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ABSTRACT Since both variables of timeand (angular) frequenay

are simultaneously involved in the basic “uncertainty’arel
tion (3), it has been proposed [2, 3] to revisit the very same
limitation from a joint perspective, based on the use of time
frequency (TF) energy distributions. In this respect, thesim
natural and simple counterpart of (3) reads

Ultimate possibilities of localization for time-frequencepresen-
tations are first reviewed from a joint perspective, evidegehat
Heisenberg-type pointwise limits are not exclusive of pharcal-
ization along trajectories in the plane. Spectrogram rgasgent
offers such a possibility and, in order to revisit its cortiwt with
uncertainty, geometrical properties of spectrograms tatéstcally 1 2 dw
investigated in the generic case of white Gaussian noisesedBa A (Cy) = o // (ﬁ + T2w2) Cy(t,w; ) dt o’

on Voronoi tessellations and Delaunay triangulationschttd to ‘ (5)
extrema, it is shown that, in a first approximation, localrgge \whereT is some arbitrary time scale and, (t,w; ) stands
“patches” are distributed according to a randomized hexaglat-  for any element of Cohen’s class [1], as parameterized by its
tice with a typical scale within a factor of a few that of minim  yarnel functionp(¢, 7) in the (2D Fourier transformed) am-

uncertainty Gabor logons. biguity domain. Whereas general results can be found, e.g.,
Index Terms— Time_frequency, uncertainty, spectro- in [2], one can Single out the two most Significant SpeCial
gram, reassignment cases, corresponding respectively to the Wigner distabut
W, (t,w) and the spectrograifi’ (¢,w) (with window h(t)).
1. FROM UNCERTAINTY. .. In the first case, one can show that, for any
Atw (WI) Z 17 (6)

1.1. Fromtime and frequency to time-frequency

It is well-known that a square-integrable signdt) cannot whereas, in the second one, the inequality reads

have its energye, arbitrarily localized in bth time gnd_ fr_e- A, (Sh) > 2. 7)
guency [1, 2]. The most common formulation of this limita- o _ _
tion makes use of second-order measures for the spreadings In both situations, the lower bound is reached (as in the

in the two domains, namely: classical formulation) for Gaussian signals, with furthere
the need of a Gaussian window in the spectrogram case. Since
A2(z) := 1 /t2 |z (t)[? d; (1) ?t is weII-knc_)wn thqt a_speptrogram r_esults from the smopth-
E, ing of the Wigner distribution of the signal by that of the win

1 7 dw dow [1, 2], the doubling of the minimum uncertainty observed
A2(X) = — / W X (w)|* ==, (2)  when passing from (6) to (7) can be simply interpreted as the
Eo 2 summing up of the corresponding spreads.
whereX (w) stands for the spectrum oft).
Given such measures (which assume for simplicity, bug o Heisenberg refined
with no loss of generality, that the individual densitje§t) |2

and| X (w)|? are centered), it readily follows that: In its simplest form (3), the “Heisenberg” inequality refer
to the minimum achievable uncertainty under the assumption

Av(z) Ay (X) > 17 3) th_at the time gnd.frequencyvariables are uncoupled. Rujgxi
2 this assumption in the proof, one can end up with the refined

with equality if and only if the signal is Gaussian-shaped: ~Schrodinger” inequality [4]

1+ () ®

N =

x(t) = C’eo‘tQ, a < 0. 4) A(z) Ap(X) =



which explicitly makes use of the covariance measure:
c(x) = /t lz(t)|? 4 arg x(t) dt 9
= g7 e x(t) dt. e — /
As explained in [1], the covariance (9) can be thought of

as an average, with respect to the energy density|?, of
the product between time and the “instantaneous frequency”
w.(t) defined as the phase derivative of the signal:

c(x) = (twa(t)). (10)

If these two quantities are “independent”, one expects, u
der the assumption of centered densities, that

Fig. 1. Uncertainty and time-frequency localization.

