and
then, with a further increase of driving, the kinks are destroyed.
This effect is similar to what is observed in fracture mechanics,
where cracks begin to oscillate and then branch [13].

(4) One may suppose that the damping coefficient η in the
equation of motion (5) depends on the kink velocity, so that
η(v). In fracture mechanics, this coefficient defines the rate at
which the energy is removed from the crack edge, thus it plays
a crucial role.

FIG. 11. (Color online) Kink velocity (normalized on the sound
velocity c0) versus the driving force for N = 30 000, η = 100, g = 5,
K = 0.4, vd = 2 × 10−5 and (a) �us = 0 [xini = 2.9, vb = −8 ×
10−7; blue solid and red dashed lines correspond to Eqs. (33) and
(37), correspondingly], (b) �us = 0.1 (xini = 2.4, vb = −6 × 10−7),
and (c) �us = 0.3 (xini = 2.2, vb = −4 × 10−7). Red dashed lines
in (b) and (c) show just fits. The interaction with the substrate
uses the function F (u) deduced from the solution of the master
equation, plotted in Fig. 10. What appears as black thick lines actually
corresponds to velocity oscillations, which are not resolved due to the
large force range covered by the present figure.

These points open many possibilities for the development
of this work, but some of its limitations should, however, not
be ignored and will require further studies.

The possibilities for a quantitative comparison with exper-
iments is limited because the model has been simplified to
allow analytical investigations: (i) all λ contacts are identical
and (ii) the driving force is identical for all contacts, in
contrast with most of the experiments where it is applied
on one end of the system, and the pressure is generally
not uniform. Contrary to earlier studies based on numerical
approaches [14–16], the present study is mostly relevant to
investigate the properties of the rupture fronts once they have
been created, while experimental data also depend on the
conditions for the creation of the fronts. Nevertheless, our
approach gives a possible answer to an intriguing question
about the slow rupture front observed at experiments [3] and
in simulation [14,15]. Recall that a typical crack speed in bulk
is of order (0.2–0.6)c0 [13], while the slow detachment front
moves with a velocity ∼0.02c0. If the self-healing crack in
the frictional interface corresponds to a solitary wave, than
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its minimal velocity is determined by the amplitude of the
PN barrier, Eq. (53). Estimation predicts that g � 1 for a
realistic case of contact of rough surfaces [6], which leads
to exponentially small values of vmin. In this case the kink
velocity will be determined by the shear stress at the interface
and the damping coefficient η that describes the energy loss in
the interface, which flows to the bulk and is dissipated by heat.

The main difficulty resides in the decomposition of the
friction problem into a study of the λ contact and then the
cooperative behavior of these λ contacts in the presence of the
elasticity of the bulk. A λ contact describes a collection of
asperities. The master equation formalism, which determines
the statistical behavior of the asperities attached to a rigid
substrate is well defined and can be applied in a systematic way.
The determination of the effective elasticity kλ for a λ contact
is more difficult because it can only be rigorously obtained by a
treatment of a three-dimensional elastic problem. Presently the
separation that we introduced between the material belonging
to the λ contact and the bulk is not defined in a systematic
way. A more rigorous treatment of the boundary conditions
between these elements, in the spirit of what is done in finite
elements methods of continuum mechanics, should clarify this
point.

Throughout the paper we assumed that all λ contacts are
characterized by the same F (u) dependence and thus have the
same threshold value. As the distribution of their thresholds is
narrower than the distribution of thresholds of single asperities
by a factor

√
Nλ, this is a good approximation if the number

of original contacts within a single λ contact, Nλ = (λc/a)2,
is large. However, even a narrow distribution of thresholds
will have a qualitative effect because rupture fronts may stop
when they meet λ contacts with a threshold above the driving
force. When the interface is disordered, the avalanches will
have finite lengths and may become short for forces near fini,
for which the rupture fronts propagate at the minimal velocity.

In the present work we also ignored the existence of defects
always present in real materials. The role of disorder and

defects in driven systems is a rather complicated problem
which attracted much attention. On one hand, defects may
stimulate kinks creation, but on the other hand, kinks propa-
gation may be slowed down up to its complete arrest due to
pinning on the defects. For example, the slowing down of the
1D crack propagating through a two-dimensional (2D) system
with quenched randomly distributed defects was considered in
Ref. [17].

Moreover in the simulation of Sec. IV we started from
a well-defined initial configuration, where all contacts are re-
laxed except the one or two where the kink’s motion is initiated.
If one starts from a random initial configuration, we expect that
kinks will emerge at random places, so that several kinks may
propagate through the system simultaneously, as was observed
in simulation of the Burridge-Knopoff model [18].

Another obvious generalization is to extend the 1D model
to 2D. We do not expect this to introduce qualitative changes.
In the 2D interface, the interaction in the shear direction is
stronger than in the transverse direction [6], thus we expect
that an avalanche should take an oval shape elongated in
the driving direction, but preserve its main features. This
could nevertheless affect the trapping of the rupture fronts
by inhomogeneities and thus qualitatively affect the frictional
properties of a real system.

The work that we presented here is only a first attempt to
describe the propagation of rupture fronts in friction while
taking into account the properties of the interface at different
scales and the elastic properties of the sliding block. Obviously
there is much more to do in this direction, but the possibility
to cast the problem in the framework of the well-known FK
model allows a first-level analysis which brings useful ideas
for further extensions.
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