S Ghilezan

J Ivetić

P Lescanne
email: pierre.lescanne@ens-lyon.fr

S Likavec
email: likavec@di.unito.it

Resource control and strong normalisation

Keywords: lambda calculus, sequent calculus, resource control, intersection types, strong normalisation ACM subject classification: F.4.1 [Mathematical Logic]: Lambda calculus and related systems, F.3.1 [Specifying and Verifying and Reasoning about Programs]: Logics of programs, F.3.2 [Semantics of Programming Languages]: Operational semantics, F.3.3 [Studies of Program Constructs]: Type structure

We introduce the resource control cube, a system consisting of eight intuitionistic lambda calculi with either implicit or explicit control of resources and with either natural deduction or sequent calculus. The four calculi of the cube that correspond to natural deduction have been proposed by Kesner and Renaud and the four calculi that correspond to sequent lambda calculi are introduced in this paper. The presentation is paramatrized with the set of resources (weakening or contraction), which enables a uniform treatment of the eight calculi of the cube. The simply typed resource control cube, on the one hand, expands the Curry-Howard correspondence to intuitionistic natural deduction and intuitionistic sequent logic with implicit or explicit structural rules and, on the other hand, is related to substructural logics.

We propose a general intersection type system for the resource control cube calculi. Our main contribution is a characterisation of strong normalisation of reductions in this cube. First, we prove that typeability implies strong normalisation in the "natural deduction base" of the cube by adapting the reducibility method. We then prove that typeability implies strong normalisation in the "sequent base" of the cube by using a combination of well-orders and a suitable embedding in the "natural deduction base". Finally, we prove that strong normalisation implies typeability in the cube using head subject expansion. All proofs are general and can be made specific to each calculus of the cube by instantiating the set of resources.

Introduction

Curry-Howard correspondence or formulae-as-types and proofs-as-programs paradigm [START_REF] Howard | The formulas-as-types notion of construction[END_REF], establishes a fundamental connection between various logical and computational systems. Simply typed λ-calculus provides the compu-tational interpretation of intuitionistic natural deduction where simplifying a proof corresponds to a program execution. The correspondence between sequent calculus derivations and natural deduction derivations is not a one-to-one map: several cut-free derivations correspond to one normal derivation [START_REF] Barendregt | Lambda terms for natural deduction, sequent calculus and cut-elimination[END_REF]. Starting from Griffin's extension of the Curry-Howard correspondence to classical logic [START_REF] Griffin | A formulae-as-types notion of control[END_REF], this connection has been extended to other calculi and logical systems. For instance, Parigot's λµ-calculus [START_REF] Parigot | Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction[END_REF] corresponds to classical natural deduction and as such inspired investigation into the relationship between classical logic and theories of control in programming languages [Par97, dG94, OS97, Bie98, AH03, HG08]. In the realm of sequent calculus, Herbelin's λ-calculus [START_REF] Herbelin | A lambda calculus structure isomorphic to Gentzen-style sequent calculus structure[END_REF] and Espírito Santo's λ Gtz -calculus [START_REF] Santo | Completing Herbelin's programme[END_REF] correspond to intuitionistic sequent calculus, whereas Barbanera and Berardi's symmetric calculus [START_REF] Barbanera | A symmetric lambda calculus for classical program extraction[END_REF] and Curien and Herbelin's λµ µ-calculus [START_REF] Curien | The duality of computation[END_REF] correspond to its classical variants. An extensive overview of this subject can be found in [START_REF] Sørensen | Lectures on the Curry-Howard isomorphism[END_REF][START_REF] Ghilezan | Computational interpretations of logics[END_REF].

Our intention is to bring this correspondence to the calculi with control operators, namely erasure and duplication, which correspond to weakening and contraction on the logical side. The wish to control the use of variables in a λterm can be traced back to Church [START_REF] Church | The Calculi of Lambda-Conversion[END_REF] who introduced the λI-calculus. According to Church, the variables bound by λ abstraction should occur in the term at least once. More recently, following the ideas of linear logic [START_REF] Girard | Linear logic[END_REF], van Oostrom [vO01] proposed to extend the λ-calculus, and Kesner and Lengrand [START_REF] Kesner | Resource operators for lambda-calculus[END_REF] proposed to extend the λx-calculus with explicit substitution, with operators to tightly control the use of variables (resources). Resource control in sequent calculus corresponding to classical logic was proposed in [Ž07]. Resource control both in λcalculus and λx-calculus is proposed in [START_REF] Kesner | The prismoid of resources[END_REF][START_REF] Kesner | A prismoid framework for languages with resources[END_REF], whereas resource control for sequent λ-calculus is proposed in [GIL Ž11,[START_REF] Ghilezan | Intersection types for the resource control lambda calculi[END_REF]. Like in the λI-calculus, bound variables must still occur in the term, but if a variable x is not used in a term M this can be expressed by using the expression x M where the operator is called erasure (aka weakening). In this way, the term M does not contain the variable x, but the term x M does. Similarly, a variable should not occur twice. If nevertheless, we want to have two positions for the same variable, we have to duplicate it explicitly, using fresh names. This is done by using the operator x < x1

x 2 , called duplication (aka contraction) which creates two fresh variables x 1 and x 2 . Extending the classical λ-calculus and the sequent λ-calculus λ Gtz with explicit erasure and duplication provides the Curry-Howard correspondence for intuitionistic natural deduction and intuitionistic sequent calculus with explicit structural rules, as investigated in [KL07, KR09, KR11, GIL Ž11]. The notation used in this paper is along the lines of [Ž07] and close to [vO01].

A different approach to the resource aware lambda calculus, motivated mostly by the development of the process calculi, was investigated by Boudol in [START_REF] Boudol | The lambda-calculus with multiplicities[END_REF]. Instead of extending the syntax of λ-calculus with explicit resource operators, Boudol proposed a non-deterministic calculus with a generalised notion of application. In his work, a function is applied to a structure called a bag, having the form (N m 1 1 |...|N m k k) in which N i , i = 1, ..., k are resources and m i ∈ N ∪ {∞}, i = 1, ..., k are multiplicities, representing the maximum possible number of the resource usage. In this framework, the usual application is written as MN ∞ . The theory was further developed in [START_REF] Boudol | A semantics for lambda calculi with resources[END_REF], connected to linear logic via differential λ-calculus in [START_REF] Ehrhard | The differential lambda-calculus[END_REF] and even typed with non-idempotent intersection types in [START_REF] Pagani | Solvability in resource lambda-calculus[END_REF].

Our contribution is inspired by Kesner and Lengrand's [START_REF] Kesner | Resource operators for lambda-calculus[END_REF] and Kesner and Renaud's [START_REF] Kesner | The prismoid of resources[END_REF][START_REF] Kesner | A prismoid framework for languages with resources[END_REF] work on resource operators for λ-calculus. The linear λlxr calculus of Kesner and Lengrand introduces operators for substitution, erasure and duplication, preserving at the same time strong normalisation, confluence and subject reduction property of its predecessor λx [START_REF] Bloo | Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection[END_REF]. This approach is then generalised in Kesner and Renaud's Prismoid of Resources [KR09, KR11] by considering various combinations in which these three operators are made explicit or implicit. In this paper we introduce the notion of resource control cube, consisting of two systems λ R and λ Gtz R , which can be seen as two opposite sides of the cube (see Figure 1). In λ R we consider four calculi, each of which is obtained by making erasure (aka weakening) or duplication (aka contraction) explicit or implicit. In λ Gtz R we consider the four sequent style counterparts of the λ R -calculi. We will call the λ R system the natural deduction ND-base of the cube, and the λ Gtz R system the sequent LJ-base of the cube 1 . Explicit control of erasure and duplication leads to decomposing of reduction steps into more atomic ones, thus revealing details of computation which are usually left implicit. Since erasing and duplicating of (sub)terms essentially changes the structure of a program, it is important to see how this mechanism really works and to be able to control this part of computation.

Let us turn our attention to type assignment systems for various term calculi. The basic type assignment system is the one with simple types in which the only forming operator is an arrow →. Among many extensions of this type We introduce the intersection types into all eight calculi of the resource control cube. Our intersection type assignment systems λ R ∩ and λ Gtz R ∩ integrate intersections into logical rules, thus preserving syntax-directedness of the systems. We assign a restricted form of intersection types to terms, namely strict types, therefore eliminating the need for pre-order on types. Using these intersection type assignment systems we manage to completely characterise strong normalisation in the cube by proving that terms in all calculi in both bases enjoy the strong normalisation property if and only if they are typeable. While this characterization is well-known for the pure λ-calculus, it is a new result for the other seven calculi of the cube. The paper proves the characterization in a modular way, presenting one uniform proof for the first four calculi in natural deduction style, and one uniform proof for the four sequent style calculi. Concerning the sequent calculus, to the best of our knowledge, there is no literature on explicit resource control operators for λ Gtz -calculus, nor on the connection to intersection types (except for the initial version of this work presented in [START_REF] Ghilezan | Intersection types for the resource control lambda calculi[END_REF]).

The rest of the paper is organised as follows. In Section 1 we introduce the untyped resource control cube which consists of eight calculi λ R and λ Gtz R with different combinations of explicit/implicit control operators of weakening and contraction. Basic type assignment systems with simple types for these calculi are given in Section 2. Intersection type assignment systems with strict types are introduced in Section 3. By adapting the reducibility method to explicit resource control operators, we first prove that typeable terms are strongly normalising in λ R -calculi of the ND-base in Section 4. Next, we prove that typeability implies strong normalization in λ Gtz R -calculi of the LJ-base by using a combination of well-orders and a suitable embedding of λ Gtz R -terms into λ R -terms which preserves types and enables the simulation of all the reductions in λ Gtz R -calculi by the operational semantics of the λ R -calculi. Finally, in Section 5, we prove that strong normalisation implies typeability in both systems using head subject expansion. We conclude in Section 6. In this section we present four calculi obtained by adding contraction and weakening to the λ-calculus either as explicit or implicit operators. We denote these four calculi by λ R , where R ⊆ {c, w} and c, w denote explicit contraction and weakening, respectively. We revisit a part of the untyped resource control calculi of Kesner and Renaud's prismoid [START_REF] Kesner | The prismoid of resources[END_REF], the so called implicit base, in which substitution is implicit. We use a notation along the lines of [Ž07] and close to [vO01]. It is slightly modified w.r.t. [START_REF] Kesner | The prismoid of resources[END_REF] in order to emphasize the correspondence between these calculi and their sequent counterparts. 2 For the convenience of the reader and to avoid repetition, we present all the calculi in a uniform way. This implies that some constructions or features are part of one calculus and not of the others. When a feature occurs in a calculus associated with the operator r ∈ R and is ignored elsewhere, we put this feature between brackets indexed by the symbol r. For instance, if we write [x ∈ Fv(f)] w , this means that the condition x ∈ Fv(f) appears only in the calculus which contains explicit weakening, as seen from the index w.

