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Abstract—This paper deals with the accuracy of complex
division in radix-two floating-point arithmetic. Assuming that
a fused multiply-add (FMA) instruction is available and that no
underflow/overflow occurs, we study how to ensure high relative
accuracy in the componentwise sense. Since this essentially
reduces to evaluating accurately three expressions of the form
ac + bd, an obvious approach would be to perform three calls
to Kahan’s compensated algorithm for 2 by 2 determinants.
However, in the context of complex division, two of those
expressions are such that ac and bd have the same sign, suggesting
that cheaper schemes should be used here (since cancellation
cannot occur). We first give a detailed accuracy analysis of such
schemes for the sum of two nonnegative products, providing not
only sharp bounds on both their absolute and relative errors,
but also sufficient conditions for the output of one of them to
coincide with the output of Kahan’s algorithm. By combining
Kahan’s algorithm with this particular scheme, we then deduce
two new division algorithms. Our first algorithm is a straight-line
program whose componentwise relative error is always at most
5u+13u2 with u the unit roundoff; we also provide examples of
inputs for which the error of this algorithm approaches 5u, thus
showing that our upper bound is essentially the best possible.
When tests are allowed we show with a second algorithm that
the bound above can be further reduced to 4.5u+9u2, and that
this improved bound is reasonably sharp.

Keywords. Floating-point arithmetic; complex division; fused

multiply-add (FMA); rounding error analysis.

I. INTRODUCTION

For two complex numbers x = a+ ib and y = c+ id given

by their real and imaginary parts, the result z of the division

of x by y is classically expressed as

z =
ac+ bd

c2 + d2
+ i

bc− ad

c2 + d2
. (1)

When evaluating (1) in floating-point arithmetic and if neither

underflow nor overflow occurs, then it is well known that high

relative accuracy is ensured in the normwise sense [1, §3.6], [2,

§4.5]. More precisely, assume standard binary floating-point

arithmetic, in precision p and with rounding ’to nearest even’

(RN), and let ẑ denote the approximation to z given by

Re ẑ = RN

(
RN
(
RN(ac) + RN(bd)

)

RN
(
RN(c2) + RN(d2)

)
)

(2)

for its real part and by a similar expression for its imaginary

part Im ẑ. Then the normwise relative error

En(ẑ) = |ẑ − z|/|z|

is bounded by γu+O(u2), where u = 2−p is the unit roundoff

and γ is a modest constant. For example, one can take γ equal

to 3 +
√
5 = 5.236..., as noted in [3, §3.6]. (A detailed proof

of this fact is given in appendix.)

However, in the componentwise sense, the approximation ẑ
can be highly inaccurate: there exist values for a, b, c, d such

that the componentwise relative error

Ec(ẑ) = max
(
|Re ẑ − Re z|/|Re z|, |Im ẑ − Im z|/|Im z|

)

is (much) larger than one. For example, the input

(a, b, c, d) = (N,N + 1,−N,N − 1) (3)

with N = 2p−1 +2p−2 − 1 leads to Ec(ẑ) ≈ 9.0× 1015 ≫ 1
when p = 53 and ẑ is computed according to (2). Here,

the input consists of normal floating-point numbers and there

is no underflow/overflow, but since ac and bd have opposite

signs and similar magnitudes a cancellation occurs during the

evaluation of ac+ bd as

f̂o = RN
(
RN(ac) + RN(bd)

)
. (4)

In this paper, we are interested in performing complex

divisions very accurately in the componentwise sense, assum-

ing that a fused multiply-add (FMA) instruction is available

and that no underflow/overflow occurs. The FMA evaluates

expressions of the form ab + c with one rounding error only

and since it is required by the 2008 revision of the IEEE 754

standard [4], one can expect that it will soon belong to the

instruction set of most general-purpose processors.

From (1) it is clear that in order to achieve high relative

accuracy in the componentwise sense, it suffices to evaluate

with high relative accuracy two-dimensional dot products, that

is, expressions of the form

g = ac+ bd.

With an FMA, a naive computation would produce, say,

f̂ = RN
(
ac+ RN(bd)

)
, (5)

so that the expression in (2) can for example be replaced by

Re ẑ = RN

(
RN
(
ac+ RN(bd)

)

RN
(
c2 + RN(d2)

)
)
.

Implementing complex division by means of such schemes

is, however, not enough for our purposes. Indeed, considering



again (3) and p = 53 now gives Ec(ẑ) ≈ 4.5× 1015, but this

componentwise relative error is still (much) larger than one.

To ensure high accuracy, the FMA is typically used further

to recover the rounding errors committed when evaluating the

products ac and bd, and then to compensate for them by

addition; see for example [5, p. 273]. It turns out that if the

FMA is already used to get f̂ as in (5), then only the rounding

error for bd needs to be recovered. This is the basis of the

algorithm below, attributed to Kahan in [1, p. 65]:

algorithm Kahan(a, b, c, d)
ŵ := RN(bd);
e := RN(bd− ŵ); // this operation is exact: e = bd− ŵ.

f̂ := RN(ac+ ŵ);

ĝ := RN
(
f̂ + e

)
;

return ĝ;

The error e = bd−RN(bd) is computed exactly thanks to the

FMA instruction, and then added to f̂ in order to yield the

approximation ĝ to g = ac + bd. In [6] it was shown that in

the absence of underflow and overflow

|ĝ − g| 6 2u|g|, (6)

so that Kahan’s algorithm always approximates g to high

relative accuracy; it was also shown that the bound 2u is

essentially best possible (even if ac and bd can be swapped)

via the explicit construction of floating-point numbers a, b, c, d
for which |ĝ − g|/|g| = 2u+O(u2).

