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Abstract—A bit heap is a data structure that holds the
unevaluated sum of an arbitrary number of bits, each weighted
by some power of two. Any multivariate polynomial of binary
inputs can be expressed as a bit heap whose bits are simple
boolean functions of the input bits. For many large arithmetic
designs, viewing them as bit heaps is more relevant than viewing
them as a composition of adders and multipliers. It leads to
better global optimization at both the algebraic level and the
circuit level. However, this notion needs to be supported by tools.
This article therefore discusses a generic software framework
for the definition, optimization and compression of bit heaps.
It is specifically directed towards FPGAs, where complex and
application-specific arithmetic circuits must be developped in
little time.

For this purpose, the textbook notion of a bit array is refined
in several ways. Firstly, a bit heap should accept bits arriving
at various instants in circuit time, and the bit heap compression
process must take this timing into account. Secondly, the DSP
blocks of recent FPGAs must be integrated in the bit heap view.
Thirdly, the management of signed bit heaps is detailed, and
shown to entail no overhead. Finally, a new family of elementary
compressors on FPGAs improves upon the state of the art.

Index Terms—hardware generation; sums of weighted bits;
multipliers; operator fusion; FPGA arithmetic;

I. INTRODUCTION AND MOTIVATION

In binary digital arithmetic, a positive integer or fixed-point
variable X is represented as follows:

X =

imax∑
i=imin

2ixi (1)

In all this paper we will call weight a power of two such as
the 2i in the above equation: X is represented as a sum of
weighted bits. The indices imin and imax are the minimum
and maximum weights of X .

The product of X by Y can similarly be expressed as a sum
of weighted bits:

XY = (
∑imax

i=imin
2ixi)× (

∑jmax

j=jmin 2
jyj)

=
∑
i,j

2i+jxiyj

In all the sequel we use the term bit heap to denote a sum
of weighted bits. In the multiplier case, each bit is a term xiyj
that can be evaluated as the AND of two of the input bits. We
will classically represent bit heaps as 2D dot diagrams with
the weights on the horizontal axis. Figures 1(c) and following
are examples of such representations.

A. A bit heap captures bit-level parallelism

The main advantage of this representation is that it captures
all the bit-level intrinsinc parallelism present in the multiplica-
tion of two binary numbers. Within this bit-level sum, addition
is associative, therefore a fast multiplier may be built as a tree
(often called a compressor tree) of bit-level adders, themselves
composed of very few elementary gates [1], [2], [3], [4], [5].
This technique will be detailed in Section IV. In a nutshell,
the sum of a bit heap can be computed by an architecture
operating in space linear with the size of the heap (its total
number of bits), and time logarithmic in its maximum height
(the maximum number of bits of same weight).

Bit heaps are not limited to computing multiplication: the
sum and product of a bit heap are themselves bit heaps,
so this representation enables us to express any multivariate
polynomials of fixed-point inputs (possibly signed numbers
using two’s complement representation, as will be detailed in
Section III-C).

This includes addition and multiplication on complex num-
bers, sums of products and sums of squares (for linear algebra
operators or signal processing transforms), polynomials used
to approximate elementary functions, etc. By expressing all
these functions as bit heaps, it is possible to obtain more effi-
cient bit-level implementations than a composition of adders
and multipliers [6], [7], [8].

B. A bit heap enables bit-level algebraic optimizations on
arithmetic expressions

The bit heap is also a pertinent tool to assess and im-
prove the bit-level complexity of computing such multivariate
polynomials. An enlightening example (to our knowledge
unpublished) is a third-order Taylor formula for the sine:
sin(X) ≈ X − X3/6. This formula can be evaluated using
two standard multiplications (to compute X3), a multiplication
by the constant 1/6, and a subtraction. However, it can also
be expressed directly as a single bit heap. From (1), we may
rewrite X3 as

X3 =
∑imax

i=imin
23ix3i

+
∑

imin≤i<j≤imax
3 · 2i+2jxix

2
j

+
∑

imin≤i<j<k≤imax
6 · 2i+j+kxixjxk

(2)

Here we have a first set of algebraic simplifications to apply,
for instance xki = xi or 2·2wa = 2w+1a. The multiplication by
3 can be obtained by duplicating bits in the bit heap: 3 ·2wa =
2w+1a+ 2wa.