In order to define the terms of the calculus, we introduce a syntactic category called pre-terms. A pre-term can be a variable, an abstraction, an application, a contraction or a weakening. The abstract syntax of the λ R pre-terms is given by the following:

Pre-terms f ::= x | λx. f | f f | x < x 1
x 2 f | x f where x ranges over a denumerable set of term variables

The set of free variables of a pre-term f , denoted by Fv(f), is defined as follows:

Fv(x) = x; Fv(λx. f) = Fv(f) \ {x}; Fv(f g) = Fv(f) ∪ Fv(g); [Fv(x f) = {x} ∪ Fv(f)] w ; Fv(x < x 1 x 2 f) = Fv(f), {x 1 , x 2 } ∩ Fv(f) = / 0 {x} ∪ Fv(f) \ {x 1 , x 2 }, {x 1 , x 2 } ∩ Fv(f) = / 0 c In x < x 1
x 2 f , the duplication binds the variables x 1 and x 2 in f and introduces a fresh variable x if at least one of x 1 , x 2 is free in f . In x f , the variable x is free. In order to avoid parentheses, we let the scope of all binders extend to the right as much as possible.

The sets of λ R -terms, denoted by Λ R , are subsets of the set of pre-terms and are defined by the inference rules given in Figure 2. In the reminder of the paper, we will use M, N, P... to denote terms. We also use the notation X M for x 1 ...

x n M and X < Y Z M for x 1 < y 1 z 1 ... x n < y n z n M
, where X, Y and Z are lists of size n, consisting of all distinct variables x 1 , ..., x n , y 1 , ..., y n , z 1 , ..., z n . If n = 0, i.e., if X is the empty list, then X M = X < Y Z M = M. Note that due to the equivalence relation defined in Figure 5, we can use these notations also for sets of variables of the same size. In what follows we use Barendregt's convention [START_REF] Barendregt | The Lambda Calculus: its Syntax and Semantics[END_REF] for variables: in the same context a variable cannot be both free and bound. This applies to binders like λx.M which binds x in M, x < x 1

x ∈ Λ R f ∈ Λ R [x ∈ Fv(f)] w λx. f ∈ Λ R f ∈ Λ R g ∈ Λ R [Fv(f) ∩ Fv(g) = / 0] c f g ∈ Λ R f ∈ Λ R x / ∈ Fv(f) x f ∈ Λ R (w ∈ R) f ∈ Λ R x 1 = x 2 x / ∈ Fv(f) \ {x 1 , x 2 } [x 1 , x 2 ∈ Fv(f)] w x < x 1 x 2 f ∈ Λ R (c ∈ R)
x 2 M which binds x 1 and x 2 in M, and also to the implicit substitution M[N/x] which can be seen as a binder for x in M.

Implicit substitution M[N/x] is defined in Figure 3. In this definition, in case c ∈ R , the following condition must be satisfied:

Fv(M) ∩ Fv(N) = / 0,
otherwise the substitution result would not be a well-formed term. In the same definition, terms N 1 and N 2 are obtained from N by renaming all free variables in N by fresh variables, and

M[N 1 /x 1 , N 2 /x 2] denotes parallel substitution. 3 x[N/x] N (y M)[N/x] {y} \ Fv(N) M[N/x], x = y y[N/x] y, x = y (x M)[N/x] Fv(N) \ Fv(M) M (λy.M)[N/x] λy.M[N/x], x = y (y < y 1 y 2 M)[N/x] y < y 1 y 2 M[N/x], x = y (MP)[N/x] M[N/x]P[N/x] (x < x 1 x 2 M)[N/x] Fv(N) < Fv(N 1) Fv(N 2) M[N 1 /x 1 , N 2 /x 2] Figure 3: Substitution in λ R -calculi
The operational semantics for four calculi that form the "natural deduction base" of the resource control cube are given in Figures 4 and5. Reduction rules of λ R -calculi are given in Figure 4, whereas equivalences in are given in Figure 5. Reduction rules specific for each calculus are given in Figure 6.

Which reductions in which system?

Generally speaking the reduction rules can been devided into four groups. The main computational step is β reduction represents. The group of (γ) reductions exists only in the two calculi that contain contraction (i.e., if c ∈ R). These

(β) (λx.M)N → M[N/x] (γ 0) x < x 1 x 2 y → y y = x 1 , x 2 (γ 0) x < x 1 x 2 x 1 → x (γ 1) x < x 1 x 2 (λy.M) → λy.x < x 1 x 2 M (γ 2) x < x 1 x 2 (MN) → (x < x 1 x 2 M)N, if x 1 , x 2 / ∈ Fv(N) (γ 3) x < x 1 x 2 (MN) → M(x < x 1 x 2 N), if x 1 , x 2 / ∈ Fv(M) (ω 1) λx.(y M) → y (λx.M), x = y (ω 2) (x M)N → {x} \ Fv(N) (MN) (ω 3) M(x N) → {x} \ Fv(M) (MN) (γω 1) x < x 1 x 2 (y M) → y (x < x 1 x 2 M), y = x 1 , x 2 (γω 2) x < x 1 x 2 (x 1 M) → M[x/x 2] Figure 4: Reduction rules of λ R -calculi (ε 1) x (y M) ≡ y (x M) (ε 2) x < x 1 x 2 M ≡ x < x 2 x 1 M (ε 3) x < y z (y < u v M) ≡ x < y u (y < z v M) (ε 4) x < x 1 x 2 (y < y 1 y 2 M) ≡ y < y 1 y 2 (x < x 1 x 2 M), x = y 1 , y 2 , y = x 1 , x 2 Figure 5: Equivalences in λ R -calculi λ R -calculi reduction rules equivalences λ / 0 β λ c β, γ 0 , γ 0 , γ 1 , γ 2 , γ 3 ε 2 , ε 3 , ε 4 λ w β, ω 1 , ω 2 , ω 3 ε 1 λ cw β, γ 1 , γ 2 , γ 3 , ω 1 , ω 2 , ω 3 , γω 1 , γω 2 ε 1 , ε 2 , ε 3 , ε 4
Figure 6: ND base of the resource control cube rules perform propagation of contraction into the expression. Similarly, (ω) reductions belong only to the two calculi containing weakening (i.e., if w ∈ R). Their role is to extract weakening out of expressions. This discipline allows us to optimize the computation by delaying duplication of terms on the one hand, and by performing erasure of terms as soon as possible on the other. Finally, the rules in (γω) group explain the interaction between explicit resource operators that are of different nature, hence these rules exist only if R = {c, w}. The rules (γ 0) and (γ 0)4 exist only if R = {c} and they erase meaningless contractions.

Remark 1 Notice the asymmetry between the reduction rules of the calculi λ c and λ w , namely in λ w there is no counterpart of the (γ 0) and (γ 0) reductions of λ c . The reason can be tracked back to the definition of λ R -terms in Figure 2, where the definition of the weakening operator x f does not depend on the presence of the explicit contraction. It would be possible to define weakening where the condition x / ∈ Fv(f) is not required if the contraction is implicit. In that case, terms like x x M would exist, and the reduction (ω 0) : x M → M, if x ∈ Fv(M) would erase this redundant weakening. The typing rule for this weakening would require multiset treatment of the bases Γ, which is out of the scope of this paper.

Resource control sequent lambda calculi λ Gtz

R

An attempt of creating the sequent-style λ-calculus (i.e., the system corresponding to the Gentzen's LJ system) was proposed by Barendregt and Ghilezan in [BG00] by keeping the original syntax of λ-calculus and changing the type assignment rules in accordance with the inference rules of LJ. The obtained simply typed λLJ-calculus, although useful for giving a new simpler proof of the Cut-elimination theorem, was not in one-to-one correspondence with LJ.

Herbelin realised that, in order to achieve such a correspondence, significant changes in syntax should be made. In [START_REF] Herbelin | A lambda calculus structure isomorphic to Gentzen-style sequent calculus structure[END_REF], he proposed λ-calculus with explicit substitution, a new syntactic construct called a list and new operators for creating and manipulating the lists. The role of the lists was to overcome the key difference between natural deduction and sequent calculi, namely the associativity of applications. While in ordinary λ-calculus applications are left-associated, i.e., (λx.

M)N 1 N 2 ...N k ≡ ((((λx.M)N 1)N 2)...)N k , in λ-calculus the application is right-associated, i.e., (λx.M)[N 1 , N 2 , ..., N k] ≡ (λx.M)(N 1 (N 2 ...(N k-1 N k))
). The λ-calculus was the first formal calculus whose simply typed version extended the Curry-Howard correspondence to the intuitionistic sequent calculus, more precisely, its cut-free restriction LJT c f .

Relying on Herbelin's work, Espírito Santo and Pinto developed λ Jm -calculus with generalised multiary application [START_REF] Santo | Permutative conversions in intuitionistic multiary sequent calculi with cuts[END_REF] and later λ Gtz -calculus [START_REF] Santo | Completing Herbelin's programme[END_REF], the calculus that fully corresponds to Gentzen's LJ. In the λ Gtz -calculus one can also distinguish two kinds of expressions, namely terms and contexts, the later being the generalisation of the lists from the λ-calculus.

In this section we present the syntax and the operational semantics of the four sequent calculi with explicit or implicit resource control, denoted by λ Gtz R , where R ⊆ {c, w} and c, w denote explicit contraction and weakening, respectively. These four calculi are sequent counterparts of the four resource control calculi λ R presented above, and represent extensions of Espírito Santo's λ Gtz -calculus.

The abstract syntax of the λ Gtz R pre-expressions is the following:

Pre-terms f ::= x | λx. f | f c | x < x 1 x 2 f | x f Pre-contexts c ::= x. f | f :: c | x c | x < x 1 x 2 c
where x, x 1 , . . . , y, . . . range over a denumerable set of term variables.

A pre-term can be a variable, an abstraction, a cut (an application), a contraction or a weakening. Note that the application is of the form f c. A pre-context is one of the following features: a selection x. f , which turns a term into a context by choosing an active variable; a context constructor f :: c (usually called cons) which expands a context by introducing a term into the left-most position; a weakening on a pre-context or a contraction on a pre-context. Pre-terms and pre-contexts are together referred to as pre-expressions and will be ranged over by E. Pre-contexts x c and x < x 1

x 2 c behave exactly like the corresponding pre-terms x f and x < x 1 x 2 f in the untyped calculi, so they will not be treated separately.