Consequently, by using Kahan’s algorithm to evaluate ac+
bd, bc− ad, c2 + d2 in (1) and then performing two floating-

point divisions, we obviously get high componentwise relative

accuracy: considering for example the real part,

Re ẑ =
g(1 + ǫ)

(c2 + d2)(1 + ǫ′)
(1 + ǫ′′),

where |ǫ|, |ǫ′| 6 2u by (6) and where the relative error |ǫ′′| of

floating-point division is bounded by u. Hence the real part of

ẑ has the form (1 + θ) · Re z with |θ| 6 1+2u
1−2u (1 + u)− 1 and

since the same holds for the imaginary part, it follows that the

componentwise relative error satisfies

Ec(ẑ) 6 5u+O(u2). (7)

Yet this approach raises two issues, which we address

in this paper. First, among the three dot products ac + bd,

bc−ad, c2+d2 appearing in (1) only one of them can cancel:

if abcd > 0 cancellation can occur only when evaluating

bc − ad, while if abcd < 0 cancellation can occur only

when evaluating ac + bd. Hence, there is always exactly one

potentially ’difficult’ case (one of the numerators) and two

’easy’ cases (the denominator c2+d2 and the other numerator).

Although it seems obvious not to use Kahan’s compensated

algorithm for such easy cases where cancellation cannot occur,

the behavior of simpler algorithms like those producing f̂o
in (4) or f̂ in (5) deserves further investigation: Is the relative

error bound 2u given in (6) for ĝ also a sharp bound for f̂o
and f̂? How are f̂ and ĝ related, and when do they coincide?

We address this first issue in Section II by presenting a

thorough study of the case ’ac+ bd with ac > 0 and bd > 0’.

In particular,

• we show that without any further assumption on a, b, c, d
the bound 2u is indeed already sharp for f̂o and f̂ ;

• we also show that either f̂ and ĝ coincide, or one of them

is a faithfully rounded value of the exact result g;

• third, we show that if 0 6 bd 6 ac then f̂ = ĝ and a

sharp bound is 3
2u.

Along with these relative error bounds, we also systematically

provide bounds on absolute errors, which we express in terms

of ulps (units in the last place) of g. In particular, this provides

a good illustration of the impact the FMA can have on error

bounds: for |f̂ − g| and |f̂o − g|, that is, for the naive

evaluation of g with or without FMA, sharp bounds are proven

to be ulp(g) and 5
4ulp(g), respectively. Finally, in the more

constrained case g = c2 + d2 of a sum of two squares, all our

error bounds are shown to remain either sharp or reasonably

tight for the basic IEEE formats. By combining the results

in Section II with the bound in (6) we immediately deduce

two other FMA-based, highly accurate algorithms for complex

floating-point division:

• a straight-line program that evaluates the denominator

c2+d2 using (5) and the two numerators using Kahan’s al-

gorithm, and whose relative error is again clearly bounded

as in (7);

• an algorithm using tests in order to always reduce the

error bound on c2 + d2 to 3
2u, thus improving (7) to

Ec(ẑ) 6
9
2u+O(u2). (8)

The second issue concerns the sharpness of the bounds in (7)

and (8). Indeed, although it is straightforward to derive the

two algorithms just mentioned and to perform their rounding

error analysis, it is a priori not clear that sharp bounds for the

numerators and for the denominator will lead to sharp bounds

for the whole complex division algorithms.

Section III is devoted to this second issue, and we show in

particular through numerical examples that for all the basic

binary IEEE formats

• the error bound in 5u+O(u2) is sharp for the straight-line

program;

• the error bound in 9
2u + O(u2) is reasonably sharp for

the algorithm using tests.

Furthermore, for the straight-line program and when the

precision p is even, we show that the bound 5u + O(u2)
is asymptotically optimal by explicitly constructing an input

(a, b, c, d) for which Ec(ẑ) = 5u−O(u3/2).

Assumptions and notation. Throughout this paper we make

the customary assumption that p > 2. Also, we write ulp to

denote the unit in the last place function: ulp(0) = 0 and for

any nonzero real number t, ulp(t) is the unique integer power

of two such that 2p−1 6 |t|/ulp(t) < 2p. Furthermore, we

assume that underflows and overflows never occur, so that

|RN(t)− t| 6 1
2ulp(t) 6 u|t| for any real number t. (9)



In particular, the rightmost inequality leads to the so-called

standard model of floating-point arithmetic [1, p. 40]. For

some of our proofs we will also use the following classical

modified version of (9): for any real number t,

|RN(t)− t| 6 1
2ulp(RN(t)) 6 u|RN(t)|.

