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ANOMALOUS FLUCTUATIONS FOR A PERTURBED HAMILTONIAN

SYSTEM WITH EXPONENTIAL INTERACTIONS

CÉDRIC BERNARDIN AND PATRÍCIA GONÇALVES

ABSTRACT. A one-dimensional Hamiltonian system with exponential interactions per-

turbed by a conservative noise is considered. It is proved that energy superdiffuses and

upper and lower bounds describing this anomalous diffusion are obtained.

1. INTRODUCTION

Over the last decade, transport properties of one-dimensional Hamiltonian systems con-

sisting of coupled oscillators on a lattice have been the subject of many theoretical and

numerical studies, see the review papers [9, 11, 23]. Despite many efforts, our knowledge

of the fundamental mechanisms necessary and/or sufficient to have a normal diffusion re-

mains very limited. Nevertheless, it has been recognized that conservation of momentum

plays a major role and numerical simulations provide a strong evidence of the fact that one

dimensional chains of anharmonic oscillators conserving momentum are superdiffusive.

An interesting area of current research consists in studying this problem for hybrid mod-

els where a stochastic perturbation is superposed to the deterministic evolution. Even if the

problem is considerably simplified, several open challenging questions can be addressed

for these systems. In [2] it is proved that the thermal conductivity of an unpinned harmonic

chain of oscillators perturbed by an energy-momentum conservative noise is infinite while

if a pinning potential (destroying momentum conservation) is added it is finite. In the same

paper, diverging upper bounds are provided when some nonlinearities are added. This does

not, however, exclude the possibility of having a finite conductivity. Therefore much more

interesting would be to obtain lower bounds showing that the conductivity is infinite and

that energy superdiffuses, but this problem is left open in [2].

In [7], has been introduced and studied numerically, a class of Hamiltonian models for

which anomalous diffusion is observed. There, the investigated systems present strong

analogies with standard chains of oscillators. They can be described as follows. Let V and

U be two non-negative potentials on R and consider the Hamiltonian system (r(t),p(t))t≥0

whose equations of motion are given by

d px

dt
=V ′(rx+1)−V ′(rx),

drx

dt
=U ′(px)−U ′(px+1), x ∈ Z, (1)

where px is the momentum of the particle x, qx its position and rx = qx − qx−1 is the

“deformation” of the lattice at x. Standard chains of oscillators are recovered for a quadratic

kinetic energy U(p) = p2/2. Now, take V = U , and call η2x−1 = rx and η2x = px. The

dynamics can be rewritten as:

dηx(t) =
(

V ′(ηx+1)−V ′(ηx−1)
)

dt. (2)
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Notice that with these new variables the energy of the system is simply given by ∑x∈ZV (ηx).
In [7] an anomalous diffusion of energy is numerically observed for a generic potential V .

Then, following the spirit of [2], the deterministic evolution is perturbed by adding a noise

which consists to exchange ηx with ηx+1 at random exponential times, independently for

each bond {x,x+ 1}. The dynamics still conserves the energy ∑x∈ZV (ηx) and the “vol-

ume” ∑x∈Z ηx and destroys all other conserved quantities. As argued in [7], the volume

conservation law is responsible for the anomalous energy diffusion observed for this class

of energy-volume conserving dynamics. This can be shown for quadratic interactions ([7])

with a behavior similar to the one observed in [2]. For nonlinear interactions the problem

is much more difficult.

The aim of this paper is to show that if the interacting potential is of exponential type

then the energy superdiffuses. Therefore, for this class of related models, in a particular

case, we answer to the open question stated in [2]. With some additional technical work

we think that our methods could be carried out to the Toda lattice perturbed by an energy-

momentum conserving noise (considered e.g. in [19]).

The paper is organized as follows. In Section 2 we define precisely the model. The

results are stated in Section 3. To prove the theorems we first perform a microscopic

change of variables (Section 4) which permits to use a nice orthogonal decomposition of

the generator (Section 5). Roughly speaking the upper bound on the energy superdiffusion

is proved in Section 6 and the lower bound in Section 7. Section 8 contains a comment

about the possible extensions and comparisons of our model to others. In the Appendix we

prove the existence of the infinite dynamics.

Notations: For any a,b ∈ R
2, a · b stands for the standard scalar product between a

and b and |a| =√
a ·a for the norm of a. The transpose of a matrix M is denoted by MT .

If u : x = (x1, . . . ,xn) ∈ R
n → u(x) = (u1(x), . . . ,ud(x)) ∈ R

d is a differentiable function

then (∂xi
u j)(x) denotes the partial derivative of u j with respect to the i-th coordinate at x

and (∇u)(x) denotes the differential matrix (the gradient if d = 1) of u at x, i.e. the d × n

matrix whose (i, j)-th entry is (∂xi
u j)(x); if u := (u1, . . . ,ud) : Z→ R

d then we adopt the

same notation to denote the discrete gradient of u defined by (∇u) := (∇u1, . . . ,∇ud) with

(∇ui)(x) = ui(x+ 1)− ui(x).

2. THE MODEL

Let b > 0 and Vb(q) = e−bq − 1+ bq. We consider the system η(t) = {ηx(t) : x ∈ Z}
on R

Z defined by its generator L = A+ γS, γ > 0, where for local 1 differentiable functions

f : RZ →R we have that

(A f )(η) = ∑
x∈Z

(
V ′

b(ηx+1)−V ′
b(ηx−1)

)
(∂ηx f )(η)

and

(S f )(η) = ∑
x∈Z

(
f (ηx,x+1)− f (η)

)
.

The deterministic system (2) with potential Vb is well known in the integrable systems

literature. It has been introduced in [20] by Kac and van Moerbecke and was shown to be

completely integrable. Consequently, the energy transport is ballistic ([7, 30]). As we will

1A function f defined on an infinite product space is said to be local if it depends only on its variable through

a finite number of coordinates.
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see this is different when the noise is added: the energy transport is no more ballistic but

superdiffusive.

The existence of the dynamics generated by L is proved in the Appendix for a large set

of initial conditions and in particular for a set of full measure w.r.t. any invariant state µβ̄ ,λ̄

(see bellow for its definition).

The system conserves the energy ∑x∈ZVb(ηx) and the volume ∑x∈Z ηx. In fact, we have

L(Vb(ηx)) =−∇ j̄x−1,x(η), L(ηx) =−∇ j̄′x−1,x(η),

where the microscopic currents are given by

j̄x,x+1(η) =−b2e−b(ηx+ηx+1)+ b2(e−bηx + e−bηx+1)− γ∇(Vb(ηx))

and

j̄′x,x+1(η) = be−bηx + be−bηx+1 − γ∇ηx.

Every product probability measure µβ̄ ,λ̄ on R
Z in the form

µβ̄ ,λ̄ (dη) = ∏
x∈Z

Z̄−1(β̄ , λ̄ )exp{−β̄e−bηx − λ̄ηx}, β̄ > 0 , λ̄ > 0

is invariant for the dynamics.

Let 〈·〉µβ̄ ,λ̄
denote the average with respect to µβ̄ ,λ̄ . We define ē := ē(β̄ , λ̄ ), v̄ := v̄(β̄ , λ̄ )

as the averages of the conserved quantities Vb(ηx), ηx with respect to µβ̄ ,λ̄ , respectively,

namely ē = 〈Vb(ηx)〉µβ̄ ,λ̄
and v̄ = 〈ηx〉µβ̄ ,λ̄

.

A simple computation shows that

〈 j̄x,x+1〉µβ̄ ,λ̄
= b2(ē− bv̄)2 and 〈 j̄′x,x+1〉µβ̄ ,λ̄

= 2b(ē− bv̄). (3)

Hence, in the hyperbolic scaling, the hydrodynamical equations are given by
{

∂te− b2 ∂q((e− bv)2) = 0

∂tv+ 2b∂q(e− bv) = 0
(4)

and can be written in the compact form ∂tX̄+ ∂qJ̄(X̄) = 0 with

X̄=

(
e

v

)
, J̄(X̄) =

(
−b2(e− bv)2

2b(e− bv)

)
. (5)

This can be proved before the appearance of the shocks (see [7]). The differential matrix

of J̄ is given by

(∇J̄)(X̄) = 2b

(
−b(e− bv) b2(e− bv)

1 −b

)
.

For given (ē, v̄) we denote by (T̄+
t )t≥0 (resp. (T̄−

t )t≥0) the semigroup on S(R)× S(R)
generated by the linearized system

∂tε + M̄T ∂qε = 0, (resp. ∂tε − M̄T ∂qε = 0), (6)

where

M̄ := M̄(ē, v̄) = [∇J̄](ω̄), ω̄ =

(
ē

v̄

)
.

We omit the dependence of these semigroups on (ē, v̄) for lightness of the notations. Above

S(R) denotes the Schwartz space of smooth rapidly decreasing functions.



4 CÉDRIC BERNARDIN AND PATRÍCIA GONÇALVES

3. STATEMENT OF THE RESULTS

For each integer z ≥ 0, let Hz(x) = (−1)zex2 dz

dxz
e−x2

be the Hermite polynomial and

hz(x) = (z!
√

2π)−1Hz(x)e
−x2

the Hermite function. The set {hz,z ≥ 0} is an orthonormal

basis of L2(R). Consider in L
2(R) the operator K0 = x2 −∆, ∆ being the Laplacian on R.

For an integer k ≥ 0, denote by Hk the Hilbert space induced by S(R) and the scalar product

〈·, ·〉k defined by 〈 f ,g〉k = 〈 f ,Kk
0 g〉0, where 〈·, ·〉0 denotes the inner product of L2(R) and

denote by H−k the dual of Hk, relatively to this inner product. Let 〈·〉 represent the average

with respect to the Lebesgue measure.

We take the infinite system at equilibrium under the Gibbs measure µβ̄ ,λ̄ corresponding

to a mean energy ē and a mean volume v̄. Our goal is to study the energy-volume fluctuation

field in the time-scale tn1+α , α ≥ 0:

Y
n,α

t (G) =
1√
n

∑
x∈Z

G(x/n) ·
(
ω̄x(tn

1+α)− ω̄
)
, (7)

where for q ∈R, x ∈ Z,

G(q) =

(
G1(q)
G2(q)

)
, ω̄x =

(
Vb(ηx)

ηx

)

and G1,G2 are test functions belonging to S(R).
If E is a Polish space then D(R+,E) (resp, C(R+,E)) denotes the space of E-valued

functions, right continuous with left limits (resp. continuous), endowed with the Skorohod

(resp. uniform) topology. Let Qn,α be the probability measure on D(R+,H−k ×H−k)
induced by the fluctuation field Y

n,α
t and µβ̄ ,λ̄ . LetPµβ̄ ,λ̄

denote the probability measure on

D(R+,RZ) induced by (η(t))t≥0 and µβ̄ ,λ̄ . Let Eµβ̄ ,λ̄
denote the expectation with respect

to Pµβ̄ ,λ̄
.

Theorem 1. Fix an integer k > 2. Denote by Q the probability measure on C(R+,H−k ×
H−k) corresponding to a stationary Gaussian process with mean 0 and covariance given

by

EQ [Yt(H)Ys(G)] = 〈 T̄−
t H · χ̄ T̄−

s G〉
for every 0 ≤ s ≤ t and H,G in Hk ×Hk. Here χ̄ := χ̄(β̄ , λ̄ ) is the equilibrium covariance

matrix 2 of ω̄0. Then, the sequence (Qn,0)n≥1 converges weakly to the probability measure

Q.

As a consequence of Theorem 1 we obtain a Central Limit Theorem for the energy flux

and for the volume flux through a fixed bond. For that purpose fix a site x ∈ Z, let E n
x,x+1(t)

(resp. V n
x,x+1(t)) denote the energy (resp. volume) flux through the bond {x,x+ 1} during

the time interval [0, tn], defined as:

E
n
x,x+1(t) := ∑

y≥x+1

{Vb(ηy(tn))−Vb(ηy(0))}
(

resp. V
n

x,x+1(t) := ∑
y≥x+1

{ηy(tn)−ηy(0)}
)
.

Then, from the previous result we conclude that

Corollary 1. Fix x ∈ Z and let Z
n,e
t := 1√

n
{E n

x,x+1(t)−Eµβ̄ ,λ̄
[E n

x,x+1(t)]}. For every k ≥
1 and every 0 ≤ t1 < t2 · · · < tk, (Zn,e

t1
, · · · ,Zn,e

tk
) converges in law to a Gaussian vector

2See (18) for an explicit value.
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(Ze
t1
, · · · ,Ze

tk
) with mean zero and covariance given by

EQ[Z
e
t Ze

s ] =
2

β̄ 3
(λ̄ − bβ̄)2s,

for all s ≤ t.

Corollary 2. Fix x ∈ Z, let Z
n,v
t := 1√

n
{V n

x,x+1(t)− Eµβ̄ ,λ̄
[V n

x,x+1(t)]}. For every k ≥
1 and every 0 ≤ t1 < t2 · · · < tk, (Zn,v

t1
, · · · ,Zn,v

tk
) converges in law to a Gaussian vector

(Zv
t1
, · · · ,Zv

tk
) with mean zero and covariance given by

EQ[Z
v
t Zv

s ] =
2

β̄
s,

for all s ≤ t.

