
HAL Id: ensl-00737881
https://ens-lyon.hal.science/ensl-00737881v1

Submitted on 3 Oct 2012 (v1), last revised 11 Feb 2013 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison between binary64 and decimal64
floating-point numbers

Nicolas Brisebarre, Marc Mezzarobba, Jean-Michel Muller, Christoph Lauter

To cite this version:
Nicolas Brisebarre, Marc Mezzarobba, Jean-Michel Muller, Christoph Lauter. Comparison between
binary64 and decimal64 floating-point numbers. 21st IEEE Symposium on Computer Arithmetic, Apr
2013, Austin, TX, United States. pp.8. �ensl-00737881v1�

https://ens-lyon.hal.science/ensl-00737881v1
https://hal.archives-ouvertes.fr

Comparison between binary64 and decimal64
floating-point numbers

Nicolas Brisebarre, Marc Mezzarobba
Jean-Michel Muller

Laboratoire LIP
CNRS, ENS Lyon, INRIA,

Univ. Claude Bernard Lyon 1
Lyon, France

first-name.last-name@ens-lyon.fr

Christoph Lauter
Université Pierre et Marie Curie

Laboratoire d’Informatique de Paris 6
Paris, France

christoph.lauter@lip6.fr

Abstract—We introduce an algorithm that allows one to
quickly compare a binary64 floating-point (FP) number and a
decimal64 FP number, assuming the “binary encoding” of the
decimal formats specified by the IEEE 754-2008 standard for FP
arithmetic is used. It is a two-step algorithm: a first pass, based
on the exponents only, makes it possible to quickly eliminate most
cases, then when the first pass does not suffice, a more accurate
second pass is required. We provide an implementation of several
variants of our algorithm, and compare them.

I. INTRODUCTION

The IEEE 754-2008 Standard for Floating-Point Arith-
metic [3] specifies several binary and decimal formats. The
“basic interchange formats” of the standard are presented in
Table I.

Although the standard does not require that a binary and a
decimal number can be compared (it says floating-point data

represented in different formats shall be comparable as long as

the operands’ formats have the same radix), such comparisons
may nevertheless offer several advantages: it is not infrequent to
read decimal data from some database and to have to compare
it to some binary floating-point number. That comparison may
be slightly inaccurate if the decimal number is preliminary
converted to binary, or, respectively, if the binary number is
first converted to decimal.

While it does not require comparisons between floating-point
numbers of different radices, the IEEE 754-2008 standard does
not forbid them for languages or systems. As the technical
report on decimal floating-point arithmetic in C [4] is currently
a mere draft, compilers supporting decimal floating-point
arithmetic handle code sequences such as the following one at
their discretion and often in an unsatisfactory way:

double x = ...;

_Decimal64 y = ...;

if (x <= y) {

...

}

As it occurs, this sequence is translated, for example by Intel’s
icc 12.1.3, into a conversion from binary to decimal followed
by a decimal comparison. The compiler emits no warning
that the boolean result might not be the expected one because

Name binary32 binary64 binary128
precision (bits) 24 53 113

emax +127 +1023 +16383

emin −126 −1022 −16382

Name decimal64 decimal128
precision (digits) 16 34

emax +384 +6144

emin −383 −6143

TABLE I
THE BASIC BINARY AND DECIMAL INTERCHANGE FORMATS SPECIFIED BY

THE 754-2008 STANDARD.

of rounding in the comparison. A direct mixed-radix binary-
decimal-comparison might be an answer.

Also, in the long run, allowing “exact” comparison of
decimal and binary floating-point numbers will certainly be
the only rigorous way of executing program instructions of the
form

if x > 0.1 then ...

unless compilers learn how to round (binary or decimal)
constants figuring in comparisons in a way that does not affect
the comparison.

As an example illustrating the possible floating-point pitfalls
with such comparisons, assume that x is the binary64 number

3602879701896397

255
.

One easily sees that x > 0.1. And yet, x is equal to the binary64
floating-point number nearest 0.1, and less than the binary32
floating-point number nearest 0.1. Hence, although the test x >

0.1 should return true and the test x < 0.1 should return
false, the first test will return false if 0.1 is replaced by
the binary64 number nearest 0.1, and the second test will return
true if 0.1 is replaced by the binary32 number nearest 0.1.

In the following, we aim at introducing an algorithm for
comparing a binary64 floating-point number

x2 = M2 · 2
e2−52,

and a decimal64 floating-point number

x10 = M10 · 10e10−15.

Here M2 and M10 are integers, with |M2| 6 253 − 1 and
|M10| 6 1016 − 1, and e2 and e10 are the floating-point
exponents of x2 and x10.

