
HAL Id: ensl-00718637
https://ens-lyon.hal.science/ensl-00718637

Submitted on 17 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Floating-Point Exponentiation Units for Reconfigurable
Computing

Florent de Dinechin, Pedro Echeverria, Marisa Lopez-Vallejo, Bogdan Pasca

To cite this version:
Florent de Dinechin, Pedro Echeverria, Marisa Lopez-Vallejo, Bogdan Pasca. Floating-Point Expo-
nentiation Units for Reconfigurable Computing. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 2013, 6 (1), pp.4:1–4:15. �10.1145/2457443.2457447�. �ensl-00718637�

https://ens-lyon.hal.science/ensl-00718637
https://hal.archives-ouvertes.fr

A

Floating-Point Exponentiation Units for Reconfigurable Computing

Florent de Dinechin, École Normale Supérieure de Lyon

Pedro Echeverŕıa, Universidad Politécnica de Madrid

Marisa López-Vallejo, Universidad Politécnica de Madrid

Bogdan Pasca, École Normale Supérieure de Lyon

The high performance and capacity of current FPGAs makes them suitable as acceleration co-processors.
This article studies the implementation, for such accelerators, of the floating-point power function xy as

defined by the C99 and IEEE 754-2008 standards, generalized here to arbitrary exponent and mantissa
sizes. Last-bit accuracy at the smallest possible cost is obtained thanks to a careful study of the various

subcomponents: a floating-point logarithm, a modified floating-point exponential, and a truncated floating-

point multiplier. A parameterized architecture generator in the open-source FloPoCo project is presented
in details and evaluated.

Categories and Subject Descriptors: B.2.4 [ARITHMETIC AND LOGIC STRUCTURES]: High-

speed Arithmetic

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Reconfigurable Computing, Floating-Point, Power Function, Exponen-

tiation Unit

1. INTRODUCTION

1.1. Floating point acceleration using FPGAs

Current deep sub-micron technologies brought FPGAs with extraordinary logic density and
speed [Kuon and Rose 2007]. They can be used to implement complex applications, including
floating-point ones [Underwood 2004; Scrofano et al. 2008; Woods and VanCourt 2008; Zhuo
and Prasanna 2008]. This has sparked the development of floating-point units targeting
FPGAs, first for the basic operators mimicking thoses found in microprocessors[Shirazi et al.
1995; Louca et al. 1996; Belanović and Leeser 2002], then more recently for operators which
are more FPGA-specific, for instance accumulators [Wang et al. 2006; Luo and Martonosi
2000; Bodnar et al. 2006; de Dinechin et al. 2008] or elementary functions [Piñeiro et al.
2004; Doss and Riley 2004; Detrey and de Dinechin 2007; de Dinechin and Pasca 2010].

The FloPoco project1 aims at providing high-quality, portable and open-source operators
for floating-point computing on FPGAs. This article describes the implementation of an
operator for the power function xy in this context. This function appears in many scientific
or financial computing kernels [Rebonato 2002; Echeverŕı a Aramendi 2011].

1.2. The power function and its floating-point implementation

The power function is classically defined as xy, and its usual floating-point implementation
was included as the pow function of the C99 standard. For positive x, the value of xy can
be computed thanks to the equation:

xy = ey×ln x . (1)

For x < 0, xy is still defined for integer y, although not through the previous formula: in
this case

xy = (−1)y · |x|y = (−1)yey×ln |x| . (2)

1http://flopoco.gforge.inria.fr/

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Table I. Exception handling for exponentiation functions of the IEEE 754 standard. NaN in
the inputs lead to NaN output, except in the two cases for pow mentioned in the table.

pow powr
Input Case Result Case Result
x±0 any x (even NaN) 1 finite x > 0 1

y < 0 odd integer ±∞ finite y < 0 +∞
±0y y < 0 even integer +∞

y > 0 odd integer ±0 finite y > 0 +0
y > 0 even integer +0

±0−∞ - +∞ - +∞
−0+∞ - +0 - NaN
+0+∞ - +0 - +0
−1±∞ - 1 - NaN

1y any y (even NaN) 1 finite y 1
y = ±∞ NaN

±0±0 - 1 - NaN
+∞±0 - 1 - NaN
xy finite x < 0 and finite, non integer y NaN finite x < 0 NaN

x+∞ |x| < 1 +0 0 < x < 1 +0
x+∞ |x| > 1 +∞ finite x > 1 +∞
x−∞ |x| < 1 +∞ 0 < x < 1 +∞
x−∞ |x| > 1 +0 finite x > 1 +0
+∞y y > 0 +∞ y > 0 +∞
+∞y y < 0 +0 y < 0 +0
−∞y y even integer +∞ - NaN

y odd integer −∞

The value one wants to assign to special cases such as 00 depends on the context. On the
one hand, one may consider that this y = 0 is an integer. Then 00 will naturally occur in
polynomial evaluation, for instance, and its value should be defined by continuity as 1. On
the other hand, if one considers that y = 0 is the limit of some real series converging to 0,
then the value of 00 can be anything, and should be left undefined.

