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ABSTRACT

Ultimate possibilities of localization for time-frequency represen-
tations are first reviewed from a joint perspective, evidencing that
Heisenberg-type pointwise limits are not exclusive of sharp local-
ization along trajectories in the plane. Spectrogram reassignment
offers such a possibility and, in order to revisit its connection with
uncertainty, geometrical properties of spectrograms are statistically
investigated in the generic case of white Gaussian noise. Based
on Voronoi tessellations and Delaunay triangulations attached to
extrema, it is shown that, in a first approximation, local energy
“patches” are distributed according to a randomized hexagonal lat-
tice with a typical scale within a factor of a few that of minimum
uncertainty Gabor logons.

Index Terms— Time-frequency, uncertainty, spectro-
gram, reassignment

1. FROM UNCERTAINTY. . .

1.1. From time and frequency to time-frequency

It is well-known that a square-integrable signalx(t) cannot
have its energyEx arbitrarily localized in both time and fre-
quency [1, 2]. The most common formulation of this limita-
tion makes use of second-order measures for the spreadings
in the two domains, namely:

∆2
t (x) :=

1

Ex

∫

t2 |x(t)|2 dt; (1)

∆2
ω(X) :=

1

Ex

∫

ω2 |X(ω)|2 dω

2π
, (2)

whereX(ω) stands for the spectrum ofx(t).
Given such measures (which assume for simplicity, but

with no loss of generality, that the individual densities|x(t)|2
and|X(ω)|2 are centered), it readily follows that:

∆t(x)∆ω(X) ≥ 1

2
, (3)

with equality if and only if the signal is Gaussian-shaped:

x(t) = C eα t2 , α < 0. (4)

Since both variables of timet and (angular) frequencyω
are simultaneously involved in the basic “uncertainty” rela-
tion (3), it has been proposed [2, 3] to revisit the very same
limitation from a joint perspective, based on the use of time-
frequency (TF) energy distributions. In this respect, the most
natural and simple counterpart of (3) reads

∆tω(Cx) :=
1

Ex

∫∫
(

t2

T 2
+ T 2ω2

)

Cx(t, ω; ϕ) dt
dω

2π
,

(5)
whereT is some arbitrary time scale andCx(t, ω; ϕ) stands
for any element of Cohen’s class [1], as parameterized by its
kernel functionϕ(ξ, τ) in the (2D Fourier transformed) am-
biguity domain. Whereas general results can be found, e.g.,
in [2], one can single out the two most significant special
cases, corresponding respectively to the Wigner distribution
Wx(t, ω) and the spectrogramSh

x (t, ω) (with window h(t)).
In the first case, one can show that, for anyT ,

∆tω(Wx) ≥ 1, (6)

whereas, in the second one, the inequality reads

∆tω(Sh
x ) ≥ 2. (7)

In both situations, the lower bound is reached (as in the
classical formulation) for Gaussian signals, with furthermore
the need of a Gaussian window in the spectrogram case. Since
it is well-known that a spectrogram results from the smooth-
ing of the Wigner distribution of the signal by that of the win-
dow [1, 2], the doubling of the minimum uncertainty observed
when passing from (6) to (7) can be simply interpreted as the
summing up of the corresponding spreads.

1.2. Heisenberg refined

In its simplest form (3), the “Heisenberg” inequality refers
to the minimum achievable uncertainty under the assumption
that the time and frequency variables are uncoupled. Relaxing
this assumption in the proof, one can end up with the refined
“Schrödinger” inequality [4]

∆t(x)∆ω(X) ≥ 1

2

√

1 + c2(x) (8)



which explicitly makes use of the covariance measure:

c(x) :=

∫

t |x(t)|2 d

dt
arg x(t) dt. (9)

As explained in [1], the covariance (9) can be thought of
as an average, with respect to the energy density|x(t)|2, of
the product between time and the “instantaneous frequency”
ωx(t) defined as the phase derivative of the signal:

c(x) = 〈t ωx(t)〉. (10)

If these two quantities are “independent”, one expects, un-
der the assumption of centered densities, that

c(x) = 〈t ωx(t)〉 = 〈t〉 〈ωx(t)〉 = 〈t〉 〈ω〉 = 0 (11)

and therefore the recovering of (3) from the vanishing of the
covariance in (8). However, when this covariance is non-
zero, the lower bound is increased, and its maximum value
is reached when the coupling betweent andωx(t) is maxi-
mized. It follows from the Cauchy-Schwarz inequality that
this happens in the colinear case corresponding to a quadratic
phase. This means that minimizers of the Schrödinger in-
equality (8) are of the form:

x(t) = eα t2+β t+γ , Re{α} < 0. (12)

In Physics terms, such waveforms are referred to as
“squeezed states” (as opposed to the (Glauber) “coherent
states” defined in (4)) [5] whereas, in Signal Processing, they
correspond to “linear chirps” with a Gaussian envelope.