Although most of what will be presented in this paper is
generalizable to other formats, we restrict ourselves to these
two formats, for the sake of simplicity. We will also assume
that the so-called binary encoding [3], [6] of IEEE 754-2008 is
used for the decimal64 format, so that the integer M10 is easily
accessible in binary. Since comparisons are straightforward
if x2 and x10 have different signs or are zero, we assume
that M2 > 0 and M10 > 0. Also, to let the IEEE 754
flags untouched (unless when required), we will use integer
arithmetic rather than floating-point arithmetic to perform our
tests.

When x2 and x10 have significantly different orders of
magnitude, examining their exponents will suffice to compare
them. Hence, we first address the problem of performing a
first, exponent-based, test. We then show how to perform the
comparison when the first test does not suffice.

II. FIRST STEP: ELIMINATING THE “SIMPLE CASES” BY

EXAMINING THE EXPONENTS

Through a possible preliminary binary shift of M2 (when x2

is subnormal), we may assume that 252 6 M2. This gives the
following constraints on e2 (taking into account that possible
shift):

−1074 6 e2 6 1023. (1)

The constraints on e10, read from Table I, are

−383 6 e10 6 384. (2)

Also, from

1 6 M10 6 1016 − 1,

we easily deduce that there exists a unique ν ∈ {0, 1, 2, . . . , 53}
such that

253
6 2νM10 6 254 − 1.

Hence our initial problem of comparing x2 and x10 reduces
to comparing M2 · 2

e2−52+ν and (2νM10) · 10e10−15.
The fact that we “normalize” the decimal significand M10

by a binary shift between two consecutive powers of two is of
course questionable; M10 could also be normalized into the
range 1015 6 10t ·M10 6 1016 − 1. However, as hardware
support for decimal floating-point arithmetic is not widespread,
a decimal normalization would require a loop multiplying by
10 and testing, whereas the proposed binary normalization
can exploit an existing hardware leading-zero counter with
straight-line code. The pipeline stalls in the loop are hence
avoided.

We hence define


















m = M2,

h = ν + e2 − e10 − 37,

n = M10 · 2
ν ,

g = e10 − 15,

(3)

so that
{

x2 = m · 2h · 2g−ν ,

x10 = n · 5g · 2g−ν .
(4)

Our comparison problem becomes:

Compare m · 2h with n · 5g .

We have
252

6 m 6 253 − 1,

253
6 n 6 254 − 1.

(5)

From the ranges of e2, e10 and ν, one easily deduces

−398 6 g 6 369,

−1495 6 h 6 1422.
(6)

Note that once the first step, eliminating comparison cases
purely based on the exponents, is complete, we will be able
to reduce these domains (see Lemma 1). It makes no sense,
for instance, to assume that e2 is tiny and e10 is huge: in such
a case, the comparison is straightforward.

Now define two functions ϕ and ψ by

ϕ(h) = ⌊h · log5 2⌋, ψ(g) = ⌊g · log2 5⌋. (7)

The function ϕ is appropriate to perform the first comparison
step, as stated in Property 1 below. The other function will be
useful in the sequel. We will propose an efficient and easy-to-
implement way to compute these functions ϕ and ψ.

Property 1. We have

g < ϕ(h) ⇒ x2 > x10,

g > ϕ(h) ⇒ x2 < x10.

Proof: If g < ϕ(h) then g 6 ϕ(h) − 1, hence g 6

h log5 2 − 1. This implies that 5g 6 (1/5) · 2h, therefore
254 · 5g 6 (4/5) · 252 · 2h. As a consequence, n · 5g < m · 2h.
If g > ϕ(h) then g > ϕ(h) + 1, hence g > h log5 2, so that
5g > 2h. This implies 253 · 5g > (253 − 1) · 2h, and hence
n · 5g > m · 2h.

Property 2. Denoting by ⌊·⌉ the nearest integer function, let

Lϕ = ⌊219 log5 2⌉ = 225799,

Lψ = ⌊212 log2 5⌉ = 9511.

For all h in the range (6), we have

ϕ(h) = ⌊h · Lϕ · 2−19⌋.

Similarly, we have

ψ(g) = ⌊Lψ · g · 2−12⌋ for |g| 6 204,

and in the special case g = 16q,

ψ(16q) = ⌊Lψ · q · 2−8⌋ for |q| 6 32.

The products Lϕ ·h and Lψ ·g, for g, h in the indicated ranges,

can all be computed exactly in (signed or unsigned) 32-bit

integer arithmetic. Computing ⌊ξ · 2−β⌋ of course reduces to

a right-shift by β bits.

Proof: Using Maple, we exhaustively check that ϕ(h) =
⌊h · L · 2−19⌋ for |h| 6 1831, and that ψ(g) = ⌊Lψ · g ·
2−12⌋ when either |g| 6 204 or g = 16q with |q| 6 32. The
corresponding quantities Lϕ · h and Lψ · g all fit on at most
29 bits in magnitude, plus one sign bit.

From Properties 1 and 2, we easily derive the following
algorithm, that performs the first step, based on the exponents
of x2 and x10.