rotations, ending up eventually with a linear localizedistr
Yure (right) in the limit of an infinite flattening of the envegle.
This illustration is not only symbolic, but can also corresgd
to actual distributions: this is the case with the Wignetrdis
clx) = (twe(t)) = () (wz(t)) = (&) (w) =0 11 . ) ) .
(@) = (tws(t)) = (B (1) = (t) (@) (1) bution which takes on a 2D Gaussian form when applied to
and therefore the recovering of (3) from the vanishing of thevaveforms such as (12) and which—thanks to its covariance
covariance in (8). However, when this covariance is nonWith respect to scalings and rotations—is known to peryectl
zero, the lower bound is increased, and its maximum valu¥calize along the straight line of instantaneous freqyenc
is reached when the coupling betweeandw, (t) is maxi- the limit case of a constant magnitude linear chirp [1, 2].
mized. It follows from the Cauchy-Schwarz inequality that
this happens in the colinear case corresponding to a qidrap 2. Reassignment as a substitute
phase. This means that minimizers of the Schrodinger in-

equality (8) are of the form: At first sight, the Wigner distribution may seem to be an ade-
quate solution for achieving maximum localization in the TF
z(t) = eatzﬂ”ﬂ, Re{a} < 0. (12) plane, but a second thought highlights at least two linategi

in the approach. First, localization can only be guaranteed
In Physics terms, such waveforms are referred to abnear chirps and, second, the quadratic nature of the Wigner
“squeezed states” (as opposed to the (Glauber) “coheredistribution creates interference patterns that conflusgic-
states” defined in (4)) [5] whereas, in Signal Processingy th ture as soon as more than one component is present at the

correspond to “linear chirps” with a Gaussian envelope. same time [2]. The first limitation can be overcome to some
extent by replacing the Wigner distribution by variantsttha

2. ...TO LOCALIZATION are matched to specific forms of nonlinear chirps, but it can
be shown [6] that localization still imposes the transfoom t

2.1. Perfect chirp localization be quadratic, thus leaving unchanged the interferencesterm

) . . . issue. An efficient, yet approximate way out is however pos-
In its most constrained form (3), the uncertainty relatior f  g11a  This is based on the idea eassignmenf?], whose

bids anypointwiselocalization of energy in both time and yaqjcs can be briefly recalled as follows in the case of the

frequency, with the consequence that no signal can have igectrogram (though the principle can be extended to more
energy concentrated on a TF domain of arbitrarily small.areagenera| distributions, see, e.g., [8, 9]).

This however does not rule out other forms of localization™ 1,4 starting point of reassignment is to re-express a spec-
alongtrajectoriesin the TF plane. This is illustrated symbol- trogram, usually defined as the squared magnitude of a Short-
ically in Fig. 1, where a TF localized linear chirp can be seenpj . Fourier Transform (STFT), as the 2D smoothing of the

as the limit of the waveform (12) wheRe{a} — 0 and  \yigner distribution of the signal by that of the window:
Im{a} # 0. Indeed, when expressed in TF terms, the ex-

istence of a strictly positive lower bound in uncertaintiare N : dw

tions implies that any energy distribution necessarileegs Sy (tw) = // Wa(s,8) Wa(s —t,6 —w)dt o (13)

over a TF domain with some minimum, non-zero area. Given

this area, the shape of the corresponding domain can how- This allows for a simple interpretation: the value of a
ever be varied, thanks to possible covariances in the TFeplarspectrogram at some given TF poiftw) results from the

with respect to, e.g., scalings and rotations. Within thés p summing up of all local values of the Wigner distribution
ture, an initial “circular” logon (left) can be either congased  within a domain whose extension is essentially the Heisen-
or dilated in one variable (with a corresponding dilation orberg cell of the window. Unless such values would be sym-
compression in the dual variable so as to keep the area umetrically distributed around it, the geometrical centeth@s
changed). Such transformations can also be combined wiitell has however no reason to be chosen as the locus where to



assign the integrated local energy. Indeed, a more meaningr accordance this time with (6), a more surprising result is
ful location is the centroid of the Wigner distribution wak  obtained for the corresponding reassigned spectrograce si
within the cell, and the purpose of reassignment is pregciselthe explicit calculation ends up with:

to move each spectrogram value from the pdint) where

it has been computed to such a centr@idt, w), W (¢, w)): SM(t,w) = 4/7 e 2+ A (81 = %7 1)

