
HAL Id: ensl-00738412
https://ens-lyon.hal.science/ensl-00738412v2

Submitted on 29 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arithmetic core generation using bit heaps
Nicolas Brunie, Florent de Dinechin, Matei Istoan, Guillaume Sergent, Kinga

Illyes, Bogdan Popa

To cite this version:
Nicolas Brunie, Florent de Dinechin, Matei Istoan, Guillaume Sergent, Kinga Illyes, et al.. Arithmetic
core generation using bit heaps. 23rd International Conference on Field Programmable Logic and
Applications, Sep 2013, Porto, Portugal. pp.1-8. �ensl-00738412v2�

https://ens-lyon.hal.science/ensl-00738412v2
https://hal.archives-ouvertes.fr


ARITHMETIC CORE GENERATION USING BIT HEAPS

Nicolas Brunie, Florent de Dinechin, Matei Istoan, Guillaume Sergent, Kinga Illyes, Bogdan Popa
Kalray LIP (ENS-Lyon/INRIA/CNRS/UCBL) Universitatea Technica Cluj-Napoca

Abstract—A bit heap is a data structure that holds the
unevaluated sum of an arbitrary number of bits, each weighted
by some power of two. Most advanced arithmetic cores can be
viewed as involving one or several bit heaps. We claim here
that this point of view leads to better global optimization at
the algebraic level, at the circuit level, and in terms of software
engineering.

To demonstrate it, a generic software framework is introduced
for the definition and optimization of bit heaps. This framework,
targeting DSP-enabled FPGAs, is developed within the open-
source FloPoCo arithmetic core generator. Its versatility is
demonstrated on several examples: multipliers, complex multi-
pliers, polynomials, and discrete cosine transform.

I. INTRODUCTION AND MOTIVATION

In binary digital arithmetic, a positive integer or fixed-point
variable X is represented as follows:

X =

imax∑
i=imin

2ixi (1)

In all this paper we will call weight a power of two such as
the 2i in the above equation: X is represented as a sum of
weighted bits. The indices imin and imax are the minimum
and maximum weights of X .

The product of X by Y can similarly be expressed as a sum
of weighted terms:

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin
2jyj)

=
∑
i,j

2i+jxiyj (2)

In all the sequel we use the term bit heap to denote a sum
of weighted bits such as (2) above. There, each weighted bit
on the heap is actually a term xiyj . However, most of this
work will focus on the final summation: How each weighted
bit was produced (e.g. as an AND of two input bits here) is
mostly irrelevant – it will be addressed only when needed.

We will classically [1] represent bit heaps as 2D dot
diagrams such as Fig. 1(c) and following. There, the horizontal
axis represents the weights (most significant bits left as usual),
and each dot represents one weighted bit participating to the
final sum. Here also, how each bit was computed is not shown.

Bit heaps capture bit-level parallelism

Addition within a sum of weighted bits is associative and
commutative. For instance, in a dot diagram, the order of
the bits in a column (same weight) is irrelevant. Therefore,
a representation like

∑
i,j 2

i+jxiyj captures all the intrinsinc
bit-level parallelism present in this sum. Exploiting this, a fast
multiplier may be built as a tree (often called a compressor
tree) of bit-level adders [2], [3], [4], [5], [1]. More details will

be given in Section IV in the context of FPGAs. In general,
the sum of a bit heap can be computed by an architecture
operating in space linear with the size of the heap (its total
number of bits), and time logarithmic in its maximum height
(the maximum number of bits of same weight) [1].

Bit heaps are versatile

Bit heaps are not limited to computing multiplication. It
is easy to show that the sum or product of a bit heap are
themselves bit heaps (they can be developed as a single big
sum). By induction, any multivariate polynomials of fixed-
point inputs may be expressed as a single sum of weighted bits.
This includes addition and multiplication on complex numbers,
sums of products and sums of squares (for linear algebra
operators or signal processing transforms), polynomials used
to approximate elementary functions, etc. Besides, the bits may
come from table lookup or other arbitrary components, which
further enlarges the class of functions where a bit heap is
relevant.

Expressing such a function as a monolithic bit heap (a single
sum), rather than as a composition of adders and multipliers,
enables a global optimization instead of several independent
local ones. This has been shown to lead to more efficient bit-
level implementations [6], [7], [8]. However, there has been
so far no attempt to capture this generality in a universal tool.
This is the main goal of the present work.

Due to this versatility, this article will demonstrate bit
heaps with a variety of shapes. This is why we prefer the
phrase bit heap over the phrase “bit array” used in the
multiplier literature (where bit heaps are indeed lozenges). It
also emphasizes that the order is irrelevant in the sum.

Bit heaps enable bit-level algebraic optimizations

The bit heap is also a pertinent tool to assess and im-
prove the bit-level complexity of computing such multivariate
polynomials. An enlightening example (to our knowledge
unpublished) is a third-order Taylor formula for the sine:
sin(X) ≈ X −X3/6, which we use in [9].