The C99 pow function was a necessarily inconsistent tradeoff between the requirements
of these different contexts. Its behaviour is summarized in Table I: pow(x,y) is defined for
x and y real numbers, and special handling is provided for negative x in combination with
integer y.

The 2008 revision of the floating-point standard IEEE 754 [IEEE Computer Society 2008]
had to keep this pow function for backward compatibility, but provided a way to avoid its
inconsistencies by offering in addition two cleaner and more consistent functions:

— pown(x,n) is defined only for integer n. This is the function that should be used in
polynomial evaluators for instance. The standard also includes rootn(x,n) defined as
x

1
n .

— powr(x,y) is defined only by equation 1, and in particular is undefined for negative x.

This work covers the two IEEE 754-2008 functions whose special cases are presented in
Table I: the traditional pow function inherited from C99, the more modern powr function,
which is actually simpler to implement. Note however that these implementations are not
strictly speaking IEEE 754-compliant, since they operate on the FPGA-specific floating-
point formats presented in Section 2.1.

1.3. Previous work

As the pow function is defined by the C99 standard, most mathematical libraries (libm) pro-
vide an implementation of this function, based on equations (1) and (2). A detailed descrip-
tion of last-bit accurate implementations in single, double, double-extended and quadruple
precisions is given in Markstein’s book[Markstein 2000]. The interested reader will also find

accurate open-source implementations in the libultim library included in the GNU glibc,
in the CRLibm project2, or in the MPFR library3.

Concerning hardware implementations, [Harris 2004] presents an implementation of (1)
targeted to OpenGL lightning applications: it inputs and outputs single-precision floating-
point numbers, but the inputs have a restricted range and the output actually wraps a
low-accuracy (8 bits) fixed-point result. A detailed error analysis based on this specification
enables a low area, table-based implementation of both exponential and logarithm. However,
this work is very application-specific. A more generic implementation is presented in [Piñeiro
et al. 2004]. It is also based on (1), where exponential and logarithm are evaluated by high-
radix iterative algorithms using redundant number representations. It is unclear whether this
work was implemented, and the choices made (in particular the use of redundant arithmetic)
are more suited to VLSI than FPGA, where both efficient additions (through fast-carry
lines) and efficient multiplications (through embedded multipliers and DSP blocks) are
available. More recently, some of us [Echeverŕıa and López-Vallejo 2008] presented an xy

operator for single precision. However, that implementation only partially handled the error
propagation and was therefore inaccurate for some inputs. Moreover, the architecture was
too specifically tuned to single precision.

As figure 1 shows, equation (1) has a straightforward translation into an architecture.
Several hardware implementations of exponential [Ercegovac 1973; Wrathall and Chen 1978;
Vázquez and Antelo 2003; Doss and Riley 2004; Detrey and de Dinechin 2007; Detrey et al.
2007; Pottathuparambil and Sass 2009; Altera 2008a; Wielgosz et al. 2009; de Dinechin
and Pasca 2010] and logarithm [Ercegovac 1973; Wrathall and Chen 1978; Detrey and
de Dinechin 2007; Detrey et al. 2007; Altera 2008b; de Dinechin 2010] have been published.
Some are easily available: two versions of the FPLibrary operators released in 2005 [Detrey
and de Dinechin 2007] and 2007 [Detrey et al. 2007] respectively, the Altera megafunctions
since 2008 [Altera 2008a; 2008b], and the FloPoCo operators since 2009 [de Dinechin 2010;
de Dinechin and Pasca 2010]. In this work, we use the latest because they alone offer the
unique combination of features required for this work: they scale to double precision, they
are pipelined, and they are open-source – we will need to modify both the exponential and
the multiplier to implement pow and powr efficiently.

1.4. Outline and contribution

This article shows how to build an accurate architecture for powr and pow for any precision.
First, an in-depth analysis of equation (1) in a floating-point context is presented in Sec-

2http://lipforge.ens-lyon.fr/www/crlibm/
3http://www.mpfr.org/

log
mult exp

(r
,f

)
(r
,f

)

(r
,f

)

(r
lo
g
,f

lo
g
)

(r
P
,f

P
)

Fig. 1. Simplified overview of a power function unit for an input floating-point format (r, f) where r is the
size in bits of the exponent field (defining the range) and f is the size in bits of the fraction field (defining
the precision). The intermediate formats (rlog, flog) and (rP , fP) must be determined to ensure last-bit
accuracy at the minimum cost.

tion 2. This analysis is parameterized by the floating-point format, and has been integrated
in the FloPoCo tool. The architecture of the operator, built upon existing exponential, loga-
rithm and multipliers, is presented in Section 3. We need to modify the existing exponential
and use a truncated rectangular multiplier. A brief discussion of the impact of several design
decisions is provided. Section 4 evaluates this architecture for various precisions. Section 5
concludes.

An important contribution of this work is an open-source implementation: the interested
reader may reproduce or extend our results, and find any missing technical details, using
the FloPoCo distribution, starting from version 2.3.0.

