
Comparison between binary64 and decimal64
floating-point numbers

Nicolas Brisebarre, Marc Mezzarobba
Jean-Michel Muller

Laboratoire LIP
CNRS, ENS Lyon, INRIA,

Univ. Claude Bernard Lyon 1
Lyon, France

first-name.last-name@ens-lyon.fr

Christoph Lauter
Université Pierre et Marie Curie

Laboratoire d’Informatique de Paris 6
Paris, France

christoph.lauter@lip6.fr

Abstract—We introduce a software-oriented algorithm that
allows one to quickly compare a binary64 floating-point (FP)
number and a decimal64 FP number, assuming the “binary
encoding” of the decimal formats specified by the IEEE 754-2008
standard for FP arithmetic is used. It is a two-step algorithm:
a first pass, based on the exponents only, makes it possible to
quickly eliminate most cases, then when the first pass does not
suffice, a more accurate second pass is required. We provide an
implementation of several variants of our algorithm, and compare
them.

I. INTRODUCTION

The IEEE 754-2008 Standard for Floating-Point Arith-
metic [3] specifies several binary and decimal formats. The
“basic interchange formats” of the standard are presented in
Table I.

Although the standard does not require that a binary and a
decimal number can be compared (it says floating-point data
represented in different formats shall be comparable as long as
the operands’ formats have the same radix), such comparisons
may nevertheless offer several advantages: it is not infrequent to
read decimal data from some database and to have to compare
it to some binary floating-point number. That comparison may
be slightly inaccurate if the decimal number is preliminarily
converted to binary, or, respectively, if the binary number is
first converted to decimal.

While it does not require comparisons between floating-point
numbers of different radices, the IEEE 754-2008 standard does
not forbid them for languages or systems. As the technical
report on decimal floating-point arithmetic in C [4] is currently
a mere draft, compilers supporting decimal floating-point
arithmetic handle code sequences such as the following one at
their discretion and often in an unsatisfactory way:

double x = ...;
_Decimal64 y = ...;
if (x <= y) {

...
}

As it occurs, this sequence is translated, for example by Intel’s
icc 12.1.3, into a conversion from binary to decimal followed
by a decimal comparison. The compiler emits no warning that

binary32 binary64 binary128

precision (bits) 24 53 113
𝑒max +127 +1023 +16383
𝑒min −126 −1022 −16382

decimal64 decimal128

precision (digits) 16 34
𝑒max +384 +6144
𝑒min −383 −6143

TABLE I
THE BASIC BINARY AND DECIMAL INTERCHANGE FORMATS SPECIFIED BY

THE 754-2008 STANDARD.

the boolean result might not be the expected one because of
rounding in the comparison.

This kind of strategy may lead to inconsistencies. Imagine
such a “naïve” approach built as follows: when comparing a
binary floating-point number 𝑥2 of format ℱ2, and a decimal
floating-point number 𝑥10 of format ℱ10, we first convert 𝑥10
to the binary format ℱ2 (that is, we replace it by the ℱ2

number nearest 𝑥10), and then we perform the comparison
in binary. Denote <○, 6○, >○, and >○ as the comparison
operators so defined. Consider the following variables (all
exactly represented in their respective formats):

∙ 𝑥 = 3602879701896397/255, declared as a binary64
number;

∙ 𝑦 = 13421773/227, declared as a binary32 number;
∙ 𝑧 = 1/10, declared as a decimal64 number.

Then it holds that 𝑥 <○ 𝑦, but also 𝑦 6○ 𝑧 and 𝑧 6○ 𝑥. Such an
inconsistent result might suffice to prevent a sorting program
from terminating.

A direct mixed-radix binary-decimal-comparison might be
an answer.

Also, in the long run, allowing “exact” comparison of
decimal and binary floating-point numbers will certainly be
the only rigorous way of executing program instructions of the
form

if x > 0.1 then ...

unless compilers learn how to round (binary or decimal)

constants figuring in comparisons in a way that does not affect
the comparison.

In the following, we aim at introducing an algorithm for
comparing a binary64 floating-point number

𝑥2 =𝑀2 · 2𝑒2−52,

and a decimal64 floating-point number

𝑥10 =𝑀10 · 10𝑒10−15.

Here 𝑀2 and 𝑀10 are integers, with |𝑀2| 6 253 − 1 and
|𝑀10| 6 1016 − 1, and 𝑒2 and 𝑒10 are the floating-point
exponents of 𝑥2 and 𝑥10.

Although most of what will be presented in this paper is
generalizable to other formats, we restrict ourselves to these
two formats, for the sake of simplicity. We will also assume
that the so-called binary encoding [3], [6] of IEEE 754-2008 is
used for the decimal64 format, so that the integer 𝑀10 is easily
accessible in binary. Since comparisons are straightforward
if 𝑥2 and 𝑥10 have different signs or are zero, we assume
that 𝑀2 > 0 and 𝑀10 > 0. Also, to leave the IEEE 754
flags untouched (unless when required), we will use integer
arithmetic rather than floating-point arithmetic to perform our
tests.

When 𝑥2 and 𝑥10 have significantly different orders of
magnitude, examining their exponents will suffice to compare
them. Hence, we first address the problem of performing a
first, exponent-based, test. We then show how to perform the
comparison when the first test does not suffice.

II. FIRST STEP: ELIMINATING THE “SIMPLE CASES” BY
EXAMINING THE EXPONENTS

Through a possible preliminary binary shift of 𝑀2 (when 𝑥2
is subnormal), we may assume that 252 6𝑀2. This gives the
following constraints on 𝑒2 (taking into account that possible
shift):

− 1074 6 𝑒2 6 1023. (1)

The constraints on 𝑒10, read from Table I, are

− 383 6 𝑒10 6 384. (2)

Also, from
1 6𝑀10 6 1016 − 1,

we easily deduce that there exists a unique 𝜈 ∈ {0, 1, 2, . . . , 53}
such that

253 6 2𝜈𝑀10 6 254 − 1.

Hence our initial problem of comparing 𝑥2 and 𝑥10 reduces
to comparing 𝑀2 · 2𝑒2−52+𝜈 and (2𝜈𝑀10) · 10𝑒10−15.