This formula can be evaluated using two standard multipli-
cations (to compute X3), a multiplication by the constant 1/6,
and a subtraction. However, it can also be expressed directly
as a single bit heap as follows. From (1), we may write

X3 =
∑imax

i=imin
23ix3i

+
∑

imin≤i<j≤imax
3 · 2i+2jxix

2
j

+
∑

imin≤i<j<k≤imax
6 · 2i+j+kxixjxk

(3)

Here we have a first set of algebraic simplifications to apply,
for instance xki = xi or 2·2wa = 2w+1a. The multiplication by



3 can be obtained by duplicating bits in the bit heap: 3 ·2wa =
2w+1a+ 2wa.

At this point the computation of X3 already requires about
one third of the bit-level operations that would be present in
two multipliers. However, as we are interested in X3/6, we
may optimize further and rewrite (3) as:

X −X3/6 =
∑imax

i=imin
2ixi

−1/3
∑imax

i=imin
23i−1xi

−
∑

imin≤i<j≤imax
·2i+2j−1xixj

−
∑

imin≤i<j<k≤imax
·2i+j+kxixjxk

(4)
Now we only have only imax − imin bits of the bit heap to

actually divide by 3. We target some output accuracy, typically
matching the input precision p = imax − imin +1. One option
is to replace 1/3 with its binary representation 0.1010101...,
suitably truncated. Then the second line adds about as many
bits to the bit heap as the third one. We use another option,
with a variation of the divider by 3 from [10] that adds 3p
bits to the bit heap, albeit after a delay.

Table I shows properly truncated bit heaps in the context of
a sine/cosine implementation [9], and gives the corresponding
synthesis results (for smaller input sizes, the whole of X3/6
is simply tabulated).

A versatile bit heap implementation simplifies core generation

Finally, bit heaps are convenient from a software develop-
ment point of view. The purpose of the FloPoCo project1 is
to generate an infinite set of application-specific operators for
FPGA-based computing [11]. The long-term development of
such a core generator is challenging for several reasons. Firstly,
the operators we want to develop are increasingly complex
(currently including filters, elementary functions, etc). Sec-
ondly, FloPoCo has the ambition of optimizing all its operators
for a wide range of FPGAs from the main vendors. The sheer
combinatorics of operators (each heavily parameterized) and
targets make this task less and less tractable.

However, most of the advanced operators include products,
sums of several terms read from tables or computed as prod-
ucts, etc. A solution to the above issue is therefore to express
as much as possible of the operators as bit heaps. We may then
delegate their implementation (the actual code generation) to a

1http://flopoco.gforge.inria.fr/

input Bitheap Performance LUTs Registers
width cycles @ frequency

32 6 @ 365 MHz 3044 981
4 @ 265 MHz 3047 387

40 6 @ 351 MHz 4767 1257
4 @ 254 MHz 4734 437

48 6 @ 326 MHz 7355 1841
4 @ 249 MHz 7352 635

TABLE I
X −X3/6 ON VIRTEX-5 FOR THE FAITHFUL SINCOS OPERATOR OF [9]

single, centralized, versatile bit heap framework. When a new
FPGA appears, all we need is to update this one piece of code.

This can be viewed as an elegant way to separate 1/
optimizations that are of mathematical nature (the construction
of the bit heap), and 2/ optimizations that depend on the target
technology and target performance (its compression).

The remainder of this article introduces such a universal
bit heap manipulation tool. As a bit heap is a data structure,
not an arithmetic operator in the usual sense, we embed this
notion in the FloPoCo architecture generator. To obtain an
architecture, one first throws bits (now VHDL signals) from
various components on a bit heap, then calls a routine that
will build the compressor tree.

Outline

As FPGAs offer more and more DSP computing resources,
we first need to include these resources in a bit-heap-centric
view in Section II. This will actually expose additional opti-
mizations opportunities.

Section III describes in details the data structures used
for bit heap manipulation, with a focus on timing issues –
in coarser operators such as DSP-based multipliers or our
X − X3/6 example, bits may arrive on the bit heap from
various sources and at different times. Another focus is on
signed bit heaps handling two’s complement numbers: we
generalize classical tricks to show that signed numbers entail
very low overhead.

Section IV studies the construction of the compression tree.
It shows that the best elementary compressors are based on
ternary adders on FPGA architectures that support them, such
as the recent Altera circuits.

The interested reader will find in the FloPoCo source code
(starting with version 2.4.0) all the details omitted here due to
space constraints.

II. BIT HEAPS IN DSP-ENABLED FPGAS

One initial motivation of this work was to improve the
implementation of large multipliers using DSP blocks in
FloPoCo. This section first reviews the state of the art, points
to sub-optimal design choices, and shows how a DSP-aware
bit heap view can solve them.

A. FPGA multiplication capabilities

The logic fabric of FPGAs is based on small look-up tables
(LUTs). A k-inputs look-up table (LUTk) may implement
any boolean function of up to k inputs (k = 4, 5, or 6
in current FPGAs). For instance, an AND of up to k bits
consumes one LUTk, so each bit of the bit heap for a degree-
k polynomial will cost one LUT to compute. Tightly coupled
carry propagation logic enables fast carry-ripple additions at
the cost of one LUT per addition bit. This logic is designed
so that array multipliers can be built at the cost of n2 LUTs
for an n× n-bit multiplier.