The set of free variables of a pre-expression E, denoted by Fv(E), is defined as follows:

Fv(x) = x; Fv(λx. f) = Fv(f) \ {x}; Fv(f c) = Fv(f) ∪ Fv(c); Fv(x. f) = Fv(f) \ {x}; Fv(f :: c) = Fv(f) ∪ Fv(c); [Fv(x E) = {x} ∪ Fv(E)] w ; Fv(x < x 1 x 2 E) = Fv(E), {x 1 , x 2 } ∩ Fv(E) = / 0 {x} ∪ Fv(E) \ {x 1 , x 2 }, {x 1 , x 2 } ∩ Fv(E) = / 0 c . The sets of λ Gtz R -expressions Λ Gtz R = T Gtz R ∪ K Gtz R (
where T Gtz R are the sets of λ Gtz R -terms and K Gtz R are the sets of λ Gtz R -contexts) are the subsets of the set of pre-expressions, defined by the inference rules given in Figure 7. We denote terms by t, u, v..., contexts by k, k , ... and expressions by e, e . The inductive definition of the meta operator of implicit substitution e[t/x], representing the substitution of free variables, is given in Figure 8. In this definition, in case c ∈ R , the following condition must be satisfied:

x ∈ T Gtz R f ∈ T Gtz R [x ∈ Fv(f)] w λx. f ∈ T Gtz R f ∈ T Gtz R c ∈ K Gtz R [Fv(f) ∩ Fv(c) = / 0] c f c ∈ T Gtz R f ∈ T Gtz R [x ∈ Fv(f)] w x. f ∈ K Gtz R f ∈ T Gtz R c ∈ K Gtz R [Fv(f) ∩ Fv(c) = / 0] c f :: c ∈ K Gtz R f ∈ T Gtz R x / ∈ Fv(f) x f ∈ T Gtz R (w ∈ R) c ∈ K Gtz R x / ∈ Fv(c) x c ∈ K Gtz R (w ∈ R) f ∈ T Gtz R x 1 = x 2 x / ∈ Fv(f) \ {x 1 , x 2 } [x 1 , x 2 ∈ Fv(f)] w x < x 1 x 2 f ∈ T Gtz R (c ∈ R) c ∈ K Gtz R x 1 = x 2 x / ∈ Fv(c) \ {x 1 , x 2 } [x 1 , x 2 ∈ Fv(c)] w x < x 1 x 2 c ∈ K Gtz R (c ∈ R)
Fv(e) ∩ Fv(t) = / 0,
otherwise the substitution result would not be a well-formed term. In the same definition, terms t 1 and t 2 are obtained from t by renaming all free variables in t by fresh variables.

x[t/x] t y[t/x] y (λy.v)[t/x] λy.v[t/x], x = y (y e)[t/x] {y} \ Fv(t) e[t/x], x = y (vk)[t/x] v[t/x] k[t/x] (x e)[t/x] Fv(t) \ Fv(e) e (v :: k)[t/x] v[t/x] :: k[t/x] (y < y 1 y 2 e)[t/x] y < y 1 y 2 e[t/x], x = y (y.v)[t/x] y.v[t/x] (x < x 1 x 2 e)[t/x] Fv(t) < Fv(t 1) Fv(t 2) e[t 1 /x 1][t 2 /x 2] Figure 8: Substitution in λ Gtz R -calculi
The computation over the set of λ Gtz R -expressions reflects the cut-elimination process, and manages the explicit/implicit resource control operators. Four groups of reductions in λ Gtz R -calculi are given in Figure 9, while the equivalences are given in Figure 10. Reduction rules and equivalences specific to each of the four term calculi forming the "LJ base" of the resource control cube are given in Figure 11.

(β) (λx.t)(u :: k) → u(x.tk) (σ) t(x.v) → v[t/x] (π) (tk)k → t(k@k) (µ) x.xk → k (γ 0) x < x 1 x 2 y → y y = x 1 , x 2 (γ 0) x < x 1 x 2 x 1 → x (γ 1) x < x 1 x 2 (λy.t) → λy.x < x 1 x 2 t (γ 2) x < x 1 x 2 (tk) → (x < x 1 x 2 t)k, if x 1 , x 2 / ∈ Fv(k) (γ 3) x < x 1 x 2 (tk) → t(x < x 1 x 2 k), if x 1 , x 2 / ∈ Fv(t) (γ 4) x < x 1 x 2 (y.t) → y.(x < x 1 x 2 t) (γ 5) x < x 1 x 2 (t :: k) → (x < x 1 x 2 t) :: k, if x 1 , x 2 / ∈ Fv(k) (γ 6) x < x 1 x 2 (t :: k) → t :: (x < x 1 x 2 k), if x 1 , x 2 / ∈ Fv(t) (ω 1) λx.(y t) → y (λx.t), x = y (ω 2) (x t)k → {x} \ Fv(k) (tk) (ω 3) t(x k) → {x} \ Fv(t) (tk) (ω 4) x.(y t) → y (x.t), x = y (ω 5) (x t) :: k → {x} \ Fv(k) (t :: k) (ω 6) t :: (x k) → {x} \ Fv(t) (t :: k) (γω 1) x < x 1 x 2 (y e) → y (x < x 1 x 2 e) x 1 = y = x 2 (γω 2) x < x 1 x 2 (x 1 e) → e[x/x 2] Figure 9: Reduction rules of λ Gtz R -calculi
The first group consists of (β), (π), (σ) and (µ) reductions that exist in all four λ Gtz R -calculi. (β) reduction represents the main computational step. It creates a substitution, but it is the rule (σ) that executes it. In that sense, substitution can be controlled (i.e. delayed) although it is implicit. Note that this feature is not present in λ R -calculi since it is a consequence of the existence of contexts. For more details see [START_REF] Santo | Delayed substitutions[END_REF]. Combination of (β) + (σ) rules corresponds to the traditional (β) reduction in λ-calculus. The rule (π) simplifies the head of a cut (t is the head of tk). The rule (µ) erases the sequence made of a trivial cut (a cut is trivial if its head is a variable) followed by the selection of the same variable. In that sense, it represents a kind of garbage collection.

(ε 1) x (y e) ≡ y (x e) (ε 2) x < x 1 x 2 e ≡ x < x 2 x 1 e (ε 3) x < y z (y < u v e) ≡ x < y u (y < z v e) (ε 4) x < x 1 x 2 (y < y 1 y 2 e) ≡ y < y 1 y 2 (x < x 1 x 2 e), x = y 1 , y 2 , y = x 1 , x 2 Figure 10: Equivalences in λ Gtz R -calculi λ Gtz R -calculi reduction rules equivalences λ Gtz / 0 β, π, σ, µ λ Gtz c β, π, σ, µ, γ 0 -γ 6 ε 2 , ε 3 , ε 4 λ Gtz w β, π, σ, µ, ω 1 -ω 6 ε 1 λ Gtz cw β, π, σ, µ, γ 1 -γ 6 , ω 1 -ω 6 , γω 1 , γω 2 ε 1 -ε 4
In the (π) rule, the meta-operator @, called append, joins two contexts and is defined as:

(x.t)@k = x.tk (u :: k)@k = u :: (k@k) (x k)@k = x (k@k) (x < y z k)@k = x < y z (k@k).
If c ∈ R , with respect to the λ R -calculi, the group of (γ) reductions has the additional three reductions which manage the interaction of contraction with selection and context construction. Also if w ∈ R , the group of (ω) reductions has additional three reductions which manage the interaction of weakening with selection and context construction. Finally, the group of (γω) reductions has additional two rules which manage in contexts the interaction between explicit resource operators of different nature.

We have presented the syntax and the reduction rules of the λ Gtz R , R ⊆ {c, w}, the family of intuitionistic sequent term calculi. By instantiating R , we obtain the following particular calculi. R = / 0 gives us the well-known lambda Gentzen calculus λ Gtz , proposed by Espírito Santo [START_REF] Santo | Completing Herbelin's programme[END_REF], whose simply typed version corresponds to the intuitionistic sequent calculus with the cut and implicit structural rules, according to the Curry-Howard correspondence.

By letting R = {c, w}, we obtain the resource control lambda Gentzen calculus, λ Gtz , whose call-by-value version was proposed and investigated in [GIL Ž11]. The simply typed λ Gtz expands the Curry-Howard correspondence to the intuitionistic sequent calculus with the cut and explicit structural rules of weakening and contraction. Finally, in case that R = {c} and R = {w} we get two new calculi, namely λ Gtz c and λ Gtz w . These calculi could be related to the substructural logics, as will be elaborated in the sequel.

Simple types for resource control cube

In this section we summarise the type assignment systems that assign simple types to all eight calculi of the resource control cube in a uniform way. Simple types for λ Gtz -calculus were introduced by Espírito Santo in [START_REF] Santo | Completing Herbelin's programme[END_REF]. As far as resource control calculi are concerned, simple types were introduced to λlxr-calculus by Kesner and Lengrand in [START_REF] Kesner | Resource operators for lambda-calculus[END_REF] and to resource control lambda Gentzen calculus λ Gtz in [GIL Ž11]. The syntax of types is defined as follows:

Simple Types α, β :

:= p | α → β
where p ranges over a denumerable set of type atoms and α → β is an arrow type. We denote types by α, β, γ....

Definition 1

(i) A basic type assignment is an expression of the form x : α, where x is a term variable and α is a type.

(ii) A basis Γ is a set {x 1 : α 1 , . . . , x n : α n } of basic type assignments, where all term variables are different. Dom(Γ) = {x 1 , . . . , x n }.

(iii) A basis extension Γ, x : α denotes the set Γ ∪ {x : α}, where x ∈ Dom(Γ). Γ, ∆ represents the disjoint union of the two bases.

(iv) Γ ∪ c ∆ denotes the standard union of the bases, if c / ∈ R , and the disjoint union, if c ∈ R .

The type assignment systems λ R → for the natural deduction ND-base base of the resource control cube are given in Figure 12.

w / ∈ R Γ, x : α R x : α (Ax iw) w ∈ R x : α R x : α (Ax ew) Γ, x : α R M : β Γ R λx.M : α → β (→ R) Γ R M : α → β ∆ R N : β Γ ∪ c ∆ R MN : β (→ E) Γ, x : α, y : α R M : β c ∈ R Γ, z : α R z < x y M : β (Cont) Γ R M : β w ∈ R Γ, x : α R x M : β (Weak) Figure 12: λ R →: Simply typed λ R -calculi
The type assignment systems λ Gtz R → for the sequent LJ-base base of the resource control cube are given in Figure 13. In this case, we distinguish two sorts of type assignments:

-Γ t : α for typing a term and -Γ; β k : α, a type assignment with a stoup, for typing a context.

A stoup is the place for the last formula in the antecedent, after the semi-colon sign. The formula in the stoup is the place where computation will continue.

Simply typed λ Gtz R -calculi correspond to intuitionistic sequent calculus with implicit/explicit structural rules à la Curry-Howard. Particularly, λ Gtz / 0 → and λ Gtz cw → calculi correspond to the intuitionistic implicative fragments of Kleene's systems G3 and G1 from [START_REF] Kleene | Introduction to Metamathematics[END_REF], respectively, except for the fact that the exchange rule is implicit here. The exchange rule could be made explicit by considering the bases as lists instead of sets. The system λ Gtz c → corresponds to the intuitionistic sequent calculus with explicit contraction and implicit weakening, whereas the system λ Gtz w → corresponds to the intuitionistic sequent calculus with explicit weakening and implicit contraction.

Modifications of λ R → and λ Gtz R → systems can provide the computational interpretation of substructural logics, different from the usual approach via linear logic. For instance, if one combines (Ax ew) axiom and the other rules in w / ∈ R modality, the resulting system would correspond to the logic without weakening i.e. to the variant of relevance logic. Similarly, if we use ∪ c as disjoint union together with the c / ∈ R modality of the rest of the system, correspondence with the variant of the logic without contraction i.e. affine logic is obtained. The properties of these systems will not be investigated in this paper.