The fact that we “normalize” the decimal significand 𝑀10

by a binary shift between two consecutive powers of two is of
course questionable; 𝑀10 could also be normalized into the
range 1015 6 10𝑡 ·𝑀10 6 1016 − 1. However, as hardware
support for binary encoded decimal floating-point arithmetic is
not widespread, a decimal normalization would require a loop
multiplying by 10 and testing, whereas the proposed binary
normalization can exploit an existing hardware leading-zero

counter with straight-line code. The pipeline stalls in the loop
are hence avoided.

We hence define⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚 =𝑀2,

ℎ = 𝜈 + 𝑒2 − 𝑒10 − 37,

𝑛 =𝑀10 · 2𝜈 ,
𝑔 = 𝑒10 − 15,

(3)

so that {︃
𝑥2 = 𝑚 · 2ℎ · 2𝑔−𝜈 ,
𝑥10 = 𝑛 · 5𝑔 · 2𝑔−𝜈 .

(4)

Our comparison problem becomes:

Compare 𝑚 · 2ℎ with 𝑛 · 5𝑔 .

We have
252 6 𝑚 6 253 − 1,

253 6 𝑛 6 254 − 1.
(5)

From the ranges of 𝑒2, 𝑒10 and 𝜈, one easily deduces

−398 6 𝑔 6 369,

−1495 6 ℎ 6 1422.
(6)

Note that once the first step, eliminating comparison cases
purely based on the exponents, is complete, we will be able
to reduce these domains (see Lemma 1). It makes no sense,
for instance, to assume that 𝑒2 is tiny and 𝑒10 is huge: in such
a case, the comparison is straightforward.

Now define two functions 𝜙 and 𝜓 by

𝜙(ℎ) = ⌊ℎ · log5 2⌋, 𝜓(𝑔) = ⌊𝑔 · log2 5⌋. (7)

The function 𝜙 is appropriate to perform the first comparison
step, as stated in Property 1 below. The other function will be
useful in the sequel. We will propose an efficient and easy-to-
implement way to compute these functions 𝜙 and 𝜓.

Property 1. We have

𝑔 < 𝜙(ℎ) ⇒ 𝑥2 > 𝑥10,

𝑔 > 𝜙(ℎ) ⇒ 𝑥2 < 𝑥10.

Proof: If 𝑔 < 𝜙(ℎ) then 𝑔 6 𝜙(ℎ) − 1, hence 𝑔 6
ℎ log5 2 − 1. This implies that 5𝑔 6 (1/5) · 2ℎ, therefore
254 · 5𝑔 6 (4/5) · 252 · 2ℎ. As a consequence, 𝑛 · 5𝑔 < 𝑚 · 2ℎ.
If 𝑔 > 𝜙(ℎ) then 𝑔 > 𝜙(ℎ) + 1, hence 𝑔 > ℎ log5 2, so that
5𝑔 > 2ℎ. This implies 253 · 5𝑔 > (253 − 1) · 2ℎ, and hence
𝑛 · 5𝑔 > 𝑚 · 2ℎ.

Property 2. Denoting by ⌊·⌉ the nearest integer function, let

𝐿𝜙 = ⌊219 log5 2⌉ = 225799,

𝐿𝜓 = ⌊212 log2 5⌉ = 9511.

For all ℎ in the range (6), we have

𝜙(ℎ) = ⌊ℎ · 𝐿𝜙 · 2−19⌋.

Similarly, we have

𝜓(𝑔) = ⌊𝐿𝜓 · 𝑔 · 2−12⌋ for |𝑔| 6 204,

and in the special case 𝑔 = 16𝑞,

𝜓(16𝑞) = ⌊𝐿𝜓 · 𝑞 · 2−8⌋ for |𝑞| 6 32.

The products 𝐿𝜙 ·ℎ and 𝐿𝜓 ·𝑔, for 𝑔, ℎ in the indicated ranges,
can all be computed exactly in (signed or unsigned) 32-bit
integer arithmetic. Computing ⌊𝜉 · 2−𝛽⌋ of course reduces to
a right-shift by 𝛽 bits.

Proof: Using Maple, we exhaustively check that

𝜙(ℎ) = ⌊ℎ · 𝐿 · 2−19⌋

for |ℎ| 6 1831, and that

𝜓(𝑔) = ⌊𝐿𝜓 · 𝑔 · 2−12⌋

when either |𝑔| 6 204 or 𝑔 = 16𝑞 with |𝑞| 6 32. The
corresponding quantities 𝐿𝜙 · ℎ and 𝐿𝜓 · 𝑔 all fit on at most
29 bits in magnitude, plus one sign bit.

From Properties 1 and 2, we easily derive the following
algorithm, that performs the first step, based on the exponents
of 𝑥2 and 𝑥10.

Algorithm 1. First step
∙ compute ℎ = 𝜈 + 𝑒2 − 𝑒10 − 37 and 𝑔 = 𝑒10 − 15;
∙ compute 𝜙(ℎ) = ⌊𝐿𝜙 · ℎ · 2−19⌋ using 32-bit integer

arithmetic;
∙ if 𝑔 < 𝜙(ℎ) then return “𝑥2 > 𝑥10”, else if 𝑔 > 𝜙(ℎ)

then return “𝑥2 < 𝑥10”, else perform the second step.

Note that, when 𝑥10 admits multiple distinct representations
in binary64 format (i.e. when its cohort is non-trivial [3]),
the success of the first step may depend on the specific
representation passed as input. For instance, both 𝐴 = {𝑀10 =
1015, 𝑒10 = 0} and 𝐵 = {𝑀10 = 1, 𝑒10 = 15} are valid
representations of the integer 1. Assume we are trying to
compare 𝑥10 = 1 to 𝑥2 = 2. Using representation 𝐴, we have
𝜈 = 4, ℎ = −32, and 𝜙(ℎ) = −14 > 𝑔 = −15, hence the test
from Algorithm 1 shows that 𝑥10 < 𝑥2. In contrast, if 𝑥10 is
given in the form 𝐵, we get 𝜈 = 53, 𝜙(ℎ) = 𝜙(2) = 0 = 𝑔,
and the test is inconclusive.