Algorithm 1. First step

• compute h = ν + e2 − e10 − 37 and g = e10 − 15;

• compute ϕ(h) = ⌊Lϕ · h · 2−19⌋ using 32-bit integer

arithmetic;

• if g < ϕ(h) then return “x2 > x10”, else if g > ϕ(h)
then return “x2 < x10”, else perform the second step.

Note that, when x10 admits multiple distinct representations
in binary64 format (i.e. when its cohort is non-trivial [3]),
the success of the first step may depend on the specific
representation passed as input. For instance, both A = {M10 =
1015, e10 = 0} and B = {M10 = 1, e10 = 15} are valid
representations of the integer 1. Assume we are trying to
compare x10 = 1 to x2 = 2. Using representation A, we have
ν = 4, h = −32, and ϕ(h) = −14 > g = −15, hence the test
from Algorithm 1 shows that x10 < x2. In contrast, if x10 is
given in the form B, we get ν = 53, ϕ(h) = ϕ(2) = 0 = g,
and the test is inconclusive.

We may quantify the quality of this first filter as follows.
We say that Algorithm 1 succeeds if it answers “x2 > x10” or
“x2 < x10” without proceeding to the second step, and fails

otherwise. Let X2 and X10 denote the sets of representations

of positive, finite numbers, respectively in binary64 and in
decimal64 format. (In the case of X2, each number has a
single representation.) Assuming zeros, infinities, and NaNs
have been handled before, the input of Algorithm 1 may be
thought of as a pair (ξ2, ξ10) ∈ X2 ×X10.

Proposition 1. Algorithm 1 succeeds for more than 99.9% of

the input pairs (ξ2, ξ10) ∈ X2 ×X10.

Proof: The first step succeeds if and only if ϕ(h) 6= g,
that is, iff ϕ(ν + e2 − e10 − 37) 6= e10 − 15. The value of ν
depends only on M10. Knowing ν, the number of possible
values of M10 is

nν =

{

253−ν , ν > 0,

1016 − 253, ν = 0.

In addition, for each fixed ν, we can easily compute the
number kν of pairs (e2, e10) such that −1022 6 e2 6 1023,
−383 6 e10 6 384, and ϕ(h) = g.

Let Xnorm
2 be the subset of X2 consisting of normal numbers.

The number of pairs (e2, ξ10) such that ϕ(h) = g and ξ2 ∈
Xnorm

2 is

N1 =

53
∑

ν=0

nνkν = 14 292 575 372 220 927 484 6 1.55 · 263.

If now x2 is subnormal, then h < −623 and ϕ(h) < −268. A
rough bound on the number of (ξ2, ξ10) ∈ (X2\X

norm
2)×X10

such that g = ϕ(h) is hence

N2 = 252 · 1016 · (398 − 268) 6 1.12 · 2112.

Thus, the number of elements of X2 ×X10 for which the first
step fails is bounded by

N = 252N1 +N2 6 1.691 · 2115.

This is to be compared with

|X2×X10| = (252 − 1)·2047·(1016 − 1)·768 > 1.66·2125.

We obtain N/|X2 ×X10| 6 10−3.
As a matter of course, pairs (ξ2, ξ10) will almost never be

equidistributed in practice. Hence the previous estimate should
not be interpreted as a probability of success of Step 1. It
seems more realistic to assume that a well-written numerical
algorithm will mostly perform comparisons between numbers
which are suspected to be close to each other. For instance, in
an iterative algorithm where comparisons are used as part of a
convergence test, it is to be expected that most comparisons
need to proceed to the second step. Conversely, there are
scenarios, e.g., checking for out-of-range data, where the first
step should almost always be enough.

III. SECOND STEP: A CLOSER LOOK AT THE SIGNIFICANDS

In the following we assume that g = ϕ(h) (otherwise, the
first step already allowed us to compare x2 and x10).

Define a function

f(h) = 5ϕ(h) · 2−h = 2⌊h log
5
2⌋·log

2
5−h.

We have






f(h) · n > m⇒ x10 > x2,
f(h) · n < m⇒ x10 < x2,
f(h) · n = m⇒ x10 = x2.

(8)

The second test consists in performing this comparison, with
f(h) · n replaced by an approximation that is accurate enough
not to introduce false results.

Ensuring that an approximate test is indeed equivalent to (8)
requires to find a lower bound η on the minimum nonzero
value of |m/n− 5ϕ(h)/2h| that may appear at this stage. We
want η to be as tight as possible in order to avoid unduly costly
computations when approximating f(h) · n. The search space
is constrained by the following observations.

Lemma 1. The equality g = ϕ(h) where g and h are defined

by (3) can hold only if −787 6 h 6 716. Additionally,

• if n > 1016, then n is necessarily even;

• if h > 680, then ν′ = h + ϕ(h) − 971 > 0 and n is

divisible by 2ν
′

.