We notice that, according to Corollary 1, the limiting energy flux Ze
t has a vanishing

variance for λ̄ = bβ̄ which is equivalent to ē = bv̄.

The theorem above means that in the hyperbolic scaling the fluctuations are trivial:

the initial fluctuations are transported by the linearized system of (4). To see a nontrivial

behavior we have to study, in the transport frame, the fluctuations at a longer time scale

tn1+α , with α > 0. Thus, we consider the fluctuation field Ŷ
n,α
· , α > 0, defined, for any

G ∈ S(R)× S(R), by

Ŷ
n,α

t (G) = Y
n,α

t

(
T̄+

tnα G
)
. (8)

According to the fluctuating hydrodynamics theory ([26], pp. 85-96), in the case of a

normal (diffusive) behavior α = 1, the field (Ŷ n,α
t ) t≥0 should converge to the stationary

field (Ŷt ) t≥0 simply related to the solution (Ẑt ) t≥0 of the linear two dimensional vector

valued (infinite-dimensional) stochastic partial differential equation

∂tẐt = ∇ ·
(

D ∇Ẑt

)
+
√

2D χ̄ ∇ ·W t . (9)

Here W (x, t) is a standard two-dimensional vector valued space-time white noise and the

coefficient D := D(ē, v̄) is expressed by a Green-Kubo formula ( see (12)).

Our second main theorem shows that the correct scaling exponent α is greater than 1/3:

Theorem 2. Fix an integer k > 1 and α < 1/3. Denote by Q the probability measure

on C(R+,H−k ×H−k) corresponding to a stationary Gaussian process with mean 0 and

covariance given by

EQ [Yt(H)Ys(G)] = 〈H · χ̄ G〉
for every 0 ≤ s ≤ t and H,G in Hk ×Hk. Then, the sequence (Qn,α)n≥1 converges weakly

to the probability measure Q.

As in the hyperbolic time scale from the previous result we obtain limiting results for

the energy and volume flux. In this case, since we take the system in a time dependent

reference frame, we defined the energy and volume flux through the time dependent bond

{u
x,α
t (n),ux,α

t (n)+ 1}, where u
x,α
t (n) := −2bλ̄/β̄ tn1+α . For that purpose, fix a site x ∈ Z

and let Eu
x,α
t (n) (resp. V n

u
x,α
t (n)

(t)) denote the energy (resp. volume) flux through the bond

{u
x,α
t (n),ux,α

t (n)+ 1} during the time interval [0, tn1+α ], defined as:

E
n

u
x,α
t (n)

(t) := ∑
y≥u

x,α
t (n)

{Vb(ηy(tn
1+α))−Vb(ηy(0))},

(
resp. V

n

u
x,α
t (n)

(t) := ∑
y≥u

x,α
t (n)

{ηy(tn
1+α)−ηy(0)}

)
.

(10)
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Then, from the previous result we conclude that

Corollary 3. Fix t ≥ 0, x ∈ Z and α < 1/3. Then

lim
n→∞

Eµβ̄ ,λ̄

[(
1√
n
{E n

u
x,α
t (n)

(t)−Eµβ̄ ,λ̄
[E n

u
x,α
t (n)

(t)]}
)2
]
= 0.

and

lim
n→∞

Eµβ̄ ,λ̄

[(
1√
n
{V n

u
x,α
t (n)

(t)−Eµβ̄ ,λ̄
[V n

u
x,α
t (n)

(t)]}
)2
]
= 0.

Similar results have been obtained in [18] by one of the authors for the asymmetric

simple exclusion process. The proof of the three corollaries above follows the same argu-

ments as in [18] once the previous theorems are proved. For that reason we will only give a

sketch of their proof. The proof of the theorems is more problematic since the multi-scale

analysis performed in [18] relies crucially on the existence of a spectral gap so that we

cannot follow [18]. Therefore we propose an alternative approach based on computations

of some resolvent norms.

Theorem 2 does not exclude the possibility of normal fluctuations, i.e. α = 1. In order

to show that the system we consider is really superdiffusive we will show that the transport

coefficient D which appears in (9) diverges so that the correct scaling exponent α is strictly

smaller than 1. Our third result, stated bellow, shows it is in fact less than 3/4.

With the notations introduced in the previous section, the normalized currents are de-

fined by

Ĵx,x+1(η) =

(
j̄x,x+1(η)
j̄′x,x+1(η)

)
− J̄(ω̄)− (∇J̄)(ω̄)

(
Vb(ηx)− ē

ηx − v̄

)
. (11)

Up to a constant matrix coming from a martingale term (due to the noise) and thus

irrelevant for us (see [2], [7]), the coefficient D is defined by the Green-Kubo formula

D =

∫ ∞

0
Eµβ̄ ,λ̄

[
∑
x∈Z

Ĵx,x+1(t)
[
Ĵ0,1(0)

]T
]

dt. (12)

The signature of the superdiffusive behavior of the system is seen in the divergence of

D , i.e. in a slow decay of the current-current correlation function. To study the latter we

introduce its Laplace transform

F (γ,z) =

∫ ∞

0
e−zt

Eµβ̄ ,λ̄

[
∑
x∈Z

Ĵx,x+1(t)
[
Ĵ0,1(0)

]T
]

dt

which is well defined for any z > 0.

Our third theorem is the following lower bound on F (γ,z). Observe that F (γ,z) is a

square matrix of size 2 whose entry (i, j) is denoted by Fi, j .

Theorem 3. Fix γ > 0. There exists a positive constant c := c(γ)> 0 such that

F1,1(γ,z) ≥ cz−1/4

and

Fi, j(γ,z) = 0, (i, j) 6= (1,1).

Moreover, there exists a positive constant C :=C(γ) such that for any z > 0,

C−1
F1,1(1,z/γ)≤ F1,1(γ,z) ≤CF1,1(1,z/γ). (13)
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The last part of the theorem is easy to prove but has an important consequence. In [7]

numerical simulations are performed to detect the anomalous diffusion of energy. Since

it is difficult to estimate numerically the time autocorrelation functions of the currents be-

cause of their expected long-time tails, a more tenable approach consists in studying a non

equilibrium system in its steady state, i.e. considering a finite system in contact with two

thermostats which fix the value of the energy at the boundaries. Then we estimate the

dependence of the energy transport coefficient κ(N) with the system size N. The latter is

defined as N times the average energy current. It turns out that κ(N)∼ Nδ with a parame-

ter δ := δ (γ)> 0 increasing with the noise intensity γ (except for the singular value δ = 1

when γ = 0 which is a manifestation of the ballistic behavior of the Kac-van Moerbecke

system). This result is very surprising since the more stochasticity in the model is intro-

duced, the less the system is diffusive. The same has been observed for other anharmonic

potentials in [7] and also for the Toda lattice perturbed by an energy-momentum conser-

vative noise ([19]). It has been argued in [19] that this may be explained by the fact that

some diffusive phenomena due to non-linearities, like localized breathers, are destroyed by

the noise. In [3] simulations have been performed directly with the Green-Kubo formula

for other standard anharmonic chains with the same conclusion: current autocorrelation

function decreases slower when the noise intensity increases. If all these numerical simu-

lations reproduce correctly the real behavior of the models investigated, they dismiss the

theories which pretend that some universality holds, e.g. [29]. It is therefore very impor-

tant to decide if the phenomena numerically observed are correct or not. The inequality

(13) shows that the time decay of the current autocorrelation function is independent of γ
(up to possible slowly varying functions corrections, i.e. in a Tauberian sense). Therefore

the numerical simulations do not reflect the correct behavior of the system 3. Of course

we could imagine that the exponent δ appearing in the transport coefficient defined by the

non-equilibrium stationary state depends on the intensity of the noise and not on the au-

tocorrelation function but this is very improbable. The last part of our theorem is in fact

valid for all the models cited above. It applies in particular to the framework studied in

[3] and shows that the numerical observations of that paper are not consistent with the real

behavior of the system.

4. A CHANGE OF VARIABLES

To study the energy-volume fluctuation field Y
n,α
· , we introduce the following change

of variables ξx = e−bηx , for each x ∈ Z. Then, the previous Markovian system (η(t))t≥0

defines a new Markovian system (ξ (t))t≥0 with state space (0,+∞)Z whose generator L

is equal to b2A + γS , where for local differentiable functions f : (0,+∞)Z →R we have

that

(A f )(ξ ) = ∑
x∈Z

ξx

(
ξx+1 − ξx−1

)
(∂ξx

f )(ξ )

and

(S f )(ξ ) = ∑
x∈Z

(
f (ξ x,x+1)− f (ξ )

)
.

Observe that the energy and volume conservation laws correspond, for the process

(ξ (t))t≥0, to the conservation of the two following quantities ∑x∈Z ξx, ∑x∈Z logξx. The

corresponding microscopic currents are defined by the conservation law equations:

L (ξx) =−∇ jx−1,x(ξ ), L (logξx) =−∇ j′x−1,x(ξ ),

3It would be very interesting to understand why the numerical simulations are so sensitive to the noise.
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where

jx,x+1(ξ ) =−b2ξxξx+1 − γ∇ξx, j′x,x+1(ξ ) =−b2(ξx + ξx+1)− γ∇(logξx).

We have the following relations between the microscopic currents

j̄x,x+1(η) = jx,x+1(ξ )− j′x,x+1(ξ ), j̄′x,x+1(η) =−1

b
j′x,x+1(ξ ). (14)

If η is distributed according to µβ̄ ,λ̄ then ξ defined by ξx = e−bηx is distributed accord-

ing to the probability measure νβ ,λ on (0,+∞)Z given by

νβ ,λ (dξ ) = ∏
x∈Z

Z−1(β ,λ )1{ξx>0} exp{−β ξx +λ log(ξx)}

with Z(β ,λ ) the partition function and

β = β̄ , λ =−1+ λ̄/b. (15)

Remark that νβ ,λ is nothing but a product probability measure whose marginal follows

a Gamma distribution γλ+1,β−1 with parameter (λ + 1,β−1). In particular, we have Z :=

Z(β ,λ ) = β−(λ+1)Γ(λ + 1), where Γ is the usual Gamma function.

Thus, the process (ξ (t))t≥0 has a family of translation invariant measures νβ ,λ parame-

terized by the chemical potentials (β ,λ ) ∈ (0,+∞)× (−1,+∞).
Let Pνβ ,λ

be the probability measure on D(R+,(0,+∞)Z) induced by (ξ (t))t≥0 and νβ ,λ

and let Eνβ ,λ
denote the expectation with respect to Pνβ ,λ

.

Let 〈·〉νβ ,λ
denote the average with respect to νβ ,λ . The averages ρ := ρ(β ,λ ),θ :=

θ (β ,λ ) of the conserved quantities for (ξ (t))t≥0 at equilibrium under νβ ,λ are defined by

ρ = 〈ξx〉νβ ,λ
and θ = 〈log(ξx)〉νβ ,λ

. By a direct computation we get

ρ = 1+ ē− bv̄ =
λ + 1

β
, θ =−bv̄ = ψ(λ + 1)− log(β ) (16)

where ψ is the usual digamma function, i.e. ψ = Γ′/Γ.

It is understood, here and in the whole paper, that (β ,λ ) are related to (β̄ , λ̄ ) through

(15). We will use the following compact notation, for each x ∈ Z,

ωx =

(
ξx

log(ξx)

)
, and ω =

(
ρ
θ

)
.

Observe that ω̄x = Λωx −
(

1

0

)
, where

Λ =

(
1 −1

0 −1/b

)
. (17)

The covariance matrix χ := χ(β ,λ ) of ω0 under νβ ,λ is given by

χ =

(
∂ 2

β log(Z) −∂β ,λ log(Z)

−∂β ,λ log(Z) ∂ 2
λ log(Z)

)
=

(
(λ + 1)β−2 −β−1

−β−1 (logΓ)′′(λ + 1)

)
.

Thus, the covariance matrix χ of ω0 under νβ ,λ is related to the covariance matrix χ̄ of

ω̄0 under µβ̄ ,λ̄ , by

χ̄ = ΛχΛT . (18)

A simple computation shows that 〈 jx,x+1〉νβ ,λ
=−b2ρ2 and 〈 j′x,x+1〉νβ ,λ

=−2b2ρ .
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The hydrodynamical equations for the process (ξ (t))t≥0 are given by
{

∂tρ − b2∂q(ρ
2) = 0

∂tθ − 2b2∂qρ = 0
(19)

and can be written in the compact form ∂tX+ ∂qJ(X) = 0 with

X=

(
ρ
θ

)
, J(X) =

(
−b2ρ2

−2b2ρ

)
.

The differential matrix of J is given by

(∇J)(X) =

(
−2b2ρ 0

−2b2 0

)
.

As above, let (T+
t )t≥0 (resp. (T−

t )t≥0) denote the semigroup on S(R)×S(R) generated by

the linearized system

∂tε +MT ∂qε = 0, (resp. ∂tε −MT ∂qε = 0). (20)

where

M := M(ρ ,θ ) = (∇J)(ω),

ρ and θ are given by (16). We omit the dependence of these semigroups on (ρ ,θ ) for

lightness of the notations.