2. RANGE AND ERROR ANALYSIS

In floating-point arithmetic, the result of an operation (here r = xy) must be rounded to
the target format. Rounding the infinitely accurate result is called correct rounding, and
entails a maximum error of 0.5 ulps, where the ulp (unit in the last place) is the weight of
the least significant bit of the result. For an elementary function, ensuring this error bound
requires evaluating the function on a very large intermediate precision, typically twice the
result precision f [Muller 2006]. A solution, sometimes used in software, is to compute with
such precision only when needed [Ziv 1991; de Dinechin et al. 2007]. This solution does not
allow a fixed-latency hardware implementation. Therefore (and in line with most software
implementations) our goal will be to allow a slightly larger error, with an error bound that
remains smaller than 1 ulp. This is called faithful rounding. From another point of view,
our hardware operator shall return one of the two floating-point numbers surrounding the
exact result. This error bound also ensures that if the exact result is a floating-point number
(which indeed happens quite often for xy [Lauter and Lefèvre 2009]) then our operator will
return it.

We first have to discuss the handling of special situations (overflow and underflow), which
will define the intervals of possible values for the intermediate variables.

2.1. Floating-point formats

In FloPoCo, a floating-point number x is composed of a sign bit S, an exponent field E on
r bits, and a normalized significand fraction F on f bits. In addition, a two-bit exn code
is used for exceptional cases such as zeroes, infinities and NaN (Not a Number). Figure 2
depicts such a number, whose value is x = (−1)S × 1.F × 2E−E0 with E0 = 2r−1 − 1.

2 1 r f

E Fexn S

Fig. 2. Format of a floating-point number x.

This format is inspired by the IEEE 754 standard, but is not strictly compliant with it.
This standard was designed for processor implementations and makes perfect sense there,
but for FPGAs, many things can be reconsidered. Firstly, a designer should not restrict
himself to the 32-bit and 64-bit formats of IEEE 754: he should aim at optimizing both
exponent and significand size for the application at hand. The floating-point operators
should be fully parameterized to support this.

Secondly, the IEEE 754 encodings were designed to make the most out of a fixed number
of bits. In particular, exceptional cases are encoded in the two extremal values of the expo-
nent. However, managing these encodings has a cost in terms of performance and resource
consumption [Echeverŕıa and López-Vallejo 2011]. In an FPGA, this encoding/decoding
logic can be saved if the exceptional cases are encoded in two additional bits. This is the
choice made by FloPoCo and other floating-point libraries. A small additional benefit is to
free the two extremal exponent values, slightly extending the range of normal numbers.

Finally, we choose not to support subnormal numbers support, with flushing to zero
instead. This is the most controversial issue, as subnormals bring with them important
properties such as (x−y = 0) ⇐⇒ (x = y), which is not true for FP numbers close to zero
if subnormals are not supported. However the cost of supporting subnormals is quite high,
as they require specific shifters and leading-one detectors [Echeverŕıa and López-Vallejo
2011]. Besides, one may argue that adding one bit of exponent brings in all the subnormal
numbers, and more, at a fraction of the cost: subnormals are less relevant if the format
is fully parameterized. We believe there hasn’t been a clear case for subnormal support in
FPGA computing yet.

2.2. Range analysis

Lets α and ω be the smallest and largest positive floating-point numbers respectively. If
the exact value of xy is smaller than α or greater than ω, we have to return +0 or +∞
respectively (this is a constraint of the output format). In an implementation based on
xy = ey×ln x, the result comes from the exponential function. This defines the useful range
[mp,Mp] of the product p = y × lnx which is input to this function:

mp = ln(α), rounded up
Mp = ln(ω), rounded down

For practical floating-point formats, this range is very small, as can be seen in Table II
for single and double precision.

Table II. Range analysis for the intermediate product

Format mp Mp

FloPoCo single precision (8,23) -88.03 89.41
FloPoCo double precision (11,52) -709.09 710.48

Analytically, we have ω < 22r−1

(this bound is valid both for the IEEE 754 formats and
the FloPoCo format), therefore Mp < 2r−1.

2.3. General Error analysis

A last-bit accurate result corresponds to a bound on the total relative error of εtotal = 1u
where u = 2−f is the relative value of the ulp. Our goal is to ensure that εtotal < εtotal. This
total relative error of the operator is defined by

εtotal =
R− xy

xy
=

R

xy
− 1. (3)

We compute the power function using the formula xy = ey×ln x, implemented as three
sub-operators: a logarithm, a multiplication, and an exponential. Obviously, each error
introduced by the sub-operators must be kept under control in order not to harm the
accuracy of the exponentiation unit.

We will denote mul, E, and Ln the implementations of the multiplication, exponential and
logarithm used here. They will entail the following relative errors:

εmul(a, b) =
mul(a, b)

ab
− 1 < εmul, (4)

εexp(x) =
E(x)

ex
− 1 < εexp, (5)

and

εlog(x) =
Ln(x)

lnx
− 1 < εlog. (6)

The purpose of this section is to define the relationship between εtotal, εlog, εexp, and
εmul, and deduce from it the architectural parameters that will enable faithful rounding at
a minimal cost.

