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ON THE RAMIFICATION OF MODULAR
PARAMETRIZATIONS AT THE CUSPS

FRANÇOIS BRUNAULT

Abstract. We investigate the ramification of modular parametriza-
tions of elliptic curves over Q at the cusps. We prove that if
the modular form associated to the elliptic curve has minimal
level among its twists by Dirichlet characters, then the modular
parametrization is unramified at the cusps. The proof uses Bush-
nell’s formula for the Godement-Jacquet local constant of a cusp-
idal automorphic representation of GL(2). We also report on nu-
merical computations indicating that in general, the ramification
index at a cusp seems to be a divisor of 24.

Let E/Q be an elliptic curve of conductor N . It is known [3] that
E admits a modular parametrization, in other words a non-constant
morphism ϕ ∶ X0(N) → E defined over Q. By the Riemann-Hurwitz
formula, the morphism ϕ necessarily ramifies as soon as the genus of
X0(N) is at least 2, and we may ask whether these ramification points
have interesting properties. In this direction, Mazur and Swinnerton-
Dyer discovered a link between the analytic rank of E and the number
of ramification points of ϕ on the imaginary axis [11]. Further results
and numerical examples were obtained by Delaunay [7].

In this article, we consider the following problem.

Problem 0.1. Compute the ramification index eϕ(x) of ϕ at a given
cusp x ∈X0(N)(C).

Let ωE be a Néron differential form on E. Its pull-back ϕ∗ωE is
a rational multiple of ωfE = 2πifE(z)dz, where fE is the newform of
weight 2 on Γ0(N) associated to E. It follows that eϕ(x) = 1+ordx ωfE
depends only on fE, and not on ϕ. We prove the following result.

Theorem 0.2. Let f ∈ S2(Γ0(N)) be a newform having minimal level
among all its twists by Dirichlet characters. Then the differential form
ωf = 2πif(z)dz doesn’t vanish at the cusps of X0(N).

A newform having minimal level among its twists by Dirichlet char-
acters is said to be minimal by twist.

Corollary 0.3. If the newform fE associated to E is minimal by twist,
then ϕ is unramified at the cusps.
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If N is squarefree, then all newforms of level N are minimal by twist,
and in this particular case, Theorem 0.2 follows easily by considering
the action of Atkin-Lehner involutions. Thus modular parametrizations
of semistable elliptic curves are always unramified at the cusps.

For general N , determining the ramification index becomes more
intricate and we proceed as follows. In §2 we apply a formula of Merel
which expresses the translate of a newform f as a linear combination
of twists of f by Dirichlet characters. This enables us in §3 to reduce
Theorem 0.2 to a purely local non-vanishing statement. We prove this
non-vanishing in §5-6 using Bushnell’s formula for the local constant of
a cuspidal automorphic representation of GL(2), together with results
of Loeffler and Weinstein on the cuspidal inducing data underlying such
representations.

Theorem 0.2 was suggested by numerical computations, which we
report in §7. Using Pari/GP [14], we estimated numerically the rami-
fication indices at all cusps for all elliptic curves of conductor ≤ 2000.
This provided us with a list of 745 elliptic curves (up to isogeny) whose
modular parametrization seemed to have at least one ramification point
among the cusps. Using Magma [2], we then checked that none of the
corresponding modular forms was minimal by twist. In our examples,
the ramification index always appears to be a divisor of 24. It seems
interesting to find a general formula for this number in terms of f .

I would like to thank Christophe Delaunay for helpful suggestions
regarding this work.

1. First properties of the ramification index

Let f be a newform of weight 2 on Γ0(N). For any x ∈ X0(N)(C),
we define ef(x) = 1 + ordx(ωf).
Lemma 1.1. Let Q be a divisor of N such that (Q, NQ ) = 1, and let

WQ be the corresponding Atkin-Lehner involution of X0(N). For every
x ∈X0(N)(C), we have ef(WQ(x)) = ef(x).

Proof. We have ordWQ(x)(ωf) = ordx(W ∗

Qωf) = ordx(ωf) since f is an
eigenvector of WQ. �

Lemma 1.2. Let σ ∈ Aut(C) and let fσ ∈ S2(Γ0(N)) be the new-
form obtained by applying σ to the coefficients of f . For every x ∈
X0(N)(C), we have ef(x) = efσ(σ(x)).

Proof. This follows as in Lemma 1.1 from σ∗ωf = ωfσ . �

Recall that the set of cusps of X0(N) is given by Γ0(N)/P1(Q).
Definition 1.3. The level of a cusp x of X0(N) is defined to be (b,N),
where a

b ∈ P1(Q) is any representative of x such that (a, b,N) = 1.

Lemma 1.4. For any divisor d of N , the group Aut(C) acts transi-
tively on the set of cusps of level d of X0(N).
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Proof. This is a consequence of [13, Thm 1.3.1]. �

The action of WQ on the cusps can be described as follows.