We remark that the linearized system of (19) around the constant profiles (ρ ,θ ) is given

by the first equation on the left hand side of (20). It is easy to show that M̄ = ΛMΛ−1 and

ΛT T̄−
t = T−

t ΛT .

5. ORTHOGONAL DECOMPOSITION

Observe that νβ ,λ is a product of Gamma distributions. Let us recall that the Gamma

distribution γα ,k with parameter (α,k) is the probability distribution on (0,+∞) absolutely

continuous w.r.t. the Lebesgue measure with density fα ,k given by

fα ,k(q) =
(

kα Γ(α)
)−1

qα−1e−q/k, q > 0. (21)

Thus, we have νβ ,λ (dξ ) = ∏x∈Z
(

fλ+1,β−1(ξx)dξx

)
= ∏x∈Z

(
β fλ+1,1(β ξx)dξx

)
. The

generalized Laguerre polynomials (H
(λ )
n )n≥0 form an orthogonal basis of the spaceL2(γλ+1,1).

They satisfy the following equations:

H
(λ )
0 = 1,

q
d

dq
H

(λ )
n = nH

(λ )
n − (n+λ )H

(λ )
n−1,

(
q

d2

dq2
+(λ + 1− q)

d

dq
+ n
)

H
(λ )
n = 0,

(n+ 1)H
(λ )
n+1(q) = (2n+ 1+λ − q)H

(λ )
n (q)− (n+λ )H

(λ )
n−1(q)

(22)

and the normalization condition
∫ +∞

0

(
H

(λ )
n (q)

)2

fλ+1,1(q)dq =
Γ(λ + n+ 1)

Γ(λ + 1)

1

n!
.
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In particular, we have

H
(λ )
1 (q) =−q+(λ + 1),

H
(λ )
2 (q) =

(2+λ )(1+λ )

2
− (λ + 2)q+

q2

2
.

(23)

Let Σ be the set composed of configurations σ = (σx)x∈Z ∈ N
Z such that σx 6= 0 only

for a finite number of x. The number ∑x∈Z σx is called the size of σ and is denoted by |σ |.
Let Σn = {σ ∈ Σ ; |σ |= n}. On the set of n-tuples x := (x1, . . . ,xn) of Zn, we introduce the

equivalence relation x ∼ y if there exists a permutation p on {1, . . . ,n} such that xp(i) = yi

for all i ∈ {1, . . . ,n}. The class of x for the relation ∼ is denoted by [x]. Then the set of

configurations of Σn can be identified with the class of n-tuples classes for ∼.

To any σ ∈ Σ, we associate the polynomial function H
β ,λ
σ given by

H
β ,λ
σ (ξ ) = ∏

x∈Z
H

(λ )
σx

(β ξx).

Then, the family
{

H
β ,λ
σ ; σ ∈ Σ

}
forms an orthogonal basis of L2(νβ ,λ ) such that

∫
H

β ,λ
σ H

β ,λ
σ ′ dνβ ,λ = δσ=σ ′∏x∈Z

Γ(λ +σx + 1)

Γ(λ + 1)

1

σx!
= δσ=σ ′W β ,λ (σ), (24)

where

W
β ,λ (σ) := ∏x∈Z

Γ(λ +σx + 1)

Γ(λ + 1)

1

σx!
(25)

and δ denotes the Kronecker function, so that δσ=σ ′ = 1 if σ = σ ′, otherwise it is equal to

zero.

The functions F such that F(σ) = 0 as soon as |σ | 6= n are called degree n functions.

A function F : Σ → R such that F(σ) = 0 if σ /∈ Σn is also called a degree n function.

Any function F : Σn → R is nothing but a symmetric function F : Zn → R through the

identification of σ with [x]. We denote by 〈·, ·〉 the scalar product on ⊕L
2(Σn), each Σn

being equipped with the counting measure. Hence, if F,G : Σ → R, we have

〈F,G〉= ∑
n≥0

∑
σ∈Σn

Fn(σ)Gn(σ) = ∑
n≥0

1

n!
∑

x∈Zn

Fn(x)Gn(x),

with Fn,Gn the restrictions of F,G to Σn. Since (β ,λ ) are fixed through the paper we

denote H
β ,λ
σ by Hσ .

If a local function f ∈ L
2(νβ ,λ ) is written in the form f (ξ ) = ∑σ∈Σ F(σ)Hσ (ξ ) then

we have

(A f )(ξ ) = ∑
σ∈Σ

(AF)(σ)Hσ (ξ ), (S f )(ξ ) = ∑
σ∈Σ

(SF)(σ)Hσ (ξ )

with

(SF)(σ) = ∑
x∈Z

(F(σ x,x+1)−F(σ)),

where σ x,x+1 is obtained from σ by exchanging the occupation numbers σx and σx+1.

Let us now compute the operator A. We have

(A Hσ )(ξ ) = β ∑
x∈Z

(ξx+1 − ξx−1)ξ (x)∂ξx
Hσ (ξ ).
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By the definition of Hσ and by the second equality in (22), it follows that

(A Hσ )(ξ ) = β ∑
x∈Z

(ξx+1 − ξx−1)
(

σxHσ (ξ )− (σx +λ )Hσ−δx
(ξ )
)
,

where σ − δx is the configuration where a particle has been deleted at site x (if there was

no particle on site x, then σ − δx = σ ).

Now, noticing that the fourth equality in (22) can be written as

β qH
(λ )
n (β q) = (2n+ 1+λ )H

(λ )
n (β q)− (n+λ )H

(λ )
n−1(β q)− (n+ 1)H

(λ )
n+1(β q)

and performing some change of variables, we have that

(A Hσ )(ξ ) = ∑
x,y∈Z

|x−y|=1

a(y− x)(σx +λ )(σy + 1)Hσ+δy−δx
(ξ )

− ∑
x∈Z

(σx +λ )(σx+1 −σx−1)Hσ−δx
(ξ )

+ ∑
x∈Z

(σx + 1)(σx+1 −σx−1)Hσ+δx
(ξ ).

Here, a(z) =−1 if z =−1, a(z) = 1 if z = 1 and 0 otherwise. It follows that

A= A0 +A−+A+

with

(A0F)(σ) =− ∑
x,y∈Z
|x−y|=1

a(y− x)σx(σy + 1+λ )F(σ + δy − δx),

(A+F)(σ) =− ∑
x∈Z

σx(σx+1 −σx−1)F(σ − δx),

(A−F)(σ) = ∑
x∈Z

(σx − 1+λ )(σx+1−σx−1)F(σ + δx).

Observe that if F vanishes outside of Σn then A±F vanishes outside of Σn∓1 and A0

vanishes outside of Σn.

The Dirichlet form D( f ) of a local function f ∈ L
2(νβ ,λ ) is defined by

D( f ) = 〈 f ,(−S f )〉νβ ,λ
=

1

2
∑
x∈Z

∫ (
f (ξ x,x+1)− f (ξ )

)2
νβ ,λ (dξ ).

Here and below 〈·, ·〉νβ ,λ
denotes the inner product of L2(νβ ,λ ).

If f has the decomposition f = ∑σ∈Σ F(σ)Hσ then

D( f ) =
1

2
∑
x∈Z

∑
σ∈Σ

W (σ)
(
F(σ x,x+1)−F(σ)

)2
. (26)

Let ∆+=
{
(x,y) ∈ Z

2 ; y ≥ x+ 1
}

, ∆− =
{
(x,y) ∈ Z

2 ; y ≤ x− 1
}

and ∆0 = {(x,x) ; x ∈ Z}.

We denote by D1 the Dirichlet form of a symmetric simple one dimensional random walk,

i.e.

D1(F) =
1

2
∑
x∈Z

(F(x+ 1)−F(x))2,

where F : Z→R is such that ∑x∈Z F2(x)<+∞.
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We denote by D2 the Dirichlet form of a symmetric simple random walk on Z
2 where

jumps from ∆± to ∆0 and from ∆0 to ∆± have been suppressed and jumps from (x,x) ∈ ∆0

to (x± 1,x± 1)∈ ∆0 have been added, i.e.

D2(F) =
1

2
∑
|e|=1

∑
x∈∆±,x+e∈∆±

(F(x+ e)−F(x))2 +
1

2
∑

x∈∆0

(F(x± (1,1))−F(x))2 ,

where F : Z2 →R is a symmetric function such that ∑x∈Z2 F2(x)<+∞.

Lemma 1. Let f = ∑2
n=1 ∑σ∈Σn

Fn(σ)Hσ be a local centered function of degree less or

equal to 2. There exists a positive constant C :=C(λ ), independent of f , such that

C−1 [D1(F1)+D2(F2)]≤ D( f ) ≤C [D1(F1)+D2(F2)] .

Proof. Observe that

• If σ ∈ Σ1, then W (σ) = (λ + 1).
• If σ ∈ Σ2, σ = δx + δy, x 6= y, then W (σ) = (λ + 1)2; if σ ∈ Σ2, σ = 2δx, then

W (σ) = [(λ + 2)(λ + 1)]/2.

This follows from the relation Γ(z+1) = zΓ(z). Then, by using (26) and the identification

of functions F : Σn → R of degree n with their representations as symmetric functions on

Z
n, the claim follows. �

6. TRIVIALITY OF THE FLUCTUATIONS

In this section we prove Theorems 1 and 2 and the three Corollaries above. Since

Vb(ηx)− 1 = ξx − log(ξx), ηx = −b−1 log(ξx), the problem is reduced to study the fluctu-

ation field of the conserved quantities for the process (ξ (t))t≥0 at equilibrium under the

probability measure νβ ,λ . The latter is defined by

Z
n,α

t (G) =
1√
n

∑
x∈Z

G(x/n) ·
(
ωx(tn

1+α)−ω
)
, (27)

where G is a test function belonging to S(R)× S(R). Recalling (17) we have

Y
n,α

t (G) =
1√
n

∑
x∈Z

(ΛT G)(x/n) · (ωx(tn
1+α)−ω) = Z

n,α
t (ΛT G). (28)

By the relation M̄ = ΛMΛ−1, we are able to translate any result about the convergence

of Z
n,α
· into a corresponding result for Y

n,α
· .

6.1. The hyperbolic scaling. For any local function g := g(ξ ) we define the projection

Pρ ,θ g of g on the fields of the conserved quantities by

(Pρ ,θ g)(ξ ) = g(ξ )− g̃(ρ ,θ )− (∇g̃)(ρ ,θ ) · (ω0 −ω)

where g̃(ρ ,θ ) = 〈g〉νβ ,λ
and ∇g̃ is the gradient of the function g̃.

We have that

Proposition 1 (Boltzmann-Gibbs principle I). For every local function g ∈ L
2(νβ ,λ ), for

every H ∈ S(R)× S(R) and every t > 0,

lim
n→∞

Eνβ ,λ



(∫ t

0

1√
n

∑
x∈Z

H(x/n) ·
[
τxPρ ,θ g(ξ (sn))

]
ds

)2

= 0,

where for a local function g and ξ ∈ (0,+∞)Z, τxg(ξ ) := g(τxξ ) and τxξ (y) := ξ (x+ y).
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Since we prove a refined version of this proposition we omit its proof. As a consequence

of last result, we get that the fluctuation field (Z n,0
· )n≥1 converges in law (in the sense of

Theorem 1) to the solution of the equation at the right hand side of (20). Theorem 1 is a

simple consequence of this fact.

In order to prove Corollary 1 and Corollary 2 we follow the same argument as in the

proof of Theorem 4.2 of [18]. In order to compute the limiting variance for the energy flux,

we do the following:

EQ[Z
e
t Ze

s ] = EQ[{Yt(H
1
0 )−Y0(H

1
0 )}{Ys(H

1
0 )−Y0(H

1
0 )}]

= lim
ℓ→+∞

EQ[Yt(G
1
ℓ)Ys(G

1
ℓ)−Yt(G

1
ℓ)Y0(G

1
ℓ)−Ys(G

1
ℓ)Y0(G

1
ℓ)+Y0(G

1
ℓ)Y0(G

1
ℓ)]

where

H1
0 (x) =

(
H0(x)

0

)
, G1

ℓ(x) =

(
Gℓ(x)

0

)
,

H0 is the Heaviside function, namely H0(x) := 1{x≥0} and Gℓ(x) := (1− x/ℓ)1{0≤x≤ℓ}. By

(28), EQ[Yt(H)Y0(G)] :=
〈
T−

t (ΛT H) · χΛT G
〉
. By the definition of (T−

t )t≥0 we have for

G1,G2 test functions in S(R):

T−
t

(
G1(x)
G2(x)

)
=

(
1
ρ

(
G2(x− 2b2ρt)−G2(x)

)
+G1(x− 2b2ρt)

G2(x)

)
.

As a consequence we obtain that

EQ[Z
e
t Ze

s ] =
(

1− 1

ρ

)2(λ + 1

β 2

)

× lim
ℓ→+∞

∫

R

(
Gt
ℓ(x)G

s
ℓ(x)−Gt

ℓ(x)Gℓ(x)−Gs
ℓ(x)Gℓ(x)+Gℓ(x)Gℓ(x)

)
dx,

where for t ≥ 0, Gt
ℓ(x) := Gℓ(x− 2b2ρt). Now, using (15) and (16) the proof ends. Anal-

ogously, by taking an approximation vector function as (0,H0) we get the result for the

volume flux.