Proof: Substituting e2 = h + g − ν + 52 and g = ϕ(h)
into inequality (1) yields

−1126 6 e2 − 52 = h+ ϕ(h) − ν 6 971. (9)

Since we have 0 6 ν 6 53 and h·log5 2−1 6 ϕ(h) 6 h·log5 2,
this implies

−1126 6 h · (1 + log5 2) 6 1025.

The bound on h follows.
Both conditions on n come from the fact that 2ν divides n

(which we denote 2ν | n in the sequel of the paper) by definition
of n. If n > 1016, then ν > 1 and hence n is even. In general,
the last inequality from (9) implies ν > ν′. This last bound is
nontrivial when h > 680.

We now deal with the problem of finding η. This problem
is very close to that, considered by Cornea et al. in [1], of
finding the required accuracy for performing correctly rounded
conversions between the binary and decimal formats of the
IEEE 754-2008 Standard. The constraints on m,n and h follow
from inequalities (5) and Lemma 1.

Problem 1. Find the smallest nonzero value of

dh(m,n) =

∣

∣

∣

∣

5ϕ(h)

2h
−
m

n

∣

∣

∣

∣

under the following constraints































252 6 m 6 253 − 1,
253 6 n 6 254 − 1,
−787 6 h 6 716,
n is even if n > 1016,
if h > 680, then ν′ = h+ ϕ(h) − 971 > 0

and 2ν
′

|n.

For each integer h ∈ [0, 716], a numerator of dh(m,n) is
∣

∣5ϕ(h)n−m2h
∣

∣ and a denominator is 2hn.

If 0 6 h 6 53 and dh(m,n) 6= 0, we have |5ϕ(h)n−m2h| >

1, hence dh(m,n) > 1/(2hn) > 2−107. This easy argument
actually means that for the range of h where equality cases
might occur, the non-zero minimum is no less that 2−107.

If h > 54, since 5ϕ(h) and 2h are coprime and n 6 254 − 1,
we have dh(m,n) 6= 0. Minimizing dh(m,n) is a classical
question related to the theory of continued fractions [2], [5],
[7]. We now give a short reminder on the results we need in
our setting.

Let α ∈ Q. We build two finite sequences (ai)06i6n and
(ri)06i6n defined by:











r0 = α,

ai = ⌊ri⌋ ,

ri+1 = 1/(ri − ai) if ai 6= ri.

Note that this process is actually Euclid’s algorithm. For all
0 6 i 6 n, the rational number

pi
qi

= a0 +
1

a1 +
1

a2 +
1

. . . +
1

ai
is the ith convergent of the continued fraction expansion of α.
We write α = [a0; a1, · · · , an]. The ai are the partial quotients

of the expansion. Note that, if we assume p−1 = 1, q−1 = 0,
p0 = a0, q0 = 1, we have pi+1 = ai+1pi + pi−1, qi+1 =
ai+1qi + qi−1, and α = pn/qn.

First assume that the minimum nonzero value will be less
than or equal to 2−109. Then, the integers 252 6 m 6 253 − 1
and 253 6 n 6 254 − 1 that we want to determine necessarily
satisfy |5ϕ(h)/2h − m/n| 6 2−109 < 1/(2n2): a classical
result (see Theorem 19 of [5] for instance) yields that m/n is
a convergent of 5ϕ(h)/2h. Hence, we only have to compute,
for each h ∈ [54, 716], the convergents of 5ϕ(h)/2h the
denominators of which are smaller than 254. Moreover, we only
consider the convergents pi/qi which improve the minimum
nonzero value and for which there exists k ∈ N such that
m = kpi and n = kqi satisfy the constraints of Problem 1.

We stress that this pruning trick is validated if and only
if one eventually obtains a minimum nonzero value lesser
than or equal to 2−109. If not, one can use the techniques
presented in the Appendix of [1] to get worst and bad
cases for the approximation problem we consider. We have
favored a different approach, here, because it leads to a less
computationally intensive and mathematically simpler method,
which is easier to check either manually or with a proof-
assistant. However, if one wishes to generate many cases for
which x2 and x10 are very close (typically, for the purpose of
testing comparison algorithms), the techniques of [1] become
of huge interest. We will take advantage of them in Section VI.

The computation shows that the smallest admissible value of
dh(m,n) for h > 0 is 6.3566 . . .×10−35 < 2−113.59, attained
for

h = 612,
m

n
=

3521275406171921

8870461176410409
.

We address the case h ∈ [−787, 0] in a similar way. In this
case, a numerator of dh(m,n) is

∣

∣2−hn− 5−ϕ(h)m
∣

∣ and a
denominator is 5−ϕ(h)n. We notice that 5−ϕ(h) > 254 if and
only if h 6 −54. If −53 6 h 6 0 and dh(m,n) 6= 0, we have
|2−hn − 5−ϕ(h)m| > 1, hence dh(m,n) > 1/(5−ϕ(h)n) >

2−108. For −787 6 h 6 −54, we use the same continued
fraction tools as above, leading to the following result.