II. ON THE SUM OF TWO NONNEGATIVE PRODUCTS

In this section we focus on the approximation of g = ac+bd
by f̂o, f̂ , or ĝ in the case where

ac > 0 and bd > 0. (10)

From [6] and [7] we already know that ulp(g) and 2u are sharp

absolute/relative error bounds for ĝ, and that 2u is a relative

error bound for f̂o. As a first extension of these results, we

show in Section II-A that this bound 2u on |f̂o−g|/g is sharp,

and also that a sharp bound on |f̂o − g| is 5
4ulp(g). Then, we

show in Section II-B that similarly to ĝ, sharp absolute and

relative error bounds for f̂ are ulp(g) and 2u. Since f̂ and ĝ
share the same error bounds, we study further how they relate

to each other. Specifically, we prove in Section II-C that either

f̂ and ĝ are equal, or one of them is a faithfully rounded value

of g. We conclude in Section II-D by assuming further that

ulp(bd) 6 ulp(ac). (11)

In this case, which may be of interest when tests are allowed

and which is implied by 0 6 bd 6 ac, we prove that f̂ and

ĝ always coincide, thus showing that the compensation step

in Kahan’s algorithm simply has no effect on the quality of

the result. Furthermore, the error bounds ulp(g) and 2u given

in the general case can now be improved to 3
4ulp(g) and 3

2u,

which are shown to be sharp when (11) holds.

The table below summarizes the bounds presented in this

section:

r̂ bound on |r̂ − g| bound on |r̂ − g|/g

f̂o
5

4
ulp(g) 2u [7]

f̂ ulp(g) 2u

ĝ ulp(g) [6] 2u [6]

f̂ = ĝ for (11) 3

4
ulp(g) 3

2
u

The sharpness of these error bounds is established using

examples of the form ac+bd parametrized by the precision p.

We also investigated the sharpness of these error bounds for

the evaluation of sums of squares c2 + d2: in most cases

we show that the bounds remain asymptotically optimal as

p → ∞, but for some of the algorithms considered we have

not found examples parametrized by p to show this. In those

cases, however, we illustrate the quality of the error bounds

with examples in precisions p = 53, 113, which correspond

to the binary64 and binary128 formats of the IEEE 754-2008

standard [4].

A. Error bounds for the approximation f̂o without FMA

From [7] it is known that when approximating g as in (10)

using f̂o as in (4), the relative error is always at most of 2u:

|f̂o − g| 6 2ug.

Since here g = |g|, this bound thus is the same as the bound

obtained in (6) using Kahan’s algorithm. Furthermore, just

like for Kahan’s algorithm, it is asymptotically optimal, as

the example below shows.

Example 1 (2ug is an asymptotically optimal bound on

|f̂o − g|). For any p > 2, consider

a = b = 2p − 1, c = 2p−1 + 2, d = 2p−1 + 1.

One easily shows that g = 22p + 2p+1 − 3 and f̂o = 22p, so

that we have

|f̂o − g|
g

=
22p − 3 · 2p−1

22p + 2p+1 − 3
· 2u.

Thus, |f̂o − g|/(2ug) is in 1−O(2−p) as p → ∞.

Let us now give an error bound in ulps for f̂o and an

example showing the asymptotic optimality of this bound.

Property 1. |f̂o − g| 6 5
4ulp(g).

Proof: Let v̂ = RN(ac), ŵ = RN(bd), and fo = v̂ + ŵ.

Then |f̂o − g| 6 |f̂o − fo|+ |fo − g| and we shall prove first

that |fo − g| is at most 3
4ulp(g). With m = min{ac, bd} and

m′ = max{ac, bd}, we have

|fo − g| 6 |v̂ − ac|+ |ŵ − bd|
6 1

2ulp(ac) + 1
2ulp(bd) = 1

2ulp(m) + 1
2ulp(m′).

From 0 6 m 6
g
2 and 0 6 m′ 6 g we get ulp(m) 6 1

2ulp(g)
and ulp(m′) 6 ulp(g), and then

|fo − g| 6 3
4ulp(g). (12)

We conclude the proof by using the same case analysis as

in [7, p. 1470]:

• If ulp(fo) 6 ulp(g) then |f̂o−fo| 6 1
2ulp(fo) 6

1
2ulp(g),

which can be combined with (12) to give the result;

• If ulp(g) < ulp(fo) then 0 6 g < 2k 6 fo for some

integer k. Hence, using (12) and ulp(g) 6 1
2ulp(fo),

0 6 fo − 2k < fo − g 6 3
4ulp(g) 6 3

8ulp(fo).

Consequently, the floating-point number 2k must be equal

to f̂o = RN(fo), and then 0 < f̂o−g 6 fo−g 6 3
4ulp(g).

Thus, in this case |f̂o − g| is also at most 5
4ulp(g).

Example 2 ( 54ulp(g) is an asymptotically optimal bound on

|f̂o − g|). Assuming p > 7, let

a = c = 2p−1 + 2p−3 + 1, b = d = 2p−1 + 2p−2 + 1.

One easily shows that g = 61 · 22p−6 + 2p+1 + 3 · 2p−2 + 2,

f̂o = 61 · 22p−6 + 2p+2, and ulp(g) = 2p, so that

|f̂o − g| =
(
5
4 − 21−p

)
ulp(g).



Special case of the sum of two squares. When computing an

expression of the form c2+d2 using (4), Example 2 shows that

the absolute error bound 5
4ulp(g) is asymptotically optimal.

Still in the particular case of an expression of the form c2+d2,

Example 3 below shows that the relative bound 2u for f̂o
remains asymptotically optimal when p is even. When p is

odd, we did not manage to find an example parametrized by p
to prove that the error bound 2u is asymptotically optimal;

nevertheless, when p is odd, the quality of the bound is

illustrated in Table I for p = 53, 113.