6.2. The longer time scale. Since in the hyperbolic time scale the initial fluctuations for

the field Z
n,α
· are transported by the linearized system on the right hand side of (20), we

redefine the fluctuation field Ẑ
n,α
· , α > 0, on G ∈ S(R)× S(R), by

Ẑ
n,α

t (G) = Z
n,α

t

(
T+

tnα G
)
.

For ξ ∈ (0,+∞)Z, let Jx,x+1(ξ ) be the microscopic current vector

(
jx,x+1(ξ )
j′x,x+1(ξ )

)
.

By Dynkin’s formula,

M
n,α
t (G) = Ẑ

n,α
t (G)− Ẑ

n,α
0 (G)−

∫ t

0

{
n1+α

L

(
Ẑ

n,α
s (G)

)
+ ∂sẐ

n,α
s (G)

}
ds

is a martingale with quadratic variation given by

〈M n,α〉t =
∫ t

0
n1+α

L

(
Ẑ

n,α
s (G)

)2

− 2n1+α
(
Ẑ

n,α
s (G)

)
L

(
Ẑ

n,α
s (G)

)
ds.

A simple computation shows that Eνβ ,λ
[〈M n,α〉t ] vanishes as n goes to +∞ for α < 1. This

is equivalent to saying that the martingale M
n,α
t vanishes as n goes to +∞ in L

2(Pνβ ,λ
),
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for α < 1. Observe that, by definition of (T+
t )t≥0, we have

∂sẐ
n,α

s (G) =−
nα

√
n

∑
x∈Z

MT
[
∂q

(
T+

snα G
)
(x/n)

]
· (ωx(sn1+α)−ω)

=− nα

√
n

∑
x∈Z

[
∂q

(
T+

snα G
)
(x/n)

]
·M(ωx(sn1+α)−ω).

On the other hand, the first term in the integral part of the martingale M
n,α
t (G) is equal to

nα

√
n

∑
x∈Z

n
(
(T+

snα G)

(
x+ 1

n

)
− (T+

snα G)

(
x

n

))
·
(

Jx,x+1(ξ (sn1+α)) − Eνβ ,λ
[Jx,x+1]

)
.

Performing a Taylor expansion, we can replace this term, up to a term vanishing as n goes

to +∞ in L
2(Pνβ ,λ

), by

nα

√
n

∑
x∈Z

(
(∂qT+

snα G)(x/n)
)
·
(

Jx,x+1(sn1+α) − 〈Jx,x+1〉νβ ,λ

)
.

Thus, in order to show that

lim
n→∞

Eνβ ,λ

[(
Ẑ

n,α
t (G)− Ẑ

n,α
0 (G)

)2
]
= 0, (29)

it remains to show that

lim
n→∞

Eνβ ,λ



(

nα

√
n

∫ t

0
ds ∑

x∈Z
(∂qT+

snα G)(x/n) ·Θx(ξ (sn1+α))

)2

= 0

where for ξ ∈ (0,+∞)Z

Θx(ξ ) = Jx,x+1(ξ ) − 〈Jx,x+1〉νβ ,λ
−M (ωx −ω).

Observe that in this formula, M := M(ρ ,θ ) is the differential w.r.t. (ρ ,θ ) of the function

〈Jx,x+1〉νβ ,λ
as computed below (20). A simple computation shows that for ξ ∈ (0,+∞)Z

Θx(ξ ) =

(
−b2(ξx+1 −ρ)(ξx −ρ)− (γ + b2ρ)∇ξx

−∇(b2ξx + γ log(ξx))

)
.

The discrete gradient terms appearing in the previous expression, permit to perform

another discrete integration by parts and the resulting terms vanish in L
2(Pνβ ,λ

) as n goes

to +∞, for α < 1. Using the smoothness of the function G, we see that it only remains to

show the following

Theorem 4 (Boltzmann-Gibbs principle II). Fix α < 1/3 and let ϕ : R+×R→R be such

that ϕ(·,x) ∈ S(R). For every t > 0

lim
n→∞

Eνβ ,λ



(∫ t

0

nα

√
n

∑
x∈Z

ϕ(snα ,x/n)(ξx(sn1+α)−ρ)(ξx+1(sn1+α)−ρ)ds

)2

= 0

Proof. In the following, C,C0,C1, . . . denote constants independent of n whose values can

change from line to line. Let fs(ξ ) be the function ∑x∈Z ϕ(s,x/n)Hδx+δx+1
(ξ ) . We have
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the following upper bound

Eνβ ,λ

[(∫ t

0
fsnα (ξ (sn1+α))

)2
]
≤ C

∫ t

0
〈 fsnα ,(s−1 − n1+α

L )−1 fsnα 〉νβ ,λ
ds

=
C

n1+α

∫ t

0

〈
fsnα ,

(
1

sn1+α
−L

)−1

snα

〉
νβ ,λ

ds

≤ C

n1+α

∫ t

0

〈
fsnα ,

(
1

sn1+α
− γS

)−1

fsnα

〉
νβ ,λ

ds.

In the first inequality above we used the result of [25] applied to this setting. We notice

that since our test functions depend on time, the result of [25] has to be modified as written

here. To prove the last result one can simply adapt the proof of Lemma 4.3 of [10] to this

case. We also notice that for our purposes, we need to prove the result for ϕ equal to the

first component of the column vector ∂qT+
snα G.

In order to simplify notations, let us define ε = 1/sn1+α .

We denote by Σ0
2 the set of configurations σ of Σ2 such that σ = 2δx, x ∈ Z, and Σ±

2 the

complementary set of Σ0
2 in Σ2, i.e. the set of configurations σ ∈ Σ2 such that σ = δx +δy,

y 6= x ∈ Z. Observe that fsnα is a function of degree 2 with a decomposition in the form

fsnα = ∑σ∈Σ2
Φsnα (σ)Hσ which satisfies Φsnα (σ) = 0 if σ ∈ Σ0

2. We have that (see e.g.

[25])

〈
fsnα ,

(
1

sn1+α
− γS

)−1

fsnα

〉
νβ ,λ

= sup
g

{
2〈 fsnα ,g〉νβ ,λ

− ε〈g ,g〉νβ ,λ
− γD(g)

}

where the supremum is taken over local functions g ∈ L
2(νβ ,λ ). Decompose g appearing

in this variational formula as g = ∑σ G(σ)Hσ . Recall that {Hσ ; σ ∈ Σ} are orthogonal,

that the function fsnα is a degree 2 function such that Φsnα (σ) = 0 for any σ /∈ Σ±
2 and

formula (26) for the Dirichlet form D(g). Thus, we can restrict this supremum over degree

2 functions g such that G(σ) = 0 if σ ∈ Σ0
2. Then, by Lemma 1, we have

〈
fsnα ,

(
1

sn1+α
− γS

)−1

fsnα

〉
νβ ,λ

≤ sup
G





∑
x6=y

Φsnα (x,y)G(x,y)− ε ∑
(x,y)∈Z2

x6=y

G2(x,y)−C ∑
|e|=1

∑
(x,y)∈∆±

(x,y)+e∈∆±

(
G((x,y)+ e)−G(x,y)

)2





where C := C(λ ,γ), ∆± = {(x,y) ∈ Z
2 ; x 6= y} and as usual we identify the functions

defined on Σn with symmetric functions defined on Z
n.

To any symmetric function G defined on the set ∆±, we denote by G̃ its extension to Z
2

defined by

G̃(x,y) = G(x,y) if x 6= y, G̃(x,x) =
1

4
∑
|e|=1

G((x,x)+ e).
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It is trivial that

∑
(x,y)∈Z2

G̃2(x,y)≤C ∑
(x,y)∈Z2

x6=y

G2(x,y),

∑
|e|=1

∑
(x,y)∈Z2

(
G̃((x,y)+ e)− G̃(x,y)

)2

≤C ∑
|e|=1

∑
(x,y)∈∆±

(x,y)+e∈∆±

(
G((x,y)+ e)−G(x,y)

)2

.

Thus, we have

〈
fsnα ,

(
1

sn1+α
− γS

)−1

fsnα

〉
νβ ,λ

≤C0 sup
G



 ∑

(x,y)∈Z2

Φsnα (x,y)G(x,y)−C1ε ∑
(x,y)∈Z2

G2(x,y)

−C2 ∑
|e|=1

∑
(x,y)∈Z2

(
G((x,y)+ e)−G(x,y)

)2





where the supremum is now taken over all symmetric local functions G : Z2 →R. By using

Fourier transforms, it is easy to show that this supremum is equal to

C0

4

∫

[0,1]2

|Φ̂snα (k)|2

C1ε + 4C2 ∑2
i=1 sin2(πki)

dk

where the Fourier transform Φ̂snα of Φsnα is given by

Φ̂snα (k) = ∑
(x,y)∈Z2

Φsnα (x,y)e2iπ(k1x+k2y), k = (k1,k2) ∈ [0,1]2.

By definition of fsnα , we have Φsnα (x,y) =
1

2

(
ϕ(snα ,x/n)+ϕ(snα ,y/n)

)
if |x− y| = 1

and 0 otherwise. Consequently, we have

〈
fsnα ,

(
1

sn1+α
− γS

)−1

fsnα

〉
νβ ,λ

≤
C0

16

∫

[0,1]2

∣∣∣∑x∈Z ϕ(snα ,x/n)e2iπx(k1+k2)
∣∣∣
2

C1ε + 4C2 ∑2
i=1 sin2(πki)

dk

=
C0

16

∫

[0,1]
d p

∣∣∣∣∣∑
x∈Z

ϕ(snα ,x/n)e2iπxp

∣∣∣∣∣

2 ∫

[0,1]

dk1

C1ε + 4C2 sin2(πk1)+ 4C2 sin2(π(p− k1))

≤ C0

16

∫

[0,1]
d p

∣∣∣∣∣∑
x∈Z

ϕ(snα ,x/n)e2iπxp

∣∣∣∣∣

2 ∫

[0,1]

dk1

C1ε + 4C2 sin2(πk1)

≤
C√

ε

∫

[0,1]

∣∣∣∣∣∑
x∈Z

ϕ(snα ,x/n)e2iπxp

∣∣∣∣∣

2

d p.

Observe now that

∫

[0,1]

∣∣∣∣∣∑
x∈Z

ϕ(x/n)e2iπxp

∣∣∣∣∣

2

= ∑
(x,y)∈Z2

ϕ(x/n)ϕ(y/n)

∫

[0,1]
e2iπ(x−y)pd p = ∑

x∈Z
ϕ2(x/n)≤Cn.



17

Putting everything together, we get that

Eνβ ,λ

[(∫ t

0

nα

√
n

∑
x∈Z

ϕ(snα ,x/n)(ξx(sn1+α)−ρ)(ξx+1(sn1+α)−ρ)ds

)2]

≤ Ctn2α−1

n1+α

∫ t

0

n√
ε

ds.

Since ε := 1/sn1+α last expression vanishes as n goes to +∞, if α < 1/3. �

Now, in order to prove Corollary 3 we follow the same arguments as in the proof of

Proposition 9.3 of [18] and we proceed as follows. We use the change of variables to

defined the energy (resp. volume) flux through the time dependent bond u
x,α
t (n) during the

time interval [0, tn1+α ] as:

Ẽ
n

u
x,α
t (n)

(t) := ∑
y≥u

x,α
t (n)

{ξy(tn
1+α)− ξy(0)}

(
resp. Ṽ

n

u
x,α
t (n)

(t) := ∑
y≥u

x,α
t (n)

{log(ξy(tn
1+α))− log(ξy(0))}

)
.

By (14) we have that

E
n

u
x,α
t (n)

(t) := Ẽ
n

u
x,α
t (n)

(t)− Ṽ
n

u
x,α
t (n)

(t), V
n

u
x,α
t (n)

(t) :=−1

b
Ṽ

n

u
x,α
t (n)

(t).

Then, from (29) applied to the vector function G1
ℓ we obtain that

lim
n→∞

Eνβ ,λ

[(
1√
n
{Ẽ n

u
x,α
t (n)

(t)−Eνβ ,λ
[Ẽ n

u
x,α
t (n)

(t)]}
)2
]
= 0.

On the other hand, applying (29) to the vector function
(

1
ρ Gℓ(x− u

x,α
t (n))

−Gℓ(x− u
x,α
t (n))

)

we obtain that

lim
n→∞

Eνβ ,λ

[(
1

ρ

1√
n
{Ẽ n

u
x,α
t (n)

(t)−Eνβ ,λ
[Ẽ n

u
x,α
t (n)

(t)]}− 1√
n
{Ṽ n

u
x,α
t (n)

(t)−Eνβ ,λ
[Ṽ n

u
x,α
t (n)

(t)]}
)2
]
= 0.

Now, Corollary 3 follows easily from the previous results.

7. DIFFUSIVITY

In this section we prove Theorem 3. Our proof is based on the resolvent methods intro-

duced in [4, 22] and developed in few other contexts (e.g. [5, 24, 28]). Some differences

with these previous works is the presence of two and not only one conserved quantity and

the degeneracy of the symmetric part of the generator.