Rewriting (3), we obtain

εtotal =
E(mul(y, Ln(x)))

ey×ln x
− 1

There, we have in the first operator

Ln(x) = ln(x)(1 + εlog)

while in the multiplier

mul(y, Ln(x)) = yLn(x)(1 + εmul)

= y ln(x)(1 + εlog)(1 + εmul)

= y ln(x)(1 + εlog + εmul + εlogεmul)

= y ln(x)

+ y ln(x)(εlog + εmul + εlogεmul)

and hence in the final exponential

R = E(mul(y, Ln(x)))
= emul(y,Ln(x))(1 + εexp)
= ey ln(x) + y ln(x)(εlog+εmul+εlogεmul)(1 + εexp)
= ey ln(x) · ey ln(x)(εlog+εmul+εlogεmul)(1 + εexp)

and finally the total relative error corresponds to

εtotal = ey ln(x)(εlog+εmul+εlogεmul)(1 + εexp)− 1 (7)

In equation (7), all the terms in the exponential must be small compared to 1, otherwise
the operator cannot be accurate. Therefore, using ez ≈ 1 + z+ z2/2, this equation becomes

εtotal = y ln(x)εlog + y ln(x)εmul + εexp + εorder2 (8)

where εorder2 is a term that gathers all the terms of order 2 or higher in the development of
(7). Each of these terms is of the order of u2, and for practical values of f (i.e. f > 8) we
have εorder2 < εorder2 = u/16 (a tighter bound is not needed).

Replacing in (8) all the other errors by their upper bounds, using the bound Mp on y ln(x)
defined in 2.2, we obtain

εtotal = Mpεlog +Mpεmul + εexp + εorder2 (9)

The bound of 1u on εtotal thus leads to the constraint

Mpεlog +Mpεmul + εexp < 1u− εorder2 = (1− 1/16)u (10)

A rule of thumb, for an efficient implementation, is to try and balance the contributions
to the total error of the three sub-operators, i.e. balance the impact of εmul, εexp and εlog in
the previous equation. Indeed, if one sub-operator contributes an error much smaller than
another one, we should try to degrade its accuracy in order to save resources.

This means here that we should aim at

Mpεlog ≈Mpεmul ≈ εexp. (11)

Let us now turn to each of these terms.

2.4. Exponential error analysis

We begin with the exponential that produces the output, and we want to extend its error
analysis to that of the complete exponentiation unit.

A hardware implementation of the exponential must use internal guard bits to control its
output accuracy. This is typically expressed as

εexp = (1/2 + t.2−gexp)u (12)

where the 1/2 is due to the final rounding, gexp is the number of guard bits that controls the
accuracy of the internal datapath, and t is a factor that counts the number of last-bit errors
along the datapath, and is determined by the error analysis of the chosen implementation.
For example, the value t = 18 in [Detrey and de Dinechin 2007] was refined to t = 7 in the
FloPoCo implementation used here [de Dinechin and Pasca 2010]. An iterative implementa-
tion such as [Piñeiro et al. 2004] or [Detrey et al. 2007] may have a value of t that depends
on the input/output formats.

Equation (10) now becomes

Mpεlog +Mpεmul + t.2−gexpu < (1− 1/2− 1/16)u (13)

There is one subtlety here. The error analysis in publications related to the exponential,
such as [Detrey and de Dinechin 2007] and [de Dinechin and Pasca 2010], assumes an exact
input to the exponential. In the implementation of xy, however, the input is mul(y, Ln(x))
which is not exact. Its error has been taken into account in the error analysis in previous
section, however the exponential begins with a shift left of the mantissa by up to r bit
positions, which could scale up this error by up to 2r.

To avoid that, we have to modify the architecture of the exponential slightly so that the
least significant bit after this shift has weight 2−f−gexp , ensuring that the rest of the error
analysis of the exponential remains valid. Instead of inputting to the exponential an f bit
mantissa, we should input f + r + gexp bits of the product mul(y, Ln(x)).

2.5. Logarithm error analysis

To ensure equation (11), we have to implement a logarithm with a relative error εlog ≈
t.2−gexpu/Mp. The simplest way is to use a faithful logarithm for a mantissa on flog =

f + r − 1 + gexp − blog2 tc bits. Its error will be bounded by 2−r+1−gexp+blog2 tcu, and as
Mp < 2r−1 we have Mpεlog < t.2−gexpu.

Architecturally, the mantissa of the input x is simply padded right with zeroes, then fed
to this logarithm unit.

2.6. Multiplier error analysis

We first remark that this multiplier has asymmetrical input widths: y is the input, and
has an f -bit mantissa. Ln(x) is slightly larger, we just saw that its mantissa will have
flog = f + r − 1 + gexp − blog2 tc bits.