We may quantify the quality of this first filter as follows.
We say that Algorithm 1 succeeds if it answers “𝑥2 > 𝑥10” or
“𝑥2 < 𝑥10” without proceeding to the second step, and fails
otherwise. Let 𝑋2 and 𝑋10 denote the sets of representations
of positive, finite numbers, respectively in binary64 and in
decimal64 format. (In the case of 𝑋2, each number has a
single representation.) Assuming zeros, infinities, and NaNs
have been handled before, the input of Algorithm 1 may be
thought of as a pair (𝜉2, 𝜉10) ∈ 𝑋2 ×𝑋10.

Proposition 1. Algorithm 1 succeeds for more than 99.9% of
the input pairs (𝜉2, 𝜉10) ∈ 𝑋2 ×𝑋10.

Proof: The first step succeeds if and only if 𝜙(ℎ) ̸= 𝑔,
that is, iff 𝜙(𝜈 + 𝑒2 − 𝑒10 − 37) ̸= 𝑒10 − 15. The value of 𝜈
depends only on 𝑀10. Knowing 𝜈, the number of possible
values of 𝑀10 is

𝑛𝜈 =

{︃
253−𝜈 , 𝜈 > 0,

1016 − 253, 𝜈 = 0.

In addition, for each fixed 𝜈, we can easily compute the
number 𝑘𝜈 of pairs (𝑒2, 𝑒10) such that −1022 6 𝑒2 6 1023,
−383 6 𝑒10 6 384, and 𝜙(ℎ) = 𝑔.

Let 𝑋norm
2 be the subset of 𝑋2 consisting of normal numbers.

The number of pairs (𝑒2, 𝜉10) such that 𝜙(ℎ) = 𝑔 and 𝜉2 ∈
𝑋norm

2 is

𝑁1 =

53∑︁
𝜈=0

𝑛𝜈𝑘𝜈 = 14 292 575 372 220 927 484 6 1.55 · 263.

If now 𝑥2 is subnormal, then ℎ < −623 and 𝜙(ℎ) < −268. A
rough bound on the number of (𝜉2, 𝜉10) ∈ (𝑋2∖𝑋norm

2)×𝑋10

such that 𝑔 = 𝜙(ℎ) is hence

𝑁2 = 252 · 1016 · (398− 268) 6 1.12 · 2112.

Thus, the number of elements of 𝑋2 ×𝑋10 for which the first
step fails is bounded by

𝑁 = 252𝑁1 +𝑁2 6 1.691 · 2115.

This is to be compared with

|𝑋2×𝑋10| = (252 − 1)·2047·(1016 − 1)·768 > 1.66·2125.

We obtain 𝑁/|𝑋2 ×𝑋10| 6 10−3.
As a matter of course, pairs (𝜉2, 𝜉10) will almost never be

equidistributed in practice. Hence the previous estimate should
not be interpreted as a probability of success of Step 1. It
seems more realistic to assume that a well-written numerical
algorithm will mostly perform comparisons between numbers
which are suspected to be close to each other. For instance, in
an iterative algorithm where comparisons are used as part of a
convergence test, it is to be expected that most comparisons
need to proceed to the second step. Conversely, there are
scenarios, e.g., checking for out-of-range data, where the first
step should almost always be enough.

III. SECOND STEP: A CLOSER LOOK AT THE SIGNIFICANDS

In the following we assume that 𝑔 = 𝜙(ℎ) (otherwise, the
first step already allowed us to compare 𝑥2 and 𝑥10).

Define a function

𝑓(ℎ) = 5𝜙(ℎ) · 2−ℎ = 2⌊ℎ log5 2⌋·log2 5−ℎ.

We have ⎧⎨⎩ 𝑓(ℎ) · 𝑛 > 𝑚⇒ 𝑥10 > 𝑥2,
𝑓(ℎ) · 𝑛 < 𝑚⇒ 𝑥10 < 𝑥2,
𝑓(ℎ) · 𝑛 = 𝑚⇒ 𝑥10 = 𝑥2.

(8)

The second test consists in performing this comparison, with
𝑓(ℎ) · 𝑛 replaced by an approximation that is accurate enough
not to introduce false results.

Ensuring that an approximate test is indeed equivalent to (8)
requires to find a lower bound 𝜂 on the minimum nonzero
value of |𝑚/𝑛− 5𝜙(ℎ)/2ℎ| that may appear at this stage. We
want 𝜂 to be as tight as possible in order to avoid unduly costly
computations when approximating 𝑓(ℎ) · 𝑛. The search space
is constrained by the following observations.

Lemma 1. The equality 𝑔 = 𝜙(ℎ) where 𝑔 and ℎ are defined
by (3) can hold only if −787 6 ℎ 6 716. Additionally,

∙ if 𝑛 > 1016, then 𝑛 is necessarily even;
∙ if ℎ > 680, then 𝜈′ = ℎ + 𝜙(ℎ) − 971 > 0 and 𝑛 is

divisible by 2𝜈
′
.

Proof: Substituting 𝑒2 = ℎ + 𝑔 − 𝜈 + 52 and 𝑔 = 𝜙(ℎ)
into inequality (1) yields

− 1126 6 𝑒2 − 52 = ℎ+ 𝜙(ℎ)− 𝜈 6 971. (9)

Since we have 0 6 𝜈 6 53 and ℎ·log5 2−1 6 𝜙(ℎ) 6 ℎ·log5 2,
this implies

−1126 6 ℎ · (1 + log5 2) 6 1025.

The bound on ℎ follows.
Both conditions on 𝑛 come from the fact that 2𝜈 divides 𝑛

(which we denote 2𝜈 | 𝑛 in the sequel of the paper) by definition
of 𝑛. If 𝑛 > 1016, then 𝜈 > 1 and hence 𝑛 is even. In general,
the last inequality from (9) implies 𝜈 > 𝜈′. This last bound is
nontrivial when ℎ > 680.