Theorem 1. The minimum nonzero value of dh(m,n) under

the constraints from Problem 1 is

6.0485 . . .× 10−35 < 2−113.67,

attained for

h = −275,
m

n
=

4988915232824583

12364820988483254
.

We may thus take η = 2−113.7.

IV. INEQUALITY TESTING

As already mentioned, the first step of the full comparison
algorithm is straightforwardly implementable in 32-bit integer
arithmetic. The second one reduces to comparing m and f(h)·n,
and we have seen in Section III that it is enough to know f(h)
with relative accuracy 2−113.67. We now discuss several ways
to perform this comparison. The main difficulty is to efficiently
evaluate f(h) · n with just enough accuracy.

A. Direct method

Perhaps the first thing that comes to mind is to implement the
criterion from Equation (8) directly, only with f(h) replaced
by a sufficiently accurate approximation, read in a table that is
indexed with h. Theorem 2 below implies that it is more than
enough to compute the product f(h) · n in 128-bit arithmetic,
using a 128-bit approximation of f(h).

By Lemma 1, there are 1 504 values of h to consider, which
corresponds to a 23.5 KB table with 128-bit precision entries
for f(h). The resulting table is quite large but could possibly
be reused, for instance, in conversions between binary and
decimal formats. One advantage of this method is that the
table value f(h) only depends on h, which is available early
in the algorithm flow. Thus, the memory latency for the table
access can be hidden behind the first step.

Theorem 2. Assume that µ approximates f(h) ·n with relative

accuracy ǫ < η/4 or better, that is,

|f(h) · n− µ| 6 ǫf(h) · n <
η

4
f(h) · n. (10)

The following implications hold:










µ > m+ ǫ · 254 =⇒ x10 > x2,

µ < m− ǫ · 254 =⇒ x10 < x2,

|m− µ| 6 ǫ · 254 =⇒ x10 = x2.

(11)

Proof: First notice that f(h) 6 1 for all h. Since n <
254, condition (10) implies |µ− f(h) · n| < 254ǫ, and hence
|f(h) · n−m| > |µ−m| − 254ǫ.

Now consider each of the possible cases that appear in (11).
If |µ − m| > 254ǫ, then f(h) · n − m and µ − m have the
same sign. The first two implications from (8) then translate
into the corresponding cases from (11).

If finally |µ−m| 6 254ǫ, then the triangle inequality yields
|f(h)·n−m| 6 255ǫ, which implies |f(h)−m/n| < 255ǫ/n <
253η/n 6 η. But by definition of η, this cannot happen unless
m/n = f(h). This accounts for the last case.

Even though a 23.5 KB table for the direct table method
may still be acceptable in size, let us mention a way this table
could be reduced. The function ϕ(h) is a staircase-function that
grows slower than identity. This means several consecutive h
map to a same value g = ϕ(h). The corresponding values of
f(h) = 2ϕ(h)·log

2
5−h are binary shifts of each other. Hence,

we may reduce the table size (at the price of a few additional
operations) by storing the most significant bits of f(h) as a
function of g. We then shift the value read off the table by an
appropriate amount to recover f(h). The number of elements

to tabulate goes down from 1504 to 647, that is, by a factor
of about 2.3. This would correspond to a 10.4 KB table (for a
memory alignment on 8-byte boundaries).

More precisely, define F (g) = 5g2−ψ(g) (cf. Sec. II). We
then have

f(h) = F (ϕ(h)) · 2−ρ(h), (12)

where
ρ(h) = h− ψ(ϕ(h)).

The shift ρ(h) is easily computed based on Property 2. In
addition, we may check that

1/2 < F (ϕ(h)) 6 1 and 0 6 ρ(h) 6 2

for all h. Since ρ(h) is nonnegative, multiplication by 2ρ(h)

can be implemented with a bitshift, not requiring branches.
Additionally, since there is enough headroom in the 64-bit
variable holding m (which fits on 54 bits), we can use a left
shift on m rather than a two-word right shift on F (g).

Note that we did not implement this size reduction and
hence could not check its suitability in practice. Instead, we
concentrated on another size reduction opportunity, that we
shall describe now.

B. Bipartite table

The table size can still be reduced more, using an alternative
method, based on a bipartite table. The technique takes
advantage of the fact that the exact value of 5g fits on 64 bits for
g 6 27. Assuming that the entries are 8-byte aligned, the table
uses only 800 B of storage. Compared to the straightforward
method from Section IV-A, this second method requires quite
a few more arithmetic operations for the sake of a considerably
smaller table. Most of the additional overhead in arithmetic
operations can however be hidden on current processors through
increased instruction-level parallelism. The reduction in table
size also helps decreasing the probability of cache misses, as
it holds on only a few cache lines.