Multiplying these two inputs leads to a 2f + r − 1 + gexp − blog2 tc-bit mantissa when
computed exactly. We then have three options:

— Round this product to f + r − 1 + gexp − blog2 tc bits, which (as for the log) entails a
relative error such that Mpεmul < t.2−gexp−1u.

— Truncate the multiplier result instead of rounding it, which saves a cycle but doubles the
error.

— Use a truncated multiplier [Wires et al. 2001; Banescu et al. 2010] faithful to
2−r−gexp+blog2 tcu.

This last option will entail the lowest resource consumption, especially in terms of embed-
ded multipliers. In addition, the output mantissa size of this multiplier perfectly matches
the extended input to the exponential unit discussed above. This is the choice made for the
current implementation.

2.7. Summing up

With the implementation choices detailed above, we have only one parameter left: gexp, and
equation (13) now becomes

t.2−gexpu+ t.2−gexpu+ t.2−gexpu < (1− 1/2− 1/16)u (14)

which defines the constraint on gexp:

gexp > − log2
0.4375

3t (15)

With the chosen implementation of the exponential [de Dinechin and Pasca 2010] (t = 7),
we deduce that gexp = 6 ensures faithful rounding.

Table III shows the resulting value of flog for several floating-point formats.

Table III. Internal precision

format (r, f) flog
(8, 23) (single) 33
(10, 32) 45
(11, 52) (double) 66

3. ARCHITECTURE AND IMPLEMENTATION

This analysis has been integrated in the FloPoCo tool [de Dinechin and Pasca 2011].
FloPoCo is an open-source core generator framework that is well suited to the construction
of complex pipelines such as the exponentiation unit described here. Its salient feature,
compared to traditional design flows based on VHDL and vendor cores, is to enable the
modular design of flexible pipelines targeting a user-specified frequency on a user-specified
target FPGA. FloPoCo is written in C++ and generates human-readable synthesizable
VHDL, optimized for a range of Altera and Xilinx targets.

Figure 3 depicts the architecture for the exponentiation unit xy, showing the intermediate
data formats. As can be seen, an exceptions unit completes the logic, while only positive
bases are fed to the logarithm. This avoids obtaining a NaN result on the logarithm unit
for the case of negative base and integer exponent. A final unit merges exceptions derived
directly from the input (following Table I) and exceptions due to overflows or underflows in
the computation.

This figure is is relatively independent on the implementation of the underlying expo-
nential, logarithm and multiplier cores. Ultimately, most of these computations involve
pipelined adders [de Dinechin et al. 2010b] and possibly truncated multipliers [Wires et al.

(r, f)

R

multiplier
FP trunc.

FPLog

Y X

FPExp

modified

exn

R
is

In
f

R
is

O
n

e

R
is

N
aN

(r, f)

(r, f)(r, f)

(r, flog)

exceptional case merge

33

exception bits

(r, flog)

+ signs
|X|

R
si

gn

R
is

Z
er

o

Fig. 3. Detailed architecture.

2001] [Banescu et al. 2010], which are still being actively developed in FloPoCo. The results
are expected to improve as these sub-components themselves are improved.

Let us now detail the different subcomponents and discuss possible improvements.

3.1. Exceptions Unit

As seen in section 1.2, the standard [IEEE Computer Society 2008] defines three variants
of the power function, with two of them implemented in this work, pow and powr. The
differences among them only impact the exception unit, in charge of handling the exception
cases summarized in table I. In addition to the exceptions related to infinity, zero, NaN, or
x = 1, this unit is in charge of detecting if y is an integer, as in this case a negative x is
allowed for the pow function. This resumes to determining the binary weight of the least
significant 1 of the mantissa of y. Let

e = Ey − E0 − f + z

where z is the count of ’0’ bits to the right of the rightmost ’1’ bit in y’s mantissa. If e is
negative, y is fractional. Otherwise, y is an integer, and we have to extract its parity bit
which, according to (2), determines the sign of the result.

3.2. Logarithm

The logarithm unit currently used is based on an iterative range reduction [Detrey et al.
2007; de Dinechin 2010]. As table VI shows, this is the most time- and resource-consuming
part of the operator.

In this architecture, there is a parameter, k, such that each iteration involves reading
a table with k-bit input, and performing a multiplication of a large number with a k-bit
number. To match the table size with the embedded RAM size, values of k close to 10 should
be used, but then the embedded multipliers (18×18-bits, or larger) are not fully exploited.

A value of k = 18 is optimal for multiplier usage, but leads to prohibitively large tables. In
this work, we use k between 10 and 12 as a trade-off, but we conclude that this iterative
range reduction, designed before the arrival of embedded multipliers and RAM blocks, is
not well suited to them.

Therefore, we believe there is much room for improvement here. A natural idea is to
use a polynomial approximation. For low-precision, this polynomial could use table-based
methods [Detrey and de Dinechin 2005] as they were in [Echeverŕıa and López-Vallejo
2008]. This method has been ported to FloPoCo but currently does not generate pipelined
designs. For larger precisions, we could use a generic polynomial approximator designed for
embedded memories and multipliers [de Dinechin et al. 2010a].