Lemma 1.5. Let N = QQ′ with (Q,Q′) = 1. Let d be a divisor of N .
Write d = dQdQ′ with dQ∣Q and dQ′ ∣Q′. Then WQ maps cusps of level

d to cusps of level Q
dQ

⋅ dQ′.

Proof. Since WQ is defined over Q, it suffices to compute the level of
the cusp WQ(1

d). Let u, v be two integers such that Qu−Q′v = 1. Then

WQ(1
d) = (Qu v

N Q
)(1

d) =
Qu+dv
N+dQ = a

b with a = Q
dQ
u+dQ′v and b = N

dQ
+dQ′Q.

We have (b,Q) = Q
dQ

and (b,Q′) = dQ′ so that (b,N) = Q
dQ

⋅ dQ′ . Since

(a, QdQ ) = (a, dQ′) = 1, it follows that (a, b,N) = 1, whence the result. �

Let d be a divisor of N . By Lemma 1.5, there exists Q such that WQ

maps cusps of level d to cusps of level δ = (d, Nd ). Note that δ2∣N . In
view of the previous lemmas, Theorem 0.2 is reduced to showing that
if f is minimal by twist, then ef(1

d) = 1 for every d such that d2∣N .
We now make use of the following idea : studying the behaviour of

f at 1
d amounts to studying the behaviour of f(z + 1

d)∣WN at infinity.
More precisely, define fd(z) = f(z + 1

d). A direct computation shows
that if d2∣N then fd ∈ S2(Γ1(N)).

From now on, we fix an integer d ≥ 1 such that d2∣N and we define
gd =WN(fd) = ∑n≥1 bd,nq

n ∈ S2(Γ1(N)).
Proposition 1.6. We have ef(1

d) = min{n ≥ 1 ∶ bd,n ≠ 0}.

Proof. The matrixM = 1
√

N
(1 1

d

0 1
)( 0 −1
N 0

) ∈ SL2(R) satisfiesM(∞) =

1
d and f ∣M = gd. Since M−1Γ0(N)M ∩ (1 R

0 1
) = (1 Z

0 1
), a uniformiz-

ing parameter at [1
d] ∈ X0(N)(C) is given by z ↦ exp(2πiM−1z). It

follows that ord 1
d
ωf = ord∞ ωgd . �

Note that ef(1) = ef(∞) = 1. The case d = 2 is also easily treated.

Proposition 1.7. If 4∣N then ef(1
2) = 1.

Proof. Since the Fourier expansion of f involves only odd powers of q,
we have f(z + 1

2) = −f(z), so that ef(1
2) = ef(0) = 1. �

2. Merel’s formula

In this section, we apply a formula of Merel [12] expressing the addi-
tive translate of a newform as a linear combination of certain twists of
this newform. The related problem of computing the Fourier expansion
of a newform at an arbitrary cusp has also been studied by Delaunay
in his PhD thesis [6, III.2]. Although Delaunay’s results apply in the
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particular case considered here, we prefer to use Merel’s formula since
it does not assume that the newform is minimal by twist.

Let us first recall the notations of [12]. Let φ denote Euler’s function.
For any integer m ≥ 1, let Σm be the set of prime factors of m. For
any Dirichlet character χ ∶ (Z/mZ)× → C×, the Gauss sum of χ is
τ(χ) = ∑a∈(Z/mZ)× χ(a)e2πia/m, and the conductor of χ is denoted by
mχ. For any newform F of weight k ≥ 2 on Γ1(M) and for any prime
p, let Lp(F,X) = 1 − ap(F )X + ap,p(F )X2 ∈ C[X] be the inverse of the
Euler factor of F at p. If T + and T − are finite sets of prime numbers,
we define

F [T+,T−] = F ∣k ∏
p∈T+

Lp(F, p−k/2 (
p 0
0 1

)) ∏
p∈T−

Lp(F̄ , p−k/2 (
1 0
0 p

)).

There exists a unique newform F ⊗ χ of weight k and level dividing
lcm(M,m2) such that ap(F ⊗ χ) = ap(F )χ(p) for any prime p /∈ ΣMm.

Using [12, (5)] with n
N = 1

d , we get

(1) fd = ∑
χ

τ(χ̄)
φ(d) (f ⊗ χ)

[Σd,Σd−Σmχ ]∣ ∏
p∈Σd/mχ

Pp((
p 0
0 1

))

where χ runs through the primitive Dirichlet characters of conductor
mχ dividing d, and the polynomial Pp(X) ∈ C[X] is given by

Pp(X) = {−χ̄(p) if ap(f) = 0, vp(d) = 1, vp(mχ) = 0,

(ap(f)X)vp(d/mχ) otherwise.