Recall that we suppose g = ϕ(h) and hence −787 6 h 6

716. Write

g = ϕ(h) = 16q − r, q =
⌊ g

16
+ 1

⌋

, (13)

so that f(h) = 516q · 5−r · 2−h. We thus have

−20 6 q 6 21, 1 6 r 6 16. (14)

In particular, 5r is an integer and fits on 38 bits.
Instead of tabulating f(h) directly, we will use two tables:

one containing the (exact) value 5r for 1 6 r 6 16, the other,
the most significant bits of 516q to a precision of roughly
128 bits. It will prove convenient to store these values with
their leading non-zero bit left-aligned, in a fashion similar to
floating-point significands. They will be stored respectively on
one and two 64-bit words each. Thus, we set

θ1(q) = 516q·2−ψ(16q)+127,

θ2(r) = 5r·2−ψ(r)+63,

where the power-of-two factors provide for the desired left-
alignment. We can check that

2127
6 θ1(q) < 2128 − 1, 263 < θ2(r) < 264 (15)

for all h.
The value f(h) now decomposes as

f(h) =
θ1(q)

θ2(r)
2−64−σ(h)

where
σ(h) = ψ(r) − ψ(16q) + h. (16)

Equations (7) and (16) imply that

h− g log2 5 − 1 < σ(h) < h− g log2 5 + 1.

As we also have h log5 2 − 1 6 g = ϕ(h) < h log5 2 by
definition of ϕ, it follows that

0 6 σ(h) 6 3. (17)

In particular, the quantity m · 2σ(h) fits on 56 bits, leaving
headroom for additional 8 bits on a 64-bit variable.

Now let

∆ = θ1(q) · n · 2−64+8 − θ2(r) ·m · 28+σ(h).

Obviously, we have |x2| > |x10|, |x2| = |x10| or |x2| < |x10|
depending respectively if ∆ < 0, ∆ = 0 or ∆ > 0. The case
|x2| = |x10| implies x2 = x10 because this second stage of
the algorithm is used only when x2 and x10 have the same
sign.

Lemma 2. Unless x2 = x10, we have |∆| > 2124η.

Proof: The definition of ∆ rewrites as

∆ = 28+σ(h)θ2(r)n
(

f(h) −
m

n

)

.

The bounds (5), (15), (17) together imply that 28+σ(h)θ2(r)n >

2124. We know from Theorem 1 that either f(h) = m/n, which
is equivalent to x2 = x10, or |f(h) −m/n| > η.

As already explained, the values of θ2(r) are all integers
and can exactly be tabulated as-is. In contrast, only an
approximation can be tabulated for θ1(q). We chose to represent
these values as ⌈θ1(q)⌉, hence replacing ∆ by the easy-to-
compute

∆̃ = ⌊⌈θ1(q)⌉ · n · 28−64⌋ − θ2(r) ·m · 28+σ(h). (18)

Here n, θ2(r) and m · 28+σ(h) are all nonnegative integers of
at most 64 bits, and ⌈θ1(q)⌉ is a positive integer of at most
128 bits.

Computing the floor function in the first term of ∆̃ comes
down to dropping the low-order 64-bit word in a three-
word integer. This is also the reason we chose to take the
ceiling ⌈θ1(q)⌉ when representing θ1(q) in the table: by
dropping words, we can only compute under-approximations.
By choosing over-approximations for the table value, we can
manage for the two approximations to cancel out, at least
partially. As we will see in the sequel, in particular with

Theorem 3, this effect allows equality cases (cases where
x2 = x10) to be handled extremely easily.

The multiplications by 28 in (18) are not essential. They
serve to shift the significant bits of m and n as much as
possible to the left, so that the two-word comparison that
follows finishes after only one branching in as many cases as
possible.

Lemma 2 is in principle enough to compare x2 to x10,
using a criterion similar to that from Theorem 2. But we
can actually prove finer properties that allow for a more
efficient final decision step. Indeed, the use of Theorem 2
would require adding and subtracting a particular constant ǫ.
Here, we show that the sign of ∆̃ already provides the answer
to the comparison.

Theorem 3. Assume g = ϕ(h), and let ∆̃ be the 128-bit signed

integer defined by (18). Then following equivalences hold:

∆̃ < 0 ⇐⇒ |x10| < |x2|,

∆̃ = 0 ⇐⇒ x10 = x2,

∆̃ > 0 ⇐⇒ |x10| > |x2|.

Proof: Write

⌈θ1(q)⌉ = θ1(q) + δtbl

⌊⌈θ1(q)⌉ · n · 2−56⌋ = ⌈θ1(q)⌉ · n · 2−56 + δrnd

for some
0 6 δtbl < 1, −1 < δrnd 6 0.

Setting δ = δrnd +n2−56δtbl, we have ∆̃ = ∆+δ, and, by (5),

−1 < δ < 1/4.

