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Abstract

The dynamics of abelian vector and antisymmetric tensor gauge fields can be

described in terms of twisted self-duality equations. The latter play an important

role in exposing the duality symmetries of the theory. I this contribution I review

recent progress in the construction of action principles for these equations and

in particular their non-abelian generalizations.

1 Introduction

The dynamics of abelian vector and antisymmetric tensor gauge fields can be described

by standard second order field equations or alternatively in terms of first order so-called

twisted self-duality equations. These equations take the schematic form

F = ΩM ∗F , (1.1)

where F combines the abelian field strengths of the original p-forms and their magnetic

duals, and ΩM denotes the ‘twist matrix’ which squares to the same multiple of the

identity as the Hodge star ‘ ∗ ’ on the associated field strengths. References [1, 2] have

coined the term of ‘twisted self-duality equations’. Acting with an exterior derivative

onto the system (1.1) reproduces the standard second order field equations for the

p-form fields. A generalized version of the system (1.1) still holds in the presence

of scalar fields, fermions, and Chern-Simons-type couplings as they typically arise in
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supersymmetric theories. In particular, the twist matrix in the general case depends on

the scalar fields of the theory. The system (1.1) has a particularly interesting structure

when referring to abelian p-forms in D = (2p + 2)-dimensional space-time, in which

case F and ∗F are of equal rank, and the twist matrix can have non-trivial diagonal

entries. Casting the p-form dynamics into the form (1.1) allows to exhibit the duality

symmetries of these theories which are realized by a linear action on F , instead of their

hidden appearance in the standard second order framework.

The first-order equations (1.1) do not integrate to a standard Lorentz-covariant

action. However, Henneaux and Teitelboim [3] and later Schwarz and Sen [4] have

shown that these equations can be derived from a first-order action principle that

carries on equal footing the p-forms together with their dual fields and is manifestly

duality invariant, see [5, 6] for earlier work. The price to pay for duality invariance

is to abandon manifest general coordinate invariance of the action. Although not

manifest, the latter may be restored with a non-standard realization of space-time

diffeomorphisms on the gauge fields. Alternatively, these theories can be obtained

as the gauge-fixed versions of non-polynomial Lagrangians with manifest space-time

symmetry [7, 8]. Recent applications of such actions have led to a Lagrangian for

N = 8 supergravity that possesses full E7(7) invariance, allowing to examine the role

of the full E7(7) in perturbative quantization of the theory [9, 10].

In this contribution, we will describe the non-abelian generalization of the equa-

tions (1.1) and the corresponding duality invariant actions which have recently be

constructed in [11], drawing on earlier work on non-abelian p-form tensor hierarchies

in arbitrary dimensions [12, 13, 14]. We focus on the example of vector fields in four-

dimensional space-time.

2 Non-abelian gauge theory and two-form poten-

tials in four dimensions

Let us first review the covariant description of non-abelian gauge theory in four space-

time dimensions as inspired by the construction of gauged supergravity theories [15].

Combining electric and magnetic vector fields into a single set of gauge fields Aµ
M ,

labeled by a sympletic index M = 1, . . . , 2n, the proper definition of covariant non-

abelian field strengths furthermore requires the introduction of two-form potentials

Bµν α transforming in the adjoint representation of the global duality group Gduality.

Explicitly, these field strengths are given by

Hµν
M ≡ 2∂[µAν]

M + gXNP
M A[µ

NAν]
P −

1

2
gΘMα Bµν α , (2.1)
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with a Stückelberg-type coupling to the two-form potentials Bµν α. Here, the ‘structure

constants’ XNP
M are given as

XNP
M ≡ ΘN

α (tα)P
M , (2.2)

in terms of the embedding tensor ΘN
α and the generators tα of the global duality group

Gduality of the ungauged theory. Symplectic indices are raised and lowered with the

antisymmetric symplectic tensor ΩMN . In four space-time dimensions, the embedding

tensor ΘM
α is constrained by the linear relations

X(MNK) = 0 , (2.3)

and moreover is subject to the bilinear constraints

fαβ
γ ΘM

α ΘN
β + (tα)N

P ΘM
αΘP

γ = 0 , (2.4)

ΩMN ΘM
αΘN

β = 0 , (2.5)

of which the first corresponds to a generalized Jacobi identity and the second one

insures locality of the gauging (i.e. the existence of a symplectic frame in which all

magnetic charges vanish). Local gauge transformations are given by

δΛAµ
M = DµΛM +

1

2
gΘMα Λµ α ,

δΛBµν α = 2D[µΛν]α − 2(tα)MN

(

ΛMHµν
N − A[µ

M δΛAν]
N
)

, (2.6)

with parameters ΛM and Λµ α, and covariant derivatives defined according to

Dµ ≡ ∂µ − gAµ
MXM ≡ ∂µ − gAµ

M ΘM
α tα . (2.7)

Under these gauge transformations, the field strengths (2.1) transform covariantly as

δΛHµν
M = −gΛKXKN

M Hµν
N . (2.8)

The presence of the two-form fields in (2.1) is crucial for the covariant transformation

behavior of the non-abelian field strengths. We finally mention that the covariant field

strengths (2.1) satisfy the generalized Bianchi identities

D[µHνρ]
M = −

1

6
gΘMα Hµνρ α , (2.9)

with the covariant non-abelian field strength Hµνρ α of the two-form tensor fields, given

by

ΘM
α Hµνρ α = 3ΘM

αD[µBνρ]α + 6 XMPQ A[µ
P
(

∂νAρ]
Q +

1

3
gXRS

Q Aν
RAρ]