Although the systems λ R → and λ Gtz R → enjoy the subject reduction and the strong normalisation, they (as expected) do not assign types to all strongly normalising expressions, e.g. λx.xx and λx.x :: x(ŷ.y). This is the motivation for introducing intersection types in the next section.

w / ∈ R Γ, x : α R x : α (Ax iw) w ∈ R x : α R x : α (Ax ew) Γ, x : α R t : β Γ R λx.t : α → β (→ R) Γ R t : α ∆; β R k : γ Γ ∪ c ∆; α → β R t :: k : γ (→ L) Γ, x : α R t : β Γ; α R x.t : β (Sel) Γ R t : α ∆; α R k : β Γ ∪ c ∆ R tk : β (Cut) Γ, x : α, y : α R t : β c ∈ R Γ, z : α R z < x y t : β (Cont t) Γ R t : β w ∈ R Γ, x : α R x t : β (Weak t) Γ, x : α, y : α; β R k : γ c ∈ R Γ, z : α; β R z < x y k : γ (Cont k) Γ; γ R k : γ w ∈ R Γ, x : α; β R x k : γ (Weak k) Figure 13: λ Gtz R →: Simply typed λ Gtz R -calculi

Intersection types for resource control cube

In this section we introduce intersection type assignment systems which assign strict types to λ R -terms and λ Gtz Rexpressions. Intersection types for the λ Gtz -calculus were introduced in [START_REF] Santo | Characterising strongly normalising intuitionistic sequent terms[END_REF]. Strict types were proposed in [vB92] and already used in [START_REF] Santo | Characterising strongly normalising intuitionistic terms[END_REF] and [START_REF] Ghilezan | Intersection types for the resource control lambda calculi[END_REF] for characterisation of strong normalisation in λ Gtz -calculus and in λ and λ Gtz -calculi, respectively.

The syntax of types is defined as follows:

Strict Types σ ::= p | α → σ Types α ::= ∩ n i σ i where p ranges over a denumerable set of type atoms and ∩ n i σ i = σ 1 ∩ ... ∩ σ n , n ≥ 1. We denote types by α, β, γ..., strict types by σ, τ, ρ, υ... and the set of all types by Types. We assume that the intersection operator is idempotent, commutative and associative, and that it has priority over the arrow operator. Hence, we will omit parenthesis in expressions like (∩ n i τ i) → σ. The definition of a basic type assignment, a basis and a basis extension is analogous to the one given in Section 2. The type assignments are of the form

x 1 : α 1 , ..., x n : α n M : σ so that only strict types are assigned to terms.

Definition 2 (i) A union of bases with intersection types is defined in the standard way:

Γ ∆ = {x : α | x : α ∈ Γ & x / ∈ Dom(∆)} ∪ {x : α | x : α ∈ ∆ & x / ∈ Dom(Γ)} ∪ {x : α ∩ β | x : α ∈ Γ & x : β ∈ ∆}. (ii) Γ c ∆ represents Γ ∆, if c / ∈ R ,
and the disjoint union Γ, ∆ otherwise.

Intersection types for λ R

The type assignment systems λ R ∩ for the natural deduction ND-base base of the resource control cube are given in Figure 14. The rules that correspond to each of the four λ R ∩-systems are given in Figure 15.

All systems are syntax-directed i.e. the intersection operator is incorporated into already existing rules of the simply-typed systems. Intersection elimination is managed by the axioms (Ax iw), (Ax ew) and the contraction rule (Cont), whereas the intersection introduction is performed by the arrow elimination rule (→ E). Notice that in the (→ E) rule, Dom(∆ 1) = . . . = Dom(∆ n). The explicit contraction is naturally connected to intersection, because if some data is used twice, once as data of type α and once as data of type β, that data should be of type α ∩ β. The proposed systems satisfy the following properties.

w / ∈ R Γ, x : ∩ n i σ i R x : σ i (Ax iw) w ∈ R x : ∩ n i σ i R x : σ i (Ax ew) Γ, x : α R M : σ Γ R λx.M : α → σ (→ I) Γ R M : ∩ n i τ i → σ ∆ 1 R N : τ 1 ... ∆ n R N : τ n Γ c (∆ 1 ... ∆ n) R MN : σ (→ E) Γ, x : α, y : β R M : σ c ∈ R Γ, z : α ∩ β R z < x y M : σ (Cont) Γ R M : σ w ∈ R Γ, x : α R x M : σ (Weak)
Proposition 1 (Generation lemma for λ R ∩)

(i) For w / ∈ R : Γ R x : τ iff there exist σ i , i = 1, . . . , n such that x : τ ∩ (∩ n i σ i) ∈ Γ. (ii) For w ∈ R : Γ R x : τ iff there exist σ i , i = 1, . . . , n such that x : τ ∩ (∩ n i σ i) = Γ.
(iii) Γ R λx.M : τ iff there exist α and σ such that τ ≡ α → σ and Γ, x : α R M : σ.

(iv) Γ R MN : σ iff Γ = Γ c ∆, ∆ = ∆ 1 . . . ∆ n and there exist τ i , i = 1, . . . , n such that Γ R M : ∩ n i τ i → σ and for all i ∈ {1, . . . , n}, ∆ i R N : τ i .

(v) Γ R x M : σ iff there exist Γ , β such that Γ = Γ , x : β and Γ R M : σ.

(vi) Γ R z < x y M : σ iff there exist Γ , α, β such that Γ = Γ , z : α ∩ β and Γ , x : α, y : β R M : σ.

Proof: The proof is straightforward since all the rules are syntax-directed. 2 Proposition 2 (Substitution lemma for λ R ∩) If Γ, x : ∩ n i τ i R M : σ and for all i ∈ {1, . . . , n},

∆ i R N : τ i , then Γ c (∆ 1 ... ∆ n) R M[N/x] : σ. Proposition 3 (Subject equivalence for λ R ∩) For every λ R -term M: if Γ R M : σ and M ≡ M , then Γ R M : σ.
Proposition 4 (Subject reduction for λ R ∩) For every λ R -term M: if Γ R M : σ and M → M , then Γ R M : σ.

Intersection types for λ Gtz

R

The type assignment systems λ Gtz R ∩ for the sequent LJ-base base of the resource control cube are given in Figure 16. The rules that correspond to each of the four λ Gtz R ∩-systems are given in Figure 17. As in λ R ∩, no new rules are added compared to λ Gtz R → in order to manage intersection. In the style of sequent calculus, left intersection introduction is managed by the axioms (Ax iw), (Ax ew) and the contraction rules (Cont t) and (Cont k), whereas the right intersection introduction is performed by the cut rule (Cut) and left arrow introduction rule (→ L). In these two rules Dom(Γ 1) = . . . = Dom(Γ n).

In order to explain the rule (→ L) in more details let us consider a simple case n = 2 and m = 2.

Γ 1 R t : σ 1 Γ 2 R t : σ 2 ∆; τ 1 ∩ τ 2 R k : ρ (Γ 1 Γ 2) c ∆; (σ 1 ∩ σ 2 → τ 1) ∩ (σ 1 ∩ σ 2 → τ 2) R t :: k : ρ (→ L)
Although one would expect in the stoup σ 1 ∩ σ 2 → τ 1 ∩ τ 2 , this is not a type according to the definition of intersection types at the beginning of this section. Therefore the corresponding type in the stoup is (σ 1 ∩σ 2 → τ 1)∩(σ 1 ∩σ 2 → τ 2). This difficulty does not exist in natural deduction, because natural deduction is isomorphic to a fragment of λ Gtz , where the selection rule (Sel) is restricted to x.x. In that fragment the (→ L) rule would be simpler with strict types in the stoup. Hence, the presented (Sel) and (→ L) rules keep the full power of the sequent calculus.

w / ∈ R Γ, x : ∩ n i σ i R x : σ i (Ax iw) w ∈ R x : ∩ n i σ i R x : σ i (Ax ew) Γ, x : α R t : σ Γ R λx.t : α → σ (→ R) Γ, x : α R t : σ Γ; α R x.t : σ (Sel) Γ 1 R t : σ 1 ... Γ n R t : σ n ∆; ∩ m j τ j R k : ρ (Γ 1 ... Γ n) c ∆; ∩ m j (∩ n i σ i → τ j) R t :: k : ρ (→ L) Γ 1 R t : σ 1 ... Γ n R t : σ n ∆; ∩ n i σ i R k : τ (Γ 1 ... Γ n) c ∆ R tk : τ (Cut) Γ, x : α, y : β R t : σ c ∈ R Γ, z : α ∩ β R z < x y t : σ (Cont t) Γ R t : σ w ∈ R Γ, x : α R x t : σ (Weak t) Γ, x : α, y : β; γ R k : σ c ∈ R Γ, z : α ∩ β; γ R z < x y k : σ (Cont k) Γ; γ R k : σ w ∈ R Γ, x : α; γ R x k : σ (Weak k) Figure 16: λ Gtz R ∩: λ Gtz R -

calculi with intersection types

The proposed systems satisfy the following properties.

(i) For w / ∈ R : Γ R x : τ iff there exist σ i , i = 1, . . . , n such that x : τ ∩ (∩ n i σ i) ∈ Γ. (ii) For w ∈ R : Γ R x : τ iff there exist σ i , i = 1, . . . , n such that x : τ ∩ (∩ n i σ i) = Γ.
(iii) Γ R λx.t : τ iff there exist α and σ such that τ ≡ α → σ and Γ, x : α R t : σ.

(iv) Γ; α R x.t : σ iff Γ, x : α R t : σ. (v) Γ R tk : σ iff Γ = Γ c ∆, Γ = Γ 1 .
.. Γ n and there exist τ i , i = 1, . . . , n such that for all i ∈ {1, . . . , n}, the following holds Γ i R t : τ i , and ∆;

∩ n 1 τ i R k : σ. (vi) Γ; γ R t :: k : ρ iff Γ = Γ c ∆, Γ = Γ 1 ... Γ n , γ ≡ ∩ m j (∩ n i σ i → τ j)
and for all i ∈ {1, . . . , n}, the following holds Γ i R t : σ i and ∆; ∩ m j τ j k : ρ .

(vii) Γ R x t : σ iff there exist Γ , β such that Γ = Γ , x : β and Γ R t : σ.

(viii) Γ; γ x k : σ iff there exist Γ, β such that Γ = Γ , x : β and Γ; γ R k : σ.

(ix) Γ R z < x y t : σ iff there exist Γ , α, β such that Γ = Γ , z : α ∩ β and Γ , x : α, y : β R t : σ. Proposition 7

(i) If w ∈ R and Γ R t : σ , then Dom(Γ) = Fv(t). (ii) If w ∈ R and Γ; α R k : σ , then Dom(Γ) = Fv(k). Proposition 8 (Substitution lemma for λ Gtz R ∩) (i) If Γ, x : ∩ n i τ i R t : σ and for all i, ∆ i R u : τ i , then Γ c (∆ 1 ... ∆ n) R t[u/x] : σ. (ii) If Γ, x : ∩ n i τ i ; α R k : σ and for all i, ∆ i R u : τ i , then Γ c (∆ 1 ... ∆ n); α R k[u/x] : σ.
Proposition 9 (Append lemma) If Γ; α R k : τ i for all i, and ∆;

∩ n i τ i R k : σ, then Γ c ∆; α R k@k : σ.
Proposition 10 (Subject equivalence for λ Gtz R ∩)

(i) For every λ Gtz R -term t: if Γ R t : σ and t ≡ t , then Γ R t : σ.