Example 3. Assuming p > 2 is even, let us consider

c = 2p/2−1 and d = 2p−1 + 2p/2−1.

We have g = 22p−2+2
3p

2
−1+2p−1 and f̂o = 22p−2+2

3p

2
−1,

so that

|f̂o − g|
g

=
22p−2

22p−2 + 2
3p

2
−1 + 2p−1

· 2u.

Hence |f̂o − g|/(2ug) is in 1−O(2−
p

2 ) as p → ∞.

• Relative error in f̂o close to 2u:

p example

53 c = 4503608217436160

d = 4503599711256576

|f̂o − g|/(ug) = 1.9374 . . .

113 c = 5192296858544272361496373058600960

d = 5192296858534827718602488876630016

|f̂o − g|/(ug) = 1.9374 . . .

• Relative error in f̂ = ĝ close to 2u:

p example

53 c = 8426657115275263

d = 4503608217436160 · 226

|f̂ − g|/(ug) = 1.9980 . . .

113 c = 9715274200149150133070733366001663

d = 5192296858544272361496373058600960 · 256

|f̂ − g|/(ug) = 1.9980 . . .

• For |d| 6 |c|, errors in f̂ = ĝ close to 3

4
ulp(g) and 3

2
u:

p example

53 c = 4503600164241409

d = 4503599900000256

|f̂ − g|/ulp(g) = 0.7480 . . .

|f̂ − g|/(ug) = 1.4960 . . .

113 c = 5192296858534828204991248632643585

d = 5192296858534827921264472108302336

|f̂ − g|/ulp(g) = 0.7480 . . .

|f̂ − g|/(ug) = 1.4960 . . .

TABLE I
EXAMPLES OF THE FORM c2 + d2 , FOR p = 53, 113.

B. Error bounds for the naive approximation f̂ with an FMA

We now turn to the computation of f̂ as in (5). The property

and example below show that the relative error bound 2u

obtained for f̂o in Section II-A is still sharp, while the absolute

error is now tightly bounded by one ulp of the exact result.

Property 2. |f̂ − g| 6 ulp(g) 6 2ug.

Proof: Since g = f + e, we have |f̂ − g| 6 |f̂ − f |+ |e|.
By definition, |e| 6 1

2ulp(bd) and using 0 6 bd 6 g leads to

|e| 6 1
2ulp(g). (13)

On the other hand, we can check that |f̂ − f | 6 1
2ulp(g) as

follows:

• If ulp(f) 6 ulp(g) then |f̂ − f | 6 1
2ulp(f) 6 1

2ulp(g);
• If ulp(g) < ulp(f) then 0 6 g < 2k 6 f for some integer

k. Since f̂ = RN(f) and 2k is a floating-point number,

this implies |f̂ − f | 6 f − 2k < f − g = −e 6 1
2ulp(g).

Thus, in both cases we have |f̂ − g| 6 ulp(g) as wanted,

and (9) implies further that ulp(g) 6 2ug.

Example 4 (ulp(g) and 2ug are asymptotically optimal bounds

on |f̂ − g|; Example 6.2 in [6]). For any p > 2, consider

a = 2p − 2, b = (2p − 1)2p, c = d = 2p−1 + 1.

One easily shows that g = 23p−1+22p−2p−2, ulp(g) = 22p,

and f̂ = 23p−1. Hence |f̂−g| = (1−2−p−21−2p)ulp(g) and

|f̂ − g|
g

=
23p−1 − 22p−1 − 2p

23p−1 + 22p − 2p − 2
· 2u.

Consequently, both |f̂ − g|/ulp(g) and |f̂ − g|/(2ug) are in

1−O(2−p) as p → ∞. In this example, since e = 22p−1−2p

and ulp(f̂) = 22p, it may also be noticed that the result ĝ
returned by Kahan’s algorithm satisfies ĝ = f̂ .

Special case of the sum of two squares. Examples 6.3 and 6.4

in [6] are of the form c2 + d2, with f̂ = ĝ. Hence we already

know from that paper that:

• the absolute error bound |f̂ − g| 6 ulp(g) is asymptoti-

cally optimal for p even, and optimal for p odd;

• the relative error bound |f̂ − g| 6 2ug is asymptotically

optimal when p is even.

When p is odd, numerical examples of the form c2 + d2 in

precisions 53 and 113 are given in Table I that illustrate the

quality of the relative error bound.

C. Relationship between f̂ and ĝ

The sharp bounds we have so far for f̂ and ĝ are the same:

one ulp of g for absolute errors, and 2u for relative errors.

In this section, we go one step further by investigating more

precisely how f̂ and ĝ are related. We show in Theorem 1

below that if f̂ and ĝ differ then they must be two consecutive

floating-point numbers surrounding the exact value g. For this,

we start with a lemma giving a necessary condition for f̂ to

be different from ĝ.

Lemma 1. If f̂ 6= ĝ then

2k 6 ŵ < f̂ < 2k+1 for some k ∈ Z, (14a)



and

|e| = 1
2ulp(ŵ) = 1

2ulp(f̂). (14b)

Proof: Using 0 6 ŵ 6 ac + ŵ together with the

monotonicity of rounding, we have

0 6 ŵ 6 f̂ .