Since ap(f) = 0 for p ∈ Σd, the product over p in (1) vanishes unless
(mχ,

d
mχ

) = 1 and d
mχ

is squarefree. Let S′(d) be the set of primitive

Dirichlet characters χ such that mχ∣d, (mχ,
d
mχ

) = 1 and d
mχ

is square-

free. Taking into account Lp(f ⊗ χ,X) = 1 for p ∈ Σd/mχ , we get

(2) fd = ∑
χ∈S′(d)

τ(χ̄)
φ(d)( ∏p∈Σd/mχ

−χ̄(p)) ⋅ (f ⊗ χ)[Σmχ ,∅].

From now on, we assume that f is minimal by twist. Then f ⊗χ has
level exactly N for every character χ of conductor dividing d, so that
(f ⊗ χ)[Σmχ ,∅] = f ⊗ χ for every χ ∈ S′(d).

Let S(d) be the set of Dirichlet characters modulo d induced by the
elements of S′(d). If χ′ ∈ S′(d) induces χ ∈ S(d), then

τ(χ) = τ(χ′) ⋅ ∏
p∈Σd/mχ

−χ′(p).

Thus fd can finally be rewritten

(3) fd = ∑
χ∈S(d)

τ(χ̄)
φ(d) ⋅ f ⊗ χ.
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We now apply WN . We have WN(f ⊗ χ) = w(f ⊗ χ) ⋅ f ⊗ χ̄, where
w(f ⊗ χ) is the pseudo-eigenvalue of WN at f ⊗ χ. It follows that

(4) gd = ∑
χ∈S(d)

τ(χ̄)
φ(d) ⋅w(f ⊗ χ) ⋅ f ⊗ χ̄.

In particular, we get

(5) bd,n =
an(f)
φ(d) ∑

χ∈S(d)

τ(χ̄) ⋅ χ̄(n) ⋅w(f ⊗ χ) (n ≥ 1).

Note that bd,n = 0 whenever (n, d) > 1, and that the inner sum in (5)
depends only on n mod d. If n = 1, then (5) simplifies to

(6) bd,1 =
1

φ(d) ∑χ∈S(d)
τ(χ̄) ⋅w(f ⊗ χ).

3. Reduction to a local computation

In this section, we show that bd,n is a product of local terms de-
pending only on the local automorphic representations associated to f ,
thereby reducing the non-vanishing of bd,n to a purely local question.

The basic observation is that if d = pm1
1 . . . pmkk is the prime factoriza-

tion of d, then we have a natural bijection S(d) ≅ S(pm1
1 )×⋯×S(pmkk ).

Moreover S(p) (resp. S(pm) with m ≥ 2) is the set of Dirichlet charac-
ters modulo p (resp. of conductor pm). We will show that the summand
in (6) decomposes accordingly as a product of local terms. We shift to
the adelic language, which is more convenient for our purposes.

Let AQ be the ring of adèles of Q. We view Dirichlet characters
as characters of A×

Q/Q× as follows. We attach to χ ∈ S(d) the unique

(continuous) character χA ∶ A×

Q/Q× → C× such that for any p /∈ Σd,

we have χA($p) = χ(p), where $p denotes a uniformizer of Q×

p ⊂ A×

Q.
For any p ∈ Σd, we denote by χp ∶ Q×

p → C× the p-component of χA.
Letting mp = vp(d), we have χp(1+ pmpZp) = 1. A word of caution is in
order here : with the above convention, the induced map (Z/pmpZ)× ≅
Z×

p/(1 + pmpZp) →C× is the inverse of the p-component of χ.
The level of a non-trivial additive character ψ ∶ Qp →C× is the unique

integer ` ∈ Z such that ker(ψ) = p`Zp. For any character ψ ∶ Qp → C×

of level mp = vp(d), we define the local Gauss sum of χ ∈ S(d) at p by

(7) τ(χp, ψ) = ∑
x∈Z×p/(1+pmpZp)

χp(x)ψ(x).

Lemma 3.1. For any n ∈ (Z/dZ)×, there exist characters ψ′p ∶ Qp →C×

of respective levels mp = vp(d) such that

(8) τ(χ̄) ⋅ χ̄(n) = ∏
p∈Σd

τ(χp, ψ′p) (χ ∈ S(d)).
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Proof. Multiplying τ(χ̄) by χ̄(n) only amounts to change the additive
character in the definition of the Gauss sum of χ̄. The lemma now
follows from the Chinese remainder theorem. �

Let πf be the automorphic representation of GL2(AQ) associated
to f [10, §2.1]. For any χ ∈ S(d), we have a canonical isomorphism
πf⊗χ ≅ χπf , where the latter representation is g ↦ χA(det g)πf(g).
The L-function of πf⊗χ satisfies a functional equation [9, Thm 11.1]

(9) L(πf⊗χ, s) = ε(πf⊗χ, s)L(πf⊗χ̄,1 − s),
Fix an additive character ψ = ∏v ψv ∶ AQ/Q → C× such that ψp has

level one for every p ∈ Σd. By [9, §11], we have

(10) ε(πf⊗χ, s) =∏
v

ε(πf⊗χ,v, s, ψv)

where v runs through the places of Q, and πf⊗χ,v denotes the local rep-
resentation of f⊗χ at v. The quantity ε(πf⊗χ,v, s, ψv) is the Godement-
Jacquet local constant of f ⊗ χ.