(ii) For every λ Gtz R -context k: if Γ; α R k : σ and k ≡ k , then Γ; α R k : σ.

Proposition 11 (Subject reduction for λ Gtz R ∩)

(i) For every λ Gtz R -term t: if Γ R t : σ and t → t , then Γ R t : σ.

(ii) For every λ Gtz R -context k: if Γ; α R k : σ and k → k , then Γ; α R k : σ.

Proof: The property is stable by context. Therefore we can assume that the reduction takes place at the outermost position of the term t (resp. of the context k). Here we just show several cases. We will use GL as an abbreviation for Generation lemma for λ Gtz R ∩ (Lemma 5). Case (β): Let Γ R (λx.t)(u :: k) : σ. We show that Γ R u(x.tk) : σ. From Γ R (λx.t)(u :: k) : σ and from GL(v) it follows that Γ = Γ c ∆, Γ = Γ 1 ... Γ m and that there is a type ∩ m j τ j such that for all j = 1, . . . , m, Γ j R λx.t : τ j , and ∆; ∩ m j τ j R u :: k : σ. From GL(iii) we have that for all j = 1, . . . , m, τ j ≡ α j → ρ j and Γ j , x :

α j R t : ρ j . From GL(vi) it follows that ∆ = ∆ c ∆ , ∆ = ∆ 1 ... ∆ n , ∆ i R u : σ i and ∆ ; ∩ m j ρ j R k : σ, for ∩ m j τ j ≡ ∩ m j (∩ n i σ i → ρ j)
. Also, we conclude that α j ≡ ∩ n i σ i . Now,

∆ 1 R u : σ 1 ... ∆ n R u : σ n Γ 1 , x : ∩ n i σ i R t : ρ 1 ... Γ m , x : ∩ n i σ i R t : ρ m ∆ ; ∩ m j ρ j k : σ (Cut) Γ c ∆ , x : ∩ n i σ i R tk : σ (Sel) Γ c ∆ ; ∩ n i σ i R x.tk : σ (Cut) Γ c ∆ c (∆ 1 ... ∆ n) R u(x.tk) : σ.
which is exactly what we wanted, since

Γ = Γ c ∆ c (∆ 1 ... ∆ n). Case (γ 6): Let Γ, x : α; β R x < x 1
x 2 (t :: k) : σ. We show that Γ, x : α; β t ::

x < x 1 x 2 k : σ. From Γ, x : α; β R x < x 1
x 2 (t :: k) : σ by GL(x) we have that α ≡ γ ∩ δ and Γ, x 1 : γ, x 2 : δ; β R (t :: k) : σ. Next, GL(vi) and the reduction side-condition

x 1 , x 2 / ∈ Fv(t) imply that Γ = Γ 1 ... Γ n , Γ , β ≡ ∩ m j (∩ n i τ i → ρ j), Γ i R t : τ i for i = 1...n and Γ , x 1 : γ, x 2 : δ; ∩ m j ρ j R k : σ. Now, Γ 1 R t : τ 1 ... Γ n R t : τ n Γ , x 1 : γ, x 2 : δ; ∩ m j ρ j R k : σ (Cont k) Γ , x : γ ∩ δ; ∩ m j ρ j R x < x 1 x 2 k : σ (→ L) Γ 1 ... Γ n , Γ , x : γ ∩ δ; ∩ m j (∩ n i τ i → ρ j) R t :: x < x 1 x 2 k : σ
which is exactly what we needed. Case (ω 4): Let Γ, y : α; β R x.y t : σ. We show that Γ, y : α; β R y x.t : σ. From Γ, y : α; β R x.y t : σ by GL(iv) we have that Γ, y : α, x : β R y t : σ and afterwards by GL(viii) that Γ, x :

β R t : σ. Now, Γ, x : β R t : σ (Sel) Γ; β R x.t : σ (Weak k) Γ, y : α; β R y x.t : σ. 2 4 Typeability ⇒ SN in all systems of the resource control cube 4.1 Typeability ⇒ SN in λ R ∩
The reducibility method is a well known approach for proving reduction properties of λ-terms typeable in different type assignment systems. It was introduced by Tait [Tai67] for proving the strong normalisation property of simply typed λ-calculus. It was developed further to prove strong normalisation property of various calculi in [Tai75, Gir71, Kri90, Ghi96], confluence of βη-reduction in [START_REF] Koletsos | Church-Rosser theorem for typed functionals[END_REF][START_REF] Statman | Logical relations and the typed λ-calculus[END_REF] and to characterise certain classes of λ-terms such as strongly normalising, normalising, head normalising, and weak head normalising terms by their typeability in various intersection type systems in [Gal98, DCHM00, DCG03, DCGL04].

The principal idea of the reducibility method is to connect the terms typeable in a certain type assignment system with the terms satisfying certain reduction properties (e.g., strong normalisation, confluence). To this aim, types are interpreted by suitable sets of lambda terms which satisfy certain realizability properties. Then the soundness of type assignment with respect to these interpretations is obtained. As a consequence of soundness, every typeable term belongs to the interpretation of its type, and as such satisfies a desired reduction property.

In the remainder of the paper we consider Λ R to be the applicative structures whose domains are λ R -terms and where the application is just the application of λ R -terms. In addition, Λ • R is the set of closed λ R -terms. We first recall some notions from [START_REF] Barendregt | Lambda calculi with types[END_REF].

Definition 3 A λ R -term M is called strongly normalizing if and only if all reduction sequences starting with M terminate. By a reduction sequence we mean a sequence of terms (M i) i≥0 such that M i → M i+1 or M i ≡ M i+1 . We denote the set of all strongly normalizing λ R -terms with SN R and the set of all closed strongly normalizing λ R -terms with SN • R .

Definition 4 For M , N ⊆ Λ • R , we define M / / N ⊆ Λ • R as M / / N = {M ∈ Λ • R | ∀N ∈ M MN ∈ N }.
First of all, we introduce the following notion of type interpretation.

Definition 5 (Type interpretation) The type interpretation

[[-]] R : Types → 2 Λ •
R is defined by:

(I1) [[p]] R = SN •
R , where p is a type atom;

(I2) [[∩ n i σ i]] R = ∩ n i [[σ i]] R ; (I3) [[α → σ]] R = [[α]] R / / [[σ]] R .
Next, we introduce the notion of saturation property, obtained by modifying the saturation property given in [START_REF] Barendregt | Lambda calculi with types[END_REF].

Definition 6 A set X ⊆ SN • R is called R -saturated if it satisfies the following two properties: • INH(X): (∃n ≥ 0) (∀p ≥ n) λx 1 . . . λx p .λy.y ∈ X . • SAT β (X): (∀n ≥ 0) (∀M 1 , . . . , M n ∈ SN • R) (∀N ∈ SN • R) M[N/x]M 1 . . . M n ∈ X ⇒ (λx.M)NM 1 . . . M n ∈ X . Proposition 12 Let M , N ⊆ Λ • R . (i) SN • R is R -saturated. (ii) If M and N are R -saturated, then M / / N is R -saturated. (iii) If M and N are R -saturated, then M ∩ N is R -saturated. (iv) For all types ϕ ∈ Types, [[ϕ]] R is R -saturated.
Proof:

(i) SN • R ⊆ SN • R and the condition INH(S N • R) trivially hold. For SAT β (S N • R), suppose that M[N/x]M 1 . . . M n ∈ SN • R and N, M 1 , . . . , M n ∈ SN • R .
We have to prove that

(λx.M)NM 1 . . . M n ∈ SN • R . Since M[N/x] is a subterm of a term in SN • R , we know that M ∈ SN • R . By assumption, N, M 1 , . . . , M n ∈ SN •
R , so the reductions inside of these terms terminate. After finitely many reduction steps, we obtain

(λx.M)NM 1 . . . M n → . . . → (λx.M)N M 1 . . . M n where M → M , N → N , M 1 → M 1 , . . . , M n → M n . After contracting (λx.M)N M 1 . . . M n to M [N /x]M 1 . . . M n , we obtain a reduct of M[N/x]M 1 . . . M n ∈ SN • R .
Hence, also the initial term (λx.M)NM 1 . . . M n ∈ SN • R .

(ii) First, we prove that M / / N ⊆ SN • R . Suppose that M ∈ M / / N . Then, for all N ∈ M , MN ∈ N . Since M is R -saturated, INH(M) holds and we have that

(∃n ≥ 0) (∀p ≥ n) λx 1 . . . λx p .λy.y ∈ M , hence (∃n ≥ 0) (∀p ≥ n) M(λx 1 . . . λx .λy.y) ∈ N ⊆ SN • R .
From here we can deduce that M ∈ SN • R .

Next, we prove that INH(M / / N) holds i.e. (λx 1 . . . λx n λx n+1 .λy.y) ∈ M / / N .

Similarly, we can prove the above property for all p ≥ n + 1, i.e.

(λx 1 . . . λx p .λy.y) ∈ M / / N .

Finally, for SAT β (M / / N), suppose that

M[N/x]M 1 . . . M n ∈ M / / N and N, M 1 , . . . , M n ∈ SN • R .
This means that for all P ∈ M M[N/x]M 1 . . . M n P ∈ N . But N is R -saturated, so SAT β (N) holds and we have that for all P ∈ N (λx.M)NM 1 . . .

M n P ∈ N This means that (λx.M)NM 1 . . . M n ∈ M / / N . (iii) M ∩ N ⊆ SN • R is straightforward.
For INH(M ∩ N), since INH(M) and INH(N) hold we have that (∃n 1 ≥ 0) (∀p 1 ≥ n 1) λx 1 . . . λx p 1 .λy.y ∈ M (∃n 2 ≥ 0) (∀p 2 ≥ n 2) λx 1 . . . λx p 2 .λy.y ∈ N .