We fix ρ > 0,θ ∈ R and denote by β ,λ the chemical potentials given by (16). Let also

(β̄ , λ̄ ) be given in terms of (β ,λ ) by (15).

Recall the definition of Ĵx,x+1 given in (11). We introduce the normalized currents jx,x+1,

j′x,x+1 and Jx,x+1 corresponding to the process (ξ (t))t≥0, which are defined by

jx,x+1(ξ ) = jx,x+1(ξ )−〈 jx,x+1〉νβ ,λ
− ∂ρ〈 jx,x+1〉νβ ,λ

(ξx −ρ)− ∂θ〈 jx,x+1〉νβ ,λ
(log(ξx)−θ ),

j′x,x+1(ξ ) = j′x,x+1(ξ )−〈 j′x,x+1〉νβ ,λ
− ∂ρ〈 j′x,x+1〉νβ ,λ

(ξx −ρ)− ∂θ〈 j′x,x+1〉νβ ,λ
(log(ξx)−θ ),

Jx,x+1(ξ ) = jx,x+1(ξ )− j′x,x+1(ξ ).
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Since 〈 jx,x+1〉νβ ,λ
=−b2ρ2 and 〈 j′x,x+1〉νβ ,λ

=−2b2ρ , we get

jx,x+1(ξ ) =−b2(ξx −ρ)(ξx+1 −ρ)− (γ + b2ρ)∇(ξx)

j′x,x+1(ξ ) =−∇(b2ξx + γ log(ξx)).
(30)

For any local compactly supported functions f ,g : (0,+∞)Z → R we define the inner

product ≪ f ,g ≫:=≪ f ,g ≫β ,λ of f and g by

≪ f ,g ≫= ∑
x∈Z

(
〈τx f g〉νβ ,λ

−〈 f 〉νβ ,λ
〈g〉νβ ,λ

)

= lim
k→+∞

∑
|x|≤k

(
〈τx f g〉νβ ,λ

−〈 f 〉νβ ,λ
〈g〉νβ ,λ

)

= lim
k→+∞

1

2k+ 1
∑
|x|≤k

{
∑

|y−x|≤k

(
〈τx+y f τyg〉νβ ,λ

−〈 f 〉νβ ,λ
〈g〉νβ ,λ

)}

= lim
k→+∞

〈(
1√

2k+ 1
∑
|x|≤k

τx f

)(
1√

2k+ 1
∑
|x|≤k

τxg

)〉

νβ ,λ

where the third equality follows from the invariance of νβ ,λ by the shift. Observe also that

the first sum on Z is in fact a finite sum since f and g are assumed to be local functions.

We denote by H0 the completed space. Observe that any constant and gradient functions

are equal to 0 in H0.

By (30), the normalized current associated to the volume is a gradient and this shows

that Fi, j(γ,z) = 0 if (i, j) 6= (1,1). By the definition of Ĵx,x+1 and by (14), we are only

interested in the behavior, as z → 0, of

L(z) =≪ J0,1,(z−L )−1J0,1 ≫=

∫ ∞

0
e−zt ≪ J0,1(t) , J0,1(0)≫ dt.

Since gradient functions are equal to 0 in H0, this is equivalent to estimate

L(z) = b4 ≪W0,1,(z−L )−1W0,1 ≫
where Wx,y is the local function Wx,y = (ξx −ρ)(ξy −ρ).

In this section we prove there exists a constant C > 0 such that

≪W0,1,(z−L )−1W0,1 ≫≥ Cz−1/4. (31)

But before proving (31) let us show (13) which is a direct consequence of the following

lemma.

Lemma 2. For any γ > 0, there exists a constant C :=C(γ) such that

≪W0,1 , (z/γ − b2
A −S )−1W0,1 ≫≤ C ≪W0,1,(z− b2

A − γS )−1W0,1 ≫

and

≪W0,1,(z− b2
A − γS )−1W0,1 ≫≤ C ≪W0,1 , (z/γ − b2

A −S )−1W0,1 ≫ .

Proof. Assume γ > 1 the case γ < 1 being similar. By Lemma 2.1 of [4] we have the

variational formula for ≪W0,1,(z−L )−1W0,1 ≫, where L = b2A − γS , given by

sup
f

{
2 ≪W0,1, f ≫−≪ f ,(z− γS ) f ≫−b4 ≪ A f ,(z− γS )−1

A f ≫
}
,
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where the supremum is carried over functions f belonging to the domain of the generator

L or equivalently to a dense subspace included in this domain, say the space of smooth

local compactly supported functions. We have that

sup
f

{
2 ≪W0,1, f ≫−≪ f ,(z− γS ) f ≫−b4 ≪ A f ,(z− γS )−1

A f ≫
}

=sup
f

{
2 ≪W0,1, f ≫−γ ≪ f ,(z/γ −S ) f ≫−b4γ−1 ≪ A f ,(z/γ −S )−1

A f ≫
}

≥sup
f

{
2 ≪W0,1, f ≫−γ ≪ f ,(z/γ −S ) f ≫−b4γ ≪ A f ,(z/γ −S )−1

A f ≫
}

=sup
f

{
2γ−1/2 ≪W0,1, f ≫−≪ f ,(z/γ −S ) f ≫−b4 ≪ A f ,(z/γ −S )−1

A f ≫
}

where the penultimate inequality comes from γ > 1 and the ultimate is obtained by the

change of f into γ−1/2 f . The last term is equal to

γ−1 ≪W0,1 , (z/γ − b2
A −S )−1W0,1 ≫

and this proves the first inequality of the lemma.

For the second one we proceed similarly:

sup
f

{
2 ≪W0,1, f ≫−≪ f ,(z− γS ) f ≫−b4 ≪ A f ,(z− γS )−1

A f ≫
}

=sup
f

{
2 ≪W0,1, f ≫−γ ≪ f ,(z/γ −S ) f ≫−b4γ−1 ≪ A f ,(z/γ −S )−1

A f ≫
}

≤sup
f

{
2 ≪W0,1, f ≫−γ−1 ≪ f ,(z/γ −S ) f ≫−b4γ−1 ≪ A f ,(z/γ −S )−1

A f ≫
}

=sup
f

{
2γ1/2 ≪W0,1, f ≫−≪ f ,(z/γ −S ) f ≫−b4 ≪ A f ,(z/γ −S )−1

A f ≫
}

=γ ≪W0,1 , (z/γ − b2
A −S )−1W0,1 ≫ .

�

Recall the orthogonal decomposition obtained in Section 5. Let f = ∑σ F(σ)Hσ and

g = ∑σ G(σ)Hσ be two centered local functions (i.e. F(0) = G(0) = 0, where 0 denotes

the empty configuration of Σ). The shifted configuration σ by z ∈ Z is denoted by τzσ . We

identify Fn,Gn, the restrictions of F,G to Σn, to symmetric functions on Z
n. By (24) we

have that

≪ f ,g ≫= ∑
z∈Z

∑
σ∈Σ

F(τzσ)G(σ)W (σ),

where W was defined in (25).

With some abuse of notations, we denote by ≪ F,G ≫ the scalar product defined by

≪ F,G ≫= ∑
z∈Z

∑
σ∈Σ

F(τzσ)G(σ)W (σ).

We also introduce the inner product ≪ ·, · ≫free defined by

≪ F,G ≫free = ∑
y∈Z

∑
σ∈Σ

F(τyσ)G(σ).

Since the function W is invariant by the shift, we have a very simple relation between

these two inner products:

≪ F,G ≫=≪ W
1/2F,W 1/2G ≫free . (32)
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On the set Σn we introduce the equivalence relation ⋆ defined by σ ⋆σ ′ if and only if

there exists u ∈ Z such that τuσ = σ ′. Let Σ⋆
n = Σn/⋆ be the set of classes for this relation

and Σ⋆ = ∪n≥1Σ⋆
n. We can rewrite the scalar product ≪ ·, · ≫free as

≪ F,G ≫free= ∑
σ̄∈Σ⋆

F̄(σ̄)Ḡ(σ̄).

Here F̄ is defined by F̄(σ̄ ) =
(
∑y∈Z τyF

)
(σ) where σ is any element of σ̄ . The function

W being invariant by the shift, it makes sense to define W (σ̄ ) by W (σ), σ ∈ σ̄ , σ̄ ∈ Σ⋆.

Then, we have

≪ F,G ≫= ∑
σ̄∈Σ⋆

W (σ̄)F̄(σ̄ )Ḡ(σ̄).

Lemma 3. There exist constants C :=C(n,λ ),c := c(n,λ ) such that for any local function

F : Σn →R of degree n and any positive real z > 0

(1)

C−1 ≪ F,F ≫free ≤≪ F,F ≫≤ C ≪ F,F ≫free .

(2)

C−1 ≪ F,−SF ≫free ≤≪ F,−SF ≫≤ C ≪ F,−SF ≫free .

(3)

≪ F,(z− γS)−1F ≫=≪ W
1/2F , (z− γS)−1

W
1/2F ≫free .

Proof. Recall the definition of W from (25). Thus, W is bounded from above (resp. from

bellow) by a constant C(n,λ ) (resp. C−1(n,λ )) independent of σ ∈ Σn. This is enough to

conclude (1). In order to prove (2), it is enough to use (32) and the fact that for any local

function F : Σ →R we have that S(W 1/2F) = W 1/2SF . Finally, for a local function F of

degree n, we have by (32) and the fact that

≪ F,(z− γS)−1F ≫= sup
G of degree n

{2 ≪ F,G ≫−≪ G,(z− γS)G ≫} ,

the following equality

≪ F,(z− γS)−1F ≫=≪ W
1/2F,(z− γS)−1

W
1/2F ≫free,

which proves (3).

�

Our goal is to get a lower bound for ≪W0,1,(z−L )−1W0,1 ≫ which by Lemma 2.1 of

[4] can be rewritten in the variational form

sup
f

{
2 ≪W0,1, f ≫−≪ f ,(z− γS ) f ≫−b4 ≪ A f ,(z− γS )−1

A f ≫
}
.

Any element σ̄ ∈ Σ⋆
n can be identified with an element of Nn−1 through the application

which associates to (α1, . . . ,αn−1) ∈ N
n−1 the class of the configuration σ = δ0 + δα1

+
. . .+ δα1+...+αn−1

.

Observe also that S is a self-adjoint operator with respect to ≪ ·, · ≫ and with respect

to ≪ ·, · ≫free.

We restrict the previous supremum over degree 2 functions f = ∑(x,y)∈Z2 F([x,y])H[x,y].

In order to keep notation simple, whenever we identify a configuration σ ∈Σn with [x]∈Z
n

we will simply write F(x), instead of F([x]).
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Up to some irrelevant multiplicative constant, a lower bound is given by

sup
Fof degree 2

{
2F(0,1)−‖F‖2

1,z − b4‖A−F‖2
−1,z− b4‖A+F‖2

−1,z − b4‖A0F‖2
−1,z

}

where ‖F‖2
±1,z =≪ F,(z− γS)±1F ≫. We also introduce the corresponding H±1,z-norms

associated to ≪ ·, · ≫free: ‖F‖2
±1,z,free =≪ F,(z− γS)±1F ≫free, for F : Σ → R.

By Lemma 3, there exists a constant C such that this lower bound is bounded from

bellow by

sup
Fof degree 2

{
2F(0,1)−C‖F‖2

+1,z,free

−b4‖W 1/2A−F‖2
−1,z,free − b4‖W 1/2A+F‖2

−1,z,free − b4‖W 1/2A0F‖2
−1,z,free

}
.

Let us first show that if F is of degree 2 then the contributions given by ‖W 1/2A−F‖2
−1,z,free

and ‖W 1/2A0F‖2
−1,z,free are equal to zero.

The function W is constant equal to (λ +1) on Σ1 so that W 1/2A−F =
√

λ + 1A−F . It

is easy to check that the degree one function A−F satisfies

(A−F)(u) = (λ − 1)
(

F(u− 1,u)−F(u,u+ 1)
)
.

For any degree one function G, we have

≪ A−F,G ≫free= ∑
u,y∈Z

G(u+ y)(λ − 1)
(

F(u− 1,u)−F(u,u+ 1)
)
= 0

by a telescopic sum argument. This shows that A−F is equal to zero in the Hilbert space

generated by ≪ ·, · ≫free.

Recall that if F is a degree 2 function, i.e. a symmetric function on Z
2, then F is

identified with a function F̄ defined on N by

F̄(α) = ∑
u∈Z

F(u,u+α)

and as a consequence, for F and G degree 2 functions it holds that

≪ F,G ≫free = ∑
α∈N

F̄(α)Ḡ(α). (33)

Observe that (A0F)(u,v) is equal to

=





2(1+λ )
(

F(u− 1,u)−F(u,u+ 1)
)
, if u = v,

(1+λ )
(

F(u− 1,u+ 1)−F(u,u+ 2)
)
+(2+λ )

(
F(u,u)−F(u+ 1,u+ 1)

)
,

if (u,v) = (u,u+ 1),

(1+λ )
(

F(u− 1,v)−F(u+ 1,v)+F(u,v− 1)−F(u,v+ 1)
)
, if |u− v| ≥ 2

and

W (u,u) =
(λ + 1)(λ + 2)

2
, W (u,v) = (λ + 1)2 for u 6= v. (34)

It is then easy to show that

W 1/2(A0F)(α) = 0

for any α ∈ N. Putting together the previous result and (33) it follows that:
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‖W 1/2A0F‖2
−1,z,free =≪ W

1/2A0F , (z− γS)−1(W 1/2A0F)≫free

= ∑
α∈N

W 1/2(A0F)(α) (λ − γS)−1[W 1/2(A0F)](α) = 0.

