
HAL Id: ensl-00740034
https://ens-lyon.hal.science/ensl-00740034v4
Preprint submitted on 4 Feb 2013 (v4), last revised 3 Jul 2013 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting and generating lambda terms
Katarzyna Grygiel, Pierre Lescanne

To cite this version:

Katarzyna Grygiel, Pierre Lescanne. Counting and generating lambda terms. 2012. �ensl-00740034v4�

https://ens-lyon.hal.science/ensl-00740034v4
https://hal.archives-ouvertes.fr

Counting and generating lambda terms

Katarzyna Grygiel ∗

Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science,

Jagiellonian University,
ul. Prof. Lojasiewicza 6, 30-348 Kraków, Poland

email:– grygiel@tcs.uj.edu.pl

Pierre Lescanne
ENS de Lyon,

LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)
University of Lyon,

46 allée d’Italie, 69364 Lyon, France
email: pierre.lescanne@ens-lyon.fr

February 4, 2013

Abstract

Lambda calculus is the basis of functional programming and higher order proof
assistants. However, few is known about combinatorial properties of lambda terms,
in particular, about their asymptotic distribution and random generation. Among
others, this paper tries to answer questions like: How many terms of a given size
are there? What is a “typical” structure of a simply typed term? Despite their
ostensible simplicity, these questions still remain unanswered, whereas solutions to
such problems are essential for testing compilers and optimizing programs whose
expected efficiency depends on the size of terms. Our approach toward the afore-
mentioned problems may be later extended to any language with bounded variables,
i.e., with scopes and declarations.

This paper presents two complementary approaches: one, theoretical, uses com-
plex analysis and generating functions, the other, experimental, is based on a gener-
ator of λ-terms. Thanks to de Bruijn indices, we provide three families of formulas
for the number of closed lambda terms of a given size and we give four relations
between these numbers which have interesting combinatorial interpretations. As a
by-product of the counting formulas, we design an algorithm for generating lambda
terms. Performed tests provide us with experimental data, like the average depth

∗Supported by the National Science Center of Poland, grant number 2011/01/B/HS1/00944.

1

of bound variables and the average number of head lambdas. We also create ran-
dom generators for various sorts of terms. Thereafter, we conduct experiments that
answer questions like: What is the ratio of simply typed terms among all terms?
(Very small!) How are simply typed lambda terms distributed among all lambda
terms? (A typed term almost always starts with an abstraction.)

In this paper, variables have size 0.

Keywords: Lambda calculus, combinatorics, functional programming, test, ran-
dom generator, Catalan numbers

1 Introduction

Let us start with a few questions relevant to the problems we address.

• How many closed λ-terms are of size 50 (up to α-conversion)?

996657783344523283417055002040148075226700996391558695269946852267.

• How many terms of size n are there?
We will give a recursive formula for this number in Section 2.

• What is enumerated by the sequence

0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411?

This sequence enumerates closed terms of size 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. We
will give three ways to compute it (Section 4).

• Is it possible to generate simply typed terms randomly?
Yes, according to the process, which consists in generating random lambda terms
with uniform probability and sieving those that are simply typed. Thus, we can
generate randomly simply typed terms of size up to 50 and less randomly simply
typed terms of size 200.

• Is a term starting with an abstraction more likely to be typable than a term starting
with an application?
The answer is positive as shown in Figure 10, which gives the distribution of simply
typed lambda terms among all lambda terms.

• Do these results have practical consequences?
Yes, they enable random generation of simply typed terms in an efficient way in
the case of terms of size up to 30 (random) and up to 100 (biased) in order to
debug compilers or other programs, manipulating terms, e.g., type checkers or pretty
printers.