If f̂ is zero, this implies ŵ = 0 and thus bd = e = 0, so that

ĝ = 0 = f̂ . Hence f̂ 6= ĝ implies f̂ is positive and, therefore,

2k 6 f̂ < 2k+1 for some integer k.

(i) If ŵ < 2k then ulp(ŵ) 6 1
2ulp(f̂) and then |e| 6

1
2ulp(ŵ) 6 1

4ulp(f̂), so that ĝ = RN(f̂ + e) equals f̂ .

(ii) If ŵ = f̂ then ĝ = RN(ŵ+ e) = RN(bd) = ŵ and thus

f̂ = ĝ.

From (i) and (ii) we deduce that f̂ 6= ĝ implies the condition

in (14a). This condition gives in particular ulp(ŵ) = ulp(f̂)
and, since f̂ is a floating-point number,

2k + ulp(f̂) 6 f̂ 6 2k+1 − ulp(f̂). (15)

Furthermore, by definition |e| 6 1
2ulp(ŵ) and, on the other

hand, |e| < 1
2ulp(ŵ) implies RN(f̂ + e) = f̂ . Thus, f̂ 6= ĝ

also implies the condition in (14b).

Theorem 1. Let m = min(f̂ , ĝ) and m′ = max(f̂ , ĝ). If

f̂ 6= ĝ then g ∈ [m,m′] and m′ = m+ ulp(m).

Proof: First, by Lemma 1 we have |e| = 1
2ulp(f̂). Hence,

if e > 0 then ĝ = RN(f̂ + 1
2ulp(f̂)) must be either f̂ or

f̂ + ulp(f̂), while if e < 0 it must be either f̂ − ulp(f̂) or f̂ .

Since f̂ 6= ĝ, we deduce that in both cases

ĝ = f̂ + 2e. (16)

Note also that |f̂ − ĝ| = ulp(m). Indeed, if m = f̂ then this

follows immediately from (16); else, we have ĝ < f̂ and, since

ĝ is a floating-point number, using (15) gives ulp(ĝ) = ulp(f̂).
Together with (16), this implies |f̂ − ĝ| = ulp(ĝ) = ulp(m).

Writing ǫ for the error committed when rounding ac + ŵ
to nearest, we have f̂ = ac+ ŵ + ǫ and |ǫ| 6 1

2ulp(f̂) = |e|.
Hence, using the identity e = bd− ŵ,

g = f̂ + e− ǫ.

If e > 0 then −ǫ ∈ [−e, e], so that g belongs to [f̂ , f̂ +2e] =
[f̂ , ĝ]; if e 6 0 then −ǫ ∈ [e,−e] and in this case g belongs

to [f̂ + 2e, f̂ ] = [ĝ, f̂ ]. We conclude that g ranges in [m,m′]
with m′ −m = |f̂ − ĝ| = ulp(m).

Recall from [8, Definition 2.3] that a faithful rounding of a

real number t is any floating-point number s whose floating-

point predecessor and successor satisfy the strict inequalities

pred(s) < t < succ(s). Consequently, Theorem 1 shows in

particular that if f̂ and ĝ differ then at least one of them must

be a faithful rounding of the exact result g.

Since |f̂ − ĝ| = ulp(m) and 0 6 m 6 g, another

consequence of the theorem above is that

|f̂ − ĝ| 6 ulp(g).

This bound improves upon the bound |f̂ − ĝ| 6 2ulp(g)
immediately implied by |f̂−g| 6 ulp(g) and |ĝ−g| 6 ulp(g);
furthermore, it is shown to be optimal in the example below.

Example 5 (ulp(g) is an optimal bound on |f̂− ĝ|). Assuming

p > 4, let us consider

a = c = 2p−1 + 1, b = 2p + 2⌈
p

2
⌉, d = 2p + 2⌊

p

2
⌋.

Then one can check that |f̂ − ĝ| = ulp(g). It may also be

checked that in this example the result computed by the naive

algorithm with FMA is always more accurate than the one

computed with Kahan’s algorithm, since we have

|f̂ − g| = 2−p−1ulp(g) and |ĝ − g| = (1− 2−p−1)ulp(g).

D. Special case where ulp(bd) 6 ulp(ac)

The goal of this section is to show that if our input a, b, c, d
satisfy (10) and (11), then f̂ is always equal to ĝ and the error

bounds ulp(g) and 2u can be decreased further.

Lemma 2. If ulp(bd) 6 ulp(ac) then |e| 6 1
4ulp(g).

Proof: Since |e| 6 1
2ulp(bd), it suffices to show that

ulp(bd) 6 1
2ulp(g). We do this by considering two cases.

If bd 6 ac then bd 6 g/2 and thus ulp(bd) 6 1
2ulp(g).

Assume now that ac < bd. This implies ulp(ac) 6

ulp(bd) as well as g > 0 and ac < g/2. Consequently,

ulp(bd) = ulp(ac) 6 21−pac < 2−pg < ulp(g), and the

conclusion follows from ulp(bd) < ulp(g) being equivalent

to ulp(bd) 6 1
2ulp(g).

Theorem 2. If ulp(bd) 6 ulp(ac) then f̂ = ĝ.

Proof: If f̂ = 0 then it has already been seen in the

proof of Lemma 1 that ĝ = 0 as well. Let us now assume

that f̂ > 0. Since f̂ = RN(f) is a floating-point number, we

have f̂ 6 (2p−1)ulp(f̂) and it follows that for RN ’to nearest

even’

f <
(
2p − 1

2

)
ulp(f̂).

