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We investigate the validity of fluctuation theorems for an asymmetric rotor experiment in a
granular gas. A first state, with a Gaussian distribution of the angular velocity, is found to be
well described by a first order Langevin equation. We show that fluctuation theorems are valid
for the injected work and for the total entropy production. In a second state the angular velocity
distribution is double-peaked due to a spontaneous symmetry breaking: A convection roll develops
in the granular gas, which strongly couples to the rotor. Surprisingly, in this case similar symmetry
relations hold, which lead to a good prediction for the height ratio of the two peaks.

PACS numbers: 05.40.-a,05.70.Ln,45.70.-n

Under rather general conditions, the thermodynamic
description of non-equilibrium systems is constrained by
the consequences of the fluctuation relations [1]. In par-
ticular, the fluctuation theorem (FT) provides, for a sys-
tem in a non-equilibrium steady state, a quantitative
symmetry relation between the probability of having a
positive fluctuation for the entropy production in a time
τ and a corresponding negative one:

ln

(

P (στ = +a)

P (στ = −a)

)

= βa ∀ a for τ ≫ τc (1)

where τc represents the largest characteristic time of the
system and β a prefactor [2–4, 16]. In general, the hy-
potheses used to prove this theorem are not verified ex-
perimentally and therefore, it is not clear whether Eq. (1)
holds or not. Experimental tests of FTs have been mostly
performed on stochastic systems in contact with a ther-
mal bath. In such experiments, a FT is valid for the
injected work into the system or the total entropy pro-
duction and the coefficient β is directly related to the
temperature of the thermal bath β = 1/kBT [5].
Experimental tests are particularly scarce and incon-

clusive for another type of systems for which FTs are be-
lieved to hold, namely non-thermal dynamical systems.
In these systems, the strong fluctuations come from the
non-linear interaction of many degrees of freedom of a
dissipative system. An interesting example of such a sys-
tem is a granular gas, which by its nature is already out-
of-equilibrium due to the dissipative character of the in-
elastic collisions. Experiments searching for FTs in gran-
ular systems have been performed [6], but their interpre-
tation remains unclear [5]. It is a challenge to study FTs
in such a system and to test to what extent the fluctua-
tion relations can be satisfied.
In this letter we will study FTs for a rotor immersed

in a granular gas. Eshuis et al. [7] showed that such a
system not only exhibits Brownian-like dynamics com-
parable to a thermal system, but also a state in which
symmetry is spontaneously broken, and for which there
exists no thermal analogue. Here, we will show that FTs
are relevant to both states.

Experiment – The rotor is composed of four vanes
(25 × 60 mm2 each, made from a single piece of stain-
less steel), precisely balanced around an axis which is
connected to the container by a low-friction ball bear-
ing. The granular heat bath consists of glass beads of
diameter d = 4 mm (density ρ = 2600 kg/m3), which
are fluidized by vertical vibrations of the bottom (z = 0
at rest) with amplitude a and frequency f such that the
grains interact dissipatively with the vanes. We present
the results obtained for a system of N = 1000 parti-
cles (500 and 2000 particles have also been used) and
for two different heights of the axis above the bottom
(h = 51 mm and h = 75 mm). The natural dimension-
less control parameter of the granular heat bath is the
shaking strength S = 4π2f2a2/(gh), which represents
the ratio of the typical kinetic energy injected into the
system by the vibrating bottom and the potential energy
of the particles at the height of the axis of the rotor.
The granular temperature Tg is defined as the mean of
the kinetic energy fluctuations per particle. The angu-
lar position θ of the vanes is measured using an optical
angle encoder, with an accuracy of 1.9 · 10−7 rad, at a
sampling rate of 1000 Hz (larger than the typical colli-
sion rate, which is about 100 Hz). After the system has
reached a steady state, we start to record the position for
typically 15 min, which is about 103 times the relaxation
time of the system. We repeat experiments several times
with the same conditions (S and h). An asymmetry is
voluntarily introduced in the system by coating the left
hand side of each vane with rubber tape. This side will
therefore be softer, diminishing its coefficient of normal
restitution. As a results, vanes are expected to preferen-
tially rotate in counter-clockwise direction (positive θ).
Such a system behaves like a ratchet, as explained in [7–
12].