We now deal with the problem of finding 𝜂. This problem
is very close to that, considered by Cornea et al. in [1], of
finding the required accuracy for performing correctly rounded
conversions between the binary and decimal formats of the
IEEE 754-2008 Standard. The constraints on 𝑚,𝑛 and ℎ follow
from inequalities (5) and Lemma 1.

Problem 1. Find the smallest nonzero value of

𝑑ℎ(𝑚,𝑛) =

⃒⃒⃒⃒
5𝜙(ℎ)

2ℎ
− 𝑚

𝑛

⃒⃒⃒⃒
under the following constraints⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

252 6 𝑚 6 253 − 1,
253 6 𝑛 6 254 − 1,
−787 6 ℎ 6 716,
𝑛 is even if 𝑛 > 1016,
if ℎ > 680, then 𝜈′ = ℎ+ 𝜙(ℎ)− 971 > 0

and 2𝜈
′ |𝑛.

For each integer ℎ ∈ [0, 716], a numerator of 𝑑ℎ(𝑚,𝑛) is⃒⃒
5𝜙(ℎ)𝑛−𝑚2ℎ

⃒⃒
and a denominator is 2ℎ𝑛.

If 0 6 ℎ 6 53 and 𝑑ℎ(𝑚,𝑛) ̸= 0, we have |5𝜙(ℎ)𝑛−𝑚2ℎ| >
1, hence 𝑑ℎ(𝑚,𝑛) > 1/(2ℎ𝑛) > 2−107. This easy argument
actually means that for the range of ℎ where equality cases
might occur, the non-zero minimum is no less that 2−107.

If ℎ > 54, since 5𝜙(ℎ) and 2ℎ are coprime and 𝑛 6 254 − 1,
we have 𝑑ℎ(𝑚,𝑛) ̸= 0. Minimizing 𝑑ℎ(𝑚,𝑛) is a classical
question related to the theory of continued fractions [2], [5],
[7]. We now give a short reminder on the results we need in
our setting.

Let 𝛼 ∈ Q. We build two finite sequences (𝑎𝑖)06𝑖6𝑛 and
(𝑟𝑖)06𝑖6𝑛 defined by:⎧⎪⎨⎪⎩

𝑟0 = 𝛼,

𝑎𝑖 = ⌊𝑟𝑖⌋ ,
𝑟𝑖+1 = 1/(𝑟𝑖 − 𝑎𝑖) if 𝑎𝑖 ̸= 𝑟𝑖.

Note that this process is actually Euclid’s algorithm. For all
0 6 𝑖 6 𝑛, the rational number

𝑝𝑖
𝑞𝑖

= 𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . . +
1

𝑎𝑖

is the 𝑖th convergent of the continued fraction expansion of 𝛼.
We write 𝛼 = [𝑎0; 𝑎1, · · · , 𝑎𝑛]. The 𝑎𝑖 are the partial quotients
of the expansion. Note that, if we assume 𝑝−1 = 1, 𝑞−1 = 0,
𝑝0 = 𝑎0, 𝑞0 = 1, we have 𝑝𝑖+1 = 𝑎𝑖+1𝑝𝑖 + 𝑝𝑖−1, 𝑞𝑖+1 =
𝑎𝑖+1𝑞𝑖 + 𝑞𝑖−1, and 𝛼 = 𝑝𝑛/𝑞𝑛.

First assume that the minimum nonzero value will be less
than or equal to 2−109. Then, the integers 252 6 𝑚 6 253 − 1
and 253 6 𝑛 6 254 − 1 that we want to determine necessarily
satisfy |5𝜙(ℎ)/2ℎ − 𝑚/𝑛| 6 2−109 < 1/(2𝑛2): a classical
result (see Theorem 19 of [5] for instance) yields that 𝑚/𝑛 is
a convergent of 5𝜙(ℎ)/2ℎ. Hence, we only have to compute,
for each ℎ ∈ [54, 716], the convergents of 5𝜙(ℎ)/2ℎ the
denominators of which are smaller than 254. Moreover, we only
consider the convergents 𝑝𝑖/𝑞𝑖 which improve the minimum
nonzero value and for which there exists 𝑘 ∈ N such that
𝑚 = 𝑘𝑝𝑖 and 𝑛 = 𝑘𝑞𝑖 satisfy the constraints of Problem 1.

We stress that this pruning trick is valid if and only if one
eventually obtains a minimum nonzero value lesser than or
equal to 2−109. If not, one can use the techniques presented
in the Appendix of [1] to get worst and bad cases for the
approximation problem we consider (that is, to get values
𝑥2 and 𝑥10 that are very near). We have favored a different
approach, here, because it leads to a less computationally
intensive and mathematically simpler method, which is easier
to check either manually or with a proof-assistant. However,
if one wishes to generate many cases for which 𝑥2 and 𝑥10
are very close (typically, for the purpose of testing comparison
algorithms), the techniques of [1] become of huge interest. We
will take advantage of them in Section VI.

The computation shows that the smallest admissible value of
𝑑ℎ(𝑚,𝑛) for ℎ > 0 is 6.3566 . . .×10−35 < 2−113.59, attained
for

ℎ = 612,
𝑚

𝑛
=

3521275406171921

8870461176410409
.

We address the case ℎ ∈ [−787, 0] in a similar way. In this
case, a numerator of 𝑑ℎ(𝑚,𝑛) is

⃒⃒
2−ℎ𝑛− 5−𝜙(ℎ)𝑚

⃒⃒
and a

denominator is 5−𝜙(ℎ)𝑛. We notice that 5−𝜙(ℎ) > 254 if and
only if ℎ 6 −54. If −53 6 ℎ 6 0 and 𝑑ℎ(𝑚,𝑛) ̸= 0, we have
|2−ℎ𝑛 − 5−𝜙(ℎ)𝑚| > 1, hence 𝑑ℎ(𝑚,𝑛) > 1/(5−𝜙(ℎ)𝑛) >
2−108. For −787 6 ℎ 6 −54, we use the same continued
fraction tools as above, leading to the following result.