By taking n = max(n 1 , n 2) we obtain

(∃n ≥ 0) (∀p ≥ n) λx 1 . . . λx p .λy.y ∈ M ∩ N , i.e. INH(M ∩ N) holds. SAT β (M ∩ N) is straightforward.
Definition 9 The mappings R : T Gtz R → Λ R are defined together with the auxiliary mappings

R k : K Gtz R → (Λ R → Λ R)
in the following way:

x R = x x.t R k (M) = (λx. t R)M λx.t R = λx. t R t :: k R k (M) = k R k (M t R) x t R = x t R x k R k (M) = {x} \ Fv(M) k R k (M) x < y z t R = x < y z t R x < y z k R k (M) = x < y z k R k (M) tk R = k R k (t R) Lemma 3 (i) Fv(t) = Fv(t R), for t ∈ T Gtz R . (ii) v[t/x] R = v R [t R /x], for v,t ∈ T Gtz R .
Proof: The proof directly yields from Definition 9 and the substitution definitions. 2

We prove that the mappings R and R k preserve types. In the sequel, we use λ R to denote derivations in

λ R ∩. The notation Λ R (Γ λ R α) stands for {M | M ∈ Λ R & Γ λ R M : α}.
Proposition 14 (Type preservation with R)

• Case (→ L): the derivation ends with the rule

Γ 1 R t : σ 1 ... Γ n R t : σ n ∆; ∩ m j τ j k : ρ Γ c ∆; ∩ m j (∩ n i σ i → τ j) R t :: k : ρ (→ L)
where Γ = Γ 1 ... Γ n . By IH we have that Γ i λ R t R : σ i , for i = 1...n. For any M ∈ Λ R such that Γ j λ R M : ∩ n i σ i → τ j , j = 1, . . . , m we have

Γ j λ R M : ∩ n i σ i → τ j Γ λ R t R : σ i Γ c Γ j λ R M t R : τ j (→ E)
From the right-hand side premise in the (→ L) rule, by IH, we get that k R k is the function with the scope

k R k : Λ R (Γ j λ R τ j) → Λ R (Γ cΓ λ R ρ), for Γ = Γ 1 ... Γ n . For Γ ≡ Γ c Γ and by taking M t R as the argument of the function k R k , we get Γ c ∆ c Γ λ R k R k (M t R) : ρ. Since k R k (M t R) = t :: k R k (M), we have that Γ c ∆ c Γ λ R t :: k R k (M) : ρ.
This holds for any M of the appropriate type, yielding

t :: k R k : Λ R (Γ λ R ∩ n i σ i →τ j) → Λ R (Γ c∆ cΓ λ R ρ),
which is exactly what we need.

• Case (Cut): the derivation ends with the rule

Γ 1 R t : τ 1 . . . Γ n R t : τ n ∆; ∩τ n i R k : σ (Γ . . . Γ n) c ∆ R tk : σ (Cut) By IH we have that Γ λ R t R : τ i and k R k : Λ R (Γ λ R τ i) → Λ R (Γ ,∆ λ R σ) for all i = 1, . . . , n. Hence, for any M ∈ Λ λ R such that Γ λ R M : τ i , Γ c ∆ λ R k R k (M) : σ holds. By taking M ≡ t R and Γ ≡ Γ, we get Γ, ∆ λ R k R k (t R) : σ. But k R k (t R) = tk R
, so the proof is done.

• Case (Weak k): the derivation ends with the rule

Γ; β R k : σ Γ, x : α; β R x k : σ (Weak k) By IH we have that k R k is the function with the scope k R k : Λ R (Γ λ R β) → Λ R (Γ cΓ λ R σ), meaning that for each M ∈ Λ λ R such that Γ λ R M : β holds Γ c Γ λ R k R k (M) :
σ. Now, we can apply (Weak) rule:

Γ c Γ R k R k (M) : σ Γ c Γ , x : α R x k R k (M) : σ (Weak) Since x k R k (M) = x k R k (M), this means that x k R k : Λ R (Γ λ R β) → Λ R (Γ cΓ ,x:α λ R σ),
which is exactly what we wanted to get.

• Case (Cont k): similar to the case (Weak k), relying on the rule (Cont) in λ R . 2

For the given encoding R , we show that each λ Gtz R -reduction step can be simulated by λ R -reduction or identity. In order to do so, we first prove the following lemmas by induction on the structure of the contexts. The proofs of Lemma 5 and Lemma 6 also use Regnier's σ reductions, investigated in [START_REF] Regnier | Une équivalence sur les lambda-termes[END_REF].

Lemma 4 If M → λ R M , then k R k (M) → λ R k R k (M). Lemma 5 k R k ((λx.P)N) → λ R (λx. k R k (P))N. Lemma 6 If M ∈ Λ R and k, k ∈ K Gtz R , then k R k • k R k (M) → λ R k@k R k (M). Lemma 7 (i) If x / ∈ Fv(k), then (k R k (M))[N/x] = k R k (M[N/x]). (ii) If x, y / ∈ Fv(k), then z < x y (k R k (M)) → λ R k R k (z < x y M). (iii) k R k (x M) → λ R {x} \ Fv(k) k R k (M).
Now we can prove that the reduction rules of λ Gtz R -calculi can be simulated by the reduction rules or identities in the corresponding λ R -calculi. Moreover, the equivalences of λ Gtz R -calculi are preserved in λ R -calculi.

Theorem 2 (Simulation of λ Gtz R -reductions by λ R -reductions)

(i) If a term M → M , then M R → λ R M R . (ii) If a context k → k by γ 6 or ω 6 reduction, then k R k (M) ≡ k R k (M), for any M ∈ Λ R . (iii) If a context k → k by some other reduction, then k R k (M) → λ R k R k (M), for any M ∈ Λ R . (iv) If M ≡ M , then M R ≡ λ R M R , and if k ≡ k , then k R k (M) ≡ λ R k R k (M), for any M ∈ Λ R .
Proof: Without losing generality, we prove the statement only for the outermost reductions. The rules γ 0 , γ 0 , γ 1 , γ 2 , γ 3 , ω 1 , ω 2 , ω 3 , γω 1 , γω 2 are simulated by the corresponding rules of λ R . For the remaining rules we have:

(β) (λx.t)(u :: k) → u(x.tk). On the one hand M R = (λx.t)(u :: k) R = u :: k R k (λx.t R) = k R k ((λx. t R) u R) On the other hand, M R = u(x.tk) R = x.tk R k (u R) = (λx. tk R) u R = (λx. k R k (t R)) u R . So, M R → λ R M R by Lemma 5. (σ) T (x.v) → v[T /x]. M R = T (x.x) R = x.x R k (T R) = (λx. v R)(T R), M R = v[T /x] R = v R [T R /x] by Lemma 3, so M R → λ R M R by β-reduction in the λ R -calculus. (π) (tk)k → t(k@k) M R = (tk)k R = k R k (tk R) = k R k (k R k (t R)) M R = t(k@k) R = k@k R k (t R). Applying Lemma 6 we get that M R → λ R M R . (µ) x.xk → k.
This reduction reduces context to context, so we have:

x.xk R k (M) = (λx. xk R)(M) = (λx. k R k (x))(M). This reduces to k R k (M) by β-reduction in the λ R -calculus. (γ 4) x < x 1 x 2 (y.t) → y.(x < x 1 x 2 t) K R k (M) = x < x 1 x 2 (λy. t R)M. On the other hand, K R k (M) = (λy.x < x 1 x 2 t R)M. So M R → λ R M R by the rule γ 2 . (γ 5) x < x 1 x 2 (t :: k) → (x < x 1 x 2 t) :: k, if x 1 , x 2 / ∈ Fv(k) K R k (M) = x < x 1 x 2 (k R k (M t R)). K R k (M) = k R k (M(x < x 1 x 2 t R)). x 1 , x 2 / ∈ Fv(k) implies x 1 , x 2 / ∈ Fv(k R k (M)
) so we can apply Lemma 7 followed by reduction γ 3 and conclude that

K R k (M) → λ R K R k (M). (γ 6) x < x 1 x 2 (t :: k) → t :: (x < x 1 x 2 k), if x 1 , x 2 / ∈ Fv(t) K R k (M) = x < x 1 x 2 (t :: k) R k (M) = x < x 1 x 2 k R k (M t R). On the other hand, K R k (M) = t :: (x < x 1 x 2 k) R k (M) = x < x 1 x 2 k R k (M t R). So K R k (M) = K R k (M). (ω 4) x.(y t) → y (x.t), x = y K R k (M) = x.(y t) R k (M) = (λx.y t R)M. K R k (M) = y (x.t) R k (M) = y (λx. t R)M. So K R k (M) → λ R K R k (M) by the rule ω 2 . (ω 5) (x t) :: k → {x} \ Fv(k) (t :: k) K R k (M) = (x t) :: k R k (M) = k R k (M x t R) = k R k (Mx t R). K R k (M) = {x} \ Fv(k) (t :: k) R k (M) = ({x} \ Fv(k)) \ Fv(M) t :: k R k (M) = ({x} \ Fv(k)) \ Fv(M) k R k (M t R).
Applying the rule ω 3 of λ R and Lemma 7 we get that

K R k (M) → λ R K R k (M).
(ω 6) t ::

(x k) → {x} \ Fv(t) (t :: k) K R k (M) = t :: (x t) R k (M) = x k R k (M t R) = {x} \ Fv(M t R) k R k (M t R) = K R k (M).
The proof of (iv) is trivial, since the equivalences of λ Gtz R -calculi and λ R -calculi coincide. 2

The previous proposition shows that β, π, σ, µ, γ 0γ 5 , ω 1ω 5 , γω 1 and γω 2 λ Gtz R -reductions are interpreted by λ R -reductions and that γ 6 and ω 6 λ Gtz R -reductions are interpreted by an identity in the λ R . Since the set of equivalences of the two bases of the resource control cube coincide, they are trivially preserved. If one wants to prove that there is no infinite sequence of λ Gtz R -reductions one has to prove that there cannot exist an infinite sequence of λ Gtz R -reductions which are all interpreted as identities. To prove this, one shows that if a term is reduced with such a λ Gtz R -reduction, it is reduced for another order that forbids infinite decreasing chains. This order is itself composed of several orders, free of infinite decreasing chains (Definition 11). 18.

Definition 10 The functions S R , || || R c , || || R w : Λ Gtz R → N are defined in Figure
Lemma 8 For all e, e ∈ λ Gtz R : Now we can define the following orders based on the previously introduced mappings and norms.

(i) If e → γ 6 e , then ||e|| R c > ||e || R c . (ii) If e → ω 6 e , then ||e|| R c = ||e || R c . (iii) If e ≡ e , then ||e|| R c = ||e || R c . S R (x) = 1 ||x|| R c = 0 ||x|| R w = 1 S R (λx.t) = 1 + S R (t) ||λx.t|| R c = ||t|| R c ||λx.t|| R w = 1 + ||t|| R w S R (x e) = 1 + S R (e) ||x e|| R c = ||e|| R c ||x e|| R w = 0 S R (x < y z e) = 1 + S R (e) ||x < y z e|| R c = ||e|| R c + S R (e) ||x < y z e|| R w = 1 + ||e|| R w S R (tk) = S R (t) + S R (k) ||tk|| R c = ||t|| R c + ||k|| R c ||tk|| R w = 1 + ||t|| R w + ||k|| R w S R (x.t) = 1 + S R (t) || x.t|| R c = ||t|| R c || x.t|| R w = 1 + ||t|| R
Definition 11 We define the following strict orders and equivalences on Λ Gtz R ∩: Definition 12 We define the relations R on Λ Gtz R as the lexicographic products:

(i) t > λ R t iff t R → + λ R t R ; t = λ R t iff t R ≡ t R ; k > λ R k iff k R k (M) → + λ R k R (M) for every M ∈ Λ R ; k = λ R k iff k R k (M) ≡ k R k (M)
R = > λ R × lex > c × lex > w .
The following proposition proves that the reduction relation on the set of typed λ Gtz R -expressions is included in the given lexicographic product R .