At this point the computation of X3 already requires about
one third of bit-level operations that would be present in two
multipliers. It should also be noted that it requires less than
half the latency, since the bit heap approach involves only one
compression process, where two multipliers would require two
compressions in sequence.

Still, as we are interested in X3/6, we may optimize further
and rewrite (2) as:

X −X3/6 =
∑imax

i=imin
2ixi

−1/3
∑imax

i=imin
23i−1xi

−
∑

imin≤i<j≤imax
·2i+2j−1xixj

−
∑

imin≤i<j<k≤imax
·2i+j+kxixjxk

(3)
Now we only have only imax − imin bits of the bit heap

to actually divide by 3. We are interested by some output
precision (typically matching the input precision p = imax −
imin + 1. By replacing this 1/3 with its binary representation
0.1010101..., suitably truncated, the second line adds about as
many bits to the bit heap as the third one. The number of terms
is asymptotically dominated by the last line, but it grows in
n3/36 [9]. For typical signal-processing precisions (n < 32),
it remains smaller than one multiplication.

We conjecture that this can be generalized: high-order
terms in polynomials will typically have much lower bit-
level complexity in a bit heap than in a naive multiplier
based implementation. This is still work in progress: firstly, a
proper comparison must be made with Horner scheme which
minimizes the arithmetic cost (but has high latency due to a
succession of bit heap compressions). Secondly, we need to
consider the cost of extra guard bits absorbing the truncation
error.

C. An arithmetic generation framework should be centered
around a versatile bit heap manipulation tool

Finally, bit heaps are convenient from a software develop-
ment point of view. With a single, flexible enough implemen-
tation of this data structure (including compression methods),
we are able to implement efficiently a wide range of operators.
The remainder of this article presents such a universal bit heap
manipulation tool.

A bit heap is not an arithmetic operator in the usual sense:
What is needed is an architecture generator centered on the
notion of a bit heap. To obtain an architecture, one first throws
bits from various components on the bit heap, then calls a
routine that will build the compressor tree. In a bit heap view,
we pile bits from various sources before summing them: this
enables a global optimization instead of several independent
local ones. This article indeed demonstrates bit heaps with a
variety of shapes, which is why we prefer the phrase bit heap
over the phrase “bit array” often used in the literature. It also
emphasizes that the order is irrelevant in the sum..

The construction of application-specific operators is espe-
cially relevant to FPGA computing. A contribution of this
work is to integrate their embedded multipliers and DSP
blocks in the bit heap view in Section II.

A second contribution is timing-driven compressor tree
construction. The literature mostly focuses on compressor trees
for multipliers, where all the partial products xiyj can be
computed in parallel, so the only timing to manage is that
of the compressor tree: it is based on bit-level adders that
consume bits from the bit heap and add their sum back to the
bit heap at a later time [3], [4]. In coarser operators, however,
even the initial bits may arrive on the bit heap from various
sources, hence at various instants: some may come directly
from the inputs, some from AND terms, some may come
from table reads with some latency, some may come from
small multipliers with different latency, and the opportunity to
chain FPGA DSP blocks efficiently entails that bits will even
arrive at various cycles. The construction of the summation
tree should be directed by these timing considerations.

With these considerations, section III describes in details
the data-structures used for bit heap manipulation. A special
focus is on the handling of two’s complement numbers: we
generalize classical tricks to show that signed numbers entail
very low overhead. Section IV presents the construction of the
summation tree. A third contribution is to show that the best
elementary compressors are based on ternary adders on FPGA
architectures that support it, such as the recent Altera circuits.

II. MULTIPLICATION AND BIT HEAPS IN FPGAS

Bit heaps have been invented to implement fast multipliers,
and one initial motivation of this work was to improve the
implementation of large multipliers on FPGAs.

A. FPGA multiplication capabilities

The logic fabric of FPGAs has always been based on small
look-up tables (LUTs) tightly coupled to carry propagation
logic. A look-up table with k inputs (noted LUTk) may
implement any boolean function of up to k inputs (k ranges
from 4 to 6 in current FPGAs). For instance, an AND of up
to k bits consumes one LUTk, so each bit of the bit heap for
a degree-k polynomial will cost one LUT to compute. The
carry propagation logic enables fast carry-ripple additions at
the cost of one LUT per addition bit. This logic was also
always designed to ensure that array multipliers could be built
at the cost of n2 LUTs for an n× n-bit multiplier.