Theorem 1. The minimum nonzero value of 𝑑ℎ(𝑚,𝑛) under
the constraints from Problem 1 is

6.0485 . . .× 10−35 < 2−113.67,

attained for

ℎ = −275,
𝑚

𝑛
=

4988915232824583

12364820988483254
.

We may thus take 𝜂 = 2−113.7.

IV. INEQUALITY TESTING

As already mentioned, the first step of the full comparison
algorithm is straightforwardly implementable in 32-bit integer
arithmetic. The second one reduces to comparing 𝑚 and 𝑓(ℎ)·𝑛,
and we have seen in Section III that it is enough to know 𝑓(ℎ)
with relative accuracy 2−113.67. We now discuss several ways
to perform this comparison. The main difficulty is to efficiently
evaluate 𝑓(ℎ) · 𝑛 with just enough accuracy.

A. Direct method

Perhaps the first thing that comes to mind is to implement the
criterion from Equation (8) directly, only with 𝑓(ℎ) replaced
by a sufficiently accurate approximation, read in a table that is
indexed with ℎ. Theorem 2 below implies that it is more than
enough to compute the product 𝑓(ℎ) · 𝑛 in 128-bit arithmetic,
using a 128-bit approximation of 𝑓(ℎ).

By Lemma 1, there are 1 504 values of ℎ to consider, which
corresponds to a 23.5 KB table with 128-bit precision entries
for 𝑓(ℎ). The resulting table is quite large but could possibly
be reused, for instance, in conversions between binary and
decimal formats. One advantage of this method is that the
table value 𝑓(ℎ) only depends on ℎ, which is available early
in the algorithm flow. Thus, the memory latency for the table
access can be hidden behind the first step.

Theorem 2. Assume that 𝜇 approximates 𝑓(ℎ) ·𝑛 with relative
accuracy 𝜖 < 𝜂/4 or better, that is,

|𝑓(ℎ) · 𝑛− 𝜇| 6 𝜖𝑓(ℎ) · 𝑛 < 𝜂

4
𝑓(ℎ) · 𝑛. (10)

The following implications hold:⎧⎪⎨⎪⎩
𝜇 > 𝑚+ 𝜖 · 254 =⇒ 𝑥10 > 𝑥2,

𝜇 < 𝑚− 𝜖 · 254 =⇒ 𝑥10 < 𝑥2,

|𝑚− 𝜇| 6 𝜖 · 254 =⇒ 𝑥10 = 𝑥2.

(11)

Proof: First notice that 𝑓(ℎ) 6 1 for all ℎ. Since 𝑛 <
254, condition (10) implies |𝜇− 𝑓(ℎ) · 𝑛| < 254𝜖, and hence
|𝑓(ℎ) · 𝑛−𝑚| > |𝜇−𝑚| − 254𝜖.

Now consider each of the possible cases that appear in (11).
If |𝜇 − 𝑚| > 254𝜖, then 𝑓(ℎ) · 𝑛 − 𝑚 and 𝜇 − 𝑚 have the
same sign. The first two implications from (8) then translate
into the corresponding cases from (11).

If finally |𝜇−𝑚| 6 254𝜖, then the triangle inequality yields
|𝑓(ℎ)·𝑛−𝑚| 6 255𝜖, which implies |𝑓(ℎ)−𝑚/𝑛| < 255𝜖/𝑛 <
253𝜂/𝑛 6 𝜂. But by definition of 𝜂, this cannot happen unless
𝑚/𝑛 = 𝑓(ℎ). This accounts for the last case.

Even though a 23.5 KB table for the direct table method
may still be acceptable in size, let us mention a way this table
could be reduced. The function 𝜙(ℎ) is a staircase-function that
grows slower than identity. This means several consecutive ℎ
map to a same value 𝑔 = 𝜙(ℎ). The corresponding values of
𝑓(ℎ) = 2𝜙(ℎ)·log2 5−ℎ are binary shifts of each other. Hence,
we may reduce the table size (at the price of a few additional
operations) by storing the most significant bits of 𝑓(ℎ) as a
function of 𝑔. We then shift the value read off the table by an

appropriate amount to recover 𝑓(ℎ). The number of elements
to tabulate goes down from 1504 to 647, that is, by a factor
of about 2.3. This would correspond to a 10.4 KB table (for a
memory alignment on 8-byte boundaries).

More precisely, define 𝐹 (𝑔) = 5𝑔2−𝜓(𝑔) (cf. Sec. II). We
then have

𝑓(ℎ) = 𝐹 (𝜙(ℎ)) · 2−𝜌(ℎ), (12)

where
𝜌(ℎ) = ℎ− 𝜓(𝜙(ℎ)).

The shift 𝜌(ℎ) is easily computed based on Property 2. In
addition, we may check that

1/2 < 𝐹 (𝜙(ℎ)) 6 1 and 0 6 𝜌(ℎ) 6 2

for all ℎ. Since 𝜌(ℎ) is nonnegative, multiplication by 2𝜌(ℎ)

can be implemented with a bitshift, not requiring branches.
Additionally, since there is enough headroom in the 64-bit
variable holding 𝑚 (which fits on 54 bits), we can use a left
shift on 𝑚 rather than a two-word right shift on 𝐹 (𝑔).

Note that we did not implement this size reduction and
hence could not check its suitability in practice. Instead, we
concentrated on another size reduction opportunity, that we
shall describe now.

B. Bipartite table

The table size can still be reduced more, using an alternative
method, based on a bipartite table. The technique takes
advantage of the fact that the exact value of 5𝑔 fits on 64 bits for
𝑔 6 27. Assuming that the entries are 8-byte aligned, the table
uses only 800 B of storage. Compared to the straightforward
method from Section IV-A, this second method requires quite
a few more arithmetic operations for the sake of a considerably
smaller table. Most of the additional overhead in arithmetic
operations can however be hidden on current processors through
increased instruction-level parallelism. The reduction in table
size also helps decreasing the probability of cache misses, as
it holds on only a few cache lines.