The above questions seem rather classical, but amazingly very few is known about
combinatorial aspects of lambda terms. However, the answers to these questions are
extremely important not only for a better understanding of the structure of lambda
terms, but also for people who build test samples for debugging compilers or for those

2

who optimize the average run of programs by a better knowledge of the distribution of
terms. Perhaps the reason of this ignorance lies in the surprising form of the recurrences.
Indeed, due to the presence of bound variables, the recurrence does not work in the way
mathematicians expect and are used to. Thus none of the methods used in the reference
book of Flajolet and Sedgewick [6] applies. Why is that? In what follows we compute the
number of lambda terms (and of normal forms) of size n with at most m bound variables.
Denoting the number of such terms by Tn,m, the formula for Tn,m contains Tn−1,m+1 and
this growth of m makes the formula averse to treatments by generating functions and
classical analytic combinatorics. We notice that for a given n the expression for Tn,m is a
polynomial in m. These polynomials can be described inductively and their coefficients
are given by recurrence formulas. These formulas are still complex, but can be used
to compute the constant coefficients, which correspond to the numbers of closed lambda
terms. For instance, the leading coefficients of the polynomials are the well known Catalan
numbers which count binary trees.

In order to find the recurrence formula for the number of λ-terms of a given size, we
make use of the representation of variables in λ-terms by de Bruijn indices. Recall that a
de Bruijn index is a natural number which replaces a term variable and enumerates the
number of λ’s encountered on the way between the variable and the λ which binds the
latter. In this paper, we assume the combinatorial model in which the size of each occur-
rence of abstraction or application is counted as 1, while the size of variables (de Bruijn
indices) as 0. This method is a realistic model of the complexity of λ-terms and allows us
to derive the recurrences very naturally. Since we manipulate big numbers, we need for
the computation an efficient computer algebra system. We have chosen PARI/GP [17],
a package of the software SAGE [16]

From the formula for counting λ-terms we can derive one-to-one assignments of num-
bers in the interval [1..Pn(m)] to terms of size n with at most m distinct free indices. From
this correspondence, we can develop a program for generating λ-terms, more precisely
for building the λ-term associated with a number in the interval [1..Pn(m)]. If we pick
a random number in the interval, then we get a random term of size n with at most m
distinct free variables. Beside the interest in such a random generation for applications
like testing, this allows us to compute practical values of parameters by Monte-Carlo
methods. Overall, we are able to build a random generator for simply typed terms. Un-
like the method used traditionally [14], which consists in unfolding the typing tree, we
generate random λ-terms and test their typability, until we find a simply typed term.
This method allows us to generate on a laptop simply typed λ-terms up to size 50. We
also use this method to describe the distribution of well-typed terms among plain terms
and well-typed normal forms among plain normal forms. This shows that terms starting
with abstractions are more likely to be typable than terms starting with applications,
the phenomenon being more manifest on normal forms. From this, we derive a way to
generate large typed terms up to 200, with a biased randomness.

Structure of the paper

According to its title, the paper is divided into two parts, one focuses on counting terms
and its mathematical treatment, the other on term generation and its applications. The
first part (Sections 2 and 5) is devoted to the formulas counting λ-terms. In Section 2

3

we study polynomials giving the numbers of terms of size n with at most m distinct free
variables, especially formulas giving the coefficients of the polynomials. In Section 3, we
shows that the numbers of i-contexts give a combinatoric interpretation of the coefficients
of the polynomials and yield a new formula for counting the closed terms of size n. If
we add formulas for counting lambda terms of size n with exactly m variables, we have
three formulas of three different origins for counting closed terms which we describe and
compare in Section 4. In Section 5 we derive generating functions and asymptotical values
for these coefficients. In Section 6 we give a formula for counting normal forms. In the
second part, i.e., in Section 7 and Section 8, we propose programs to generate untyped
and typed terms and normal forms. Section 9 is devoted to experimental results. SAGE
script related to this paper can be found at

https://dl.dropbox.com/u/2518969/LambdaTermsEnumerationAndGeneration.sws

and raw statistics can be found at
https://dl.dropbox.com/u/2518969/Statistics.txt.