S
)

.(2.10)
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3 Action for non-abelian twisted self-duality equa-

tions

Having defined non-abelian field strengths for the symplectically covariant vector Aµ
M ,

we can now formulate a duality covariant action principle by properly generalizing

the construction of Henneaux and Teitelboim [3]. As a first step, we split the four-

dimensional coordinates into {xµ} → {x0, xi} and the metric as

gµν =

(

−N2 + hijN
iN j hijN

i

hijN
j hij

)

,

into the standard lapse and shift functions. The full non-abelian Lagrangian then takes

the form

Lcovariant =
e3

2N
hij
(

Ei
M − Bi

M
)

MMN Bj
N

+
1

16
εµνρσ gΘM

α Bµν α Hρσ
M +

1

12
εµνρσ gXPQM ∂µAν

MAρ
P Aσ

Q

+ Lmatter , (3.1)

with the covariant electric and magnetic fields Ei
M , Bi

M given by

Ei
M ≡ H0i

M − N jHji
M ,

Bi
M ≡ −

1

2
e3 εijk N ΩMNMNK HjkK , (3.2)

in terms of the non-abelian field strengths from (2.1). The first line of (3.1) is the

straight-forward covariantization of [3, 4], the second line is a new non-abelian gauge-

invariant topological term, required in order to reproduce the correct field equations.

Finally, Lmatter comprises possible matter couplings (to scalars, fermions, gravity).

Formally, the Lagrangian (3.1) is invariant under the full action of the global duality

group Gduality, if the embedding tensor ΘM
α is treated as a spurionic object transform-

ing under Gduality. A concrete choice of the embedding tensor will specify a particular

gauging and explicitly break the duality group. After some work it can be shown, that

the Lagrangian (3.1) implies the following set of equations of motion

Ei
M = Bi

M , (3.3)

ΘM
α Hµνρ α = −2e4εµνρσ jσ

M , with jσ
M ≡ e−1

4 g−1 ∂Lmatter

∂Aσ
M

. (3.4)

The first of these equations is a rewriting of the four-dimensional twisted self-duality

equation (1.1)

Hµν
M = −

1

2
e4εµνρσ ΩMNMNK(φi)Hρσ K , (3.5)
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while the second equation is the four-dimensional duality equation relating the two-form

fields to the scalar fields or, more precisely, to the Noether current of the invariances

that have been gauged. It shows that the two-form gauge potentials, introduced in

the process of gauging the theory, do not constitute new degrees of freedom but are

in fact non-propagating fields (or the on-shell duals to the scalar fields of the theory).

In the abelian limit, these equations consistently decouple form the theory. The set of

equations (3.4) precisely parallels the equations of motion obtained from the second-

order formalism with magnetic gauge fields of [15].

Let us finally describe the symmetries of the Lagrangian (3.1). The key structure

is its general variation, that can be expressed as

δLcovariant = εimn

{

ΩMNDm

(

En
N − Bn

N
)

+
1

4
gΘM

αH0mn α

}

δAi
M

−
1

4
εimn gΘM

α
(

Ei
M − Bi

M
) (

δBmn α − 2(tα)KL A[m
KδAn]

L
)

−
1

12
εimn gΘM

α Himn α δA0
M + δLmatter . (3.6)

Based on this variation, the Lagrangian can be shown to be invariant under the local

gauge transformations (2.6). Although four-dimensional coordinate invariance is not

manifest, it follows from (3.6) after some calculation, that the Lagrangian is also invari-

ant under time-like diffeomorphisms ξ0, provided the gauge field potentials transform

as

δAi
M = ξ0

(

Bi
M + N jHji

M
)

,

δA0
M = 0 ,

ΘM
αδBij α = −2e3Nξ0εijk jk

M + 2XMKL A[i
K δAj]

L , (3.7)

with the spatial component of the current jk
M from (3.4). On-shell, i.e. upon using

the equations of motion (3.3), (3.4), these transformation laws reduce to

δAi
M ≈ ξ0 H0i

M ,

ΘM
αδBij α ≈ ΘM

α
(

ξ0H0ij α + 2(tα)PQA[i
P δAj]

Q
)

, (3.8)

which in turn reproduce the standard transformation behavior under time-like diffeo-

morphisms up to local gauge transformations (2.6) with parameters ΛM ≡ −ξ0A0
M ,

Λµ α ≡ −Bµi α − (tα)KLAµ
KA0

L . In the abelian case, the modified form of time-like

diffeomorphisms (3.7) for the vector fields Ai
M coincides with the results of [3, 4]. The

main difference in the non-abelian case (apart from standard gauge covariantization)

is the explicit appearance of the gauge fields in the matter part Lmatter of the La-

grangian. Since these couplings are manifestly four-dimensional coordinate covariant,

the off-shell modification of the transformation law (3.7) leads to extra contributions
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from this sector which are proportional to the equations of motion

δextra L =
∂Lmatter

∂Ai
M

ξ0
(

Bi
M − Ei

M
)

. (3.9)

With (3.6) and (3.4), these contributions are precisely cancelled by the modified trans-

formation law of Bij
M in (3.7). To summarize, the duality covariant Lagrangian (3.1)

is invariant under local gauge transformations (2.6) and also under four-dimensional

diffeomorphisms with the modified transformation laws (3.7).

This concludes the non-abelian generalization of the Henneaux-Teitelboim action

principles. Among other applications, it would be highly interesting to generalize the

presented construction to the non-polynomial Lagrangians with manifest space-time

symmetry [7, 8] from which the first-order actions [3, 4] are obtained after particular

gauge fixing.
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