Recall that we suppose 𝑔 = 𝜙(ℎ) and hence −787 6 ℎ 6
716. Write

𝑔 = 𝜙(ℎ) = 16𝑞 − 𝑟, 𝑞 =
⌊︁ 𝑔
16

+ 1
⌋︁
, (13)

so that 𝑓(ℎ) = 516𝑞 · 5−𝑟 · 2−ℎ. We thus have

− 20 6 𝑞 6 21, 1 6 𝑟 6 16. (14)

In particular, 5𝑟 is an integer and fits on 38 bits.
Instead of tabulating 𝑓(ℎ) directly, we will use two tables:

one containing the (exact) value 5𝑟 for 1 6 𝑟 6 16, the other,
the most significant bits of 516𝑞 to a precision of roughly
128 bits. It will prove convenient to store these values with
their leading non-zero bit left-aligned, in a fashion similar to
floating-point significands. They will be stored respectively on
one and two 64-bit words each. Thus, we set

𝜃1(𝑞) = 516𝑞·2−𝜓(16𝑞)+127,

𝜃2(𝑟) = 5𝑟·2−𝜓(𝑟)+63,

where the power-of-two factors provide for the desired left-
alignment. We can check that

2127 6 𝜃1(𝑞) < 2128 − 1, 263 < 𝜃2(𝑟) < 264 (15)

for all ℎ.
The value 𝑓(ℎ) now decomposes as

𝑓(ℎ) =
𝜃1(𝑞)

𝜃2(𝑟)
2−64−𝜎(ℎ)

where
𝜎(ℎ) = 𝜓(𝑟)− 𝜓(16𝑞) + ℎ. (16)

Equations (7) and (16) imply that

ℎ− 𝑔 log2 5− 1 < 𝜎(ℎ) < ℎ− 𝑔 log2 5 + 1.

As we also have ℎ log5 2 − 1 6 𝑔 = 𝜙(ℎ) < ℎ log5 2 by
definition of 𝜙, it follows that

0 6 𝜎(ℎ) 6 3. (17)

In particular, the quantity 𝑚 · 2𝜎(ℎ) fits on 56 bits, leaving
headroom for additional 8 bits on a 64-bit variable.

Now let

Δ = 𝜃1(𝑞) · 𝑛 · 2−64+8 − 𝜃2(𝑟) ·𝑚 · 28+𝜎(ℎ).

Obviously, we have |𝑥2| > |𝑥10|, |𝑥2| = |𝑥10| or |𝑥2| < |𝑥10|
depending respectively if Δ < 0, Δ = 0 or Δ > 0. The case
|𝑥2| = |𝑥10| implies 𝑥2 = 𝑥10 because this second stage of
the algorithm is used only when 𝑥2 and 𝑥10 have the same
sign.

Lemma 2. Unless 𝑥2 = 𝑥10, we have |Δ| > 2124𝜂.

Proof: The definition of Δ rewrites as

Δ = 28+𝜎(ℎ)𝜃2(𝑟)𝑛
(︁
𝑓(ℎ)− 𝑚

𝑛

)︁
.

The bounds (5), (15), (17) together imply that 28+𝜎(ℎ)𝜃2(𝑟)𝑛 >
2124. We know from Theorem 1 that either 𝑓(ℎ) = 𝑚/𝑛, which
is equivalent to 𝑥2 = 𝑥10, or |𝑓(ℎ)−𝑚/𝑛| > 𝜂.

As already explained, the values of 𝜃2(𝑟) are all integers
and can exactly be tabulated as-is. In contrast, only an
approximation can be tabulated for 𝜃1(𝑞). We chose to represent
these values as ⌈𝜃1(𝑞)⌉, hence replacing Δ by the easy-to-
compute

Δ̃ = ⌊⌈𝜃1(𝑞)⌉ · 𝑛 · 28−64⌋ − 𝜃2(𝑟) ·𝑚 · 28+𝜎(ℎ). (18)

Here 𝑛, 𝜃2(𝑟) and 𝑚 · 28+𝜎(ℎ) are all nonnegative integers of
at most 64 bits, and ⌈𝜃1(𝑞)⌉ is a positive integer of at most
128 bits.

Computing the floor function in the first term of Δ̃ comes
down to dropping the low-order 64-bit word in a three-
word integer. This is also the reason we chose to take the
ceiling ⌈𝜃1(𝑞)⌉ when representing 𝜃1(𝑞) in the table: by
dropping words, we can only compute under-approximations.
By choosing over-approximations for the table value, we can
manage for the two approximations to cancel out, at least
partially. As we will see in the sequel, in particular with

Theorem 3, this effect allows equality cases (cases where
𝑥2 = 𝑥10) to be handled extremely easily.

The multiplications by 28 in (18) are not essential. They
serve to shift the significant bits of 𝑚 and 𝑛 as much as
possible to the left, so that the two-word comparison that
follows finishes after only one branching in as many cases as
possible.

Lemma 2 is in principle enough to compare 𝑥2 to 𝑥10,
using a criterion similar to that from Theorem 2. But we
can actually prove finer properties that allow for a more
efficient final decision step. Indeed, the use of Theorem 2
would require adding and subtracting a particular constant 𝜖.
Here, we show that the sign of Δ̃ already provides the answer
to the comparison.

Theorem 3. Assume 𝑔 = 𝜙(ℎ), and let Δ̃ be the 128-bit signed
integer defined by (18). Then following equivalences hold:

Δ̃ < 0 ⇐⇒ |𝑥10| < |𝑥2|,
Δ̃ = 0 ⇐⇒ 𝑥10 = 𝑥2,

Δ̃ > 0 ⇐⇒ |𝑥10| > |𝑥2|.

Proof: Write

⌈𝜃1(𝑞)⌉ = 𝜃1(𝑞) + 𝛿tbl

⌊⌈𝜃1(𝑞)⌉ · 𝑛 · 2−56⌋ = ⌈𝜃1(𝑞)⌉ · 𝑛 · 2−56 + 𝛿rnd

for some
0 6 𝛿tbl < 1, −1 < 𝛿rnd 6 0.

Setting 𝛿 = 𝛿rnd+𝑛2
−56𝛿tbl, we have Δ̃ = Δ+𝛿, and, by (5),

−1 < 𝛿 < 1/4.