2. . . . TO LOCALIZATION

2.1. Perfect chirp localization

In its most constrained form (3), the uncertainty relation for-
bids anypointwiselocalization of energy in both time and
frequency, with the consequence that no signal can have its
energy concentrated on a TF domain of arbitrarily small area.
This however does not rule out other forms of localization
alongtrajectoriesin the TF plane. This is illustrated symbol-
ically in Fig. 1, where a TF localized linear chirp can be seen
as the limit of the waveform (12) whenRe{α} → 0− and
Im{α} 6= 0. Indeed, when expressed in TF terms, the ex-
istence of a strictly positive lower bound in uncertainty rela-
tions implies that any energy distribution necessarily extends
over a TF domain with some minimum, non-zero area. Given
this area, the shape of the corresponding domain can how-
ever be varied, thanks to possible covariances in the TF plane
with respect to, e.g., scalings and rotations. Within this pic-
ture, an initial “circular” logon (left) can be either compressed
or dilated in one variable (with a corresponding dilation or
compression in the dual variable so as to keep the area un-
changed). Such transformations can also be combined with

Fig. 1. Uncertainty and time-frequency localization.

rotations, ending up eventually with a linear localized struc-
ture (right) in the limit of an infinite flattening of the envelope.
This illustration is not only symbolic, but can also correspond
to actual distributions: this is the case with the Wigner distri-
bution which takes on a 2D Gaussian form when applied to
waveforms such as (12) and which—thanks to its covariance
with respect to scalings and rotations—is known to perfectly
localize along the straight line of instantaneous frequency in
the limit case of a constant magnitude linear chirp [1, 2].

2.2. Reassignment as a substitute

At first sight, the Wigner distribution may seem to be an ade-
quate solution for achieving maximum localization in the TF
plane, but a second thought highlights at least two limitations
in the approach. First, localization can only be guaranteedfor
linear chirps and, second, the quadratic nature of the Wigner
distribution creates interference patterns that confuse the pic-
ture as soon as more than one component is present at the
same time [2]. The first limitation can be overcome to some
extent by replacing the Wigner distribution by variants that
are matched to specific forms of nonlinear chirps, but it can
be shown [6] that localization still imposes the transform to
be quadratic, thus leaving unchanged the interference terms
issue. An efficient, yet approximate way out is however pos-
sible. This is based on the idea ofreassignment[7], whose
basics can be briefly recalled as follows in the case of the
spectrogram (though the principle can be extended to more
general distributions, see, e.g., [8, 9]).

The starting point of reassignment is to re-express a spec-
trogram, usually defined as the squared magnitude of a Short-
Time Fourier Transform (STFT), as the 2D smoothing of the
Wigner distribution of the signal by that of the window:

Sh
x(t, ω) =

∫∫

Wx(s, ξ)Wh(s − t, ξ − ω) dt
dω

2π
. (13)

This allows for a simple interpretation: the value of a
spectrogram at some given TF point(t, ω) results from the
summing up of all local values of the Wigner distribution
within a domain whose extension is essentially the Heisen-
berg cell of the window. Unless such values would be sym-
metrically distributed around it, the geometrical center of this
cell has however no reason to be chosen as the locus where to



assign the integrated local energy. Indeed, a more meaning-
ful location is the centroı̈d of the Wigner distribution values
within the cell, and the purpose of reassignment is precisely
to move each spectrogram value from the point(t, ω) where
it has been computed to such a centroı̈d(t̂x(t, ω), ω̂x(t, ω)):

Ŝh
x (t, ω) =

∫∫

Sh
x(τ, ξ)δ(t − t̂x(τ, ξ), ω − ω̂x(τ, ξ))dτ

dξ

2π
.

(14)
From a practical point of view, the spectrogram with win-

dow h(t) is classically computed as the squared magnitude
of the corresponding Short-Time Fourier Transform (STFT)
Fh

x (t, ω), and the identification of the centroı̈ds coordinates
can be efficiently achieved by supplementing this computa-
tion with that of two additional STFT’s based on the compan-
ion windowst.h(t) anddh(t)/dt [8, 9].