. ' . . d¢
Shit,w) = // SHT, €)6(t — to(T,€),w — Wu (7, E))dTﬁ' with the paradox that the TF spread seems to be divided by
(14) two as compared to the Heisenberg limit! In fact, there is
From a practical point of view, the spectrogram with win- no real paradox and Heisenberg is not defeated by this sharp
dow A(t) is classically computed as the squared magnitudgcalization because reassignment has to be understood as a
of the corresponding Short-Time Fourier Transform (STFT)whole, characterized not only by the reassigned distiiputi
F!(t,w), and the identification of the centroids coordinatesbut also by the vector field attached to the spectrogram salue
can be efficiently achieved by supplementing this computathat have been moved. As for the classical Fourier analysis
tion with that of two additional STFT’s based on the companwhere localization has not to be confused with resolutitn, o

ion windowst.h(t) anddh(t)/dt [8, 9]. taining a sharp peak for one single component does not neces-
sarily means the possibility of separating two closely spac
2.3. Example and interpretation components. More precisely, it has been established [a1] th

) ) ) ) ) in the Gaussian case considered here, the reassignement vec
In the following, we will restrict to Gaussian windows of the tor fieldr, (¢, w) = (tA (t,w) — t, 0. (t,w) — w)t satisfies
xr b - xT b b xr )

form:
h(t) = g 1/4\—1/2 e—t2/(2/\2) (15)

and, more specifically, to the “circular case” where- 1 for
which the STFT admits a Bargmann factorization [10]

1
rx(taw) = §V10g Sg(tvw)v (22)

with the further consequence that, in the reassignment pro-

FM2) = FIz) o—1217/4 (16 cess, the values of the spectrogram are moved along trajecto
* ’ ’ ries that point towards its local maxima [11].
whereF"(z) is an entire function of the complex variable= This clearly evidences that the ultimately squeezed reas-

w+-gt. This also allows for a computationnally less expensivesigned distribution results from contributions within askma
evaluation of the centroids—involving only two STFT's@n  of attraction whose extent is precisely that of the original
t.h(t) anddh(t)/dt happen to be proportional—, as well as spectrogram, known to be constrained by uncertainty. When-
closed forms expressions for the reassigned spectrogram éver more than one component would be present in such a
some simple cases such as, e.g., the model (12). In particulgspectrogram) Heisenberg cell, the corresponding badins o

if we let attraction would then be competing, with interferencegrat
o= I ialt? (17)  [6]but no super-resolution.
2\ T?
andg = 0, it can be shown [8] that 3. SPECTROGRAM GEOMETRY
~ 1
. h _
Jim S5p(tw) = %5(‘“ — at). (18)  31. Onextrema

This examplifies the fact that, for unimodular linear The above remark about basins of attraction, defined as do-
chirps, the reassigned spectrogram is perfectly localizeghains surrounding local maxima of the log-spectrogram; sug
along the instantaneous frequency line, whatever the slopgests to have a closer look at the way such maxima are dis-
exactly as the Wigner distribution does. tributed in the TF plane. This can also be viewed as a dual

Another interesting special case is given by the Gaboproblem of the distribution of zeros of the STFT (and, hence,
logons corresponding to (17) withh = 0 (i.e., no chirping  of the spectrogram) that are known to entirely charactehiee
term). Such waveforms have minimum uncertainty, and afransform. Indeed, the analytic functidij (=) that enters the
explicit calculation leads to Bargmann representation (16) being an entire function-of or
der at mose, it admits (up to some possible multiple zero at
the origin) a Weierstrass-Hadamard factorization thahs=l

which, in accordance with (7), does correspond to the HeiserP" itS Zeros:, and given by [12]:
berg TF limit for a spectrogram. If a similar behavior is ob- . . . "
served for the Wigner distribution: Fi(z) = e J](1 - 2.) exp (2 +22/2),  (29)

1

Sh(t,w) = Vae 20+ = A, (Sh) = 2, (19)

Wolt,w) = 2yme T = A (W) = 1, 20
(t:0) w(We) (20) whereQ(z) is a quadratic polynomial ang}, = z/z,,.