The dynamics of the system strongly depends on the
experimental parameters (height of the vanes h, shaking
strength S, and number of particles). Fig. 1a presents
two time series of the angular velocity ω = θ̇ of the rotor:
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State I has an angular velocity which fluctuates around
a non-zero positive mean value (due to the symmetry-
breaking coating). In state II, the angular velocity is
either positive or negative and there are switches from
one state to the other one. This is a state in which, in
addition to the symmetry-breaking coating, there is a
spontaneously broken symmetry, which can be explained
from the development of a convection roll in the granular
gas stabilizing the motion of the vanes [7]. These two
states will now be studied in detail.
State I – In the first state, the dynamics of the angular

velocity ω can be decomposed into a constant positive
average value 〈ω〉 and strong fluctuations δω ≡ ω − 〈ω〉
around this mean. To shed more light on the dynamics
and statistics, the power spectral density (psd) of δω and
the probability density function (pdf) of ω are plotted in
Figs. 1b and c. The Lorentzian shape of their psd and
their Gaussian distribution indicate that the fluctuations
δω are identical to those in the absence of the ratchet
effect, as expected for a linear situation. The dynamics
is therefore likely to be well described by a first order
Langevin equation

I
dω

dt
= −γω +M∂e + η , (2)

where I (= 7.2 · 10−5 kgm2) is the angular moment of
inertia, γ a viscous drag coefficient, and η a stochastic
noise, δ-correlated in time, due to the random collisions
between the particles and the rotor. This description
is compatible with kinetic theory in the limit in which
the mass of the ratchet is much larger than the mass of
the particles [11]. The measurement of the variance of
the fluctuations, Tr/I, and the cut-off frequency of the
psd, fc = γ/(2πI) (related to the relaxation time of the
system, τ0 = 1/(2πfc)) provides the value of the viscos-
ity γ ≈ 7.0 · 10−5 kgm2/s and the ratchet temperature
Tr ≈ 0.115 mJ, which is close to the granular tempera-
ture [17]. The ratchet effect is described by adding a con-
stant torque M∂e to the Langevin equation [11], which is
identified with γ〈ω〉 (≈ 4.5 · 10−5 Nm) by time averag-
ing of Eq. (2). The subscript ∂e points to the fact that
|M∂e| is an increasing function of |∂e|, the difference in
normal restitution coefficient of the coated and uncoated
side of each vane. For the symmetric system, i.e., without
coating, 〈ω〉 = 0 and thus M∂e = 0.
Based on the Langevin description, the amount of

work injected into the rotor during a time τ is Wτ =
∫ t+τ

t
M∂eω(t

′)dt′ = M∂e∆θ, where ∆θ ≡ θ(t+ τ)− θ(t),
i.e., the symbol ∆ from hereon represents the difference
measured over a time delay τ . For Wτ we expect a FT
of the form

ln

(

P (Wτ )

P (−Wτ )

)

= ln

(

P (∆θ)

P (−∆θ)

)

=
M∂e∆θ

Tr

, τ ≫ τc (3)

where P (∆θ) is the pdf of ∆θ. The expression in the left
hand side of the equation is called the symmetry func-
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FIG. 1. (color online) (a) Typical time series of the angular
velocity ω for state I [S = 2.78 and h = 75 mm (top, red)]
and for state II [S = 2.15 and h = 51 mm (bottom, blue)].
(b) Corresponding power spectral densities of the fluctuations
δω, which for both cases virtually overlap and are fitted well
by a Lorentzian. (c) Corresponding probability distribution
functions of ω. For state I (red symbols) the pdf is well fitted
by a Gaussian (red line). For state II (blue symbols) there is a
pronounced double peak; the blue line is the result of Eqs. (6)
and (7).

tion. Due to the Gaussianity of the distribution of ω, the
pdfs of ∆θ are gaussian too, and the symmetry functions
are expected to be linear with ∆θ for different values of
τ . This is indeed found in experiment (Fig. 2a). The
slope, Σ(τ), is found to decrease with τ and reaches the
constant value M∂e/Tr expected from the FT Eq. (3) for
τ > 3 s, which is approximatively 3 times the relaxation
time of the system. Thus we find that two independent
measurements –one from the pdf of Fig. 1b and one using
the FT Eq. (3)– lead to the very same value of the rotor
temperature Tr, hereby confirming the validity of the FT
Eq. (3).