If Δ ̸= 0, it follows that

|Δ̃| > 2124𝜂 − |𝛿| > 210

by Lemma 2. In particular, Δ and Δ̃ have the same sign, and
Δ̃ < 0 ⇔ |𝑥10| < |𝑥2|. If Δ = 0, we get |Δ̃| = 𝛿, and we can
conclude that Δ̃ = 0 because Δ̃ is an integer.

The conclusion Δ̃ = 0 = Δ when 𝑥2 = 𝑥10 means that in
this case, there is no error in the approximate computation of Δ.
Specifically, the tabulation error 𝛿tbl and the rounding error
𝛿rnd cancel out, thanks to our choice to tabulate the ceiling
of 𝜃1(𝑞).

Theorem 3 implies that the following algorithm correctly
computes the sign of 𝑥2 − 𝑥10.

Algorithm 2. Step 2 (second method).
∙ Compute 𝑞 and 𝑟 as defined in (13). Compute 𝜎(ℎ) using

Property 2.
∙ Read the 128 bits of ⌈𝜃1(𝑞)⌉ as two 64 bit words.
∙ Compute the 128 high-order bits 𝛼 of

⌈𝜃1(𝑞)⌉ · (𝑛28)

with one 128× 64-bit multiplication, dropping the 64 low
order bits.

∙ Compute
𝛽 = 𝜃2(𝑟) · (𝑚28+𝜎(ℎ))

with one full 64× 64-bit multiplication, keeping all 128
bits.

∙ Compute the signed difference Δ̃ = 𝛼− 𝛽.
∙ Return ⎧⎪⎨⎪⎩

“𝑥2 > 𝑥10” if Δ̃ < 0,

“𝑥2 = 𝑥10” if Δ̃ = 0,

“𝑥2 < 𝑥10” if Δ̃ > 0.

V. EQUALITY CASES

As seen in the last Sections, the direct and bipartite methods
are able to precisely determine cases when 𝑥2 is equal to 𝑥10,
besides deciding the two possible inequalities. However, when
it comes to solely determine such equality cases additional
properties may simplify and accelerate the previous tests. The
condition 𝑥2 = 𝑥10 is equivalent to

𝑚 · 2ℎ = 𝑛 · 5𝑔.

Lemma 3. Assume 𝑥2 = 𝑥10. Then,

∙ either 0 6 𝑔 6 22, 0 6 ℎ 6 53, and then 𝑚 is divisible
by 5𝑔 and 𝑛 is divisible by 2ℎ;

∙ or −22 6 𝑔 6 0, −51 6 ℎ 6 0, in which case we have
2−ℎ | 𝑚 and 5−𝑔 |𝑀10.

Proof: Notice that ℎ and 𝑔 = 𝜙(ℎ) always have the same
sign. When they are nonnegative, 𝑛 must be a multiple of 2ℎ

and 𝑚 must be a multiple of 5𝑔 . It follows that 5𝑔 6 𝑚 < 253,
hence 𝑔 6 log5 2

53 < 22.9, which in turn implies ℎ 6 53.
When 𝑔 and ℎ are negative, 𝑚 is a multiple of 2−ℎ while
𝑛 = 𝑀10 · 2𝜈 and hence 𝑀10 are multiples of 5−𝑔. We get
−𝑔 < log5 10

16 < 22.9, whence −ℎ 6 51.
We deduce the following algorithm, which decides whether

𝑥2 = 𝑥10 using only 64-bit integer operations. Note that here
we do not need to compute 𝜙(ℎ).

Algorithm 3. Equality test.

∙ if 0 6 ℎ 6 53 and 0 6 𝑔 6 22 and 2ℎ | 𝑛 then

– read 5𝑔 in a table or compute it on the fly
– compute 𝑚′ = 5𝑔 · (𝑛 2−ℎ) with a 64-bit integer

multiplication, yielding 64 output bits
– return (𝑚′ = 𝑚)

∙ else if ℎ > −51 and −22 6 𝑔 6 0 and 2−ℎ | 𝑚 then

– read 5−𝑔 in a table or compute it on the fly
– compute 𝑛′ = 5−𝑔 · (𝑚 2ℎ) with a 64-bit integer

multiplication
– return (𝑛′ = 𝑛)

∙ else return false

The constants 5𝑔, 0 6 𝑔 6 22 used in the algorithm all fit
on 51 bits. They can for instance be read in a small table or
computed on the fly (which requires at most 5 squarings and
multiplications by 5 using binary powering). The tests on 𝑔 in
Algorithm 3 are there only to make sure that the values of 5±𝑔

used later are in the allowable range.

VI. EXPERIMENTAL RESULTS

Both algorithms, the direct method presented in Section IV-A
and the bipartite table method presented in Section IV-B, have
been implemented and thoroughly tested. Our implementation
is available at

http://hal.archives-ouvertes.fr/hal-00767085/

along with tables of worst and bad cases for the approximation
problem from Section III.

To the extent possible when using decimal floating-point
numbers, we gave priority to portability over performance in
the main source code. It is written in plain C, using the decimal
floating-point type support offered by the compiler we are using,
gcc 4.6.3-1 [8]. No particular effort at optimization was made.
For instance, multiple-word operations are implemented in
portable C, with no use of hardware support for operations
such as 64 × 64 → 128 bit multiplication except for that
automatically inserted by the compiler. Nevertheless, we also
provide an alternative implementation of the bipartite table
method featuring some manual optimization. This optimized
version is written using gcc extensions and compiler intrinsics
besides plain C.

Testing was done using test vectors that extensively cover
all floating-point input classes, such as normal numbers,
subnormals, Not-A-Numbers, zeros, infinities, for both the
binary input 𝑥2 and the decimal input 𝑥10.

The test vectors also exercise the worst-cases (𝑚,𝑛) for
the critical value 𝑑ℎ(𝑚,𝑛) =

⃒⃒
5𝜙(ℎ)/2ℎ −𝑚/𝑛

⃒⃒
for each

admissible value of ℎ, as explained in Section III. Additionally,
the 50-but-worst cases (𝑚,𝑛) for each value ℎ were computed
using the method described in the Appendix of [1] and added
to the test vectors. The rationale behind exercising not only
the worst-case for each ℎ but also some bad cases is that an
implementation might work for the worst-case input just by
chance, whereas chances decrease rapidly for a larger number
of difficult test cases.