Voronoi/Delaunay spectrogram (logon)

spectrogram (wGn) spectrogram (logon)

frequency
frequency

time time
voren ,OIID_élfunaf (max) voronoiDelaunay (m'h) Fig. 3. Average location of spectrogram extrenModel (left): the
T ; extrema (circled dots) are located on a triangular lattéefining
KT 4 S Ry > hexagonal Voronoi cells (red full lines), and the “circtilgeometry
g " 3 LR g of the analyzing window ensures that the distances betweighn
E T/ ; &L bouring extrema are all equal in the associated Delaunaygula-
Pl NL . tion (dotted black lines). Actual computation (right): wh&abor
i t{'- B logons are centered on such a triangular grid, spectrograrinma

ime

are located on this grid, while minima locations coincidefwthe
nodes of the hexagonal lattice defined by the Voronoi testimt.

Fig. 2. TF patches The spectrogram of one realization of white

Gaussian noise (top left) is described in terms of Voronsseda-

tions and Delaunay triangulations attached to the locaimaxbot- ~ from the interaction between any two such logons [2] yields
tom left) and local minima (bottom right). For a sake of comgzn, ~ tWO minima. We assume that the minima are located at edge

the spectrogram of a Gabor logon with minimum uncertaingise ~ nodes of the Voronoi cell. In this heuristic picture, maxima

plotted (top right) with the same dynamic range ¢B). and minima are hence distributed over two entangled hexag-
onal lattices. A number of consequences can be drawn from
this simple model and tested via numerical simulations. &om

3.2. Voronoi and Delaunay of them, involving500 independent realizations, are reported

in Fig. 4 with respect talistancebetween neigbouring ex-

In order to address this question from an experimental poin&,ema (as estimated from Delaunay triangulatiomsimber

of view, we considered white Gaussian noise (WGn). Th%f extrema andreaof Voronoi cells measured in the normal-

underlying idea is that, for any realization of wGn, a Specjzed (t/T, Tw) plane, wherd is the time scale for which (7)

trogram should resemble a random distribution of patchesis an equality for Gaussian signals. In particular, if wedgt

whose shape and area should be controlled by the reprodu fidd,, be the distances between maxima and minifig
ing kernel of the analysis [2], i.e., the STFT of the analgzin andNn; be the number of maxima and minima. in a giver; do-

}ng]ow. A co?vimen; Waty ﬁf |o_Iert1t|fy|ng tan ?Ft)r?ro\)/('mat'qg_main andA4,,; andA,, be the area of Voronoi cells attached to
orthe support ol such patches Is to construc . e. orolnm _'maxima and minima, it can be derived from the model that:
agram attached to the extrema. An example is given in Fig.

2. The simulation configuration correspondg56 data sam- dar/dm = V3 Nar/Now = 1/3; At /A = 3. (24)

ples in the time domain, analyzed ov&i6 frequency bins.

The length of the Gaussian window was chosen so as to match Albeit some significant dispersion is observed in the his-
a “circular” geometry for the reproducing kernel and, in@rd  tograms of Fig. 4, mean experimental results are in a reason-
to reduce border effects, only sub-squares of $i#ex 192 able agreement with the theoretical predictions (24), sups
have been considered for further analysis. porting the choice of some randomized version of the model
depicted in Fig. 3 for the locations and spreads of TF patches
in a spectrogram of wGn. More can be said about the ob-
Based on 100 independent realizations, a first result is thaerved range of values for the considered attributes. We cal
the average connectivity of maxima and minima with their‘effective domain” of the minimum uncertainty logon (19)
nearest neighbourghs is, respectively, 5.90 and 5.98al-e. the circular domain which encompas$E®s of its energy.
most 6. This suggests a simple model where maxima anids radius and area are equal<02.6 and21.8 resp. (which
minima would be located (on average) on a regular trianguis aboutl1 times larger than the Heisenberg spread given in
lar lattice, with hexagonal Voronoi cells tiling the plarsmé¢  (19)). From the typical size of the hexagonal cell of the miode
Fig. 3). Interestingly, such tiling of the plane is known to in Fig. 3, we deduce comparable values for both the radius
realize the maximum packing with circular patches. Somely;/v/3 ~ 3 and the arear/(3v/3) Ay ~ 21.8.