In recent years, the number k of inputs to the LUT has
increased from 4 to 6 (to reduce the needs for programmable
routing). A 3x3-bit multiplication may now be implemented
by tabulating it in 6 LUT6, instead of accumulating it in 9
LUT6: this is not only smaller, but also as fast as it gets (one
LUT delay).

Back to the bit heap, this is also the most efficient way of
generating partial products for a logic-based multiplier. We are
not aware of this idea in the literature. The smaller squares
on figures such as Figure 2 represent such 3x3 LUT-based
multipliers.

Recent FPGAs also include small “hard” multipliers: Altera
chips offer 36x36-bit multipliers fracturable into a variety of
combinations of 18x18, 12x12 and 9x9 ones, while recent
Xilinx chips offer 18x25 signed multipliers.
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Fig. 1. A possible implementation of a 41× 41 multiplier on Virtex-5

B. Building large multipliers as bit heaps

A large multiplication must be decomposed in smaller ones
that fit these blocks, and this decomposition is a sum: it can be
managed as a bit heap. To illustrate this, consider the following
4-DSP implementation of a 41x41 multiplier inspired from
[10], depicted on Figure 1.

XY = (X0:16Y0:23 + 217X17:40Y0:16)
+ 223(X0:23Y24:40 + 217X24:40Y17:40)
+ 234X17:23Y17:23

(4)

In [10], the process of discovering (4) is called tiling: a
multiplier board must be tiled with the tiles corresponding to
hard multiplier. Smaller, leftover tiles may be implemented as
logic.

Furthermore, each hard multiplier is actually a multiply-
accumulator (also usually termed DSP block because of its
relevance to Digital Signal Processing applications). The ac-
cumulator’s adder may be used to sum the results of several
multipliers, possibly with a constant shift. A sequence of
multipliers chained by adders without needing any LUT logic
is called a supertile in [10]. For instance, the two parentheses
of (4) correspond to two supertiles for Xilinx Virtex 5 or
later. Altera devices have square multipliers and different
supertiling capabilities, but the same concepts apply – see [11]
for examples.

Figure 1 is generated by our tool. Its bit heap (Figure 1(c))
receives the results of supertiles, while the central logic-based
tile is itself decomposed into 3× 3 multipliers.

This tiling approach is very versatile. To illustrate it, Fig-
ure 2 shows the tiling of a 53x53-bit truncated multiplier
outputting a faithful result on 53 bits. Its bit heap actually
computes 8 additional weights to ensure that the sum of
the truncated bits entail an error smaller than the LSB of
the result. On this figure, we have one potential supertile of
size 3, and one of size 1. Figure 3, inspired by [11], shows
the same multiplier implemented for a Stratix IV device. It
consists of one 36x36 multiplier, and two 18x18 ones that
form a supertile. Also note that the tiling algorithm has a
threshold parameter t (set to 0.5 for all our figures). It defines
the percentage of multiplier that must be useful to the large
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Fig. 2. 53x53-bit multiplier faithful to 53-bit, for Virtex5. The bits between
the two red lines are guard bits needed for a faithful result. Different colors
in the bit heap indicate bits arriving at different instants.
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Fig. 3. 53x53-bit faithful multiplier for Stratix IV.

multiplication for a DSP block to be used. Set to zero, only
logic will be generated. Set to 1, only DSP blocks will be
used.

C. Bit heap versus components

In [10], a large multiplier is not based on a bit heap, but
implemented as a combination of three types of components:
DSP multipliers, logic multipliers, and multi-input adders.
This entails several inefficiencies in a pipelined design, among
which:
• artificial synchronization of the bits of intermediate sums,

whereas the lower bits could typically be forwarded
earlier than the upper bits;

• several instance of bit heap compression (one for each
logic-based multiplier, plus one for the final multi-
addition);

• non-utilization of some of the DSP adders (those on the
first DSP of a supertile)

• in general, a combination of local optimizations instead
of a global optimization.
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(a) Arithmetic view

(b) The two bit heaps for 12-bit faithful results.
Green bits are constant bits.