For any character χ of Q×

p , we let χ̃ be the unique character of Q×

p

such that χ̃(p) = 1 and χ̃∣Z×p = χ∣Z×p . The following proposition shows

that w(f ⊗ χ) can be written as a product of local constants.

Proposition 3.2. There exist a constant C ∈ C× and an element a ∈
(Z/dZ)×, depending on f and ψ but not on χ, such that

(11) w(f ⊗ χ) = C ⋅ χ(a) ∏
p∈Σd

ε(χ̃pπf,p,
1

2
, ψp) (χ ∈ S(d)).

Proof. Let L(f ⊗ χ, s) be the usual L-function of f ⊗ χ. It relates to
the automorphic L-function by L(πf⊗χ, s− 1

2) = (2π)−sΓ(s)L(f ⊗χ, s).
Comparing (9) with the usual functional equation yields

(12) w(f ⊗ χ) = −N s− 1
2 ε(πf⊗χ, s).

By [8, Thm 6.16], we have ε(πf⊗χ,∞, ψ∞, s) = −1, so we get

(13) w(f ⊗ χ) = ∏
p∈ΣN

ε(πf⊗χ,p,
1

2
, ψp) = ∏

p∈ΣN

ε(χpπf,p,
1

2
, ψp).

It follows from the definition of the epsilon factor [5, §24.2] that there
exists an integer bp ∈ Z not depending on χp such that for every un-
ramified character ωp ∶ Q×

p →C×, we have

(14) ε(ωpχpπf,p, s, ψp) = ωp(pbp)ε(χpπf,p, s, ψp).
Choosing ωp such that ωpχp = χ̃p, and noting that ∏p∈ΣN ω̄p(pbp) =
∏p∈ΣN χp(pbp) may be written χ(a) with a ∈ (Z/dZ)× not depending
on χ, we get the result by taking C = ∏p∈ΣN−Σd

ε(πf,p, 1
2 , ψp). �

The map χ ↦ (χ̃p)p∈Σd provides a bijection S(d) ≅ ∏p∈Σd
S̃(pmp),

where S̃(pm) is the set of characters χ ∶ Q×

p → C× such that χ(p) = 1,
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χ(1 + pmZp) = 1 and χ(1 + pm−1Zp) ≠ 1 if m ≥ 2. Putting together the
formulas (5), (8) and (11), we get

(15) bd,n =
C

φ(d) ⋅ an(f) ∏p∈Σd
∑

χp∈S̃(p
mp)

τ(χp, ψ′p) ⋅ ε(χpπf,p,
1

2
, ψp)

for some characters ψ′p ∶ Qp →C× of respective levels mp = vp(d).
Theorem 0.2 is thus reduced to the following purely local statement.

Theorem 3.3. Fix a prime p such that p2∣N , and let π = πf,p. Let

m be an integer such that 1 ≤ m ≤ vp(N)

2 . Then for any characters
ψ,ψ′ ∶ Qp →C× of respective levels 1 and m, we have

(16) ∑
χ∈S̃(pm)

τ(χ,ψ′)ε(χπ, 1

2
, ψ) ≠ 0.

4. Cuspidal inducing data

In this section we recall how the local automorphic representations
πf,p with p2∣N can be described in terms of cuspidal inducing data.

Let p be a prime such that p2∣N . Then π = πf,p is an irreducible
cuspidal representation of G = GL2(Qp) [10, Prop. 2.8]. By the clas-
sification theorem [5, 15.5,15.8], the representation π is induced by a
cuspidal datum : there exist a maximal compact-mod-center subgroup
K of G, and an irreducible complex representation ξ of K, such that
π ≅ c-IndGK ξ, where c-Ind denotes compact induction.

Since π has trivial central character, the restriction of ξ to the center
Z = Q×

p ofG is trivial, and sinceK/Z is compact, ξ is finite-dimensional.

The contragredient of ξ is defined by ξ̌(k) = ξ(k−1)∗. Finally, note that
χπ ≅ c-IndGK(χξ) for any character χ ∶ Q×

p →C×.
There are two maximal compact-mod-center subgroups of G up to

conjugacy, namely K ′ = pZ ⋅ GL2(Zp) and K ′′ = (0 1
p 0

)
Z

⋅ ( Z×

p Zp

pZp Z×

p
).

They are equipped with a canonical decreasing sequence of compact
normal subgroups (Kn)n≥0, which are defined as follows.

If K =K ′ then K0 = GL2(Zp) and Kn = 1 + pnM2(Zp) for any n ≥ 1.
Note that K0/Kn ≅ GL2(Z/pnZ).