Lemma 4. There exists a positive constant C such that for every symmetric function F of

degree 2, if F̄(α) = ∑z∈Z F(z,z+α), then

C−1 ∑
x,y6=0,
|x−y|=1

(
F̄(y)− F̄(x)

)2

≤≪ F,−SF ≫free ≤ C ∑
x,y6=0,
|x−y|=1

(
F̄(y)− F̄(x)

)2

.

Proof. This follows easily from the following equalities together with (33):

SF(0) = ∑
y∈Z

(SF)(y,y)

= ∑
y∈Z

(
F(y+ 1,y+ 1)−F(y,y)

)
+
(

F(y− 1,y− 1)−F(y,y)
)
= 0,

SF(1) = ∑
y∈Z

(SF)(y,y+ 1)

= ∑
y∈Z

(
F(y− 1,y+ 1)−F(y,y+ 1)

)
+ ∑

y∈Z

(
F(y,y+ 2)−F(y,y+ 1)

)

= 2
(

F̄(2)− F̄(1)
)
,

SF(α) = ∑
y

(SF)(y,y+α)

= ∑
y∈Z

(
F(y− 1,y+α)−F(y,y+α)

)
+ ∑

y∈Z

(
F(y+ 1,y+α)−F(y,y+α)

)

+ ∑
y∈Z

(
F(y,y+α + 1)−F(y,y+α)

)
+ ∑

y∈Z

(
F(y,y+α − 1)−F(y,y+α)

)

= 2
(

F̄(α + 1)− F̄(α)
)
+ 2
(

F̄(α − 1)− F̄(α)
)
, α ≥ 2.

�

To any degree three function G, i.e. a symmetric function G on Z
3, the function Ḡ is

identified with a function on N
2:

Ḡ(u,v) = ∑
y∈Z

G(y,u+ y,u+ v+ y).

Since G is symmetric on Z
3, then Ḡ is symmetric on Z

2. As above, for F and G degree

3 functions it holds that

≪ F,G ≫free = ∑
(α ,β )∈N2

F̄(α,β )Ḡ(α,β ). (35)

Let D3, acting on the local functions on N
2, be defined by

D3(Ḡ) = ∑
u≥1

(
Ḡ(u+ 1,0)− Ḡ(u,0)

)2

+ ∑
v≥1

(
Ḡ(0,v+ 1)− Ḡ(0,v)

)2

+
(

Ḡ(1,0)− Ḡ(0,1)
)2

+ ∑
u,v≥1

(
Ḡ(u+ 1,v)− Ḡ(u,v)

)2

+
(

Ḡ(u,v+ 1)− Ḡ(u,v)
)2

.

(36)
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This is the Dirichlet form of a symmetric nearest neighbors random walk on N
2 where all

the jumps between {0}×N and N
∗ ×N

∗4, all the jumps from N×{0} and N
∗×N

∗ and

all the jumps from 0 have been suppressed, and a jump between (0,1) and (1,0) has been

added.

Lemma 5. There exists a constant C > 0 such that for any symmetric function G on Z
3

C−1
D3(Ḡ) ≤≪ G,−SG ≫free ≤ CD3(Ḡ).

Proof. We have the following equalities

SG(0,0) = 0,

SG(0,1) = 2
(

Ḡ(0,2)− Ḡ(0,1)
)
+
(

Ḡ(1,0)− Ḡ(0,1)
)
,

SG(0,β ) = 2
(

Ḡ(0,β + 1)− Ḡ(0,β )
)
+ 2
(

Ḡ(0,β − 1)− Ḡ(0,β )
)
, β ≥ 2,

SG(1,0) = 2
(

Ḡ(2,0)− Ḡ(1,0)
)
+
(

Ḡ(0,1)− Ḡ(1,0)
)

SG(α,0) = 2
(

Ḡ(α + 1)− Ḡ(α,0)
)
+ 2
(

Ḡ(α − 1)− Ḡ(α,0)
)
, α ≥ 2,

SG(α,β ) =
(

Ḡ(α + 1,β )− Ḡ(α,β )
)
+
(

Ḡ(α,β + 1)− Ḡ(α,β )
)

+ 1{α≥2}
(

Ḡ(α − 1,β + 1)− Ḡ(α,β )
)
+ 1{α≥2}

(
Ḡ(α − 1,β )− Ḡ(α,β )

)

+ 1{β≥2}
(

Ḡ(α + 1,β − 1)− Ḡ(α,β )
)
+ 1{β≥2}

(
Ḡ(α,β − 1)− Ḡ(α,β )

)
, α,β ≥ 1.

We recognize in these expressions the generator of a symmetric nearest neighbors ran-

dom walk on N
2 where

• all the jumps between {0}×N and N
∗×N

∗, all the jumps between N×{0} and

N
∗×N

∗, and all the jumps from 0 have been suppressed;

• a jump between (0,1) and (1,0) with rate 1 has been added;

• jumps between (α,β ) and (α ± 1,β ∓ 1) for (α,β ) ∈ N
∗×N

∗ with rate 1 have

been added.

• the non vanishing jumps on N×{0} and on {0}×N have been multiplied by 2.

This together with (35), imply the lemma. �

We choose as a test function F the degree 2 symmetric function F such that

F(α) = z−1/4e−z3/4(α−1), α ≥ 1,

F(0) = F̄(1).
(37)

This function exists since given a function G defined onN we can find a symmetric func-

tion F defined in Z
2 such that F̄ = G. For that purpose, take F(x,y) = G(|y− x|)[φ(x)+

φ(y)] where the function φ is defined on Z and is such that ∑x∈Z φ(x) = 1/2. Then for any

α ∈ N, F̄(α) = ∑u∈Z F(u,u+α) = G(α)∑u∈Z[φ(u)+φ(u+α)] = G(α).
Observe that with this choice, by Lemma 4,

≪ F,−SF ≫free∼ z1/4, F̄(1) = z−1/4, z ∑
α∈N

F̄2(α)∼ z−1/4. (38)

It remains to estimate the last contribution given by ‖W 1/2G‖2
−1,z,free where G = A+F

is a degree 3 function.

4Here and in the sequel N∗ := N\{0}
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Lemma 6. Let G = A+F where F is defined by (37). There exists a constant C > 0 such

that

‖W 1/2G‖2
−1,z,free ≥Cz−1/4.

Proof. For any u,v,w ∈ Z, we have

G(u,u+ 1,u+ 2)= F(u,u+ 1)−F(u+ 1,u+ 2),

G(u,u+ 1,v) = F(u,v)−F(u+ 1,v), v > u+ 1,

G(v,u,u+ 1) = F(v,u)−F(v,u+ 1), v < u,

G(u,u,u+ 1) = 2
(

F(u,u)−F(u,u+ 1)
)
,

G(u,u,u− 1) = 2
(

F(u− 1,u)−F(u,u)
)
,

G(u,v,w) = 0 otherwise.

Let us now compute Ḡ(u,v), u,v ∈ N. We get

Ḡ(0,1) =−Ḡ(1,0) = 2F̄(0)− 2F̄(1),

Ḡ(1,v) = F̄(v+ 1)− F̄(v), v ≥ 2,

Ḡ(u,1) = F̄(u)− F̄(u+ 1), u ≥ 2,

Ḡ(u,v) = 0 otherwise.

(39)

By (37) we have that Ḡ(0,1) = Ḡ(1,0) = 0. Also notice that Ḡ(u,u) = 0 and by (34) we

have that W 1/2(u,v) = (1+λ ) for u 6= v.

It follows, by Lemma 5, that ‖W 1/2G‖2
−1,z,free is upper bounded by the variational for-

mula:

‖W 1/2G‖2
−1,z,free = sup

R



2 ∑

(u,v)∈N2

R(u,v)W 1/2(u,v)Ḡ(u,v)−C0D3(R)





= sup
R



2(1+λ ) ∑

(u,v)∈N2

R(u,v)Ḡ(u,v)−C0D3(R)





where the supremum is taken over local functions on N
2. By (39), we have that

∑
(u,v)∈N2

R(u,v)Ḡ(u,v) = ∑
v≥2

R(1,v)
(

F̄(v+ 1)− F̄(v)
)
− ∑

u≥2

R(u,1)
(

F̄(u+ 1)− F̄(u)
)

= ∑
v≥3

F̄(v)
(

R(1,v− 1)−R(1,v)
)
− ∑

u≥3

F̄(u)
(

R(u− 1,1)−R(u,1)
)

+ F̄(2)
(

R(2,1)−R(1,2)
)

= ∑
v≥2

F̄(v)
(

R(1,v− 1)−R(1,v)
)
− ∑

u≥2

F̄(u)
(

R(u− 1,1)−R(u,1)
)
.

(40)

We use now the following parametrization of R. For k ≥ 1, v ∈ Z, let us define

R(k,v) = φ(k− 1,v− k), v ≥ k, R(u,k) = φ(k− 1,−u+ k),u ≥ k,
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where {φ(k, ·) ; k ≥ 0} are functions from Z→R. We have the following lower bound for

D3(R):

D3(R)≥ ∑
u,v≥1

(
R(u+ 1,v)−R(u,v)

)2

+
(

R(u,v+ 1)−R(u,v)
)2

which is nothing but the Dirichlet form of a random walk where only jumps connecting

sites of N∗×N
∗ have been conserved. With the choice of the parametrization for R and

this lower bound, it is not difficult to show there exists a constant C > 0 such that

D3(R)≥C ∑
k≥0

∑
v∈Z

(
φ(k,v+ 1)−φ(k,v)

)2

+
(

φ(k+ 1,v)−φ(k,v)
)2

.

The right hand side of the previous inequality is the Dirichlet form of a symmetric simple

random walk on N×Z.

By (40), we get

∑
(u,v)∈N2

R(u,v)Ḡ(u,v) = ∑
u∈Z

φ(0,u)
(

F̃(u− 1)− F̃(u)
)

where F̃ :Z→R is defined by F̃(u) =−F̄(u+2)1{u≥0}− F̄(1−u)1{u≤−1}. We extend the

function φ defined on N×Z to Z
2 by defining φ(−k,u) = φ(k,u), k ≥ 1,u ∈ Z. Observe

then that

D3(R)≥C ∑
k≥0

∑
v∈Z

(
φ(k,v+ 1)−φ(k,v)

)2

+
(

φ(k+ 1,v)−φ(k,v)
)2

=
C

2
∑
k∈Z

∑
v∈Z

(
φ(k,v+ 1)−φ(k,v)

)2

+
(

φ(k+ 1,v)−φ(k,v)
)2

.

Consequently we have, for suitable positive constants C1,C2:

‖W 1/2G‖2
−1,z,free ≤C1 sup

φ

{
2 ∑

u∈Z
φ(0,u)

(
F̃(u−1)−F̃(u)

)
−C2 ∑

(u,v)∈Z2

|u−v|=1

(
φ(u)−φ(v)

)2}
.

(41)

A standard Fourier computation shows this supremum is of order z−1/4. Indeed, let û

be the Fourier transform of the function u : Zn → R, defined by

û(k) = ∑
x∈Zn

e2iπx·ku(x), k = (k1, . . . ,kn),

and denote by û∗(k) the complex conjugate of û(k). Using the expression of the sum of a

convergent geometric series, we obtain the following expression for the Fourier transform

Ψ(k1,k2) of the function (x,y) ∈ Z
2 → δ0(y)F̃(x):

Ψ(k1,k2) =−z−1/4e−z3/4

{
1

1− e2iπk1e−z3/4
− e−2iπk1

1− e−2iπk1e−z3/4

}

which satisfies

|Ψ(k1,k2)| ≤
C3

√
z

z3/2 +C4 sin2(πk1)

for some positive constants C3,C4. The supremum appearing in (41) is then given by

C−1
2

∫

[0,1]2

|Ψ(k1,k2)|2

z+ 4sin2(πk1)+ 4sin2(πk2)
dk1dk2.

Then the result follows by a standard study of this integral. �
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To obtain (31), by (38) and Lemma 6, it suffices to take a test function in the form aF

with F given by (37) and a sufficiently small.

8. STOCHASTIC PERTURBATIONS OF HAMILTONIAN SYSTEMS

In this section we discuss some other possible stochastic perturbations and make some

connections with the recent models considered in [8]. Let us start with the Hamiltonian

system (2) with potential V and generator A given by

A = ∑
x∈Z

(
V ′(ηx+1)−V ′(ηx−1)

)
∂ηx .

The energy ∑x∈ZV (ηx) and the volume ∑x∈Z ηx are conserved by these dynamics. Remark

that in fact ∑x∈Z η2x and ∑x∈Z η2x+1 are also conserved and that we cannot exclude the case

that still many others exist. This is the case for example for the exponential interaction for

which an infinite number of conserved quantities can be explicitly identified. Anyway, we

are only interested in these two first quantities. The product probability measures µβ ,λ

defined by

dµβ ,λ (η) = ∏
x∈Z

Z(β ,λ )−1 exp{−βV (ηx)−λ ηx} dηx,

where

Z(β ,λ ) =

∫ ∞

−∞
exp(−βV (r)−λ r) dr.

are invariant for the infinite dynamics.