(c) The two bit heaps for 32-bit faithful results,
using one DSP block for each multiplication

Fig. 4. Complex multiplication as two bit heaps

These inefficiencies are aggravated if the multiplier is itself
part of a larger component that could be a single bit heap such
as the complex product of Figure 4.

D. Several multipliers contributing to a bit heap

There are additional optimizations opportunities for bit
heaps spanning more than one multiplier.

The first consists in considering the supertiling process
globally, at the level of the bit heap. Supertiles can be built
out of tiles coming from different multipliers, as long as they
contribute to the same bit heap. The simplest example is the
complex product depicted on Figure 4. It consists of two
bit heap, each adding two products. Of course, DSP blocks
are designed to implement such operations efficiently for a
precision of 18 bits, so this approach is mostly relevant for
larger (or much smaller) precisions. This opportunity arises in
any sum-of-product.

The second is to exploit the adders within the DSP blocks
to consume bits from the bit heap (without consideration of
where they come from). In the simple multiplier examples,
the first DSP adder of a supertile is unused. If we can feed
it bits from another source (e.g. bits from the logic-based
multiplier, possibly already partly compressed), it will remove
them from the bit heap for free. Xilinx DSP adders can
input an external addend. Altera ones cannot, unless otherwise
unused multipliers are used as pass-through.

E. Summing up

The good way to manage DSP blocks in a bit heap is
therefore to

• consider DSP blocks as unevaluated multiplications in a
bit heap, and

• consider supertiling as a step of the compression process.
With this point of view, a multiplier contributes to a bit heap,
but may not be alone in doing so. It may contribute bits from
logic-based tiles, or DSP-sized tiles. The chaining of such
tiles into a supertile is part of the compression process, and
it may even consume other bits of the bit heap. The result of
a supertile will be itself sent back to the bit heap for further
compression.

A multiplier is not necessarily a component itself (an entity
in VHDL terms). In the complex multiplier, it is a virtual com-
ponent that throws bits to the bit heap of a larger component.
In terms of architecture generation, the (simplified) code of a
sum of product will be

addBitsToBitHeapForMult(...);
addBitsToBitHeapForMult(...);
compressBitHeap();

An adder or subtractor is not necessarily a component,
either. The adder and subtractor of Figure 4 have no corre-
sponding VHDL entities, they are part of the compression
process.

Conversely, an operator may involve several distinct bit
heaps (two on Figure 4). This will be the general case.

The complex multiplier example also shows that we must
be able to add the opposite of a product to the bit heap.
An efficient implementation of this, exploiting the fact that
DSP blocks include signed multipliers, will be shown in
Section III-C.

III. THE UNIVERSAL BIT HEAP

Let us first stress that the bit heap is a dynamical data
structure during the circuit generation process: First, several
sub-operators may add bits to the bit heap. Eventually, in the
construction of the compressor tree, bits will be removed from
the bit heap, and new bits will be added, until only the final
sum remains.

There are two aspects of time here: operator-generation time
(as the generator program runs), and circuit time (using notions
such as critical path or, for pipelined designs, cycles). For
timing-oriented bit heap compression, the generator must be
able to evaluate the circuit time, for instance as in [12].

A. The data structure
A weighted bit is a data structure consisting essentially of

its signal name, its weight, and its instant. A column of the
bit heap is represented as a list of weighted bits, ordered by
their arrival time (in the circuit time). The complete bit heap
data structure essentially consists of a maximum weight, and
an array of columns.

Figures 1(c), 2(c), 3(c), 4(b) or 4(c) represent these data
structures. The different arrival times are indicated by the
different colors. These figures are actually Scalable Vector
Graphics files that can be opened in a browser, in which case
hovering the mouse over one bit shows its signal name and
its arrival instant in circuit time.



B. Managing constant weighted bits

Most of the bits added to a bit heap are the result of some
computation (e.g. the partial products in the multiplier), but
very often we need to add constant bits, e.g. coming from

• rounding truncated products added to the bit heap,
• rounding the final result of the bit heap,
• managing two’s complement signed numbers, as ex-

plained below in III-C.

It would be wasteful to dedicate hardware to compressing such
constant bits, as their sum is known in advance. Therefore,
the bit heap data structure also includes a multiple-precision
integer which gathers all the constant bits. The actual value of
the sum of all the constant bits is added to the bit heap just
before compression.