In recent years, the number k of inputs to the LUT has
increased from 4 to 6. A 3x3-bit multiplication may now be



implemented by tabulating it in 6 LUT6, instead of accumu-
lating it in 9 LUT6. This is not only smaller, but also as fast
as it gets (one LUT delay).

Back to the bit heap, this is also an efficient way of
generating partial products for a logic-based multiplier. We are
not aware of this idea in the literature. The smaller squares
on figures such as Fig. 2 represent such 3x3 LUT-based
multipliers.

Recent FPGAs also include small “hard” multipliers. Altera
chips offer 36x36-bit multipliers fracturable into a variety of
combinations of 18x18, 12x12 and 9x9 ones, and various
relevant sum-of-product configurations. Recent Xilinx chips
offer 18x25 signed multipliers followed by 40-bit adders.
Starting with Virtex-6, there are also adders on the inputs.
Exploiting this variety is the current main challenge of portable
arithmetic design in FloPoCo.

B. Building large multipliers as bit heaps

A large multiplication must be decomposed in smaller ones
that fit hardware resources. This decomposition is a sum: it
can be managed as a bit heap. To illustrate this, consider
the following 4-DSP implementation of a 41x41 multiplier
on Virtex-5 [12].

XY = (X0:16Y0:23 + 217X17:40Y0:16)
+ 223(X0:23Y24:40 + 217X24:40Y17:40)
+ 234X17:23Y17:23

(5)

In [12], the process of discovering (5) is called tiling. A
multiplier board must be tiled with tiles corresponding to
hard multipliers. Smaller, leftover tiles may be implemented
as logic, as shown on on Fig. 1.

Furthermore, the adders included in DSP blocks may be
used to sum the results of several multipliers. A sequence of
multipliers chained by adders without needing any LUT logic
is called a supertile in [12]. For instance, the two parentheses
of (5) correspond to two supertiles for Xilinx Virtex 5 or later.
Altera devices have square multipliers and different supertiling
capabilities, but the same concepts apply – see [13] for recent
examples.

D(0)(0)

D(1)(0)

D(0)(1)
D(0)(0)

(a) Tiling view

D(0)(0)

D(1)(0)

D(0)(1)
D(0)(0)

(b) Weight-aligned view

(c) bit heap view

Fig. 1. A possible implementation of a 41× 41 multiplier on Virtex-5

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

(a) tiling view

D(1)(2) D(0)(2)

D(1)(1)

D(1)(0)

(b) weight-aligned view

(c) bit heap view

Fig. 2. 53x53-bit multiplier faithful to 53-bit, for Virtex5. The bits between
the two red lines are guard bits needed for a faithful result (error strictly
smaller than the LSB of the result).

D(0)(0)

D(-1)(1)

D(1)(-1)

(a) tiling view

D(0)(0)

D(-1)(1)

D(1)(-1)

(b) weight-aligned view

(c) bit heap view

Fig. 3. 53x53-bit faithful multiplier for Stratix IV.

Fig. 1 is generated by FloPoCo. Its bit heap (Fig. 1(c))
receives the results of two supertiles, plus the bits of the central
logic-based multiplier decomposed into 3× 3 multipliers.

This tiling approach is very versatile. To illustrate it, Fig. 2
shows the tiling of a 53x53-bit truncated multiplier outputting
a faithful result on 53 bits. On this figure, we have one
potential supertile of size 3, and one of size 1. Fig. 3, inspired
by [13], shows the same multiplier implemented for a Stratix
IV device. It consists of one 36x36 multiplier, and two 18x18
ones that form a supertile. Also note that the tiling algorithm
has a threshold parameter t (set to 0.5 for all our figures). It
defines the percentage of multiplier that must be useful to the
large multiplication for a DSP block to be used. Set to zero,
only logic will be generated. Set to 1, only DSP blocks will
be used.

C. Bit heap versus components

In [12], a large multiplier is not based on a bit heap, but
implemented as a combination of three types of components:
DSP multipliers, logic multipliers, and multi-input adders. This
entails several inefficiencies in a pipelined design:

1/ artificial synchronization of the bits of intermediate sums,
whereas the lower bits could typically be forwarded earlier
than the upper bits;

2/ several instance of bit heap compression (one for each
logic-based multiplier, plus one for the final multi-addition);



Xi Yr YiXr

ZiZr

(a) Arithmetic view

(b) The two bit heaps for 12-bit faithful results.

(c) The two bit heaps for 32-bit faithful results,
using one DSP block for each multiplication.

Fig. 4. Complex multiplication as two bit heaps. Different colors in the bit
heap indicate bits arriving at different instants.

3/ non-utilization of some of the DSP adders (those on the
first DSP of a supertile);

4/ in general, a combination of local optimizations instead
of a global optimization.