If K = K ′′ then K0 = ( Z×

p Zp

pZp Z×

p
) and Kn = 1 +Pn for any n ≥ 1,

where P = (pZp Zp

pZp pZp
).

The conductor r(ξ) of ξ is the least integer r ≥ 1 such that ξ(Kr) = 1.
The relation between the conductors of π and ξ is as follows [4, A.3].

In the unramified case vp(N) = 2n, we may take K =K ′ and r(ξ) = n,
and we define c = p1−n ⋅ I2 ∈K.
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In the ramified case vp(N) = 2n + 1, we may take K = K ′′ and

r(ξ) = 2n, and we define c = ( 0 −p−n
p1−n 0

) ∈K.

The proof of Theorem 3.3 relies on the following explicit formula,
due to Bushnell, for the Godement-Jacquet local constant of π.

Theorem 4.1. [5, 25.2 Thm] Let r ≥ 1 be the conductor of ξ. If
ψ ∶ Qp →C× is a character of level one, then

(17) ∑
x∈K0/Kr

ψ(tr(cx))ξ̌(cx) = p2nε(π, 1

2
, ψ) ⋅ id .

We now express the sum of local constants appearing in Theorem
3.3 in terms of ξ.

Proposition 4.2. Let m be an integer such that 1 ≤ m ≤ vp(N)

2 . For
any characters ψ,ψ′ ∶ Qp →C× of respective levels 1 and m, the sum

(18) ∑
χ∈S̃(pm)

τ(χ,ψ′)ε(χπ, 1

2
, ψ)

is the unique eigenvalue of the scalar endomorphism

(19)
p − 1

p2n−m+1 ∑
x∈K0/Kr(ξ)

ψ(tr(cx))ψ′(detx)ξ̌(cx).

Proof. Let r = r(ξ) and χ ∈ S̃(pm). Since f is minimal by twist, we
have r(χξ) = r and Theorem 4.1 gives

(20) ∑
x∈K0/Kr

ψ(tr(cx))χ̄(det(cx))ξ̌(cx) = p2nε(χπ, 1

2
, ψ) ⋅ id .

Because det(c) is a power of p, we have χ̄(det(c)) = 1. Multiplying the
left hand side of (20) by τ(χ,ψ′) and summing over χ, we get

∑
χ∈S(pm)

∑
y∈(Z/pmZ)×

χ(y)ψ′(y) ∑
x∈K0/Kr

ψ(tr(cx))χ̄(detx)ξ̌(cx)

= ∑
x∈K0/Kr

ψ(tr(cx))ξ̌(cx) ∑
y∈(Z/pmZ)×

ψ′(y) ∑
χ∈S(pm)

χ(y)χ̄(detx).(21)

Let C(pm) be the set of all Dirichlet characters modulo pm. For a ∈
(Z/pmZ)×, the sum ∑χ∈C(pm)

χ(a) equals pm−1(p − 1) if a = 1, and 0
otherwise. So for m = 1, (21) simplifies to

(22) (p − 1) ∑
x∈K0/Kr

ψ(tr(cx))ψ′(detx)ξ̌(cx).
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If m ≥ 2 then S̃(pm) = C(pm) −C(pm−1) so that (21) can be written

pm−1(p − 1) ∑
x∈K0/Kr

ψ(tr(cx))ψ′(detx)ξ̌(cx)

− pm−2(p − 1) ∑
x∈K0/Kr

ψ(tr(cx))
⎛
⎝ ∑

y∈(Z/pmZ)
×

y≡detx (pm−1
)

ψ′(y)
⎞
⎠
ξ̌(cx).(23)

Since ψ′ has level m, the inner sum over y vanishes. In all cases, this
gives the proposition as stated. �

Remark 4.3. The formula (15), together with Proposition 4.2, provides
an expression of bd,n purely in terms of the local components of πf .
This leads to an explicit formula for the Fourier expansion of f at an
arbitrary cusp of X0(N), and may be of independent interest.

Definition 4.4. For any characters ψ,ψ′ ∶ Qp →C× of respective levels
1 and m, we define T (ξ,ψ,ψ′) to be the endomorphism

(24) T (ξ,ψ,ψ′) = ∑
x∈K0/Kr(ξ)

ψ(tr(cx))ψ′(detx)ξ̌(x).

In order to establish Theorem 3.3, it suffices, thanks to Proposition
4.2, to show that T (ξ,ψ,ψ′) ≠ 0. We prove this in the following sections,
distinguishing the unramified and ramified cases.