2.3. Example and interpretation

In the following, we will restrict to Gaussian windows of the
form:

h(t) = π−1/4 λ−1/2 e−t2/(2λ2) (15)

and, more specifically, to the “circular case” whereλ = 1 for
which the STFT admits a Bargmann factorization [10]

Fh
x (z) = Fh

x (z) e−|z|2/4, (16)

whereFh
x (z) is an entire function of the complex variablez =

ω+t. This also allows for a computationnally less expensive
evaluation of the centroı̈ds—involving only two STFT’s since
t.h(t) anddh(t)/dt happen to be proportional—, as well as
closed forms expressions for the reassigned spectrogram in
some simple cases such as, e.g., the model (12). In particular,
if we let

α = −1

2

(

1

T 2
− i a

)

t2 (17)

andβ = 0, it can be shown [8] that

lim
T→∞

Ŝh
x (t, ω) =

1

2π
δ(ω − at). (18)

This examplifies the fact that, for unimodular linear
chirps, the reassigned spectrogram is perfectly localized
along the instantaneous frequency line, whatever the slope,
exactly as the Wigner distribution does.

Another interesting special case is given by the Gabor
logons corresponding to (17) witha = 0 (i.e., no chirping
term). Such waveforms have minimum uncertainty, and an
explicit calculation leads to

Sh
x (t, ω) =

√
π e−

1

2
(t2+ω2) ⇒ ∆tω(Sh

x ) = 2, (19)

which, in accordance with (7), does correspond to the Heisen-
berg TF limit for a spectrogram. If a similar behavior is ob-
served for the Wigner distribution:

Wx(t, ω) = 2
√

π e−(t2+ω2) ⇒ ∆tω(Wx) = 1, (20)

in accordance this time with (6), a more surprising result is
obtained for the corresponding reassigned spectrogram, since
the explicit calculation ends up with:

Ŝh
x (t, ω) = 4

√
π e−2(t2+ω2) ⇒ ∆tω(Ŝh

x ) =
1

2
, (21)

with the paradox that the TF spread seems to be divided by
two as compared to the Heisenberg limit! In fact, there is
no real paradox and Heisenberg is not defeated by this sharp
localization because reassignment has to be understood as a
whole, characterized not only by the reassigned distribution
but also by the vector field attached to the spectrogram values
that have been moved. As for the classical Fourier analysis
where localization has not to be confused with resolution, ob-
taining a sharp peak for one single component does not neces-
sarily means the possibility of separating two closely spaced
components. More precisely, it has been established [11] that,
in the Gaussian case considered here, the reassignement vec-
tor fieldrx(t, ω) = (t̂x(t, ω) − t, ω̂x(t, ω) − ω)t satisfies

rx(t, ω) =
1

2
∇ log Sh

x (t, ω), (22)

with the further consequence that, in the reassignment pro-
cess, the values of the spectrogram are moved along trajecto-
ries that point towards its local maxima [11].

This clearly evidences that the ultimately squeezed reas-
signed distribution results from contributions within a basin
of attraction whose extent is precisely that of the original
spectrogram, known to be constrained by uncertainty. When-
ever more than one component would be present in such a
(spectrogram) Heisenberg cell, the corresponding basins of
attraction would then be competing, with interference patterns
[6] but no super-resolution.

3. SPECTROGRAM GEOMETRY

3.1. On extrema

The above remark about basins of attraction, defined as do-
mains surrounding local maxima of the log-spectrogram, sug-
gests to have a closer look at the way such maxima are dis-
tributed in the TF plane. This can also be viewed as a dual
problem of the distribution of zeros of the STFT (and, hence,
of the spectrogram) that are known to entirely characterizethe
transform. Indeed, the analytic functionFh

x (z) that enters the
Bargmann representation (16) being an entire function of or-
der at most2, it admits (up to some possible multiple zero at
the origin) a Weierstrass-Hadamard factorization that is based
on its zeroszn and given by [12]:

Fh
x (z) = eQ(z)

∏

n

(1 − z̃n) exp
(

z̃n + z̃2
n/2

)

, (23)

whereQ(z) is a quadratic polynomial and̃zn = z/zn.
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Fig. 2. TF patches. The spectrogram of one realization of white
Gaussian noise (top left) is described in terms of Voronoi tessella-
tions and Delaunay triangulations attached to the local maxima (bot-
tom left) and local minima (bottom right). For a sake of comparison,
the spectrogram of a Gabor logon with minimum uncertainty isalso
plotted (top right) with the same dynamic range (20 dB).

3.2. Voronoi and Delaunay

In order to address this question from an experimental point
of view, we considered white Gaussian noise (wGn). The
underlying idea is that, for any realization of wGn, a spec-
trogram should resemble a random distribution of “patches”
whose shape and area should be controlled by the reproduc-
ing kernel of the analysis [2], i.e., the STFT of the analyzing
window. A convenient way of identifying an approximation
for the support of such patches is to construct the Voronoi di-
agram attached to the extrema. An example is given in Fig.
2. The simulation configuration corresponds to256 data sam-
ples in the time domain, analyzed over256 frequency bins.
The length of the Gaussian window was chosen so as to match
a “circular” geometry for the reproducing kernel and, in order
to reduce border effects, only sub-squares of size192 × 192
have been considered for further analysis.