These inefficiencies are aggravated if the multiplier is itself
part of a larger component that could be expressed as a single
bit heap. An important case is a sum of products, the simplest
example being the complex product depicted on Fig. 4. In this
case, additional optimizations opportunities arise.

The first is that supertiles can be built out of tiles coming
from different multipliers, as long as they contribute to the
same bit heap. Fig. 4 consists of two bit heap, each adding
two products. Altera DSP blocks are designed to implement
such operations (a× b± c× d) efficiently for precisions of 18
bits. Our key observation is that even for larger sizes (where
each multiplier is decomposed in several DSP blocks), we
can pair in a DSP corresponding sub-products from the two
multipliers in a supertile computing a× b± c× d.

The second optimization is to exploit the adders within the
DSP blocks to consume bits from the bit heap (without con-
sideration of where they come from). In the simple multiplier
examples, the first DSP adder of a supertile is unused. If we
can feed it bits from another source (e.g. bits from the logic-
based multiplier, possibly already partly compressed), it will
remove them from the bit heap for free. Xilinx DSP adders can
input such an external addend. Note that Altera ones cannot,
unless otherwise unused multipliers are used as pass-through.

D. Summing up

The good way to manage DSP blocks in a bit heap is
therefore to
• consider DSP blocks as unevaluated multiplications in a

bit heap, and
• consider supertiling as a step of the compression process.

With this point of view, a multiplier contributes to a bit heap,
but may not be alone in doing so. It may contribute bits from
logic-based tiles, or DSP-sized tiles. The chaining of such
tiles into a supertile is part of the compression process, and
it may even consume other bits of the bit heap. The result of
a supertile will be itself sent back to the bit heap for further
compression.

In the proposed framework, a multiplier is not necessarily a
component itself (an entity in VHDL terms). In the complex
multiplier, it is a virtual component that throws bits to the
bit heap of a larger component. In terms of architecture
generation, the (simplified) code of a sum of product will be

addBitsToBitHeapForMult(...);
addBitsToBitHeapForMult(...);
compressBitHeap();

An adder or subtractor is not necessarily a component, either.
The adder and subtractor of Fig. 4 have no corresponding
VHDL entities, they are part of the compression.

Conversely, an operator may involve several distinct bit
heaps (two on Fig. 4). This will be the general case.

The complex multiplier example also shows that we must
be able to add the opposite of a product to the bit heap.
An efficient implementation of this, exploiting the fact that
DSP blocks include signed multipliers, will be shown in
Section III-C.

III. THE UNIVERSAL BIT HEAP

Let us first stress that the bit heap is a dynamical data
structure during the circuit generation process: First, several
sub-operators may add bits to the bit heap. Eventually, in the
construction of the compressor tree, bits will be removed from
the bit heap, and new bits will be added, until only the final
sum remains.

There are two aspects of time here: operator-generation time
(as the generator program runs), and circuit time (using notions
such as critical path or, for pipelined designs, cycles). The
generator must be able to evaluate the circuit time, for instance
as in [11].

A. The data structure

A weighted bit is a data structure consisting essentially of
its signal name, its weight, and its instant. A column of the
bit heap is represented as a list of weighted bits, ordered by
their arrival time (in the circuit time). The complete bit heap
data structure essentially consists of a maximum weight, and
an array of columns indexed by the weights.

Figures 1(c), 2(c), 3(c), 4(b) or 4(c) represent such data
structures, with the weights as horizontal axis, least significant
bits to the right, as in standard binary numeration. Different



arrival times are indicated by different colors. These figures
are actually Scalable Vector Graphics files that can be opened
in a browser, in which case hovering the mouse over one bit
shows its signal name and its arrival instant in circuit time.

B. Managing constant weighted bits

Some of the bits added to a bit heap are constant bits, e.g.
coming from

• rounding truncated products added to the bit heap,
• rounding the final result of the bit heap,
• managing two’s complement signed numbers, as ex-

plained below in III-C.

It would be wasteful to dedicate hardware to compressing such
constant bits, as their sum is known in advance. Therefore,
the bit heap data structure also includes a multiple-precision
integer which gathers all the constant bits. The actual value of
the sum of all the constant bits is added to the bit heap just
before compression.

This is an old trick, widely used in the design of Baugh-
Wooley signed multipliers [14] and multi-input adders [1].
However the addition of the constant bits was usually com-
puted by hand, which for complex bit heaps soon becomes
error-prone. Here it is performed by the generator, which is
simpler, safer and more flexible.

As a side effect, note that fixed-point rounding computations
can often be merged in the global compression for free.

C. Managing signed numbers

Signed numbers are classically represented using two’s
complement notation [1]. It is possible to design bit heaps
operating directly on positive and negative bits [15], but
this section shows that managing two’s complement signed
numbers in a bit heap costs very little, as most of the overhead
can be hidden in the constant bit vector.