In [7] we proposed to perturb this deterministic dynamics by the Poissonian noise con-

sidered in this paper and conserving both the energy and the volume. One could also

consider the “ Brownian” noise whose generator S is given by S = ∑x∈ZY 2
x where

Yx = (V ′(ηx+1)−V ′(ηx−1))∂ηx +(V ′(ηx−1)−V ′(ηx))∂ηx+1
+(V ′(ηx)−V ′(ηx+1))∂ηx−1

,

is the vector field tangent to the curve

{(ηx−1,ηx,ηx+1) ∈ R
3 ;

x+1

∑
y=x−1

ηy = 0,
x+1

∑
y=x−1

V (ηy) = 1}.

It is easy to see that the process with generator L = A+ S conserves the energy and the

volume and has µβ ,λ as invariant measures. A priori, it should be possible to extend our

result to this system for V of exponential type but the noise S seems to have a quite com-

plicated expression in the orthogonal basis we used in this paper. The advantage of the

Poissonian noise is its very simple form. Notice also that the Poissonian noise is a less

strong perturbation of the Hamiltonian dynamics than the Brownian noise. In this sense

we are closer to the Hamiltonain dynamics with the Poissonian noise.

We could also decide to conserve energy and not the volume by adding a suitable pertur-

bation. The invariant states are then given by µβ ,0, β > 0. If V is even, a simple Poissonian

noise consists to change the sign of ηx independently on each site x at random exponential

times. In this case one can prove, as in [6], that the energy diffuses in the sense that the

Green-Kubo formula converges to a well defined finite value. For a generic V a Brownian

noise with generator S given by S = ∑x∈Z K2
x with Kx =V ′(ηx+1)∂ηx −V ′(ηx)∂ηx+1

makes

the job.

Consider now the case where we want to add a stochastic perturbation conserving only

the volume. It does not seem to be easy to define a simple Poissonian noise with such a

property. A Brownian noise is obtained by the following scheme. Fix β > 0, consider the
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vector field Xx = ∂ηx+1
− ∂ηx which is tangent to the hyperplane {(ηx,ηx+1) ∈ R

2 ; ηx +
ηx+1 = 1} and define the Langevin operator Sβ by

Sβ =
1

2
∑
x∈Z

e−Hβ ,λ Xx(e
Hβ ,λ Xx)

=
1

2
∑
x∈Z

X2
x +

β

2
∑
x∈Z

(
V ′(ηx+1)−V ′(ηx)

)
Xx

where Hβ ,λ =β ∑x∈ZV (ηx)+λ ∑x∈Z ηx. Observe that Sβ depends on β but is independent

of λ . The operator Sβ is a nonpositive self-adjoint operator in L
2(µβ ,λ ) for any λ and

Sβ (∑x∈Z ηx) = 0. Then, the perturbed volume-conserving model has a generator LV
β given

by

LV
β = A+ γSβ (42)

where γ > 0 is a parameter fixing the strength of the noise. By construction, the Markov

process generated by LV
β has µβ ,λ as a set of invariant probability measures. In fact, using

the same methods as in [7, 17] one can prove that the only space-time invariant probability

measures with finite local entropy density are mixtures of the (µβ ,λ )λ . We can also rewrite

LV
β as

LV
β = ∑

x∈Z

{(
1− γβ

2

)
V ′(ηx+1)+ γβV ′(ηx)−

(
1+

γβ

2

)
V ′(ηx−1)

}
∂ηx

+ γ ∑
x∈Z

(∂ 2
ηx
− ∂ 2

ηx,ηx+1
).

The microscopic flux jx,x+1 associated to the volume conservation law is defined by

LV
β (ηx) =−∇ jx−1,x, jx−1,x =−

(
1+

γβ

2

)
V ′(ηx−1)−

(
1− γβ

2

)
V ′(ηx).

The semi-discrete directed polymer model considered in [8] is, up to an irrelevant scaling

factor 2, recovered by taking V (η) = e−η , β = 1 and γ = 2 (see (3.7) in [27]). In [8] the

authors show that for a particular non stationary initial condition (“wedge”), by developing

a very nice theory of Macdonald processes, the system belongs to the Kardar-Parisi-Zhang

universality class ([27]). Unfortunately one can not use their results or their methods to

derive a more precise picture for the model with exponential interactions considered in this

paper. For other potentials V the theory developed by Borodin and Corwin in [8] can not

be adapted but it would be very interesting to see if one can relate the models generated

by LV
β to the semi-discrete directed polymer and deduce some qualitative information from

the latter. The use of the variational formulas considered in this paper could be the way.

APPENDIX A. EXISTENCE OF THE INFINITE DYNAMICS

In this section we prove existence of the infinite volume dynamics (ξ (t))t≥0. We focus

here on the process ξ but the same proof can be carried for the process η (or just define

η in terms of ξ by ηx(t) = −b−1 logξx(t), x ∈ Z. To simplify notations we will assume

b = 1.

Since the interaction coming from the deterministic part is quadratic, proving the exis-

tence of the infinite dynamics is a non trivial task. Nevertheless nice sophisticated tech-

niques have been introduced by Dobrushin and Fritz in [12]. Here, we follow closely the

approach of [13] (see also [14, 15]) adapted to our case. By itself, the strategy of the proof

of existence of solutions is standard: we consider finite subsystems and prove compactness
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of this family by means of an a priori bound for a quantity Ē which plays the role of an

energy density. The obtention of this a priori bound is however non trivial and is the main

step to get the existence of the dynamics. The aim of this appendix is to show how to

get such an a priori bound. The a priori bound we derive here for the infinite dynamics is

also valid for finite subsystems corresponding to a finite set Λ ⊂ Z with a bound which is

independent of the size of Λ. This proves then that the finite subsystems form a compact

family from which one can extract a subsequence converging to the infinite dynamics.

We have first to specify the space of allowed configurations Ω ⊂ (0,+∞)Z. For x ∈ Z,

let g(x) = 1+ log(1+ |x|) and denote by E(ξ ,µ ,σ), ξ ∈ (0,+∞)Z, µ ∈ Z, σ > 0, the

quantities

E(ξ ,µ ,σ) = ∑
|x−µ|≤σ

(1+ 2ξx− logξx),

Ē(ξ ) = sup
µ∈Z

sup
σ≥g(µ)

σ−1E(ξ ,µ ,σ).

The quantity Ē is called the logarithmic fluctuation of energy and the set Ω is defined

as

Ω := {ξ ∈ (0,+∞)Z : Ē(ξ )<+∞}.
The configuration space Ω is equipped with the product topology and with the associated

Borel structure. It is easy to see that νβ ,λ (Ω) = 1 for any β > 0 and λ >−1.

Let N(t) = {Nx,x+1(t) ; x ∈ Z} be a collection of independent Poison processes of inten-

sity γ > 0. The equations of motion corresponding to the generator L read as

dξx = ξx(ξx+1 − ξx−1)dt +∇((ξx − ξx−1)dNx−1,x(t)) , x ∈ Z. (43)

Let D(R+,R) denote the space of càdlàg functions of R+ into R with the Skorohod

topology and let D= [D(R+,R)]
Z equipped with the product topology and the associated

Borel field B. The smallest σ -algebra on which all projection restricted to the time interval

[0, t] are measurable will be denoted by Bt . Finally, suppose that we are given a probability

measure P on B such that our Poisson processes Nx,x+1 are realized as components of the

random element of D.

Definition 1. A Bt -adapted mapping ξ (t) := ξ (t,N) of D into itself is called a tempered

solution of (43) with initial configuration ξ 0 ∈ Ω if ξ (0) = ξ 0, almost each trajectory

ξ (·,N) satisfies the integral form of (43), and the logarithmic energy fluctuation Ē(ξ (t))
is bounded on finite intervals of time with probability one.

Theorem 5. For any ξ 0 ∈ Ω, there exists a unique tempered solution of (43) with initial

configuration ξ 0 ∈ Ω.

As explained above, the main step to prove this theorem is to obtain an a priori bound

that we prove in Proposition 3. For a complete proof, we refer to [13] ( or [14, 15]).

Now we notice that the Gibbs state νβ ,λ , (β ,λ ) ∈ (0,+∞)× (−1,+∞) is formally in-

variant for the infinite dynamics generated by (ξ (t))t≥0. This can be seen by observing

that
∫
(L f )(ξ )dνβ ,λ (dξ ) = 0 for nice functions f : Ω → R. Nevertheless, some care has

to be taken to prove this. Indeed, we do not know that L is really the generator of the

semigroup generated by (ξ (t))t≥0 on the space of bounded measurable functions on Ω in

the usual Hille-Yosida theory. This can be a very difficult question that we prefer to avoid

(see [15]). Instead we use the fact that the infinite dynamics can be approximated by finite

subsystems.
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Proposition 2. For any β > 0,λ > −1, the probability measure νβ ,λ is invariant for the

process (ξ (t))t≥0.

Proof. Let n ≥ 2 and consider the local dynamics generated by the generator Ln = An +
γSn where

(An f )(ξ ) =
n

∑
x=−n

ξx(ξx+1 − ξx−1)(∂ξx
f )(ξ )

− ξn+1

(
ξn +

λ + 1

β

)
(∂ξn

f )(ξ )+ ξ−n−1

(
ξ−n +

λ + 1

β

)
(∂ξ−n−1

f )(ξ ),

(Sn f )(ξ ) =
n

∑
x=−n

(
f (ξ x,x+1)− f (ξ )

)

where f : Ω → R is a compactly supported continuously differentiable function. The dy-

namics is essentially finite-dimensional since the particles outside the box {−n−1, . . .,n+
1} are frozen. Thus, the classical Hille-Yosida theory can be applied. The boundary con-

ditions have been chosen to have∫
(Ln f )(ξ )dνβ ,λ (ξ ) = 0

for any compactly supported continuously differentiable function f which shows that νβ ,λ

is invariant for the local dynamics. Since, as a consequence of the a priori bound, the

infinite dynamics is obtained as a limit of finite local dynamics, this implies that νβ ,λ is

invariant for the infinite dynamics. �

Then this defines a strongly continuous semigroup of contractions (Pt)t≥0 on the Hilbert

space L
2(Ω,B,νβ ,λ ). Moreover, Itô’s formula shows that its generator is a closable ex-

tension of L given by A + γS since for any local compactly supported continuously

differentiable function f , we have

(Pt f )(ξ ) = f (ξ )+
∫ t

0
(PsL f )(ξ )ds, ξ ∈ Ω, t ≥ 0.

A.1. Logarithmic energy fluctuation. We have first to consider a clever smooth modifi-

cation of Ē. Let 0 < λ < 1 and consider a twice continuously differentiable nonincreasing

function ϕ : R → (0,1) such that ϕ(u) = eλ (1−u) if u ≥ 2, ϕ(u) = (1+λ +λ 2/2)e−λ if

u ≤ 1, and ϕ is concave for u ≤ 3/2, convex if u ≥ 3/2. Finally, 0 ≤ −ϕ ′(u)≤ λ ϕ(u) ≤
eλ (1−u), ϕ(u)≥ e−λ (1+u) and |ϕ ′′(u)| ≤ ϕ(u) for all u > 0.

For x ∈ Z and σ ≥ 1 we define the function f as

f (x,σ) =
∫

R

ϕ(|x− y|/σ)e−2λ |y|dy.

In [15] are proved the following properties on f :

c1 exp(−λ |x|/σ)≤ f (x,σ) ≤ c2 exp(−λ |x|/σ), (44)

f (x,σ) ≤ f (y,σ)e2λ |x−y|, ∂σ f (x,σ) ≤ e2λ |x−y|∂σ f (y,σ). (45)

|∂x f (x,σ)| ≤ min{∂σ f (x,σ),σ−1 f (x,σ)}, (46)

g(x)|∂x f (x− µ ,σ)| ≤ 4g(|µ |+σ)(∂σ f )(x− µ ,σ). (47)

Here the constants depend only on λ .

For ξ ∈ (0,+∞)Z, µ ∈ Z and σ > 0, consider the function

W (ξ ,µ ,σ) = ∑
x∈Z

f (x− µ ,σ)(1+ 2ξx− logξx) (48)
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and let

W̄ (ξ ) = sup
µ∈Z

sup
σ≥g(µ)

σ−1W (ξ ,µ ,σ). (49)

Observe that by (44),

W (ξ ,µ ,σ)≥ c1e−λ E(ξ ,µ ,σ), (50)

for all ξ ∈ (0,+∞)Z, µ ∈ Z and σ > 0.

For ξ ∈ (0,+∞)Z, we also consider the function

Ŵ (ξ ) = sup
µ∈Z

W (ξ ,µ ,g(µ))

g(µ)
. (51)

The following lemma shows that these two modifications of the logarithmic energy

fluctuation are equivalent to Ē .

Lemma 7. There exists a constant C such that for all ξ ∈ (0,+∞)Z:

C−1Ŵ (ξ )≤ W̄ (ξ )≤CŴ (ξ ), C−1Ē(ξ )≤ W̄ (ξ )≤CĒ(ξ ).