This is an old trick, widely used in the design of Baugh-
Wooley signed multipliers [13] and multi-input adders [5].
However the addition of the constant bits was usually com-
puted by hand, which for complex bit heaps soon becomes
error-prone. Here it is performed by the generator, which is
simpler, safer and more flexible.

As a side effect, note that fixed-point rounding computation,
often presented as a separate, final step to the computation, can
be merged in the global compression.

C. Managing signed numbers

Signed numbers are classically represented using two’s
complement notation [5]. It is possible to design bit heaps
operating directly on positive and negative bits [14], but
this section shows that managing two’s complement signed
numbers in a bit heap costs very little, as most of the overhead
can be hidden in the constant bit vector.

1) Sign extension using the constant vector: Most numbers
added to the bit heap do not extend to its full range of weights.
When such a number is signed, it must be sign-extended: its
MSB must be replicated all the way up to the MSB of the
bit heap [5]. Done naively, this could add many bits to the bit
heap, some of them with large fanout. At first sight, these bits
are not constant, but we may use here a classical trick from
two’s complement multipliers: to replicate bit s from weight
p to weight q, we just add 2q − 2p to the constant bit vector
(this correspond to a string of 1s stretching from bit p to bit
q), and only one variable bit, the complement of s, at weight
p. The reader may check that this performs the necessary sign
extension both when s = 0 and s = 1.

As all these constant bits are compressed into the constant
vector, the overhead of a bit heap accepting signed numbers
with respect to an unsigned bit heap is at most one horizontal
line of bits.

Relatedly, subtracting a number to the bit heap resumes to
adding the bitwise complement (with sign extension), and a
constant 1 to the LSB of the subtrahend.

2) Adding or subtracting a product of signed numbers:
Suppose we now have a bit heap whose result will be a two’s
complement numbers, and we want to either add or subtract

the product XY , with X and Y being two’s complement
numbers on p and q bits respectively:

X = −2p−1xp−1 +
∑p−2

i=0 2ixi
Y = −2q−1yq−1 +

∑q−2
j=0 2

jyj

The product will be written

XY = 2p+q−2xp−1yq−1
−2p−1xp

∑q−2
j=0 2

jyi
−2q−1yq

∑p−2
i=0 2ixi

+(
∑p−2

i=0 2ixi)× (
∑q−2

j=0 2
jyj)

(5)

Note that this product is a p+ q-bit number with the sign bit
at position p+ q−1 – this weight doesn’t appear in the above
equation but appears as a carry out of the sum.

Adding this product to a bit heap can be performed by
adding separately these four addends. The last line is a
standard product of unsigned numbers, and can be added to
the bit heap as is. The same holds for the first line – weight
p+q−2 is not the sign bit. The two intermediate lines must be
subtracted from the bit heap, which can be done as described
above. This involves a sign extension up to position p+ q−1,
or up to the MSB of the bit heap if the product is added to a
wider bit heap.

To subtract the product from the bit heap (as needed on the
real side of the complex multiplier) is similar, and is “left as an
exercise to the reader”. There is one trap: the negated product
of two unsigned (hence positive) terms may be zero, which
has a positive sign: this case does need a sign extension.

We now want to exploit DSP blocks which are able to
compute signed multiplications. Altera DSPs can be config-
ured to compute 18x18 bit multiplications signed or unsigned.
Xilinx DSPs (from Virtex5 on) can be configured to compute
17x24-bit unsigned, or 18x25-bit signed – here the unsigned
computation simply consists in forcing the sign bit to zero.

A generalization of the previous technique consists in de-
composing a p-bit input X = −2p−1xp−1 +

∑p−2
i=0 2ixi as

X = 2p−kXh +Xl where
• Xh is formed of the k leading bits (including the sign

bit), and may be considered as a k-bit signed number,
• Xl is formed of the p− k least significant bits, and is an

unsigned number.
We may similarly split Y = 2q−k

′
Yh + Yl. Here k and k′

must be understood as the size of a signed product, (k, k′) =
(18, 25) on Xilinx, (k, k′) = (18, 18) on Altera. the product
XY now becomes

XY = 2p+q−k−k′
XhY h – signed × signed

+2p−kXhYl – signed × unsigned
+2q−k

′
XlYh – unsigned × signed

+XlYl – unsigned × unsigned

Note that this equation is a generalization of (5). With this
rewriting we may now use, for the lines involving a signed
number, signed multipliers offered by DSP blocks. All it takes
is a sign-extension of such products to the MSB of the bit heap.
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Fig. 5. One stage of compression using 3:2 compressors

IV. TIMING-DRIVEN COMPRESSION

This section will be illustrated by Figure 6, which describes
the timing-driven compression of the bit heap of Figure 2.
The compression of the lower weights begins during the DSP
multiplication time: On this figure, the bits produced by the
DSP are initially not present: they only appear at cycle 2.