1) Sign extension using the constant vector: Most numbers
added to the bit heap do not extend to its full range of weights.
When such a number is signed, it must be sign-extended: its
MSB must be replicated all the way up to the MSB of the
bit heap [1]. Done naively, this could add many bits to the
bit heap, some of them with large fanout. We may use here a
classical trick from two’s complement multipliers: to replicate
bit s from weight p to weight q, we add the complement of s
at weight p. Then we add 2q − 2p to the constant bit vector
(this correspond to a string of 1s stretching from bit p to bit
q). The reader may check that this performs the necessary sign
extension both when s = 0 and s = 1.

All these constant bits are compressed into the constant
vector: The overhead of a bit heap accepting signed numbers,
with respect to an unsigned bit heap, is at most one line of
bits.

Relatedly, subtracting a number to the bit heap resumes to
adding the bitwise complement (with sign extension), and a
constant 1 to the LSB of the subtrahend.

2) Adding or subtracting a product of signed numbers:
Suppose we now have a bit heap whose result will be a two’s
complement numbers, and we want to either add or subtract
the product XY , with X and Y being two’s complement
numbers on p and q bits respectively:

X = −2p−1xp−1 +
∑p−2

i=0 2ixi
Y = −2q−1yq−1 +

∑q−2
j=0 2

jyj

The product will be written

XY = 2p+q−2xp−1yq−1
−2p−1xp

∑q−2
j=0 2

jyi
−2q−1yq

∑p−2
i=0 2ixi

+(
∑p−2

i=0 2ixi)× (
∑q−2

j=0 2
jyj)

(6)

This product is a p+q-bit number with the sign bit at position
p + q − 1. This weight doesn’t appear in the above equation
but appears as a carry out of the sum.

Adding this product to a bit heap can be performed by
adding separately these four addends. The last line is a
standard product of unsigned numbers, and can be added to
the bit heap as is. The same holds for the first line – weight
p + q − 2 is not the sign bit. The two intermediate lines
must be subtracted from the bit heap, which can be done by
complementation and sign extension as described above.

Subtracting a product from the bit heap (as needed on the
real side of the complex multiplier) is similar, and is “left as an
exercise to the reader”. There is one trap: the negated product
of two unsigned terms is not always negative, it may be zero,
which has a positive sign.

We now want to exploit DSP blocks which are able
to compute signed multiplications. A generalization of the
previous technique consists in decomposing a p-bit input
X = −2p−1xp−1 +

∑p−2
i=0 2ixi as X = 2p−kXh +Xl where

• Xh is formed of the k leading bits (including the sign
bit), and may be considered as a k-bit signed number,

• Xl is formed of the p− k least significant bits, and is an
unsigned number.

We may similarly split Y = 2q−k
′
Yh + Yl. Here k and k′

must be understood as the size of a signed product: (k, k′) =
(18, 25) on Xilinx, (k, k′) = (18, 18) on Altera. The product
XY now becomes

XY = 2p+q−k−k′
XhY h (signed × signed)

+2p−kXhYl (signed × unsigned)
+2q−k

′
XlYh (unsigned × signed)

+XlYl (unsigned × unsigned)

With this rewriting we may now use, for the lines involving
a signed number, signed multipliers offered by DSP blocks.
Adding −XY to a bit heap is similar.

IV. TIMING-DRIVEN BIT HEAP COMPRESSION

This section deliberately focuses on the various tradeoffs
involved, as the algorithmic details may be found in the (still
evolving) FloPoCo source code. It will be illustrated by Fig. 5,
which describes the timing-driven compression of the bit heap
of Fig. 2.



A. Basics

Bit heap compression is based on a set of elementary
compressors. An elementary compressor inputs a few bits from
the bit heap, and replaces them with their sum, on fewer bits.
The simplest example is the full adder: It computes the sum
of three bits of weight w, and rewrites this sum as two bits of
weights w + 1 and w. It is also called (3:2) compressor. On
Fig. 5, we have highlighted two (6:3) compressors that rewrite
the sum of 6 bits as a 3-bit number.

The compression of a bit heap therefore consists of several
stages. In each stage, the bit heap is paved with as many
compressors as possible that compress it in parallel (we hae
highlighted only two of them on Fig. 5). The outputs of these
compressors, plus possibly bits that have not been compressed
in previous stages, plus possibly new bits arrived on the bit
heap in between, form a new bit heap ready for the next stage.

There are therefore two broad issues to address: the choice
of an elementary compressor library, and the algorithm that
assembles them to form a full compression tree.

On FPGAs, the state of the art, concerning the first issue, is
[8] (also see references therein). Their main contribution is to
show that large elementary compressors can be built efficiently
using the fast-carry logic.

With respect to the second issue, there are many technolog-
ical parameters to take into account (starting with the com-
pressor library and the performance of its various elements).
In additions, there are several possible objective function: one
may want to optimize for delay, or for area for instance. Most
suggested solutions are somehow greedy: try to exploit the
most efficient elementary compressors first, try to compress
as much as possible in one stage. The algorithm in [8] works
along these lines, as does the one we have implemented.