If ∆ 6= 0, it follows that

|∆̃| > 2124η − |δ| > 210

by Lemma 2. In particular, ∆ and ∆̃ have the same sign, and
∆̃ < 0 ⇔ |x10| < |x2|. If ∆ = 0, we get |∆̃| = δ, and we can
conclude that ∆̃ = 0 because ∆̃ is an integer.

The conclusion ∆̃ = 0 = ∆ when x2 = x10 means that in
this case, there is no error in the approximate computation of ∆.
Specifically, the tabulation error δtbl and the rounding error
δrnd cancel out, thanks to our choice to tabulate the ceiling
of θ1(q).

Theorem 3 implies that the following algorithm correctly
computes the sign of x2 − x10.

Algorithm 2. Step 2 (second method).

• Compute q and r as defined in (13). Compute σ(h) using

Property 2.

• Read the 128 bits of ⌈θ1(q)⌉ as two 64 bit words.

• Compute the 128 high-order bits α of

⌈θ1(q)⌉ · (n28)

with one 128× 64-bit multiplication, dropping the 64 low

order bits.

• Compute

β = θ2(r) · (m28+σ(h))

with one full 64 × 64-bit multiplication, keeping all 128
bits.

• Compute the signed difference ∆̃ = α− β.

• Return










“x2 > x10” if ∆̃ < 0,

“x2 = x10” if ∆̃ = 0,

“x2 < x10” if ∆̃ > 0.

V. EQUALITY CASES

As seen in the last Sections, the direct and bipartite methods
are able to precisely determine cases when x2 is equal to x10,
besides deciding the two possible inequalities. However, when
it comes to solely determine such equality cases additional
properties may simplify and accelerate the previous tests. The
condition x2 = x10 is equivalent to

m · 2h = n · 5g.

Lemma 3. Assume x2 = x10. Then,

• either 0 6 g 6 22, 0 6 h 6 53, and then m is divisible

by 5g and n is divisible by 2h;

• or −22 6 g 6 0, −51 6 h 6 0, in which case we have

2−h | m and 5−g |M10.

Proof: Notice that h and g = ϕ(h) always have the same
sign. When they are nonnegative, n must be a multiple of 2h

and m must be a multiple of 5g . It follows that 5g 6 m < 253,
hence g 6 log5 253 < 22.9, which in turn implies h 6 53.
When g and h are negative, m is a multiple of 2−h while
n = M10 · 2ν and hence M10 are multiples of 5−g. We get
−g < log5 1016 < 22.9, whence −h 6 51.

We deduce the following algorithm, which decides whether
x2 = x10 using only 64-bit integer operations. Note that here
we do not need to compute ϕ(h).

Algorithm 3. Equality test.

• if 0 6 h 6 53 and 0 6 g 6 22 and 2h | n then

– read 5g in a table or compute it on the fly

– compute m′ = 5g · (n 2−h) with a 64-bit integer

multiplication, yielding 64 output bits

– return (m′ = m)

• else if h > −51 and −22 6 g 6 0 and 2−h | m then

– read 5−g in a table or compute it on the fly

– compute n′ = 5−g · (m 2h) with a 64-bit integer

multiplication

– return (n′ = n)

• else return false

The constants 5g, 0 6 g 6 22 used in the algorithm all fit
on 51 bits. They can for instance be read in a small table or
computed on the fly (which requires at most 5 squarings and
multiplications by 5 using binary powering). The tests on g in
Algorithm 3 are there only to make sure that the values of 5±g

used later are in the allowable range.

VI. EXPERIMENTAL RESULTS

Both algorithms, the direct method presented in Section IV-A
and the bipartite table method presented in Section IV-B, have
been implemented and thoroughly tested. Our implementation is
written in plain C, using the decimal floating-point type support
offered by the compiler we are using, Intel icc 12.1.3. To
the extent possible when using decimal floating-point numbers,
we gave priority to portability over performance. No particular
effort at optimization was made. For instance, multiple-word
operations are implemented in portable C, with no use of
hardware support for operations such as 64 × 64 → 128 bit
multiplication except for that automatically inserted by the
compiler.

Testing was done using test vectors that extensively cover
all floating-point input classes, such as normal numbers,
subnormals, Not-A-Numbers, zeros, infinities, for both the
binary input x2 and the decimal input x10.

The test vectors also exercise the worst-cases (m,n) for
the critical value dh(m,n) =

∣

∣5ϕ(h)/2h −m/n
∣

∣ for each
admissible value of h, as explained in Section III. Additionally,
the 50-but-worst cases (m,n) for each value h were computed
using the method described in Appendix of [1] and added
to the test vectors. The rationale behind exercising not only
the worst-case for each h but also some bad cases is that an
implementation might work for the worst-case input just by
chance, whereas chances decrease rapidly for a larger number
of difficult test cases.