further interpretation is possible: if we associate a logign Finally, as shown in Fig. 5, the distribution of areas
nal to each maximum, the interference pattern which resultslosely resemble—when properly renormalized—that of the

3.3. A simplified model
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Fig. 4. Geometrical attributes in Voronoi tessellations and De local maxima of STFT magnitude

launay triangulations based on local extrema of wGn spegtms _

within TF domains of size92 x 192. Histograms related to distance FIg. . Distributions of local maxima and Voronoi cells areas in
between extrema, number of extrema and area of Voronoi aedls the case of wGn (simulation conditions as in Fig. ¥hen renor-
plotted for both maxima (top row) and minima (bottom row),tbe ~ Malized by their means, values of the local maxima of STFTnag

basis of500 independent realizations. The empirical mean value ofude and areas of the attached Voronoi cells are mildly tated,
each distribution is indicated in each case. with similar (Gamma-like) distributions (top: individuaistribu-

tions; bottom: joint distribution). Uncertainty imposegthermore

. . . _ that the product of those quantities is bounded from belbe:yel-
corresppndlng chgl maxima of th? STFT magn-ltud-e, W'th Jow line stands for the boundary of the admissible domain.
correlation coefficient 00.27. Albeit its explanation is still

an open question, it can be further noticed that the latter ca

be well fitted by a Gamma distribution (with abdutdegrees senschaftenvol. 14, pp. 296-303, 1930, English translation
of freedom). Starting from (7) and Iabelllm§|* the value of available at http://arxiv.org/abs/quant-ph/9903100.

the local maximum of the STFT magnitude within a Voronoi [5] D-F. Walls and G.J. Milburn, Quantum Optics (2nd ed.)
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vier, 2003.
2 [7] K. Kodera, R. Gendrin, and C. de Villedary, “Analysis ohe-
SQ (t,w) = Z Z Cmn F,}] (t—tm,w—wn)| , (25) varying signals with smaBTvalues,”IEEE Trans. on Acoust.,
m n Speech and Signal Prq&ol. ASSP-26, no. 1, pp. 64-76, 1978.

. . [8] F. Auger and P. Flandrin, “Improving the readability ahe-
where the locationgt.,, w,) of the local maxima would be frequency and time-scale representations by the reassiginm

distributgd on some syitably randomized versjon of th.emria method,” IEEE Trans. on Acoust., Speech and Signal Proc.
gular grid and the weights,,,, would have their magnitude vol. 43, no. 5, pp. 1068-1089, 1995.
Gamma-distributed, with some partial correlation reflegti [9]

. ! . ; . P. Flandrin, F. Auger, and E. Chassande-Mottin, “Time-
uncertainty constraints. This is currently under invesiign

frequency reassignment — From principles to algorithms,”

and will be discussed elsewhere. in Applications in Time-Frequency Signal Processing
4. REFERENCES A. Papandreou-Suppappola, Ed., chapter 5, pp. 179-203. CRC
Press, Boca Raton, FL, 2003.
[1] L. Cohen, Time-Frequency Analysi®rentice Hall, 1995. [10] V. Bargmann, “On a Hilbert space of analytic functionsla
[2] P.Flandrin,Time-Frequency / Time-Scale Analysicademic an associated integral transfornGommun. Pure Appl. Math.
Press, 1999. vol. 14, pp. 187-214, 1961.

[3] T.A.C.M. Claasen and W.F.G. Mecklenbrauker, “The W4gn (11] ‘I‘E._Chassgnde-Mo_ttin, E Da},ubechie_s, F. Auger, andahdtin,
distribution - A tool for time-frequency signal analysisarPl: Differential reassignment,”"IEEE Signal Proc. Letf.vol. 4,
Continuous-time signalsPhilips J. Res.vol. 35, pp. 217—250, no. 10, pp. 293-294, 1997.

1980. [12] H.J. Korsch, C. Muller, and H. Wiescher, “On the zeros of
the Husimi distribution,”J. Phys. A: Math. Genvol. 30, pp.

[4] E. Schrodinger, “Zum Heisenbergschen Unscharfepih L677-L684, 1997.

Sitzungsberichte der Preussischen Akademie der Wis-