B. Elementary compressors for FPGAs

We use the notation of [1] and [8] to describe elementary
compressors called generalized parallel counters in [8]. The
full adder is denoted GPC(3:2). A GPC(k1, k0 : r) inputs
k0 bits of weight 0 and k1 bits of weight 1 and rewrites
their sum on r bits. This notation can be generalized to more
input columns but there is a diminushing return, and [8] only
considers two columns.

Table II analyses the theoretical costs of some elementary
compressors, including the best from [8], on an FPGA model
that matches modern FPGAs from both Xilinx and Altera:
the elementary cell is a LUT6 which may be used as two
independent LUT5, combined with some dedicated fast carry
propagation. More accurate, low-level synthesis results for
both Altera and Xilinx may be found in [8]. In this table,
we report
• the compression factor γ = number of input bits

number of output bits . A higher γ
means fewer stages.

• the number of bits removed from the heap by a com-
pressor. For instance the GPC(3:2) removes only one bit,
while the GPC(6:3) removes 3 bits;

• the cost in LUT6 of the compressor. For instance, the
GPC(3:2) uses a LUT6 as two independent LUT3, one for

before first compression

0 1.113 ns

0 1.644 ns

1 1.061 ns

1 1.158 ns

2 1.061 ns

2 1.158 ns

2 1.273 ns

before 3-bit height additions

before final addition

The operation of two GPC(6:3)
compressors is highligted.

All the compressors 
operate in parallel.

The results from DSP blocks
arrive on the bit heap
at cycle 2 only

Fig. 5. Timed view of the compression of the bit heap of Fig. 2 for 400MHz.
Horizontal lines separate compression stages, bold lines separate clock cycles.
On the right, the numbers indicate the clock cycle and the delay within a cycle.

name γ δbits LUT6 δbits/LUT6 delay
Naive LUT-based compressors
GPC(3:2) 1.5 1 1 1 τL
GPC(6:3) 2 3 3 1 τL

GPC(1,5:3) 2 3 3 1 τL

Arithmetic-based compressors from [8]
GPC(1,5:3) 2 3 2 1.5 2τL + 2τcp
GPC(7:3) 2.33 4 3 1.33 3τL + 2τcp

GPC(3,5:4) 2 4 3 1.33 3τL + 2τcp

Adders as compressors
adder(n) 2 n n 1 τL + nτcp
adder3(n) 3 n

n+2
2n− 2 n+ 2 2n−2

n+2
τL + nτcp

adder3(16) 2.66 30 18 1.66 1.5τL

TABLE II
THEORETICAL COMPARISON OF SEVERAL ELEMENTARY COMPRESSORS.

FOR THE ACTUAL COSTS ON STRATIX III AND VIRTEX5, SEE [8].

each of its output bits: it costs one LUT6. The GPC(6:3)
needs one LUT6 for each of its output bits;

• the cost per removed bit, which is the relevant measure
of area-efficiency of a compressor;

• the delays, expressed in terms of τL, the combined delay
of a LUT and the local routing surrounding it, and τcp, the
delay of a carry propagation of one bit. It should be noted
that τcp << τL, typically τL ≈ 30τcp. For instance, the 3
LUT6 of a GPC(6:3) operate in parallel, and thus have a
delay of 1τL. Conversly, the arithmetic compressors from
[8] involve a chain of two or three LUT6 connected by
the global routing.

The main use of this table is to help us decide which is
the best compressor at each stage of the compression process.
Area-wise, we want to use the compressors with the highest



cost of cost of compression
partial products (parallel counters) (ternary adders)

24x24 384 505 283
32x32 trunc. 510 379 287

TABLE III
ALM COSTS FOR LOGIC-BASED MULTIPLIERS (PARALLEL COUNTER

VERSUS TERNARY ADDERS) ON ALTERA STRATIX IV

ratio of bits removed per LUT6. Delay-wise, we want to
minimize the number of stages (higher γ) and the delay of
one stage (lower delay). For instance, for the same bit/LUT
ratio, it is preferable to use GPC(6:3) than GPC(3:2), as it will
lead to fewer stages.

Our contribution is to observe that the ternary adder, when
supported (e.g. on recent Altera FPGAs) is a serious contender.
It has, for sizes between 5 and 30, the best ratio of compressed
bits per LUTs, the best compression factor γ, and a delay
between τL and 2τL thanks to τL ≈ 30τcp. This is consistently
better than the arithmetic compressors of [8]. Table III shows
that the area gain over parallel counters may be close to 50%
for the same delay.

This is not in contradiction with the main conclusion of
[8], which was that GPCs are more efficient than ternary
adder trees: they consider the implementation of a bit heap
compressor as a single tree of large ternary adders. There,
many of the inputs to these adders must be padded with zeroes,
which reduces the area efficiency. What we advocate here is
the use of small ternary adders, whose size is chosen to pave
the bit heap efficiently (without padding) while keeping the
delay small.

A final advantage of the ternary adder is that it easy to
express in a portable way (a+b+c in Verilog or VHDL).