5. The unramified case

In this section we assume vp(N) = 2n with n ≥ 1, so that c = p1−n ⋅ I2.
Note that ψ(tr(cx)) = ψ(p1−n trx) and a ↦ ψ(p1−na) is a character of
level n. So we fix characters ψ,ψ′ ∶ Qp → C× of respective levels n,m
with 1 ≤m ≤ n, and we wish to prove that

(25) T (ξ,ψ,ψ′) ∶= ∑
x∈GL2(Z/pnZ)

ψ(trx)ψ′(detx)ξ̌(x)

is non-zero. Assuming the contrary, for every y ∈ GL2(Z/pnZ) we have

0 = T (ξ,ψ,ψ′)ξ̌(y−1) = ∑
x∈GL2(Z/pnZ)

ψ(trx)ψ′(detx)ξ̌(xy−1)

= ∑
x∈GL2(Z/pnZ)

ψ(tr(xy))ψ′(det(xy))ξ̌(x).

Taking y = (1 t
0 1

) with t ∈ Z/pnZ and writing x = (α β
γ δ

), we have

tr(xy) = tr(x) + γt. So summing over t, we get

(26) ∑
x∈B

ψ(trx)ψ′(detx)ξ̌(x) = 0
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where B is the subgroup of upper-triangular matrices in GL2(Z/pnZ).
Multiplying similarly on the left by lower-triangular matrices, we get

(27) ∑
a,d∈(Z/pnZ)×

ψ(a + d)ψ′(ad)ξ (a
−1 0
0 d−1) = 0.

We now make use of the existence of a new vector for π. More
precisely, let V be the space of ξ. By a result of Loeffler and Weinstein
[10, Thm 3.6], there exists v ∈ V − {0} which is fixed by all diagonal

matrices of K. Evaluating (27) at ξ (1 b
0 1

) v with b ∈ Z/pnZ, we get

(28) ∑
a,d∈(Z/pnZ)×

ψ(a + d)ψ′(ad)ξ (1 a−1db
0 1

) v = 0 (b ∈ Z/pnZ).

We will need further results about ξ, for which we refer the reader

to [10, Thm 3.6] and its proof. The restriction of ξ to N = (1 Zp

0 1
)

is isomorphic to the direct sum of the additive characters of Zp of
level n. Since Nv spans V , the components of v with respect to this
decomposition are nonzero. In particular, taking the ψ-component of
(28) yields

(29) ∑
a,d∈(Z/pnZ)×

ψ(a + d)ψ′(ad)ψ(a−1db) = 0 (b ∈ Z/pnZ).

We now distinguish according to the value of m.
First case : m = n. Taking b = 0 in (29), we have

(30) ∑
a,d∈(Z/pnZ)×

ψ(a + d)ψ′(ad) = 0.

Let a0 ∈ (Z/pnZ)× be the unique element such that ψ′(a0) = ψ̄(1).
Fixing a ∈ (Z/pnZ)×, we have

∑
d∈(Z/pnZ)×

ψ(a+d)ψ′(ad) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pn−1(p − 1)ψ(a0) if a = a0,

−pn−1ψ(a) if a ≡ a0 (pn−1) and a ≠ a0,

0 if a /≡ a0 (pn−1).

Now summing over a, we get

0 = pn−1(p − 1)ψ(a0) − pn−1 ∑
a≡a0 (pn−1)

a≠a0

ψ(a)

= pnψ(a0) − pn−1 ∑
a≡a0 (pn−1)

ψ(a).

If n = 1 (resp. n ≥ 2) then this equality reads pψ(a0) + 1 = 0 (resp.
pnψ(a0) = 0), which gives a contradiction.
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Second case : m < n. Making the change of variables d = ca in (29),
we get

(31) ∑
a,c∈(Z/pnZ)×

ψ((1 + c)a)ψ′(ca2)ψ(cb) = 0.

Fix a0 ∈ (Z/pmZ)× and consider first the sum over all a ∈ (Z/pnZ)×
such that a ≡ a0 (pm). It is zero except possibly when 1+ c ≡ 0 (pn−m).
Putting c = −1 + kpn−m with k ∈ Z/pmZ, we get

(32) ∑
k∈Z/pmZ

a0∈(Z/pmZ)
×

a≡a0 (pm)

ψ(kpn−ma)ψ′((−1 + kpn−m)a2)ψ((−1 + kpn−m)b) = 0,

which simplifies to

(33) ∑
k∈Z/pmZ

a0∈(Z/pmZ)
×

ψ(kpn−m(a0 + b))ψ′(−a2
0)ψ′(kpn−ma2

0) = 0.

Let u ∈ (Z/pmZ)× be the unique element such that ψ′(1) = ψ(pn−mu).
The equality (33) can be rewritten

(34) ∑
a∈(Z/pmZ)×

ψ′(−a2) ∑
k∈Z/pmZ

ψ(kpn−m(a + b + pn−mua2)) = 0.

Lemma 5.1. The map h ∶ (Z/pmZ)× → (Z/pmZ)× defined by h(a) =
a + pn−mua2 is a bijection.