We now turn to the fluctuations of the total (trajec-
tory dependent) entropy production in a time span τ ,
∆stot, as defined by Seifert in [13]. We follow [5] and
first write the dissipated heat Qτ [18] as the injected
work Wτ minus the difference of the kinetic energy of
the rotor Ek = 1

2
Iω2 at the beginning and end point.

The entropy change ∆sm in a time span τ is now defined
as the dissipated heat divided by the ratchet temperature

Tr ∆sm ≡ Qτ ≡ Wτ −∆Ek . (4)
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FIG. 2. (color online) State I [S = 2.78 and h = 75 mm]: (a) The symmetry function ln(P (∆θ)/P (−∆θ)) versus ∆θ for different
values of the time interval τ . All are linear with ∆θ, such that we can compute their slopes Σ(τ ). (b) Σ(τ ) as a function of τ .
In the limit when τ is larger than the relaxation time of the system Σ(τ ) is equal to M∂e/Tr (dashed line), as expected from
the steady state FT Eq. (3). (c) The symmetry function ln(P (∆stot)/P (−∆stot)) versus the total entropy production ∆stot
for different values of τ . As predicted by the detailed FT, the data lie on a straight line with slope one (dashed line). In (a)
and (c), the deviations from the linear regime for large fluctuations are due to a lack of statistics in a region where the pdfs
are at least two orders of magnitude smaller than their maximum value.

First we note that for the symmetric system (i.e., without
the symmetry-breaking coating) the dissipated heat is
equal to ∆Ek,sym = Tr∆sm,sym, which is small but not
strictly zero. This contribution has to be subtracted from
the entropy change Eq. (4) in order to obtain the entropy
created by the presence of the external torque M∂e. As
argued in [5], it is this last entropy that may be identified
as the total entropy production, i.e., ∆stot = ∆sm −
∆sm,sym. This quantity is interesting because it should
satisfy a detailed FT: The symmetry functions for ∆stot
are expected to be equal to ∆stot itself for all values of
τ when the system is in a steady state [13, 14]. From
the Langevin equation (2), the total entropy takes the
following form

Tr∆stot = M∂e∆θ − I〈ω〉∆ω. (5)

In Fig. 2c we present the symmetry functions for dif-
ferent integration times τ : We find that the pdfs are
Gaussian (not shown) and, most importantly, that the
symmetry functions lie on a straight line with slope one
within experimental errors, whatever the time delay τ
is. So indeed a detailed FT holds for the total entropy
production.
State II – In state II the dynamics is completely dif-

ferent due to the coupling to a spontaneous convection
roll in the granular heat bath: The time series of Fig. 1a,
shows fluctuations around two preferred velocities, cor-
responding to the two rolls. As a result, in the pdf of
ω (Fig. 1c) two distinct peaks appear. Their different
heights reflect that the system obtains a finite mean an-
gular velocity 〈ω〉 by residing preferably around the pos-
itive peak – in contrast to the shift of the entire pdf in
state I. From Fig. 1b we find that in both states the psds
are almost exactly the same and very well fitted by a
Lorentzian. This indicates that the fluctuations in each
of the two peaks –and therefore the short time dynamics–

are very similar to those of state I.
This suggests the separation of the dynamics into two

parts: On a short time scale, ω fluctuates around a mean
value, with dynamics described by a Langevin equation
similar to Eq. (2), independent of the direction of the
roll. On a much larger time scale, a coupling between the
granular gas and the vanes induces collective motion, in
which every now and then, through a particularly strong
fluctuation, the mean value of ω quickly switches between
positive and negative, reversing both the sense of rota-
tion of the vanes and the roll. These reversals happen
randomly in time. The system stays few seconds in each
state as can be seen in Fig. 1a. Due to the asymmetric
coating of the rotor, reversals are easier to realize when
the vanes are rotating in the clockwise direction than
anti-clockwise, explaining why the system has a prefer-
ence for the latter [19].
Guided by the above considerations, we write the pdf

of ω as the sum of two Gaussian distributions with the
same variance σ2 = Tr/I; one with mean value ω0 + ω∂e

and the other with −ω0 + ω∂e:

P (ω) = A

[

p+ exp

(

−
I

2Tr

(ω − (ω0 + ω∂e)
2

)

+ p− exp

(

−
I

2Tr

(ω − (−ω0 + ω∂e)
2

)]

. (6)

Here ω∂e stands for the shift due to the symmetry
breaking coating (i.e., ±ω0 denote the locations of the
peaks without coating). The factors p± represent the
weight of each peak (the probability of each direction of
the convection roll) and the normalization factor A =
I/(8πTr)

1/2 has been chosen such that p+ + p− = 1 im-
plies

∫

P (ω)dω = 1.
What can we learn from FTs for this very non-

Gaussian system? It seems reasonable to assume that if a
FT exists, it will be for the work done on short timescales,
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FIG. 3. (color online) State II [S = 2.15 and h = 51 mm]:
(a) Symmetry function of ∆θ for three different integration
times. (b) Symmetry function of ω.

when the system resides in either of the two peaks of the
pdf of ω. And indeed, in Fig. 3a (dashed blue line) we
find that the symmetry function for ∆θ is linear in ∆θ
for τ = 0.01 s. Since in this limit ω ≈ ∆θ/τ , we may
expect a similar symmetry relation for ω, which we plot
in Fig. 3b. Indeed, ln [P (ω)/P (−ω)] ∝ ω, which is truly
remarkable in view of the peculiar shape of its distribu-
tion (Fig. 1c). Computing the symmetry function from
the double Gaussian of Eq. (6) we find that it can only
be linear if the weights of the peaks obey

p+
p−

= exp

(

2I ω∂e ω0

Tr

)

, (7)

which then directly leads to the symmetry relation

ln
P (ω)

P (−ω)
=

2Iω∂e

Tr
ω . (8)

From the slope of the experimental symmetry function
(Fig. 3b), which, with Tr = 0.062 mJ leads to ω∂e =
0.372rad/s rad/s, combined with ω0 = 1.8 rad/s from
the pdf of the symmetric system, we compute p+ and
p− and plot the resulting theoretical pdf in Fig. 1c. The
agreement with the experimental pdf is good, except for
angular velocities close to zero.
We now return to the symmetry function of ∆θ in

Fig. 3a): For the smallest value (τ = 0.01 s) we find
a symmetry relation. This is because the changes ∆θ are
dominated by the fluctuations, and the reversals are just
rare events without large consequences for the value of
∆θ. For the intermediate value τ = 3 s, there is no valid

symmetry relation. This stands to reason because when
the integration time τ increases, the probability that it
contains at least one reversal increases as well. ∆θ is
then likely to include a reversal and there is no reason to
consider the system to be in a steady-state, which is a
prerequisite for a symmetry relation to hold. There are
two distinct regimes: One at small |∆θ|, dominated by
reversals, and another at large |∆θ| & ω0τ , a distance
which in the given time interval is unlikely to be reached
when the trajectory includes one or more reversals (dot-
ted red line in Fig. 3a). For very large τ , typically many
reversals are included in each ∆θ and we can consider
the system to be in a steady state again. Indeed, for
τ = 10 s the pdf is Gaussian (not shown) due to the cen-
tral limit theorem, and the symmetry function tends to
become linear (Fig. 3a, solid black line). However, the
experimental slope is smaller than the slope M∂e/Tr one
would expected based upon Eq. (3). This may be be-
cause the entropy production depends on two parts: one
is the work M∂e∆θ and a second one coming from an-
other variable responsible for the reversals, which is not
included here (cf. the theoretical work in [15]).

In conclusion, we have investigated the validity of FTs
in two different states of an asymmetric rotor experiment
in a granular gas. The first state, with a Gaussian pdf
for the angular velocity, is found to be well described
by a first order Langevin equation and therefore analo-
gous to a Brownian system of temperature Tr. This is
reflected in the observation that the FT is valid at large
τ for the injected work and for all τ for the total entropy
production. In the second state the pdf of ω is double-
peaked due to convection rolls developing in the granular
gas. Here symmetry relations are found for very large
and very small τ , of which the latter of leads to a good
prediction of the ratio of the height of the two peaks.
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