Note that such a timing-oriented compressor is not simply
a retimed version (in the Leiserson and Saxe sense [15]) of
the classical one: its structure itself is guided by the timing.

A. Basics

Bit heap compression is based on a set of elementary
compressors. These basic building blocks take a few bits from
the bit heap, and replace them with their sum, hopefully on
fewer bits. The most basic elementary compressor is the full
adder, or (3:2) compressor: It computes the sum of three bits
of same weight w, and rewrites this sum as two bits of sizes
w + 1 and w Traditionally, the compression of a bit heap
therefore consists of several stages. In each stage, the bit heap
is paved with as many compressors as possible that compress
it in parallel (Figure 5). The outputs of a stage, and possibly
bits that have not been compressed in previous stages, form a
new bit heap that is input to the next stage.

There are therefore two broad issues to address: the choice
of an elementary compressor library, and the algorithm that
assembles them to form a full compression tree.

On FPGAs, the state of the art, concerning the first issue, is
[8] (also see references therein). Their main contribution is to
show that large elementary compressors can be built efficiently
using the fast-carry logic.

With respect to the second issue, there are many technolog-
ical parameters to take into account (starting with the com-
pressor library and the performance of its various elements).
In additions, there are several possible objective function: one
may want to optimize for delay, or for area for instance. Most
suggested solutions are somehow greedy: try to exploit the
most efficient elementary compressors first, try to compress
as much as possible in one stage. The algorithm in [8] works
along these lines, as does the one we present below.

B. Elementary compressors for FPGAs

We use the notation of [5] and [8] to describe elementary
compressors called generalized parallel counters in [8]. The
full adder is denoted GPC(3:2). A GPC(k1, k0 : r) inputs
k0 bits of weight 0 and k1 bits of weight 1 and rewrites
their sum on r bits. This notation can be generalized to more
input columns but there is a diminushing return, and [8] only
considers two columns.

before first compression

0 1.113 ns

0 1.644 ns

1 1.061 ns

1 1.158 ns

2 1.061 ns

2 1.158 ns

2 1.273 ns

before 3-bit height additions

before final addition

Fig. 6. Timed view of the compression of the bit heap of Figure 2 for a
target 400MHz frequency.

Table I analyses the theoretical costs of some elementary
compressors on an FPGA model that corresponds to modern
FPGAs from both Xilinx and Altera: the elementary cell
is a LUT6 which may be used as two independent LUT5,
combined with some logic and routing dedicated to fast carry
propagation. In this table, we report

• the compression factor γ, which is the quotient of input
bits divided by output bits. A higher γ means fewer
stages.

• the number of bits removed from the heap by a com-
pressor. For instance the GPC(3:2) removes only one bit,
while the GPC(6:3) removes 3 bits;

• the cost in LUT6 of the compressor. For instance, the
GPC(3:2) uses a LUT6 as two independent LUT3, one for
each of its output bits: it costs one LUT6. The GPC(6:3)
needs one LUT6 for each of its output bits;

• the cost per removed bit, which is the relevant measure
of area-efficiency of a compressor;

• the delays, expressed in terms of τL, the combined delay
of a LUT and the local routing surrounding it, and τcp, the
delay of a carry propagation of one bit. It should be noted
that τcp << τL, typically τL ≈ 30τcp. For instance, the 3
LUT6 of a GPC(6:3) operate in parallel, and thus have a
delay of 1τL. Conversly, the arithmetic compressors from
[8] involve a chain of two or three LUT6 connected by
the global routing.