On the other hand, 0 6 ŵ 6 f = ac + ŵ, which implies

ulp(ŵ) 6 ulp(f) 6 ulp(f̂) and then

|e| 6 1
2ulp(f̂).

Hence g = f + e 6 f + |e| < 2pulp(f̂) and, using g > 0,

ulp(g) 6 ulp(f̂).

By Lemma 2 we thus obtain |e| 6 1
4ulp(f̂), from which we

conclude that ĝ = RN(f̂ + e) = f̂ .

The condition ulp(bd) 6 ulp(ac) is sufficient but not

necessary to have f̂ equal to ĝ; see Example 4. In addition,

this condition is equivalent to

exponent of bd 6 exponent of ac,

and, for ac and bd nonnegative, it is implied by

bd 6 ac.



Furthermore, in this special case where both (10) and (11)

hold, Property 3 below shows that we can also improve the

bounds we had given for the general case where only (10)

holds. To get this, all we have to do is to replace, in the proof

of Property 2, the bound in (13) by the bound in Lemma 2.

Property 3. If ulp(bd) 6 ulp(ac) then |f̂ − g| 6 3
4ulp(g) 6

3
2ug.

The next example shows that these new bounds are sharp.

Example 6 (In the special case where ulp(bd) 6 ulp(ac) the

bound 3
4ulp(g) is optimal and the bound 3

2ug is asymptotically

optimal). Assuming p > 6, consider

a = 2p−1+2⌊
p

2
⌋, b = c = 2p−1+2⌈

p

2
⌉−1, d = 2p−1+2⌊

p

2
⌋−1.

In this example, we have ulp(ac) = ulp(bd), |f̂ − g| equals
3
4ulp(g), and |f̂ − g|/( 32ug) is in 1−O(2−

p

2 ) as p → ∞.

Special case of the sum of two squares. Example 7 below

shows that the error bounds of Property 3 remain asymptoti-

cally optimal when evaluating an expression of the form c2+d2

with p even. For p odd, we give examples for p = 53, 113 in

Table I showing that our bounds are reasonably sharp.

Example 7. Assuming p > 6 even, consider

c = 2p−1 + 2p/2+1 and d = 2p−1 + 2p/2−1 + 1.

With these inputs, 0 6 d 6 c and ulp(d2) = ulp(c2). Also,

both |f̂ − g|/( 34ulp(g)) and |f̂ − g|/( 32ug) are in 1−O(2−
p

2 )
as p → ∞.

III. TWO COMPLEX DIVISION ALGORITHMS AND THEIR

COMPONENTWISE RELATIVE ACCURACY

When the denominator c2 + d2 in (1) is evaluated as δ̂ =
RN(c2 + RN(d2)) with no comparison between |c| and |d|,
Property 2 shows that δ̂ = (c2 + d2)(1 + ǫ1) with |ǫ1| 6 2u.

On the other hand, Property 3 suggests that one should choose

to compare |c| and |d|, and to compute δ̂ = RN(c2+RN(d2))
if |d| 6 |c| and δ̂ = RN(d2 + RN(c2)) otherwise: this ensures

the smaller bound |ǫ1| 6 3
2u.

It is well known that conditional branches can limit the per-

formance of programs on pipelined architectures, essentially

because each wrong branch prediction causes the pipeline

to stall (see Chapters 3 and 4, and Appendix A in [9]).

Hence, using a conditional branch to choose how to compute

δ̂ depending on a comparison between |d| and |c| may have a

bad impact on the performance of the program.

However, some architectures support predicated instruc-

tions [9, p. 340], [5, Chap. 2]. Each predicated instruction in a

program refers to a condition: if the condition is true then the

instruction is executed normally, otherwise it is executed as

a ’no-operation’ causing no particular hazard in the pipeline.

The IEEE 754-2008 standard [4] also describes new operations

with two floating-point numbers as operands:

• minNumMag, which returns the one of smallest magni-

tude (or, in the case of equal magnitudes, the minimum);

• maxNumMag, which returns the one of largest magnitude

(or, in the case of equal magnitudes, the maximum).

The operations minNumMag and maxNumMag can be used to

sort two floating-point numbers by order of magnitude: they

are already available for example on the Itanium processor

through the instructions famin and famax [5, p. 291]. Either

predicated instructions, or instructions implementing the min-

NumMag and maxNumMag operations, could be used in our

case to benefit from Property 3 while avoiding conditional

branches.

In this section, we consider two complex division algo-

rithms. We first analyze a straight-line algorithm, with a

componentwise relative error bound of 5u + O(u2); this

bound is proved to be asymptotically optimal when p is even,

and its quality is illustrated with numerical examples when

p = 53, 113. We next describe a second division algorithm in

which a comparison between |c| and |d| is used to ensure a

componentwise relative error bound of 9
2u+O(u2), and whose

quality is again illustrated with numerical examples for all the

basic binary IEEE formats.