3.3. A simplified model

Based on 100 independent realizations, a first result is that
the average connectivity of maxima and minima with their
nearest neighbourghs is, respectively, 5.90 and 5.98, i.e.al-
most 6. This suggests a simple model where maxima and
minima would be located (on average) on a regular triangu-
lar lattice, with hexagonal Voronoi cells tiling the plane (see
Fig. 3). Interestingly, such tiling of the plane is known to
realize the maximum packing with circular patches. Some
further interpretation is possible: if we associate a logonsig-
nal to each maximum, the interference pattern which results
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Fig. 3. Average location of spectrogram extrema. Model (left): the
extrema (circled dots) are located on a triangular lattice,defining
hexagonal Voronoi cells (red full lines), and the “circular” geometry
of the analyzing window ensures that the distances between neigh-
bouring extrema are all equal in the associated Delaunay triangula-
tion (dotted black lines). Actual computation (right): when Gabor
logons are centered on such a triangular grid, spectrogram maxima
are located on this grid, while minima locations coincide with the
nodes of the hexagonal lattice defined by the Voronoi tessellation.

from the interaction between any two such logons [2] yields
two minima. We assume that the minima are located at edge
nodes of the Voronoi cell. In this heuristic picture, maxima
and minima are hence distributed over two entangled hexag-
onal lattices. A number of consequences can be drawn from
this simple model and tested via numerical simulations. Some
of them, involving500 independent realizations, are reported
in Fig. 4 with respect todistancebetween neigbouring ex-
trema (as estimated from Delaunay triangulations),number
of extrema andareaof Voronoi cells measured in the normal-
ized(t/T, Tω) plane, whereT is the time scale for which (7)
is an equality for Gaussian signals. In particular, if we letdM

anddm be the distances between maxima and minima,NM

andNm be the number of maxima and minima in a given do-
main andAM andAm be the area of Voronoi cells attached to
maxima and minima, it can be derived from the model that:

dM/dm =
√

3; NM/Nm = 1/3; AM/Am = 3. (24)

Albeit some significant dispersion is observed in the his-
tograms of Fig. 4, mean experimental results are in a reason-
able agreement with the theoretical predictions (24), thussup-
porting the choice of some randomized version of the model
depicted in Fig. 3 for the locations and spreads of TF patches
in a spectrogram of wGn. More can be said about the ob-
served range of values for the considered attributes. We call
“effective domain” of the minimum uncertainty logon (19)
the circular domain which encompasses95% of its energy.
Its radius and area are equal to∼ 2.6 and21.8 resp. (which
is about11 times larger than the Heisenberg spread given in
(19)). From the typical size of the hexagonal cell of the model
in Fig. 3, we deduce comparable values for both the radius
dM/

√
3 ∼ 3 and the area2π/(3

√
3)AM ∼ 21.8.

Finally, as shown in Fig. 5, the distribution of areas
closely resemble—when properly renormalized—that of the
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Fig. 4. Geometrical attributes in Voronoi tessellations and De-
launay triangulations based on local extrema of wGn spectrograms
within TF domains of size192×192. Histograms related to distance
between extrema, number of extrema and area of Voronoi cellsare
plotted for both maxima (top row) and minima (bottom row), onthe
basis of500 independent realizations. The empirical mean value of
each distribution is indicated in each case.

corresponding local maxima of the STFT magnitude, with a
correlation coefficient of0.27. Albeit its explanation is still
an open question, it can be further noticed that the latter can
be well fitted by a Gamma distribution (with about11 degrees
of freedom). Starting from (7) and labelling|F |∗ the value of
the local maximum of the STFT magnitude within a Voronoi
cell of areaA, it can be shown thatA.|F |∗ ≥ 3

√
6, imposing

some further, uncertainty-type, constraint on the coupling
of those quantities. All those findings thus suggest that the
average model of Fig. 3 could be refined according to

Sh
x (t, ω) =

∣

∣

∣

∣

∣

∑

m

∑

n

cmn Fh
h (t − tm, ω − ωn)

∣

∣

∣

∣

∣

2

, (25)

where the locations(tm, ωn) of the local maxima would be
distributed on some suitably randomized version of the trian-
gular grid and the weightscmn would have their magnitude
Gamma-distributed, with some partial correlation reflecting
uncertainty constraints. This is currently under investigation
and will be discussed elsewhere.
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