The test vectors were finally completed with a reasonably
large set of random inputs that fully exercise all possible
values of the normalization 2νM10 for the decimal mantissa
(cf. Section II) as well as both the first step succeeding or the
second step being necessary.

Both implemented methods have been compared for perfor-
mance to the naïve comparison method where the binary or
decimal input is converted to decimal resp. to binary before
getting compared. For performance testing, the code is executed
on a system equipped with a quad-core Intel Core i7 M 620
processor clocked at 2.67GHz running Linux 3.2.0-2 in Intel64
mode. The comparison functions are compiled at optimization
level 3, with the -xSSE4.2 flag set.

The timing measurements were done using the Read-
Time-Step-Counter instruction after pipeline serialization. The
serialization and function call overhead was subtracted off after
timing an empty function. Measurements were taken once the
caches were preheated by previous comparison function calls,
the results of which were discarded. The indicated numbers are
in cycles and given for the minimum/ average/ maximum value
that was observed. The average values depend on the nature
of the comparison inputs and should not be used in a general
context. No average values are given for case involving special
inputs, such as zeros, Not-A-Numbers (NaNs) or infinities.

As can be seen from Table II, our unoptimized implemen-
tations of both the Direct Method presented in Section IV-A
and the Bipartite Table Method described in Section IV-B
outperform, for the important case when x2 is normal, the

Naïve method Direct method Bipartite table

converting x2 method

to decimal64 described in described in
(incorrect) Section IV-A Section IV-B

Input type min/avg/max min/avg/max min/avg/max

Special cases 13/–/215 6/–/118 6/–/115
(±0, NaNs, Inf)
x2 subnormal 80/129/229 189/206/232 197/211/229
x10 of same sign
x2 finite 48/128/228 5/46/117 6/51/119
x10 of opposite
sign
x2 normal 29/105/228 19/60/181 16/62/214

x10 of same sign

TABLE II
TIMINGS FOR BOTH PRESENTED METHODS AND FOR A NAÏVE METHOD

naïve method based on converting x2 into the decimal64 format.
Let us mention again that this naïve comparison is what a
C compiler would most likely do and what the one we used
does (cf. Section I). Besides being faster, the methods presented
in this paper have the advantage of always providing correct
boolean answers.

The Direct Method, based on direct tabulation of f(h) (cf.
Section IV-A), is slightly faster than the Bipartite Table Method
in average and maximum timing. This is mainly due to the
more computationally expensive second step of the Bipartite
Table Method. The difference in performance, 181 cycles with
respect to 214 for the bipartite method, might however be too
small to justify the usage of an about 30 times larger table for
the direct method. We do not have experimental data for the
Direct Method using the table size reduction technique through
tabulation of F (g) (cf. Section IV-A).

VII. CONCLUSION

Though not foreseen in the IEEE 754-2008 standard, ex-
act comparisons between floating-point formats of different
radices would enrich the current floating-point environment
and enhance the safety and provability of numerical software.

This paper has investigated the feasibility of such comparison
at the instance of the binary64 and decimal64 formats. A very
efficient test has been presented that eliminates most of the
comparison inputs. For the remaining cases, two algorithms
were proposed, a more direct method and a technique based
on a bipartite table. The bipartite table uses only 800 bytes of
table space.

Both methods have been proven, implemented and thor-
oughly tested. They outperform the naïve comparison technique
consisting in conversion of one of the inputs to the respectively
other format. Furthermore, they always return a correct answer,
which is not the case of the naïve technique.

Future work will have to address the other common
IEEE 754-2008 binary and decimal formats, such as binary32
and decimal128. Since the algorithmic problems of exact
binary to decimal comparison and correct rounding of binary
to decimal conversions (and vice versa) are similar, future
investigations should also consider the possible reuse of

tables for both problems. Finally, one should mention that
considerable additional work is required in order to enable
mixed-radix comparisons in the case when the decimal floating-
point number is stored in dense-packed-decimal representation.

REFERENCES

[1] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang, E. Schneider, and
E. Gvozdev, A software implementation of the IEEE 754R decimal floating-

point arithmetic using the binary encoding format, IEEE Transactions on
Computers 58 (2009), no. 2, 148–162.

[2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,
Oxford University Press, London, 1979.

[3] IEEE Computer Society, IEEE standard for floating-point arithmetic,
IEEE Standard 754-2008, August 2008, available at http://ieeexplore.ieee.
org/servlet/opac?punumber=4610933.

[4] ISO/IEC JTC 1/SC 22/WG 14, Extension for the programming language

C to support decimal floating-point arithmetic, Proposed Draft Technical
Report, May 2008.

[5] A. Ya. Khinchin, Continued fractions, Dover, New York, 1997.
[6] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of floating-

point arithmetic, Birkhäuser, Boston, 2010.
[7] O. Perron, Die Lehre von den Kettenbrüchen, 3rd ed., Teubner, Stuttgart,

1954–57.