Proposition 15 For each e ∈ Λ Gtz R : if e → e , then e R e .

Proof: The proof is by case analysis on the kind of reduction and the structure of R . If e → e by β, σ, π, µ, γ 0 , γ 0 , γ 1 γ 2 , γ 3 , γ 4 γ 5 , ω 1 , ω 2 , ω 3 ω 4 or ω 5 , γω 1 , γω 2 , reduction, then e > λ R e by Proposition 2. Proof: The reduction → is well-founded on Λ Gtz R ∩ as it is included (Proposition 15) in the relation R which is well-founded as the lexicographic product of the well-founded relations > λ R , > c and > w . The relation > λ R is based on the interpretation R : Λ Gtz R → Λ R . By Proposition 14 typeability is preserved by the interpretation R and → λ R is SN (i.e., well-founded) on Λ R ∩ (Section 4.1), hence > λ R is well-founded on Λ Gtz R ∩. Similarly, > c and > w are well-founded, as they are based on interpretations into the well-founded relation > on the set N of natural numbers. 2 5 SN ⇒ Typeability in all systems of the resource control cube Let us turn our attention to the most unique property of intersection types systems that all strongly normalising terms are typeable by intersection types. We will prove this property first for λ R -terms and then for λ Gtz R -terms.

5.1 SN ⇒ Typeability in λ R ∩

We want to prove that if a λ R -term is SN, then it is typeable in the system λ R ∩. We proceed in two steps:

1. we show that all λ R -normal forms are typeable and 2. we prove the head subject expansion property.

First, let us observe the structure of the λ R -normal forms, given by the following abstract syntax:

M n f ::= x | λx.M n f | xM 1 n f ...M n n f | λx.x M n f | x < x 1 x 2 M n f N n f , if x 1 ∈ Fv(M n f), x 2 ∈ Fv(N n f) W n f ::= x M n f | x W n f
Notice that it is necessary to distinguish normal forms W n f since the term λx.y M n f is not a normal form, i.e. λx.y M n f → ω 1 y λx.M n f . Proposition 16 λ R -normal forms are typeable in the system λ R ∩.

Proof: By an easy induction on the structure of M n f and W n f . Notice that the typing rules for introducing the explicit resource control operators change only the left-hand side of the sequents while the types of the expressions on the right-hand side stay unchanged. 2 Proposition 17 (Inverse substitution lemma) Let Γ R M[N/x] : σ and N typeable. Then, there are Γ , ∆ = ∆ 1 ... ∆ n and τ i , i = 1, ..., n such that Γ = Γ c ∆, ∆ i R N : τ i for all i = 1, . . . , n and Γ , x : ∩ n i τ i R M : σ.

Proof: By induction on the structure of M. We will just show the basic case and the cases related to resource operators.

• Basic case: -M ≡ x. Then M[N/x] = x[N/x] = N. For Γ ≡ / 0, ∆ ≡ Γ and τ i ≡ σ we get ∆ R N : σ from the premise and x : ∩ n i σ i R x : σ from the axiom. -M ≡ y. Then M[N/x] = y[N/x] = y. This case is possible only if w / ∈ R , so we can assume that Γ = Γ ∆, where ∆ R N : τ, from the premise that N is typeable, and Γ R y : σ from the implicit weakening axiom.

Figure 1 :

 1 Figure 1: Resource control cube

Figure 2 :

 2 Figure 2: λ R -terms

Figure 7

 7 Figure 7: λ Gtz R -expressions

Figure 11 :

 11 Figure 11: LJ base of the resource control cube

Figure 14 :

 14 Figure 14: λ R ∩: λ R -calculi with intersection types

 (x) Γ; ε R z < x y k : σ iff there exist Γ , α, β such that Γ = Γ , z : α ∩ β and Γ, x : α, y : β; ε R k : σ. Proof: The proof is straightforward since all the rules are syntax-directed. 2 Proposition 6 If e → e , then Fv(e) = Fv(e).

(

 ∃n ≥ 0) (∀p ≥ n) λx 1 . . . λx p .λy.y ∈ M / / N . By the induction hypothesis N is R -saturated, hence INH(N) and SAT(N) hold. Since INH(N) holds, we have that (∃n ≥ 0) (∀p ≥ n) λx 1 . . . λx p .λy.y ∈ N . By taking p = n + 1 we obtain that for all N ∈ M , (λx 1 . . . λx n λx n+1 .λy.y)N → λx 1 . . . λx n λy.y By INH(N) we get that λx 1 . . . λx n λy.y ∈ N and then by SAT(N) we get that (λx 1 . . . λx n λx n+1 .λy.y)N ∈ N .

wSRFigure 18 :Lemma 9

 189 Figure 18: Definitions of S R (e), ||e|| R c , ||e|| R w

 for every M ∈ Λ R ; (ii) e > c e iff ||e|| R c > ||e || R c ; e = c e iff ||e|| R c = ||e || R c ; (iii) e > w e iff ||e|| R w > ||e || R w ; e = w e iff ||e|| R w = ||e || R w ; A lexicographic product of two orders > 1 and > 2 is usually defined as follows ([BN98]): a > 1 × lex > 2 b ⇔ a > 1 b or (a = 1 b and a > 2 b).

 If e → e by γ 6 , then e = λ R e by Proposition 2, and e > c e by Lemma 8. Finally, if e → e by ω 6 , then e = λ R e by Proposition 2, e = c e by Lemma 8 and e > w e by Lemma 9. 2 SN of → is another terminology for the well-foundedness of the relation → and it is well-known that a relation included in a well-founded relation is well-founded and that the lexicographic product of well-founded relations is well-founded. Theorem 3 (Strong normalization) Each expression in Λ Gtz R ∩ is SN.

•

 Case M ≡ x M . Then M[N/x] = (x M)[N/x] = Fv(N) \ Fv(M) M . From the premise Γ R (x M)[N/x] : σ we have Γ R Fv(N) \ Fv(M) M : σ, hence by the generation lemma Γ R M : σ, for Γ = Γ \ (Fv(N) \ Fv(M)). Now, for an arbitrary type α, we have Γ , x : α R x M : σ. From the premise that N is typeable, knowing that w ∈ R , we get ∆ R N : β where Dom(∆) = Fv(N). The proposition is proved by taking α ≡ β.

 Intersection types for λ R . 12 3.2 Intersection types for λ Gtz R . 13 4 Typeability ⇒ SN in all systems 16 4.1 Typeability ⇒ SN in λ R ∩ . 16 4.2 Typeability ⇒ SN in λ Gtz R ∩ . 21 5 SN ⇒ Typeability in all systems of the resource control cube 27 5.1 SN ⇒ Typeability in λ R ∩ . 27 5.2 SN ⇒ Typeability in λ Gtz R ∩ . 28

	.	6
	2 Simple types for resource control cube	10
	3 Intersection types for resource control cube	12
	3.1 6 Conclusions	29
	1 Untyped resource control cube	

Contents 1 Untyped resource control cube 4 1.1 Resource control lambda calculi λ R . 4 3 1.2 Resource control sequent lambda calculi λ Gtz R .

1.1 Resource control lambda calculi λ R

 Ax iw), (→ R), (→ L), (Sel), (Cut) λ c ∩ (Ax iw), (→ R), (→ L), (Sel), (Cut), (Cont t), (Cont k) λ w ∩ (Ax ew), (→ R), (→ L), (Sel), (Cut), (Weak t), (Weak k) λ cw ∩ (Ax ew), (→ R), (→ L), (Sel), (Cut), (Cont t), (Cont k), (Weak t), (Weak k)

	λ R ∩-systems	type assignment rules
	λ / 0 ∩	(Figure 17: Four LJ intersection type systems
	Proposition 5 (Generation lemma for λ Gtz R ∩)

We are aware that our notation is not symmetric, since Gtz is specified explicitly for the LJ-base but ND is not for the ND-base. This was a conscious decision because ND-base contains ordinary λ-calculus where correspondence with natural deduction is not explicitly written.

Note that in[START_REF] Kesner | The prismoid of resources[END_REF], instead of considering the sequent counterparts, the authors consider the so called explicit base, i.e. the four corresponding calculi with explicit substitutions.

Note that the terms N 1 and N 2 do not have any free variables in common hence, it is not a problem to perform the substitution in parallel.

The rules (γ 0) and (γ 0) correspond to the CGc rule in[START_REF] Kesner | The prismoid of resources[END_REF].

(i) If Γ R t : σ, then Γ λ R t R : σ. (ii) If Γ; ∩ n j τ j R k : σ, then k R k : Λ R (Γ j λ R τ j) → Λ R (Γ cΓ λ R σ), for all j ∈ {1, . . . , n} and for some Γ = Γ 1 ... Γ n .Proof: The proposition is proved by simultaneous induction on derivations. We distinguish cases according to the last typing rule used.• Cases (Ax iw), (Ax ew), (→ R), (Weak t) and (Cont t) are easy, because the system λ R ∩ has exactly the same rules.• Case (Sel): the derivation ends with the ruleΓ , x : α R t : σ Γ ; α R x.t : σ (Sel)By IH we have that Γ , x :α λ R t R : σ. For any M ∈ Λ R such that Γ λ R M : α, for some Γ , we have Γ , x : α λ R t R : σ (→ I) Γ λ R λx. t R : α → σ Γ λ R M : α (→ E) Γ c Γ λ R (λx. t R)M : σ Since (λx. t R)M = x.t R k (M), we conclude that x.t R k : Λ R (Γ λ R α) → Λ R (Γ cΓ λ R σ).

Acknowledgements Above all, our gratitude goes to two anonymous referees for the present submission. Their extensive and detailed comments helped us tremendously to improve our work. We would also like to thank Dragiša Žunić for fruitful discussion.

(iv) By induction on the construction of ϕ ∈ Types.

-If ϕ ≡ p, p is type atom, then

R , so it is R -saturated using (i).

-

] R are R -saturated by IH, we can use (ii).

-

R and for all i = 1, . . . , n, [[σ i]] R are R -saturated by IH, so we can use (iii).

2

We further define a valuation of terms

R and the semantic satisfiability relation |= R which connects the type interpretation with the term valuation.

Definition 7 Let ρ : var → Λ • R be a valuation of term variables in Λ • R . Then, for the term M ∈ Λ R with free variables Fv(M) = {x 1 , . . . , x n }, the term valuation

Lemma 1

Proof:

(i) Straightforward from the definition of substitution given in Figure 3.

(ii) If Fv(λx.M) = {x 1 , . . . , x n }, then [[λx.M]] R ρ N ≡ (λx.M)[ρ(x 1)/x 1 , . . . , ρ(x n)/x n]N → (M[ρ(x 1)/x 1 , . . . , ρ(x n)/x n])[N/x] ≡ M[ρ(x 1)/x 1 , . . . , ρ(x n)/x n , N/x]. The last equivalence holds, since all ρ(x i) are closed terms so x ∈ FV (ρ(x i)).

Proof: By induction on the derivation of Γ R M : α.