3.3. Multiplier

As mentioned in section 2.3, we need a rectangular multiplier, and we choose to use a
truncated one. For large precisions, almost half the DSP blocks are saved compared to a
standard floating-point multiplier [Wires et al. 2001; Banescu et al. 2010].

3.4. Exponential

The exponential currently used [de Dinechin and Pasca 2010] is based on a table-based
[Tang 1989] reduction followed by a polynomial approximation [de Dinechin et al. 2010a].
The single precision version consumes only one 18×18 multiplier and 18Kbit of RAM, which
matches very well current FPGAs both from Xilinx and Altera. For larger precisions, the
resource consumption remains moderate, as Table VI shows.

Compared to a standard exponential unit, there have been two modifications. At the
input, the precision is extended from the standard f to the f + r+ gexp, as detailed in 2.4.
At the output, information from the exception unit is taken into account.

4. EXPERIMENTAL RESULTS

4.1. Testing

FloPoCo comes with a parametric testbench generator framework [de Dinechin and Pasca
2011] that may produce arbitrary numbers of random tests for any floating-point format
or pipeline. The random generator may be overloaded in order to test each operator where
it needs to be. This is the case here: when using uniformly distributed inputs, the vast
majority of the results is either NaN, 0, or +∞. Testing the accuracy of the unit requires to
focus the random number generator on inputs that result in a normal floating-point value.

For each random input, the admissible outputs are computed using arbitrary-precision
arithmetic. Here, our requirement of last-bit accuracy (or faithful rounding) allows for two
possible values of the output: the two consecutive floating-point numbers that correspond
to the rounding up and down of the infinitely accurate result to the target format.

The generated testbench feeds the random inputs to the operator, and compares the
output to these two admissible values. An error is reported in case of a discrepancy. A small
modification of this setup also allows us to count the percentage of correct rounding.

The reported operators have been tested in this framework for several precisions and
thousands of test vectors. We report below synthesis results for operators that passed all
the tests they were subjected to, and are therefore faithful to the best of our knowledge – the
testbench generator is distributed along the operator to challenge this claim [de Dinechin
and Pasca 2011].

We also measured on these random tests that the operator returns the correctly rounded
result in more than 95% of the cases. This high quality is due to the fact that we have a
worst-case error analysis for all the subcomponents of a very large operator: the probability
of matching all the worst cases is low. A larger gexp may also be used to obtain a higher
percentage of correctly rounded results.

Table IV. Synthesis results for Stratix-4 for powr function

precision performance resources
(r, f) cycles MHz ALMs M9K M144K DSP 18-bit

8,23 35 274 1464 13 1 19
10,32 48 228 2689 31 0 41
11,52 64 195 4350 57 1 68

Table V. Synthesis results for Virtex-5 for powr function

precision performance resources
(r, f) cycles MHz Regs+Slices BRAMs DSP48

8,23 15 78 768R + 1631L 7 11
8,23 27 214 1260R + 1828L 7 11
10,32 25 80 1341R + 2772L 8 24
10,32 53 271 2857R + 3291L 8 24
11,52 37 118 2718R + 4715L 20 42
11,52 62 192 4511R + 5783L 20 42
11,52 77 266 5675R + 6153L 20 42

Table VI. Break-down into sub-components on the Virtex-5 target

precision performance resources
(r, f) cycles MHz Regs+Slices BRAMs DSP48

FPPowr 8,23 27 214 1260R + 1828L 7 11
FPLog 15 214 886R + 1302L 6 8
FPExp 7 230 200R + 441L 1 1

trunc mult 2 506 26R + 67L 0 2

FPPowr 11,52 62 192 4511R + 5783L 20 42
FPLog 34 192 2956R + 3477L 15 24
FPExp 20 259 1113R + 1565L 5 11

trunc mult 5 260 354R + 597L 0 7

4.2. Synthesis on Virtex-5 and StratixIV

This section reports synthesis results for the FPPowr operators for Altera StratixIV
(EP4SGX70HF35C2) on Quartus 11 environment, and Xilinx Virtex-5 (xc5vfx100T-3-
ff1738) on ISE 12 environment. To illustrate that the design is fully parameterized, we
report in tables IV and V results obtained on these two targets for the two main floating-
point formats, single and double, and for one intermediate precision totalling 45 bits. In
addition, Table V shows results of the generated architectures for several frequencies.

For both targets, a single-precision operator consumes a few percents of the resources
of a high-end FPGA, and double-precision one consumes about 10%. We do not report
post-place-and-route results of this operator alone, which would be meaningless.

It should be noted that FloPoCo adapts the architecture it generates to the target, so
the results on Stratix and Virtex come from different VHDL codes.

4.3. Relative costs of the sub-components

Table VI studies the relative performance and costs of the three main sub-components. The
bulk of an exponentiation operator is its logarithm unit, which is also responsible for the
critical path. This is partly due to its high accuracy (see Table III and Figure 3), but there is
room for improvement there, as already discussed in Section 3. Should these improvements
be implemented, the FPPowr unit will inherit them.