A. Straight-line version: no tests allowed

We assume here that we can neither compare the magnitudes

of c and d, nor determine which one of the two numerators

ac + bd and bc − ad is a sum of two products of the same

sign. Hence, we shall compute the numerators using Kahan’s

algorithm and the denominator using (5).

algorithm CompDivS(a+ ib, c+ id)

δ̂ := RN(c2 + RN(d2));

ĝre := Kahan(a, b, c, d); // evaluates ac+ bd
ĝim := Kahan(b,−a, c, d); // evaluates bc− ad

ẑre := RN
(
ĝre/δ̂

)
; ẑim := RN

(
ĝim/δ̂

)
;

return ẑre + i ẑim;

For reasons of symmetry, for bounding the componentwise

relative error of that algorithm it suffices to consider the

relative error in the real part of the quotient. Using Property 2

together with (6) and (9) leads to

ẑre =
ac+ bd

c2 + d2
· (1 + ǫ2)

(1 + ǫ1)
(1 + ǫ3),

with |ǫ1|, |ǫ2| 6 2u and |ǫ3| 6 u. Hence ẑre = (1 + ǫ) · Re (z)

with |ǫ| bounded by
(1+2u)
(1−2u) (1 + u) − 1, which is less than

5u+ 13u2 if and only if p > 5.

Property 4. For p > 5 and in the absence of underflow and

overflow, the quotient ẑ computed by CompDivS satisfies

Ec(ẑ) 6 5u+ 13u2.

The following example shows that, when p is even, the

bound given by Property 4 is asymptotically optimal: here,

the relative error in the real part of the computed quotient is

5u − O(u3/2). Since this example is more involved than the

previous ones, we give a detailed analysis.



Example 8 (For p even, the bound in Property (4) is asymp-

totically optimal). Let

a = 2p − 5 · 2 p

2
−1,

b = −2−
p

2 ·
(
2p − 5 · 2 p

2
−1 + 3

)
,

c = 2p − 2,

d = 2
p

2
+1 ·

(
2p−1 + 2

p

2
−1
)
,

and assume p is even. Then, the quotient ẑ computed by

CompDivS satisfies

|Re ẑ − Re z|
|Re z| = 5u−O(u3/2). (17)

Proof of (17). Let us define R = 2p/2. We have

Re z = − 2R3 + 5R2 − 4R

2R6 + 4R5 + 4R4 − 8R2 + 8

= − 1

R3
− 1

2R4
+

5

R5
+O

(
1

R6

)
.

Elementary manipulations show that the value of δ̂ in Algo-

rithm CompDivS is R6 + 2R5 and that the value of ĝre is

−R3 − 5
2R

2. Hence

ĝre

δ̂
=

−R3 − 5
2R

2

R6 + 2R5
= − 1

R3
− 1

2R4
+

1

R5
+O

(
1

R6

)
,

and we will show that ẑre = τ , where τ is the floating-point

number defined by

τ := − 1

R3
− 1

2R4
= −2−3p/2 − 22p−1.

Since ẑre = RN
(
ĝre/δ̂

)
, it suffices to show that

τ 6
ĝre

δ̂
< τ +

1

2
ulp(τ),

and since ulp(τ) = 2−5p/2+1 = 2/R5, this is equivalent to

− 1

R3
− 1

2R4︸ ︷︷ ︸
Left(R)

6
−R3 − 5

2R
2

R6 + 2R5
︸ ︷︷ ︸

Med(R)

< − 1

R3
− 1

2R4
+

1

R5︸ ︷︷ ︸
Right(R)

. (18)

An elementary analysis of the functions Med(R) − Left(R)
and Right(R) − Med(R) allows us to check that (18) is

satisfied when R > 0, which is true by definition of R. Hence

we deduce that CompDivS returns ẑre = τ . It follows that
∣∣∣∣
ẑre

Re z
− 1

∣∣∣∣ =
10R5 + 2R4 − 8R3 − 4R2 + 8R+ 4

2R7 + 5R6 − 4R5

=
5

R2
− 23

2R3
+

139

4R4
+O

(
1

R5

)
,

which leads to (17). �

For example, when p = 24, which corresponds to the

binary32 IEEE format, the value in (17) is about 4.997. When

p is odd, we have not yet constructed an example parametrized

by p. Nevertheless, the examples given in Table II already

illustrate well the quality of the bound in Property 4 for

other formats of practical interest like binary64 (p = 53) and

binary128 (p = 113).

p example

53 a = 252 + 1

b = −142398041 = −
⌈
2
105

+2
104

d

⌉
− 38644

c = 252

d = 94906267 · 252 =
(
1 +

⌈
253/2

⌉)
· 252

|ẑre − Re z|/(u|Re z|) = 4.9987 . . .

113 a = 2112 + 1

b = −152857240142482713 = −
⌈
2
225

+2
224

d

⌉
− 1864174

c = 2112

d = 101904826760412363 · 2112 =
(
1 +

⌈
2113/2

⌉)
· 2112

|ẑre − Re z|/(u|Re z|) = 4.9999 . . .

TABLE II
RELATIVE ERROR IN ẑRE COMPUTED USING COMPDIVS CLOSE TO THE

UPPER BOUND 5u+ 13u2 .