With all these considerations, our current implementation
mostly ignores [8], and considers only the naive LUT6-based
elementary compressors GPC(3:2), GPC(6:3), GPC(1,5:3),
and small binary and ternary adders, the latter only on recent
Altera targets.

C. Supertiling (DSP compression)

To compress a bit heap including multiplier tiles (possibly
from several multipliers as described in Section II), the first
step is to attempt to chain these into supertiles, using DSP
adders.

Some of the bits produced along a supertile are reversed to
the bit heap, tagged with the instant at which they are available.
For instance, when we use two chained DSPs to compute (a×
b) + 2s(c × d) where s is a constant shift (17 on Xilinx, 18
on Altera), the lower bits of the sum are those of a × b and
are sent to the bit heap, while only the upper bits are sent to
the DSP adder.

Conversely, in the beginning of a supertile, we look for
bits available in the bit heap at the instant when the first DSP
multiplication finishes. These bits will be registered and added
for free using the adder of the first DSP of the supertile.

The exact supertiling algorithm depends on the target. On

Xilinx, the DSP blocks are independent and can be chained
only using 17-bit shifts.

On Altera, the DSP block granularity is larger: a unit
actually includes four 18x18 multipliers and an adder tree that
has several possible configurations, the flexibility being limited
by the number of physical output bit of the unit (around 72
bits). One useful configuration is the 36x36 multiplier, and
we generate this as a single tile (see Fig. 3(a)). Another is the
“complex multiplier” configuration, with two parallel sums of
(independent) 18x18 products. The supertiling opportunities
for the 9x9 and 12x12 configurations are unclear at this point.

To sum up, this step of the compression (in generation time)
adds bits to the bit heap, and may remove some, too. We are
then left with a classical (but timed) bit heap.

D. Bit-level compression

After supertiling, we have a main loop that advances a
global (circuit) time. At each iteration, we look for sets of bits
ready for compression in the bit heap. We tile such bits with
the best possible compressors (more on their choice below).
Applying a compressor means generating the corresponding
hardware and removing its inputs bits from the bit heap.
Output bits are sent to the bit heap where they arrive at a
later circuit time (the max of the times of the inputs, plus the
delay of the compressor). In a pipelined compressor, this may
entail a change of cycle, or not. The output bits of one stage
are not allowed to be processed in the same stage, to prevent
the construction of carry propagation in one stage.

There is a heuristic decision to take to apply sub-optimal
(area-wise) compressors. In the beginning of the loop, we
prefer not to do it, hoping that the later arrival of more bits
will enable the use of the most efficient compressors. In the
last stages, however, sub-optimal compressors should be used,
otherwise the delay will increase. A good strategy, inspired
by Dadda [3], is to first evaluate the optimum delay, and then
use the fewest possible sub-optimal compressors to reach this
optimal delay.

The loop is stopped when no column holds more than 3
bits. There are several options for the final addition of these
bits, depending on the target hardware and target frequency:
• it may use a ripple-carry ternary adder. This is the best

option if the target FPGA supports it, and if the bit heap
width is small enough for this addition to fit in one cycle.

• otherwise we may use one row of GPC(3:2) compressors,
then any high-speed adder from [16].

In both case, this final addition is started as early as possible: if
the final addition of the LSB bits can overlap the compression
of the MSBs, we do it.

E. Results

Table I showed results for a truncated X −X3/6, Table IV
shows some synthesis results for the complex product, and
Table V shows results for LUT-based discrete cosine trans-
forms. These examples stress all the aspects of the framework.
Performance does not yet always match expectations, but the
complex product demonstrates the cost saving of a single bit



Approach Performance LUTs Registers DSPs
precision = 12 bits, logic-only multiplications

Mult+Add 3 cycles @ 279 MHz 762 60 0
Bitheap 2 cycles @ 284 MHz 693 67 0

precision = 16 bits
Mult+Add 2 cycles @ 254 MHz 1364 80 0

Bitheap 3 cycles @ 330 MHz 110 100 4
Bitheap 2 cycles @ 265 MHz 1264 150 0

precision = 24 bits
Mult+Add 4 cycles @ 251 MHz 469 611 8

Bitheap 4 cycles @ 300 MHz 317 297 8
Bitheap 3 cycles @ 251 MHz 590 407 4

precision = 32 bits
Mult+Add 4 cycles @ 250 MHz 768 1176 12

Bitheap 6 cycles @ 251 MHz 558 644 12
Bitheap 5 cycles @ 257 MHz 778 712 8
Bitheap 3 cycles @ 223 MHz 1778 608 4

precision = 64 bits
Mult+Add 4 cycles @ 250 MHz 2114 2615 36

Bitheap 6 cycles @ 250 MHz 1153 1406 36
Bitheap 6 cycles @ 250 MHz 1532 1557 28
Bitheap 5 cycles @ 227 MHz 3356 1159 20

TABLE IV
FAITHFUL COMPLEX PRODUCTS ON VIRTEX-5

Taps Performance LUTs Registers
precision = 16 bits

8 3 cycles @ 250 MHz 1019 86
16 2 cycles @ 204 MHz 1999 108
32 3 cycles @ 177 MHz 4234 150

precision = 32 bits
8 3 cycles @ 198 MHz 2996 180
16 4 cycles @ 172 MHz 5845 383
32 3 cycles @ 171 MHz 11801 463

TABLE V
FAITHFUL COSINE TRANSFORMS ON VIRTEX-5

heap over the instantiation of several adder and multiplier
components, all other things being equal (in particular each
multiplier using the compression code of the fused bit heap).