4.4. Comparison with previous work

Table VII compares the FloPoCo results for single precision for a target frequency of 200
MHz with those from [Echeverŕıa and López-Vallejo 2008] on a Virtex-4 (4vfx100ff1152-12).
The results from both units are very similar, only clearly differing in the use of BRAMs (due

Table VII. Comparison with previous work on Virtex-4

Operator(r, f) latency freq slices BRAM DSP

[Echeverŕıa and López-Vallejo 2008] (8,23) 34 210 1508 3 13
This work FPPow(8, 23) 36 199 1356 11 13

Table VIII. Cost of the exception control
unit

(8, 23) (11, 52)
pow powr pow powr

Slices 23 9 111 13

to the different algorithms used for the logarithm and the exponential functions). We point
out that [Echeverŕıa and López-Vallejo 2008] is less accurate, using (rlog, flog) = (8, 23)
instead of the needed (8, 33), losing up to 10 bits of accuracy for some inputs. We are also
comparing VHDL code hand-tuned for a specific FPGA and a specific precision [Echeverŕıa
and López-Vallejo 2008] to automatically generated code.

4.5. Exceptions Unit

Finally, table VIII summarizes the cost of the exception control unit for pow(x,y) and
powr(x,y), which is the only difference between both operators.

The bulk of this cost for pow(x,y) is in determining if y is an integer. However it remains
very small with respect to the full exponentiation unit.

5. CONCLUSION

The availability of elementary functions for FPGA is essential for developing hardware co-
processors to enhance the performance of computational-heavy applications such as scientific
computing or financial or physics simulations. Providing these functions for FPGA is the
aim of FloPoCo project.

In this work we have extended FloPoCo’s functions set with the floating-point expo-
nentiation operator, following the functions pow and powr defined in the IEEE 754-2008
standard. This implementation is fully parametric to take advantage of FPGA flexibility. It
is portable to mainstream FPGA families in a future-proof way. It is designed to be last-bit
accurate for all its inputs, with a careful error analysis to minimize the cost of this accuracy,
in particular by using truncated multiplier. We expect the performance to improve in the
future as sub-components, in particular the logarithm unit, are improved.

REFERENCES

Altera 2008a. Floating Point Exponent (ALTFP EXP) Megafunction User Guide. Altera.

Altera 2008b. Floating Point Natural Logarithm (ALTFP LOG) Megafunction User Guide. Altera.

Banescu, S., de Dinechin, F., Pasca, B., and Tudoran, R. 2010. Multipliers for floating-point double
precision and beyond on FPGAs. ACM SIGARCH Computer Architecture News 38, 73–79.

Belanović, P. and Leeser, M. 2002. A library of parameterized floating-point modules and their use. In
Field Programmable Logic and Applications. LNCS Series, vol. 2438. Springer, 657–666.

Bodnar, M. R., Humphrey, J. R., Curt, P. F., Durbano, J. P., and Prather, D. W. 2006. Floating-point
accumulation circuit for matrix applications. In Field-Programmable Custom Computing Machines.
IEEE, 303–304.

de Dinechin, F. 2010. A flexible floating-point logarithm for reconfigurable computers. LIP research report
RR2010-22, ENS-Lyon.

de Dinechin, F., Joldes, M., and Pasca, B. 2010a. Automatic generation of polynomial-based hardware
architectures for function evaluation. In Application-specific Systems, Architectures and Processors.
IEEE.

de Dinechin, F., Lauter, C. Q., and Muller, J.-M. 2007. Fast and correctly rounded logarithms in
double-precision. Theoretical Informatics and Applications 41, 85–102.

de Dinechin, F., Nguyen, H. D., and Pasca, B. 2010b. Pipelined FPGA adders. In Field-Programmable
Logic and Applications. IEEE, 422–427.

de Dinechin, F. and Pasca, B. 2010. Floating-point exponential functions for DSP-enabled FPGAs. In
Field Programmable Technologies. IEEE, 110–117.

de Dinechin, F. and Pasca, B. 2011. Designing custom arithmetic data paths with FloPoCo. IEEE Design
& Test of Computers.

de Dinechin, F., Pasca, B., Creţ, O., and Tudoran, R. 2008. An FPGA-specific approach to floating-
point accumulation and sum-of-products. In Field-Programmable Technologies. IEEE, 33–40.

Detrey, J. and de Dinechin, F. 2005. Table-based polynomials for fast hardware function evaluation. In
Application-specific Systems, Architectures and Processors. IEEE, 328–333.

Detrey, J. and de Dinechin, F. 2007. Parameterized floating-point logarithm and exponential functions
for FPGAs. Microprocessors and Microsystems, Special Issue on FPGA-based Reconfigurable Comput-
ing 31, 8, 537–545.

Detrey, J., de Dinechin, F., and Pujol, X. 2007. Return of the hardware floating-point elementary
function. In 18th Symposium on Computer Arithmetic. IEEE, 161–168.