We synthesize in this table some of the best compressors
from [8]. There are more there, and they are more accurate,
with actual low-level synthesis of these compressors both on
Altera and Xilinx. This synthetic table assumes an FPGA that
would take the best from both their Altera and Xilinx results.



name γ δbits LUT6 δbits/LUT6 delay
Naive LUT-based compressors
GPC(3:2) 1.5 1 1 1 τL
GPC(6:3) 2 3 3 1 τL

GPC(1,5:3) 2 3 3 1 τL

Arithmetic-based compressors from [8]
GPC(1,5:3) 2 3 2 1.5 2τL + 2τcp
GPC(7:3) 2.33 4 3 1.33 3τL + 2τcp

GPC(3,5:4) 2 4 3 1.33 3τL + 2τcp

Adders as compressors
adder(n) 2 n n 1 τL + nτcp

adder3(n) 3 n
n+2

2n− 2 n+ 2 2n−2
n+2

τL + nτcp
adder3(16) 2.66 30 18 1.66 1.5τL

TABLE I
THEORETICAL COMPARISON OF SEVERAL ELEMENTARY COMPRESSORS.

FOR THE ACTUAL COSTS ON STRATIX III AND VIRTEX5, SEE [8].

The main use of this table is to help us decide which is
the best compressor at each stage of the compression process.
Area-wise, we want to use the compressors with the highest
ratio of bits removed per LUT6. Delay-wise, we want to
minimize the number of stages (higher γ) and the delay of
one stage (lower delay). For instance, for the same bit/LUT
ratio, it is preferable to use GPC(6:3) than GPC(3:2), as it will
lead to fewer stages.

Our contribution is to observe that the ternary adder is a
serious contender as it has, for sizes between 5 and 30, the best
ratio of compressed bits per LUTs, the best compression factor
γ, and a delay between τL and 2τL thanks to τL ≈ 30τcp. This
is consistently better than the arithmetic compressors of [8].
Table II shows that the area gain over parallel counters may
be close to 50% for the same delay.

This is not in contradiction with the main conclusion of
[8], which was that GPCs are more efficient than ternary
adder trees: they consider the implementation of a bit heap
compressor as a single tree of large ternary adders. There,
many of the inputs to these adders must be padded with zeroes,
which reduces the area efficiency. What we advocate here is
the use of small ternary adders, whose size is chosen to pave
the bit heap efficiently (without padding) while keeping the
delay small.

A final advantage of the ternary adder is that it easy to
express in a portable way (a+b+c in Verilog or VHDL).

With all these considerations, our current implementation
mostly ignores [8], and considers only the naive LUT6-based
elementary compressors GPC(3:2), GPC(6:3), GPC(1,5:3),
and small binary and ternary adders, the latter only on recent
Altera targets. Table II gives some actual synthesis results in
this case.

C. Supertiling (DSP compression)

The first step of architecture generation is to generate DSP-
based hardware for the list of multiplier blocks. This simply
consists in looking for DSPs that can be chained into supertiles
using the DSP adders.

Some of the bits produced along a supertile are reversed
to the bit heap (tagged with the instant at which they are

bit heap partial product compression
generation (parallel counters) (ternary adders)

24x24 384 505 283
32x32 trunc. 510 379 287

TABLE II
ALM COSTS FOR LOGIC-BASED MULTIPLIERS (PARALLEL COUNTER

VERSUS TERNARY ADDERS) ON ALTERA STRATIX IV

available). This is in particular the case when we use two
chained DSPs to compute (a ∗ b) + ((c ∗ d) << s) where s is
a constant shift (17 on Xilinx, 18 on Altera): the lower bits of
the sum are those of a∗b, and can be sent to the bit heap while
the upper bits are added to the result of next multiplication.

Conversely, in the beginning of a supertile, we look for
bits available in the bit heap at the instant when the first DSP
multiplication finishes. These bits will be registered and added
for free using the adder of the first DSP of the supertile.

The exact supertiling algorithm depends on the target.
• On Xilinx, the DSP blocks are independent and can be

chained only using 17-bit shifts.
• On Altera, the DSP block granularity is larger: a unit

actually includes 4 18x18 multipliers and an adder tree
that has several possible configurations, the flexibility
being limited by the number of physical output bit of
the unit (around 72 bits). One useful configuration is the
36x36 multiplier, and we generate this as a single tile
(see Figure 3(a)). Another is the “complex multiplier”
configuration, with two parallel sums of (independent)
18x18 products. The supertiling opportunities for the 9x9
and 12x12 configurations are unclear at this point.