All these operators are faithful, i.e. their error with respect
to an infinitely accurate computation is strictly smaller than
the LSB of the result. This focus on accuracy is a distinct
feature of FloPoCo, and the bit heap approach also makes the
needed error analysis easy, but space is missing to detail this.

V. CONCLUSION

This article suggests to place the notion of bit heap at the
center of arithmetic design, especially for coarse operators.
The benefit is to expose, at different levels (from algebraic
to circuit), a global optimization instead of several local opti-
mizations. A versatile tool for manipulating and implementing
such bit heaps is discussed. It also makes for shorter, more
robust and better organized code in the open-source FloPoCo
arithmetic generator.

This approach is directed toward arithmetic designers. An
alternative approach is to use bit heaps in high-level design
tools: Compilers optimizations that transform arithmetic cir-
cuits to maximize the benefit of carry-save notation [7] could

be used to build bit heaps automatically, in which case the
proposed framework would serve as a back-end.

Short-term future work includes refinements to this bit
heap framework, in particular the supertiling and compression
heuristics. This will improve the absolute performance of
the generated architectures. We are also working on relevant
interfaces to the various trade-offs involved.

A promising direction is to work on the approximation of
a function directly by a bit heap. In this context, we intend to
automate algebraic optimizations such as those developed for
X−X3/6. There are also many opportunities to pre-compress,
in small tables [17] that would fit LUTs, sums of terms sharing
the same inputs.

Looking further, bit heaps could be a pertinent tool to
address open bit-level complexity questions such as: How
many bits does one need to flip to compute a faithful 16-bit
sine function?

REFERENCES

[1] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[2] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions
on Electronic Computers, vol. EC-13, pp. 14 –17, 1964.

[3] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza,
vol. 34, pp. 349–356, 1965.

[4] V. Oklobdzija, D. Villeger, and S. Liu, “A method for speed optimized
partial product reduction and generation of fast parallel multipliers using
an algorithmic approach,” IEEE Transactions on Computers, vol. 45,
no. 3, pp. 294–306, 1996.

[5] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal
circuits for parallel multipliers,” IEEE Transactions on Computers,
vol. 47, no. 3, pp. 273–285, 1998.

[6] E. E. Swartzlander, “Merged arithmetic,” IEEE Transactions onComput-
ers, vol. C-29, no. 10, pp. 946 –950, 1980.

[7] A. K. Verma, P. Brisk, and P. Ienne, “Data-flow transformations to
maximize the use of carry-save representation in arithmetic circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 10, pp. 1761 –1774, 2008.

[8] H. Parendeh-Afshar, A. Neogy, P. Brisk, and P. Ienne, “Compressor tree
synthesis on commercial high-performance FPGAs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 4, no. 4, 2011.

[9] F. de Dinechin, M. Istoan, and G. Sergent, “Fixed-point trigonometric
functions on FPGAs,” in Highly-Efficient Accelerators and Reconfig-
urable Technologies, Mar. 2013.

[10] F. de Dinechin and L.-S. Didier, “Table-based division by small integer
constants,” in Applied Reconfigurable Computing, Hong Kong, Mar.
2012, pp. 53–63.

[11] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, July 2011.

[12] S. Banescu, F. de Dinechin, B. Pasca, and R. Tudoran, “Multipliers for
floating-point double precision and beyond on FPGAs,” ACM SIGARCH
Computer Architecture News, vol. 38, pp. 73–79, 2010.

[13] B. Pasca, “Correctly rounded floating-point division for DSP-enabled
FPGAs,” in Field Programmable Logic and Applications, 2012.

[14] C. Baugh and B. Wooley, “A two’s complement parallel array multipli-
cation algorithm,” IEEE Transactions on Computers, vol. C-22, no. 12,
pp. 1045 – 1047, Dec. 1973.

[15] G. Jaberipur, B. Parhami, and M. Ghodsi, “An efficient universal addition
scheme for all hybrid-redundant representations with weighted bit-set
encoding,” Journal of VLSI Signal Processing, vol. 42, pp. 149–158,
2006.

[16] H. D. Nguyen, B. Pasca, and T. Preusser, “FPGA-specific arithmetic
optimizations of short-latency adders,” in Field Programmable Logic
and Applications, 2011, pp. 232–237.

[17] H. Hassler and N. Takagi, “Function evaluation by table look-up and
addition,” in 12th Symposium on Computer Arithmetic. Bath, UK:
IEEE, 1995, pp. 10–16.