B. If tests are allowed

If tests are allowed, then one can compare |c| and |d| to

select between RN(c2 + RN(d2)) and RN(d2 + RN(c2)) the

computation that ensures the smallest relative error bound

according to Property 3, and still use Kahan’s algorithm for

the evaluation of both numerators ac + bd and bc − ad. This

gives the following complex division algorithm:

algorithm CompDivT(a+ ib, c+ id)

if |d| 6 |c| then δ̂ := RN(c2 + RN(d2));

else δ̂ := RN(d2 + RN(c2));
ĝre := Kahan(a, b, c, d); // evaluates ac+ bd
ĝim := Kahan(b,−a, c, d); // evaluates bc− ad

ẑre := RN
(
ĝre/δ̂

)
; ẑim := RN

(
ĝim/δ̂

)
;

return ẑre + i ẑim;

When CompDivT is implemented on an architecture sup-

porting the operations minNumMag and maxNumMag defined

in the IEEE 754-2008 standard [4], its first two lines may be

replaced by the following straight-line code:

c := maxNumMag(c, d);
d := minNumMag(c, d);

// Here, c2 + d2 = c2 + d2 and |d| 6 |c|.
δ̂ := RN(c2 + RN(d2));

Similar techniques avoiding branches can also be used

more generally on architectures supporting predicated instruc-

tions [9, Chap. 4, p. 340], [5, Chap. 2].

According to Property 3 we now have δ̂ = (c2+d2)(1+ǫ1)
with |ǫ1| 6 3

2u, which leads to the following error bound.

Property 5. For p > 6 and in the absence of underflow and

overflow, the quotient ẑ computed by CompDivT satisfies

Ec(ẑ) 6
9
2u+ 9u2.

The examples given in Table III show that the bound 9
2u+

9u2 if reasonably sharp for the basic binary IEEE formats

(p = 24, 53, 113).



p example

24 a = 8391768

b = −8392368

c = 8391504

d = 8390648

|ẑre − Re z|/(u|Re z|) = 4.4932 . . .

53 a = 4503599627378010

b = −4503599627377047

c = 6369051672541039

d = 6369051672534109

|ẑre − Re z|/(u|Re z|) = 4.4421 . . .

113 a = 7343016637207168931428032607349357

b = −7343016637207168931428032607349412

c = 7343016637207168931428032607356045

d = 7343016637207168931428032607355264

|ẑre − Re z|/(u|Re z|) = 4.4620 . . .

TABLE III
RELATIVE ERROR IN ẑre COMPUTED USING COMPDIVT (GIVEN WITH

|d| 6 |c|) CLOSE TO THE UPPER BOUND
9

2
u+ 9u2 .

Concerning the computation of the numerators ac+ bd and

bc − ad, Property 3 could also be used: instead of using

Kahan’s algorithm for computing both numerators, one could

determine which one is the sum of two products with the same

sign, and then use Property 3 as in CompDivT to evaluate

the corresponding numerator with a relative error bounded

by 3
2u. However, this would only improve the error bound

for one of the components of the computed quotient, and the

componentwise relative error bound would remain 9
2u + 9u2

as with CompDivT: for this reason, we have not considered

this algorithm here.

IV. CONCLUDING REMARKS AND FUTURE WORK

By combining Kahan’s algorithm with a cheaper scheme,

we have introduced two complex division algorithms that

take advantage of the availability of an FMA instruction. We

have also given sharp componentwise relative error bounds

for these algorithms. This work should be pursued further

in the following three directions. First, we should implement

our algorithms in order to compare their running times and

measure the overhead induced by the use of Kahan’s algorithm

to improve the accuracy. Second, extensions to non binary

radices and other rounding modes should be proposed. Third,

it would be interesting to study how our division algorithms

can be combined with the scaling techniques from [10], [11],

[12], [13] in order to avoid spurious under/overflows while

preserving high componentwise accuracy.
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APPENDIX

Property 6 (§3.5 and §3.6 in [3]). Given x = a+ ib and y =
c + id two complex numbers with floating-point coefficients,

let ẑ be the evaluation of z = x/y computed according to (2).

In the absence of underflow and overflow,

En(ẑ) 6
(3 +

√
5)u+

√
5u2

1− 2u
< (3 +

√
5)u+ 13u2,

where the latter inequality holds assuming p > 7 .

Proof: Writing ν = (ac+bd)+i(bc−ad) and δ = c2+d2,

we have z = ν/δ. Let also ϕ = ν̂/δ̂ with

ν̂ = RN
(
RN(ac) + RN(bd)

)
+ iRN

(
RN(bc)− RN(ad)

)

and

δ̂ = RN
(
RN(c2) + RN(d2)

)
.

Then ẑ satisfies ẑ = RN(Reϕ) + iRN(Imϕ) and we have

|ẑ − ϕ|2 =
(
RN(Reϕ)− Reϕ

)2
+
(
RN(Imϕ)− Imϕ

)2

6 u2(Reϕ)2 + u2(Imϕ)2.

Hence |ẑ − ϕ| 6 u|ϕ|, which implies ẑ = ϕ(1 + ǫ1) for

some ǫ1 ∈ C such that |ǫ1| 6 u. Now, by [7] we know that

ν̂ = ν(1 + ǫ2) for some ǫ2 ∈ C such that |ǫ2| 6
√
5u, and

also that δ̂ = δ(1 + ǫ3) for some ǫ3 ∈ R such that |ǫ3| 6 2u.

Therefore, ẑ = z(1 + ǫ) with ǫ given by

ǫ =
(1 + ǫ1)(1 + ǫ2)

1 + ǫ3
− 1.

The bounds on |ǫ| then follow immediately from the bounds

on the |ǫi|’s and from the fact that u = 2−p.