• The last rule applied is (Ax iw). Suppose that ρ |= Γ, x : ∩ n 1 σ i . From here we deduce that ρ

Similar to the previous case.

• The last rule applied is

By the IH Γ, x : α, y :

. By the definition of term valuation (Definition 7) and Lemma 1(iv) we obtain

Then

Proof: The proof is straightforward since although the terms M and

. This is a well-known property in λ-calculus and adding contraction and weakening still preserves this property. For this reason, the strong normalisation property is preserved.

Let us obtain a particular valuation ρ 0 so that for each x i ∈ Dom(Γ)

There are a few differences with respect to the traditional reducibility method presented in [START_REF] Barendregt | Lambda calculi with types[END_REF]. First of all, the interpretation of types only contains closed λ R -terms, as opposed to all λ-terms. Next, instead of VAR condition which ensures that the saturated sets contain variables, we introduce the condition INH which ensures that the terms of the form λ 1 . . . λ p .λy.y belong to all R -saturated sets. Further, valuations map variables to closed terms and term valuations map λ R -terms to closed λ R -terms.. Finally, in the proof of Theorem 1, instead of the valuation ρ 0 (x) = x which maps all the variables to themselves, we need a valuation ρ 0 (x) = λx 1 . . . λx n .λy.y. that maps every variable to a closed term (which is provided by

Typeability

In this subsection, we prove the strong normalisation property of the λ Gtz R -calculi with intersection types. The termination is proved by showing that the reductions on the sets Λ Gtz R of the typeable λ Gtz R -expressions are included in particular well-founded relations, which we define as the lexicographic products of several well-founded component relations. The first ones are based on the mappings of λ Gtz R -expressions into λ R -terms. We show that these mappings preserve types and that all λ Gtz R -reductions can be simulated by the reductions or identities of the corresponding λ R -calculi. The other well-founded orders are based on the introduction of quantities designed to decrease a global measure associated with specific λ Gtz R -expressions during the computation.

σ by generation lemma, we have that Γ = Γ \ ({y} \ Fv(N)), y : α and Γ R M [N/x] : σ. Now, by IH we get that Γ = Γ c ∆, ∆ = ∆ 1 ... ∆ n , ∆ i R N : τ i for all i = 1, . . . , n and Γ , x :

x] : σ using the generation lemma we get that Γ = Γ , y : α ∩ β and Γ , y 1 : α, y 2 : β R M [N/x] : σ. By IH we get that Γ = Γ c ∆, ∆ = ∆ 1 ... ∆ n , ∆ i R N : τ i for all i = 1, . . . , n and Γ , y 1 : α, y 2 : β, x :

x 2] : σ, using the generation lemma we get that for Fv(N) = {y 1 , ..., y n } holds Γ = Γ , y 1 : α 1 ∩ β 1 , ..., y n : α n ∩ β n and Γ , y 1 : α 1 , y 1 : β 1 , ..., y n : α n , y n :

τ i for all i = 1, . . . , n, and Γ , y 1 : α 1 , y 1 : β 1 , ..., y n : α n , y n :

Since N 1 and N 2 are obtained by renaming N we have that ∩ n i τ i ≡ ∩ n i τ i ≡ ∩ n i τ i , ∆ i R N : τ i for all i = 1, . . . , n and for ∆ i = ∆ i c ∆ i . Finally, by (Cont) rule we get Γ , y 1 : α 1 , y 1 : β 1 , ..., y n : α n , y n :

x 2 M : σ and the proof is done. 2 Proposition 18 (Head subject expansion) For every λ R -term M: if M → M , M is contracted redex and Γ R M : σ , then Γ R M : σ, provided that if M ≡ (λx.N)P → β N[P/x] ≡ M , P is typeable.

Proof: By the case study according to the applied reduction. 2 Theorem 4 (SN ⇒ typeability) All strongly normalising λ R -terms are typeable in the λ R ∩ system.

Proof: By induction on the length of the longest reduction path out of a strongly normalising term M, with a subinduction on the size of M. We also use Proposition 3.

• If M is a normal form, then M is typeable by Proposition 16.

• If M is itself a redex, let M be the term obtained by contracting the redex M. M is also strongly normalising, hence by IH it is typeable. Then M is typeable, by Proposition 18. Notice that, if M ≡ (λx.N)P → β N[P/x] ≡ M , then, by IH, P is typeable -since the length of the longest reduction path out of P is not larger than that of M, and the size of P is smaller than the size of M.

• Next, suppose that M is not itself a redex nor a normal form. Then M is of one of the following forms: λx.N, λx.x N, xN 1 ...N m , x N, or x < x 1 x 2 NP, x 1 ∈ Fv(N), x 2 ∈ Fv(P) (in each case some N i or P are not in normal form). N i and P are typeable by IH, as subterms of M. Then, it is easy to build the typing for M. 2

SN ⇒ Typeability in λ Gtz

R ∩

Finally, we want to prove that if a λ Gtz R -term is SN, then it is typeable in the system λ Gtz R ∩. We follow the procedure used in Section 5.1. The proofs are similar to the ones in Section 5.1 and are omitted.

The abstract syntax of λ Gtz R -normal forms is the following:

We use e n f for any λ Gtz R -expression in normal form.

Proposition 19 λ Gtz R -normal forms are typeable in the system λ Gtz R ∩.

Proof: The proof goes by an easy induction on the structure of e n f . 2

The following two lemmas explain the behavior of the meta operators [/] and @ during expansion.

Lemma 10 (Inverse substitution lemma)

x] : σ and u typeable. Then, there exist ∆ = ∆ 1 ... ∆ n and ∩ n i τ i , i = 1, ..., n such that ∆ i R u : τ i for all i = 1, . . . , n and Γ , x : ∩τ i R t : σ, where Γ = Γ c ∆.

(ii) Let Γ; α R k[u/x] : σ and u typeable. Then, there exist ∆ = ∆ 1 ... ∆ n and ∩ n i τ i , i = 1, ..., n such that ∆ i R u : τ i for all i = 1, . . . , n and Γ , x : ∩τ i ; α R k : σ, where Γ = Γ c ∆.

Proof: The proof goes straightforward by mutual induction on the structure of terms and contexts. 2 Lemma 11 (Inverse append lemma)

Proof: The proof goes by the induction on the structure of the context k. 2 Now we prove that the type of an expression is preserved during the expansion.

Proposition 20 (Head subject expansion)

Proof: The proof goes by the case study according to the applied reduction. 2

Theorem 5 (SN ⇒ typeability) All strongly normalising λ Gtz R expressions are typeable in the λ Gtz R ∩ systems.

Proof: The proof is by induction over the length of the longest reduction path out of a strongly normalising expression e, with a subinduction on the size of e. We also use Proposition 10. 2

The complete characterisation of strongly normalising terms by intersection types

• in the natural deduction ND-base of the resource control cube is a corollary to Theorem 1 and 4

• in the sequent LJ-base of the resource control cube is a corollary to Theorem 3 and 5.

Theorem 6 (Complete characteristation of SN)

-A λ R -term is strongly normalising if and only if it is typeable in λ R ∩.

-A λ Gtz R -term is strongly normalising if and only if it is typeable in λ Gtz R ∩.

Conclusions

In this paper, we proposed intersection type assignment systems for λ R and λ Gtz R -calculi, two systems of lambda calculi parametrized with respect to R ⊆ {c, w}, where c is a contraction and w is a weakening. These two families of lambda calculi form the so-called resource control cube. Four λ R -calculi form the "natural deduction base" of the cube, corresponding to the "implicit base" of [START_REF] Kesner | The prismoid of resources[END_REF], whereas "the sequent base" contains four λ Gtz R -calculi, generalization of λ Gtz -calculus of [GIL Ž11]. In each base, the calculi differ by the implicit/explicit treatment of the resource operators contraction and weakening.

The intersection type systems proposed here, for resource control lambda and sequent lambda calculus, give a complete characterisation of strongly normalising terms for all eight calculi of the resource cube. We propose general proofs for each base handled by various side conditions in some cases. In order to prove the strong normalisation of typeable resource lambda terms, we use an appropriate modification of the reducibility method. The same property for resource sequent lambda expressions is proved by using a well-founded lexicographic order based on suitable embedding into the former calculi. This paper expands the range of the intersection type techniques and combines different methods in the strict types environment. Unlike the approach of introducing non-idempotent intersection into the calculus with some kind of resource management [PR10], our intersection is idempotent.

It would be interesting to investigate the relation between the resource control enabled via explicit operators used here and the approach used in [START_REF] Pagani | Solvability in resource lambda-calculus[END_REF], where the resources are managed via applicative bags with multiplicities. Another direction will involve the investigation of the use of intersection types in constructing models for sequent lambda calculi, since intersection types are known powerful means for building models of lambda calculus ([START_REF] Barendregt | A filter lambda model and the completeness of type assignment[END_REF][START_REF] Dezani-Ciancaglini | Behavioural Inverse Limit Models[END_REF]). On the other hand it should be noticed that the substitutions in our λ Gtz R -calculi are implicit. Considering explicit susbtitutions would complete the sequent part of the cube as Kesner and Renaud have done for λ R in their prismoid.

Furthermore, resource control lambda and sequent lambda calculi are good candidates to investigate the computational content of substructural logics [START_REF] Schroeder-Heister | Substructural Logics[END_REF], both in natural deduction and sequent calculus. The motivation for these logics comes from philosophy (Relevant and Affine Logic), linguistics (Lambek Calculus) and computing (Linear Logic). The basic idea of resource control is to explicitly handle structural rules, so that the absence of (some) structural rules in substructural logics such as weakening, contraction, commutativity, associativity can possibly be handled by resource control operators. This is in the domain of further research.

From a more pragmatic perspective, resources need to be controlled tightly in computer applications. For instance, Kristoffer Rose has undertaken the description of compilers by rules with binders [START_REF] Rose | Implementation Tricks That Make CRSX Tick[END_REF][START_REF] Rose | CRSX -Combinatory Reduction Systems with Extensions[END_REF]. He noticed that the implementation of substitutions of linear variables by inlining is efficient, whereas substitutions of duplicated variables require a cumbersome and time consuming mechanism, based on pointers. It is therefore important to precisely control duplications. On the other hand, strong control of erasing does not require a garbage collector and prevents memory leaking. Another line of application of resource control is related to object-oriented languages. Alain Mycroft [START_REF] Mycroft | Using Kilim's Isolation Types for Multicore Efficiency[END_REF] presented resource aware type-systems for multi-core program efficiency. In this framework an identified "memory isolation" property enables multi-core programs to avoid slowdown due to cache contention. The existing work on Kilim and its isolation-type system is related to both substructural types and memory isolation.

Finally, the two calculi with both resource control operators explicit, namely λ CW of [KR09] and λ Gtz -calculus of [GIL Ž11] deserve particular attention. Due to the multiplicative style of the typing rules, and the reductions' orientation of propagating the contraction in the term and extracting the weakening out of the term, these calculi exhibit optimization in terms of the minimal total size of the bases used for the type assignments. The consequences of this property, particularly for the implementation related issues, should be investigated.