Proof. Let a, a′ ∈ (Z/pmZ)× such that a+pn−mua2 ≡ a′+pn−mua′2 (pm).
In particular a ≡ a′ (p), and an easy induction gives a ≡ a′ (p`) for
every 1 ≤ ` ≤m, so that a = a′. �

The inner sum over k in (34) vanishes except when b = −h(a), in
which case it is equal to pm. Thus taking b = −h(1), the equality (34)
reads pmψ′(−1) = 0 by Lemma 5.1, a contradiction.

6. The ramified case

In this section we assume vp(N) = 2n + 1 with n ≥ 1, so that c =

( 0 −p−n
p1−n 0

). Note that ψ(tr(cx)) = ψ(p1−n tr′ x) where the function

tr′ ∶ K0 → Zp is defined by tr′ ( α β
pγ δ

) = β − γ. So we fix characters

ψ,ψ′ ∶ Qp → C× of respective levels n,m with 1 ≤ m ≤ n, and we wish
to prove that

(35) T (ξ,ψ,ψ′) ∶= ∑
x∈K0/K2n

ψ(tr′ x)ψ′(detx)ξ̌(x)

is non-zero. Assume the contrary.
We have explicitly

K` = (1 + p⌈ `2 ⌉Zp p⌊
`
2
⌋Zp

p⌊
`
2
⌋+1Zp 1 + p⌈ `2 ⌉Zp

) (` ≥ 1).
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Moreover, we have an isomorphism of groups

Kn/K2n
≅Ð→ (Z/p⌊n2 ⌋Z)2 ⊕ (Z/p⌈n2 ⌉Z)2

(1 + p⌈n2 ⌉α p⌊
n
2
⌋β

p⌊
n
2
⌋+1γ 1 + p⌈n2 ⌉δ

) ↦ (α, δ, β, γ).

Let y ∈Kn. Multiplying T (ξ,ψ,ψ′) on the right by ξ̌(y−1), we get

(36) ∑
x∈K0/K2n

ψ(tr′(xy))ψ′(det(xy))ξ̌(x) = 0.

If we fix x ∈K0, then the map Φx ∶Kn/K2n →C× defined by

(37) ψ(tr′(xy))ψ′(det(xy)) = ψ(tr′ x)ψ′(detx)Φx(y) (y ∈Kn)

is a character which depends only on the coset xKn.

Lemma 6.1. The characters (Φx)x∈K0/Kn are pairwise distinct.

Proof. If x = ( a b
pc d

) ∈ K0 and y = (1 + s t
pu 1 + v) ∈ Kn, an explicit

computation gives

(38) Φx(y) = ψ(at + bv − cs − du)ψ′((ad − pbc)(s + v)).

Let x′ = ( a
′ b′

pc′ d′
) ∈ K0 such that Φx = Φx′ . By (38), we already get

a, d ≡ a′, d′ (p⌈n2 ⌉). Let λ ∈ (Z/pmZ)× be the unique element such that
ψ′(1) = ψ(pn−mλ). It remains to prove that the map

ha,d ∶ (Z/p⌊n2 ⌋Z)2 → (Z/p⌊n2 ⌋Z)2(39)

(b, c) ↦ (b + pn−mλ(ad − pbc),−c + pn−mλ(ad − pbc))

is injective. Assume ha,d(b, c) = ha,d(b′, c′). Then b − pn−m+1λbc ≡
b′−pn−m+1λb′c′ (p⌊n2 ⌋) and c+pn−m+1λbc ≡ c′+pn−m+1λb′c′ (p⌊n2 ⌋). In par-
ticular b, c ≡ b′, c′ (p) and an easy induction gives b, c ≡ b′, c′ (p⌊n2 ⌋). �

Fix x0 ∈K0. If we multiply (36) by Φ̄x0(y) and sum over y ∈Kn/K2n,
we get

(40) ∑
y∈Kn/K2n

Φ̄x0(y) ∑
x∈K0/K2n

ψ(tr′ x)ψ′(detx)Φx(y)ξ̌(x) = 0.

According to Lemma 6.1, this simplifies to

(41) ∑
x∈x0Kn/K2n

ψ(tr′ x)ψ′(detx)ξ̌(x) = 0.

In other words, for every x0 ∈K0 we have

(42) ∑
y∈Kn/K2n

Φx0(y)ξ̌(y) = 0.
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Fix a0, d0 ∈ (Z/p⌈n2 ⌉Z)×. We sum (42) over all matrices x0 ∈ K0/Kn

of the form x0 = (a0 ∗
∗ d0

). Letting y = (1 + s t
pu 1 + v), we compute

(43) ∑
x0

Φx0(y) = ∑
b0,c0∈Z/p⌊

n
2 ⌋Z

ψ(a0t + d0u)ψ(ha0,d0(b0, c0) ⋅ (v, s))

where ha0,d0 is the map of (39). Since ha0,d0 is bijective, we get

∑
x0

Φx0(y) = ψ(a0t + d0u) ∑
b0,c0∈Z/p⌊

n
2 ⌋Z

ψ(b0v + c0s)

= {p
2⌊n

2
⌋ψ(a0t + d0u) if s ≡ v ≡ 0 (pn)

0 otherwise.