Doss, C. C. and Riley, R. L. 2004. FPGA-Based implementation of a robust IEEE-754 exponential unit.
In Field-Programmable Custom Computing Machines. IEEE, 229–238.

Echeverŕı a Aramendi, P. 2011. Hardware acceleration of Monte Carlo-based simulations. Ph.D. thesis,
Universidad Politecnica De Madrid, Escuela Tecnica Superior De Ingenieros De Telecomunicacion.

Echeverŕıa, P. and López-Vallejo, M. 2008. An FPGA implementation of the powering function with
single precision floating point arithmetic. In 8th Conference on Real Numbers and Computers. 17–26.

Echeverŕıa, P. and López-Vallejo, M. 2011. Customizing floating-point units for FPGAs: Area-
performance-standard trade-offs. Microprocessors and Microsystems 35, 6, 535 – 546.

Ercegovac, M. 1973. Radix-16 evaluation of certain elementary functions. IEEE Transactions on Com-
puters C-22, 6, 561–566.

Harris, D. 2004. An exponentiation unit for an OpenGL lighting engine. IEEE Transactions on Comput-
ers 53, 3, 251 – 258.

IEEE Computer Society. 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754-2008.
available at http://ieeexplore.ieee.org/servlet/opac?punumber=4610933.

Kuon, I. and Rose, J. 2007. Measuring the gap between FPGAs and ASICs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 26, 2, 203–215.

Lauter, C. and Lefèvre, V. 2009. An efficient rounding boundary test for pow(x, y) in double precision.
IEEE Transactions on Computers 58, 2, 197–207.

Louca, L., Cook, T., and Johnson, W. 1996. Implementation of IEEE single precision floating point
addition and multiplication on FPGAs. In FPGAs for Custom Computing Machines. IEEE, 107–116.

Luo, Z. and Martonosi, M. 2000. Accelerating pipelined integer and floating-point accumulations in
configurable hardware with delayed addition techniques. IEEE Transactions on Computers 49, 3, 208–
218.

Markstein, P. 2000. IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard Professional
Books. Prentice Hall.

Muller, J.-M. 2006. Elementary Functions, Algorithms and Implementation 2nd Ed. Birkhäuser.

Piñeiro, J. A., Ercegovac, M. D., and Bruguera, J. D. 2004. Algorithm and architecture for logarithm,
exponential and powering computation. IEEE Transactions on Computers 53, 9, 1085–1096.

Pottathuparambil, R. and Sass, R. 2009. A parallel/vectorized double-precision exponential core to
accelerate computational science applications. In Field Programmable Gate Arrays. ACM/SIGDA, 285–
285.

Rebonato, R. 2002. Modern pricing of interest-rate derivatives: The LIBOR market model and beyond.
Princeton Univ Pr.

Scrofano, R., Gokhale, M., Trouw, F., and Prasanna, V. 2008. Accelerating molecular dynamics sim-
ulations with reconfigurable computers. IEEE Transactions on Parallel and Distributed Systems 19, 6,
764–778.

Shirazi, N., Walters, A., and Athanas, P. 1995. Quantitative analysis of floating point arithmetic on
FPGA based custom computing machine. In FPGAs for Custom Computing Machines. IEEE, 155–162.

Tang, P. 1989. Table-driven implementation of the exponential function in IEEE floating-point arithmetic.
ACM Transactions on Mathematical Software 15, 2, 144–157.

Underwood, K. 2004. FPGAs vs. CPUs: trends in peak floating-point performance. In Field Programmable
Gate Arrays. ACM/SIGDA, 171–180.

Vázquez, A. and Antelo, E. 2003. Implementation of the exponential function in a floating-point unit.
Journal of VLSI Signal Processing 33, 1-2, 125–145.

Wang, X., Braganza, S., and Leeser, M. 2006. Advanced components in the variable precision floating-
point library. In FCCM. IEEE, 249–258.

Wielgosz, M., Jamro, E., and Wiatr, K. 2009. Accelerating calculations on the RASC platform: A case
study of the exponential function. In ARC ’09: Proceedings of the 5th International Workshop on
Reconfigurable Computing: Architectures, Tools and Applications. Springer-Verlag, Berlin, Heidelberg,
306–311.

Wires, K. E., Schulte, M. J., and McCarley, D. 2001. FPGA Resource Reduction Through Truncated
Multiplication. In Field-Programmable Logic and Applications. Springer-Verlag, 574–583.

Woods, N. and VanCourt, T. 2008. FPGA acceleration of quasi-Monte Carlo in finance. Field Pro-
grammable Logic and Applications, 335–340.

Wrathall, C. and Chen, T. C. 1978. Convergence guarantee and improvements for a hardware exponential
and logarithm evaluation scheme. In 4th Symposium on Computer Arithmetic. 175–182.

Zhuo, L. and Prasanna, V. 2008. High-performance designs for linear algebra operations on reconfigurable
hardware. IEEE Transactions on Computers 57, 8, 1057–1071.

Ziv, A. 1991. Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM
Transactions on Mathematical Software 17, 3, 410–423.