To sum up, this step of the compression (in generation time)
adds bits to the bit heap, and may remove some, too. We are
then left with a classical (but timed) bit heap.

D. Bit-level compression

The remaining step of the compression is currently quite
simple: First, a list of elementary compressors is built, ordered
by efficiency. This is target-specific, and older FPGAs with
smaller LUTs are also supported. The current order is a
lexicographic ordering of γ, then δbits/LUT, then δbits, then
delay. There is actually little trade-off here between area and
delay.

Then we have a main loop that advances a global (circuit)
time. At each iteration, we look for sets of bits ready for
compression in the bit heap, and matching the inputs of our
best compressors. Applying a compressor means generating
the corresponding hardware, removing its inputs bits from the
bit heap, and adding its outputs bits in the bit heap, tagged
with a later time. This time is computed as the max of the
times of the inputs, plus the delay of the compressor. In a
pipelined compressor, this may entail a change of cycle, or not.
The output bits are then ready to be processed in following
iterations of the main loop. However, they cannot be processed
in the current iteration, which prevents the construction of
carry propagation in one stage.



TABLE III
COMPLEX PRODUCTS TARGETTING 250MHZ ON VIRTEX-5

Approach Performance LUTs Registers DSPs
cycles @ frequency

precision = 12 bits
Mult+Add 2@328 874 188 0

Bitheap 2@328 836 108 0
precision = 24 bits
Mult+Add 2@273 532 280 8

Bitheap 2@248 368 488 8
precision = 32 bits

Mult+Add 2@273 2048 960 8
Bitheap 2@251 1860 462 8

precision = 64 bits
Mult+Add 3@212 4048 4584 44

Bitheap 3@245 3348 3309 44

There is a heuristic decision to take to apply sub-optimal
(area-wise) compressors. In the beginning of the loop, we
prefer not to do it, hoping that the arrival of more bits,
later, will enable the use of the most efficient compressors.
In the latter stages, however, sub-optimal compressors should
be used, otherwise the delay will increase. A good strategy,
inspired by Dadda[2], is to first evaluate the optimum delay,
and then use the fewest possible sub-optimal compressors to
reach this optimal delay.

The loop is stopped when no column holds more than 3
bits. There are several options for the final addition of these
bits, depending on the target hardware and target frequency:
• it may use a ripple-carry ternary adder. This is the best

option if the target FPGA supports it, and if the bit heap
width is small enough for this addition to fit in one cycle.

• otherwise we may use one row of GPC(3:2) compressors,
then any high-speed adder from [16].

In both case, this final addition is started as early as possible: if
the final addition of the LSB bits can overlap the compression
of the MSBs, we do it.

There is no doubt this heuristic could be refined further. In
particular, we could add the possibility to optimize specifically
for area, or for delay. In [8], this seems to be managed purely
by changing the ranking of the elementary compressors.

E. Results

Table III shows some synthesis results for the complex
product. This is essentially a toy example stressing everything
in the framework, and the results are not yet fully satisfactory.
Still, it demonstrates, on this minimal example, the cost saving
of a single bit heap over the instantiation of several adder
and multiplier components, all other things being equal (in
particular each multiplier using the same compression code as
the fused bit heap).

V. CONCLUSION

This article suggests to place the notion of bit heap at the
center of arithmetic design, especially for coarse operators.
The benefit is to expose, at different levels (from algebraic

to circuit), a global optimization instead of several local opti-
mizations. A versatile tool for manipulating and implementing
such bit heaps is discussed.

This approach is directed toward arithmetic designers. An
alternative approach is to use bit heaps in high-level design
tools: Compilers optimizations that transform arithmetic cir-
cuits to maximize the benefit of carry-save notation [7] could
be used to build bit heaps automatically, in which case the
proposed framework would serve as a back-end.

A promising direction is to work on the approximation of
a function directly by a bit heap. In addition, we believe that
expressing the complexity of elaborate arithmetic circuits in
terms of bit heaps is more pertinent than expressing them in
terms of adders and multipliers. For such polynomials, there
are also probably many opportunities to pre-compress sums of
terms sharing the same inputs in small tables [17].

Shorter-term future work includes refinements to the pre-
sented framework, in particular the timing modelling, and its
open-source distribution.
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