So for any a0, d0 ∈ (Z/p⌈n2 ⌉Z)×, we get

(44) ∑
t,u∈p⌊

n
2 ⌋Z/pnZ

ψ(a0t + d0u)ξ̌ (
1 t
pu 1

) = 0.

As in section 5, the restriction of ξ to N = (1 Zp

0 1
) is isomorphic to the

direct sum of the characters of Zp of level n. Conjugating by the matrix

(0 1
p 0

), the same is true for the restriction of ξ to N ′ = ( 1 0
pZp 1

). For

any t, u ∈ p⌊n2 ⌋Z/pnZ, the matrices (1 t
0 1

) and ( 1 0
pu 1

) commute. By

simultaneous diagonalization, there exists a nonzero vector v in the
space of ξ̌ and primitive characters ω,ω′ ∶ Z/p⌈n2 ⌉Z→C× such that

(45) ξ̌ ( 1 p⌊
n
2
⌋t

p⌊
n
2
⌋+1u 1

) v = ω(t)ω′(u)v (t, u ∈ Z/p⌈n2 ⌉Z).

We may write the characters ω,ω′ as ω(t) = ψ̄(p⌊n2 ⌋a0t) and ω′(u) =
ψ̄(p⌊n2 ⌋d0u) for some a0, d0 ∈ (Z/p⌈n2 ⌉Z)×. For this choice of a0, d0, the
identity (44) evaluated at v gives a contradiction. This finishes the
proof of Theorem 0.2.

7. Numerical investigations

We now report on the computations which led to Theorem 0.2. For
all elliptic curves of conductor ≤ 2000, we computed the ramifications
indices of the modular parametrizations at all cusps using Pari/GP
[14]. Since we have no theoretical formula for the ramification index at
a cusp in general, we just compared numerically log ∣f ∣ and log ∣q∣ in the
neighborhood of the given cusp. This method is of course not rigorous,
but it gives good results in practice. We ended up with a list of 745
isogeny classes of elliptic curves for which the modular parametrization
seemed to ramify at some cusp. We then observed and checked, with
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the help of Magma [2], that for each curve in this list, the associated
newform was not minimal by twist.

In Table 1 below, we give all instances of ramified cusps for elliptic
curves of conductor ≤ 200. We restrict to the cusps 1

d with d2∣N . In the
last column, we indicate the minimal twist of the newform. Note that
this minimal twist need not have trivial character. For example, the
minimal twist of 162b and 162c is a newform of level 18 and non-trivial
character, which we just denote by “18”.

Isogeny class d eϕ(1
d) Minimal twist

48a 4 2 24a
64a 8 2 32a
80a 4 2 40a
80b 4 4 20a

112a 4 2 56b
112b 4 2 56a
112c 4 4 14a

144a { 4
12

4
4

36a

144b { 4
12

2
2

24a

162b 9 3 18
162c 9 3 18
176a 4 2 88a
176b 4 4 11a
176c 4 4 44a
192a 8 2 96a
192b 8 2 96a
192c 8 4 24a
192d 8 4 24a

Table 1. Ramified cusps for conductors ≤ 200

Note also that being minimal by twist is far from being a necessary
condition in order for the modular parametrization to be unramified at
the cusps. For example, the isogeny class 45a, which is a twist of 15a,
has a modular parametrization which is unramified at the cusps.

In all cases we computed, the following properties seem to hold :

(1) If eϕ(1
d) is even then v2(d) ∈ {2,3,4} and v2(N) = 2v2(d);

(2) If eϕ(1
d) is divisible by 8 then v2(d) = 4 and v2(N) = 8;

(3) If eϕ(1
d) is divisible by 3 then v3(d) = 2 and v3(N) = 4.

These observations are consistent with the following theorem of Atkin
and Li [1, Thm 4.4.i)] : if f ∈ S2(Γ0(N)) is a newform and vp(N) is
odd, then f is p-minimal, in the sense that it has minimal level among
its twists by characters of p-power conductor.
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Looking at elliptic curves whose conductor is highly divisible by 2
or 3, we also found examples of higher ramification indices. These
are given in Table 2 below. In this table, we also give examples of
ramified cusps in the case N is odd. In all examples we computed, the
ramification index seems to be a divisor of 24. This may be related to
the fact that the exponent of the conductor of an elliptic curve at 2
(resp. 3) is bounded by 8 (resp. 5). It would be interesting to prove
this divisibility in general.

Isogeny class N d eϕ(1
d)

405c 34 ⋅ 5 9 3
768b 28 ⋅ 3 16 8
891b 34 ⋅ 11 9 3
1296c 24 ⋅ 34 36 6
1296e 24 ⋅ 34 36 12
20736c 28 ⋅ 34 144 24

Table 2. Higher ramification indices
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