Proof. The inequality Ŵ (ξ ) ≤ W̄ (ξ ) for all ξ ∈ (0,+∞)Z, is trivial. Let us prove the

second one by taking σ ≥ g(µ), µ ∈ Z and denoting 1+ 2ξx − logξx by Hx. By (44), we

have

W (ξ ,µ ,σ)≤ c2 ∑
x∈Z

exp(−λ |x− µ |/σ)Hx = c2

∞

∑
n=0

e−λ n/σ ∑
|x−µ|=n

Hx

= c2(1− e−λ/σ)
∞

∑
n=0

e−λ n/σ ∑
|x−µ|≤n

Hx,

where the last equality follows from ∑|x−µ|=n Hx = ∑|x−µ|≤n Hx −∑|x−µ|≤n−1 Hx and a dis-

crete integration by parts. Let r ≥ 1 the integer such that r−1 < g(µ)≤ r and decompose

the set {x ∈ Z ; |x − µ | ≤ n} as ∪K+1
j=1 Λ j where the Λ j are non intersecting intervals of

length r for j = 1, . . . ,K and ΛK+1 is of length at most r−1. Observe that K+1 is of order

n/g(µ). By using (50), we have easily that

∑
x∈Λ j

Hx ≤C g(µ)Ŵ (ξ )

where C depends only on λ . Thus we get

W (ξ ,µ ,σ)≤C(1− e−λ/σ)
∞

∑
n=0

e−λ n/σ nŴ(ξ )≤C′σŴ (ξ ).

which concludes the proof of the second inequality.

The proof of C−1Ē(ξ ) ≤ W̄ (ξ ) ≤ CĒ(ξ ) for all ξ ∈ (0,+∞)Z, is the same. The first

inequality follows from (50) and the constant can be taken equal to c1e−λ . The second

inequality follows from a similar argument to the one used above. �

A.2. The a priori bound.

Proposition 3 (A priori bound). For each w ≥ 1 there exists a continuous function qw(t),
t ≥ 0, such that

P

{
sup

0≤s≤t

W̄ (ξ (s))> exp(qw(t)g(u))

}
≤ e−u

for each u ≥ 1, t ≥ 0, whenever W̄ (ξ 0) ≤ w and (ξ (t))t≥0 is a tempered solution of (43)

with initial condition ξ 0.
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Proof. We consider a tempered solution (ξ (t))t≥0 of (43) with initial configuration ξ 0 ∈Ω.

For each k ≥ 1, µ ∈ Z and t ≥ 0 we define the stochastic process ρk by

ρk(t) = kg(µ)−C0

∫ t

0
g(|µ |+ |ρk(s)|)Z′(s)ds (52)

where C0 :=C0(γ,λ ) is a positive constant that will be chosen later and

Z(t) =

∫ t

0
W̄ (ξ (s))ds.

Since the function f (·) is positive, W̄ (·) is also positive and this turns Z(·) positive. The

trajectories of ρk are differentiable, decreasing and satisfy ρk+1(t)−ρk(t) ≤ g(µ) a.s. for

each t ≥ 0. We consider also the sequence of stopping times τk = inf{t ≥ 0; ρk(t)≤ g(µ)}
which satisfy τk < τk+1 < +∞ and limk→+∞ τk = +∞ a.s. We evaluate now the stochastic

differential of t →W (ξ (t),µ ,ρk(t)) for t ≤ τk (so that ρk(t)≥ 1). This is given by

d [W (ξ (t),µ ,ρk(t))] = I
(k)
0 (t)dt − C0 (∂σW )(ξ (t),µ ,ρk(t))g(|µ |+ρk(t))W̄ (ξ (t))dt

+ dI
(k)
1 (t)

where

I
(k)
0 (t) =2 ∑

x∈Z

(
f (x− µ ,ρk(t))− f (x+ 1− µ ,ρk(t))

)
ξx(t)ξx+1(t)

+ ∑
x∈Z

(
f (x+ 1− µ ,ρk(t))− f (x− 1− µ ,ρk(t))

)
ξx(t)

(53)

and

dI
(k)
1 = ∑

x∈Z
f (x− µ ,ρk)

{
2∇
(
(ξx − ξx−1)dNx−1,x

)
−∇

(
(logξx − logξx−1)dNx−1,x

)}
.

We first estimate the term I
(k)
0 (t) and we show that if C0 is taken sufficiently large then,

for t ≤ τk we have that

I
(k)
0 (t) − C0 (∂σW )(ξ (t),µ ,ρk(t))g(|µ |+ρk(t))W̄ (ξ (t))≤ 0. (54)

The second term on the right hand side of (53) can be estimated, by using (45) and (46),

to get to

∣∣∣ f (x+ 1− µ ,ρk(t))− f (x− 1− µ ,ρk(t))
∣∣∣ =
∣∣∣
∫ 1

−1
dα (∂x f )(x− µ +α,ρk(t))

∣∣∣

≤
∫ 1

−1
dα |(∂x f )(x− µ +α,ρk(t))|

≤
∫ 1

−1
dα (∂σ f )(x− µ +α,ρk(t))

≤ 2 sup
[x−µ−1,x−µ+1]

∂σ f (·,ρk(t))

≤ 2e2λ ∂σ f (x− µ ,ρk(t))

(55)

which gives us that

∑
x∈Z

(
f (x+ 1− µ ,ρk(t))− f (x− 1− µ ,ρk(t))

)
ξx(t)≤C ∑

x∈Z
∂σ f (x− µ ,ρk(t))ξx(t)

≤C(∂σW )(ξ (t),µ ,ρk(t)).
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Now, notice that for any x ∈ Z and for all ξ ∈ (0,∞)Z we have that

W̄ (ξ )≥ Ŵ (ξ )≥ W (ξ ,x,g(x))

g(x)
.

On the other hand, by (50) and since for all x > 0 it holds that log(x)≤ 1+ x, then we have

that W (ξ ,x,g(x))≥ c1eλ E(ξ ,x,g(x))≥ c1e−λ ξx+1. Then, we conclude that there exists a

constant C such that for all x ∈ Z and ξ ∈ (0,∞)Z,

ξx+1 ≤Cg(x)W̄ (ξ ). (56)

To estimate the first term on the right hand side of (53) we use the previous estimate,

(47) and a similar argument as done in (55). It follows that
∣∣∣∑

x∈Z
( f (x− µ ,ρk(t))− f (x+ 1− µ ,ρk(t)))ξx(t)ξx+1(t)

∣∣∣

≤CW̄ (ξ (t))g(|µ |+ρk(t)) ∑
x∈Z

∂σ f (x− µ ,ρk(t))ξx(t)

≤CW̄ (ξ (t))g(|µ |+ρk(t))(∂σW )(ξ (t),µ ,ρk(t)).

Then, (54) follows.

The term dI
(k)
1 can be written as

dI
(k)
1 = ∑

x∈Z
f (x− µ ,ρk){2∇((ξx − ξx−1)dNx−1,x)−∇((logξx − logξx−1)dNx−1,x)}

=− ∑
x∈Z

( f (x+ 1− µ ,ρk)− f (x− µ ,ρk)){2∇ξx −∇ logξx}dNx,x+1

=− ∑
x∈Z

( f (x+ 1− µ ,ρk)− f (x− µ ,ρk)){2∇ξx −∇ logξx}(dNx,x+1 − γdt)

− γ ∑
x∈Z

( f (x+ 1− µ ,ρk)− f (x− µ ,ρk)){2∇ξx −∇ logξx}dt.

Since the compensated Poisson processes Nx,x+1(t)−γt are orthogonal martingales with

quadratic variation γ2t, then

dM
(k)
µ =− ∑

x∈Z
( f (x+ 1− µ ,ρk)− f (x− µ ,ρk)){2∇ξx −∇ logξx}(dNx,x+1 − γdt)

defines a martingale with a quadratic variation equal to

d〈M(k)
µ 〉t = γ2 ∑

x∈Z
( f (x+ 1− µ ,ρk)− f (x− µ ,ρk))

2 {2∇ξx −∇ logξx}2
dt.

Using a similar argument to the one in (55), together with the fact that for all x,y ∈ Z

such that |x|, |y| ≤ C it holds that |x− y|2 ≤ 2C|x− y|, the boundedness of the function f ,

(45), (46), (47) and (56), one has that there exists a constant C such that

d〈M(k)
µ 〉t ≤C g(|µ |+ρk(t)) W̄ (ξ (t)) ∂σW (ξ (t),µ ,ρk(t))dt.

Similarly we obtain that
∣∣∣∣∣∑
x∈Z

[ f (x+ 1− µ ,ρk(t))− f (x− µ ,ρk(t))]{2∇ξx(t)−∇ logξx(t)}
∣∣∣∣∣≤C ∂σW (ξ (t),µ ,ρk(t)).

Thus, if the constant C0 is chosen sufficiently large, we have

sup
t≥0

W (ξ (t ∧ τk),µ ,ρk(t ∧ τk))≤W (ξ (0),µ ,kg(µ))+ sup
t≥0

N(µ ,k, t)
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where N(µ ,k, t) =M
(k)
µ (t∧τk)− 1

2
〈M(k)

µ 〉t∧τk
. Observe that exp(M

(k)
µ (t∧τk)− 1

2
〈M(k)

µ 〉t∧τk
)

is a martingale with expectation equal to 1. By the exponential supermartingale inequality,

we have that

P(sup
t≥0

N(µ ,k, t)> u)≤ e−u.

Thus we proved that for each k ≥ 1, µ ∈ Z and u > 0,

sup
t≥0

W (ξ (t ∧ τk),µ ,ρk(t ∧ τk))≤W (ξ (0),µ ,kg(µ))+ u (57)

with a probability greater than 1− e−u. Applying (57) for each µ ∈ Z and k ≥ 1 with u

replaced by u+Akg(µ) where A ≥ 1 is sufficiently large to have ∑k≥1 ∑µ∈Z e−Akg(µ) ≤ 1,

we obtain

sup
t≥0

W (ξ (t ∧ τk),µ ,ρk(t ∧ τk))≤W (ξ (0),µ ,kg(µ))+Akg(µ)+ u

≤ kg(µ)W̄ (ξ (0))+Akg(µ)+ u
(58)

with a probability greater than 1− e−u uniformly in k and µ .

Define now k := kt , t ≥ 0 as the smallest integer k ≥ 1 for which ρk(t) > g(µ); then

τk > t and ρk(t) ≤ 2g(µ) as ρk−1(t) ≤ g(µ); thus choosing k = kt in (58) and using that

W (ξ ,µ ,σ) is increasing in σ (since ∂σ f ≥ 0 by the conditions imposed on ϕ), we get

W (ξ (t),µ ,g(µ))

g(µ)
≤ W (ξ (t),µ ,ρk(t))

g(µ)
≤ kW̄ (ξ (0))+Ak+

u

g(µ)
≤ kW̄ (ξ (0))+Ak+ u,

where in the last inequality we used the fact that g(x)≥ 1 for all x ∈ R. Taking the supre-

mum over µ and using Lemma 7, we obtain

W̄ (ξ (t))≤CktW̄ (ξ (0))+ u

for each t ≥ 0 with probability at least 1− e−u. On the other hand,

2g(µ)≥ ktg(µ)−C0

∫ t

0
g(|µ |+ |ρk(s)|)Z′(s)ds

whence

kt ≤ 2+C0

∫ t

0

g(|µ |+ |ρk(s)|)
g(µ)

Z′(s)ds.

Since ρk(s) ≤ ktg(µ) for any s ∈ [0, t] and g is increasing, we have that g(|µ |+ |ρk(s)|) ≤
g(µ + ktg(µ)). On the other hand for x ≥ 2, g(x) ≤ x together with the fact that for x,y ∈
R g(|x||y|) ≤ g(|x|)g(|y|) and since g(1+ x) ≤ 1+ g(x) for x ≥ 1, we obtain that g(µ +
ktg(µ))≤ g(µ)(1+ g(kt)). As a consequence we obtain that

kt ≤ 2+C0Z(t)(1+ g(kt)). (59)

Since for all x ≥ 1 we have that g(x)≤ 1+ 2
√
|x|, then

kt ≤ 2+C0Z(t)(2+ 2
√

kt).

Finally, it follows that
√

kt ≤ 2+4C0Z(t). Then, since g is increasing and by plugging the

previous inequality in (59), we obtain that

kt ≤ 2+C0Z(t)(1+ g((2+ 4C0Z(t))2)).

Recalling that Z′(t) = W̄ (ξ (t)) we obtained that there exists a constant M > 0 depending

only on λ such that for any w ≥ 1 and any initial condition ξ (0) satisfying W̄ (ξ (0))≤ w,

P

[
sup
t≥0

M−1Z′(t)−w(1+Z(t)g(Z(t)))≤ u

]
≥ 1− e−u.
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The a priori bound follows from this last inequality (see [13], Proposition 1). �
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The authors are very grateful to József Fritz for illuminating discussions on the existence

of the infinite dynamics. We acknowledge the support of the French Ministry of Education

through the grant ANR-10-BLAN 0108 (SHEPI). We are grateful to Égide and FCT for
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