The test vectors were finally completed with a reasonably
large set of random inputs that fully exercise all possible
values of the normalization 2𝜈𝑀10 for the decimal mantissa
(cf. Section II) as well as both the first step succeeding or the
second step being necessary.

Both implemented methods have been compared for perfor-
mance to the naïve comparison method where the binary or
decimal input is converted to decimal or binary respectively
before getting compared. These experimental results are
reported in Table II. In the last two rows, “easy” cases are
cases where the first step of our algorithm succeeds, while
“hard” cases refer to those for which running the second step
is necessary.

The code is executed on a system equipped with a quad-core
Intel Core i7 M 620 processor clocked at 2.67 GHz, running
Linux 3.2.0 in 64 bit mode. The comparison functions are
compiled at optimization level 3, with the -march=native
flag set. The timing measurements were done using the Read-
Time-Step-Counter instruction after pipeline serialization. The

http://hal.archives-ouvertes.fr/hal-00767085/

Naïve method Naïve method Direct method Bipartite table Bipartite table
converting 𝑥2 converting 𝑥10 method method (optimized
to decimal64 to binary64 described in described in implementation)
(incorrect) (incorrect) Section IV-A Section IV-B

min/avg/max min/avg/max min/avg/max min/avg/max min/avg/max

Special cases (±0, NaNs, Inf) 14/–/254 7/–/281 8/–/114 7/–/132 7/–/112
𝑥2 subnormal, 𝑥10 of same sign 87/137/297 192/226/300 173/199/307 196/219/298 23/54/158
𝑥2 normal, 𝑥10 of opposite sign 50/144/278 21/107/321 5/32/118 5/30/121 4/38/122
𝑥2 normal, same sign, “easy” cases 84/156/294 21/107/309 15/47/144 15/46/122 6/47/122
𝑥2 normal, same sign, “hard” cases 32/95/283 56/86/207 34/58/212 52/70/226 19/44/198

TABLE II
TIMINGS (IN CYCLES) FOR BOTH PRESENTED METHODS AND FOR TWO NAÏVE METHODS.

serialization and function call overhead was subtracted off
after timing an empty function. Measurements were taken once
the caches were preheated by previous comparison function
calls, the results of which were discarded. The indicated
numbers are in cycles and given for the minimum/ average/
maximum value that was observed. Cycle counts larger than
about 370 (depending on the test run) were discarded, and the
corresponding tests run again, in order not to account in the
results for long delays likely due to exceptional external events.
No average values are given for case involving special inputs,
such as zeros, Not-A-Numbers (NaNs) or infinities.

As can be seen from Table II, our implementations of
both the Direct Method presented in Section IV-A and the
Bipartite Table Method described in Section IV-B outperform
both naïve methods in most cases. Let us mention again that
this naïve comparison is what some C compilers currently do
(cf. Section I). Besides being faster, the methods presented
in this paper have the advantage of always providing correct
boolean answers.

The (unoptimized) Direct Method, based on direct tabulation
of 𝑓(ℎ) (cf. Section IV-A), is slightly faster than the (unop-
timized) Bipartite Table Method. This is mainly due to the
more computationally expensive second step of the Bipartite
Table Method. The difference in performance might however
be too small to justify the usage of an about 30 times larger
table for the direct method. We do not have experimental data
for the Direct Method using the table size reduction technique
through tabulation of 𝐹 (𝑔) (cf. Section IV-A).

VII. CONCLUSION

Though not foreseen in the IEEE 754-2008 standard, ex-
act comparisons between floating-point formats of different
radices would enrich the current floating-point environment
and enhance the safety and provability of numerical software.

This paper has investigated the feasibility of such comparison
at the instance of the binary64 and decimal64 formats. A simple
test has been presented that eliminates most of the comparison
inputs. For the remaining cases, two algorithms were proposed,
a more direct method and a technique based on a bipartite
table. The bipartite table uses only 800 bytes of table space.

Both methods have been proven, implemented and thor-
oughly tested. They outperform the naïve comparison technique
consisting in conversion of one of the inputs to the respectively

other format. Furthermore, they always return a correct answer,
which is not the case of the naïve technique.

Future work will have to address the other common
IEEE 754-2008 binary and decimal formats, such as binary32
and decimal128. Since the algorithmic problems of exact
binary to decimal comparison and correct rounding of binary
to decimal conversions (and vice versa) are similar, future
investigations should also consider the possible reuse of
tables for both problems. Finally, one should mention that
considerable additional work is required in order to enable
mixed-radix comparisons in the case when the decimal floating-
point number is stored in dense-packed-decimal representation.

ACKNOWLEDGEMENT

This work is partly supported by the TaMaDi project of the
French Agence Nationale de la Recherche.

REFERENCES

[1] M. Cornea, J. Harrison, C. Anderson, P. T. P. Tang, E. Schneider, and
E. Gvozdev, A software implementation of the IEEE 754R decimal floating-
point arithmetic using the binary encoding format, IEEE Transactions on
Computers 58 (2009), no. 2, 148–162.

[2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers,
Oxford University Press, London, 1979.

[3] IEEE Computer Society, IEEE standard for floating-point arithmetic,
IEEE Standard 754-2008, August 2008, available at http://ieeexplore.ieee.
org/servlet/opac?punumber=4610933.

[4] ISO/IEC JTC 1/SC 22/WG 14, Extension for the programming language
C to support decimal floating-point arithmetic, Proposed Draft Technical
Report, May 2008.

[5] A. Ya. Khinchin, Continued fractions, Dover, New York, 1997.
[6] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of floating-
point arithmetic, Birkhäuser, Boston, 2010.

[7] O. Perron, Die Lehre von den Kettenbrüchen, 3rd ed., Teubner, Stuttgart,
1954–57.

[8] The GNU project, GNU compiler collection, 1987–2013, available at
http://gcc.gnu.org/.

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://gcc.gnu.org/