2 Counting terms with at most m variables

We represent terms by de Bruijn indices [4], which means that variables are represented
by numbers 1, 2, . . . ,m, . . ., where an index, for instance k, is the number of λ’s, above
the location of the index and below the λ that binds the variable, in a representation
of λ-terms by trees. For instance, the term with variables λx.λy.x y is represented by
the term with de Bruijn indices λλ21. The variable x is bound by the top λ. Above the
occurrence of x, there are two λ’s, therefore x is represented by 2 and from the occurrence
of y, we count just the λ that binds y; so y is represented by 1. In what follows we will
call terms, the untyped terms with de Bruijn indices and often we will speak indifferently
of variables and (de Bruijn) indices. Assume that not all the indices are bound. In other
words, there may be indices that do not correspond to surrounding λ’s, we call them
“free”. Here is the convention on the interval of “free” indices which appear in a term
t. An interval is a set I(m) = {1, 2, . . . ,m} of indices, If t is an index i, the interval of
indices of t is any interval [1, . . . ,m] with 1 ≤ i ≤ m. Now assume that the interval of free
indices of t is [1, . . . ,m + 1], then the interval of free indices of λt is [1, . . . ,m], because
the indices 1 have been bound and the others are assumed to decrease by one. If the
interval of indices of t and s is [1, . . . ,m], then the interval of indices of s t is [1, . . . ,m].
For instance, the interval of the term λ3 1 is the interval [1, 2, . . . ,m] for any m ≥ 2.

Let us denote the set of terms of size n, with at most m “free” de Bruijn indices (with
[1, . . . ,m] as interval of indices) by Tn,m. A term from Tn,m is either a de Bruijn index
or an abstraction on a term with at most m + 1 indices, i.e., a term in Tn,m+1, or an
application of a term in Tn,m on a term in Tn,m. We can write, using @ as the application
symbol,

Tn+1,m = λTn,m+1]
n⊎
k=0

Tn−k,m@Tk,m.

We assume that the operators λ and @ have size 1 and that de Bruijn indices have
size 0. From this, we get the following two equations specifying Tn,m:

T0,m = m

4

n\m 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 3 7 13 21 31 43
2 3 13 41 99 199 353 573
3 14 76 312 962 2386 5064 9596
4 82 542 2784 10732 32510 82122 181132
5 579 4493 27917 131715 482015 1440929 3687513
6 4741 42131 307943 1741813 7612097 26763551 79193491
7 43977 439031 3690055 24537945 126536933 519788827 1771730211
8 454283 5020105 47635777 365779679 2198772055 10477986133 40973739725
9 5159441 62382279 658405747 5744911157 39769404045 218213327131 974668783199
10 63782411 835980065 9695617821 94786034723 746744227319 4681133293821 23769847893305
11 851368766 12004984120 151488900012 1639198623818 14531624611594 103244315616876 593009444765240
12 12188927818 183754242626 2502346785164 29658034018852 292747054367966 2338363467319958 15112319033576416
13 186132043831 2984264710781 43560247035581 560484305049943 6100545513799835 54347237563601321 393031286917940401
14 3017325884473 51220227153987 796828655891895 11046637024014049 131425939696979805 1295642289776992983 10425601907159190187

Figure 1: Values of Tn,m for n and m up to 14 and 6, respectively

Tn+1,m = Tn,m+1 +
n∑
i=0

Ti,mTn−i,m.

This means that there are m terms of size 0 with at most m free de Bruijn indices, which
are terms that are just these indices. Terms of size n with at most m de Bruijn indices
are either abstractions with at most m+ 1 indices on a term of size n− 1 or applications
of terms with at most m indices to make a term of size n. As we said in the introduction,
the 11 first values of Tn,0 are:

0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411.

Figure 1 gives all the values of Tn,m for n up to 14 and m up to 6. For instance,
there is 1 closed term of size 1, namely λ1, there are 3 closed terms of size 2, namely
λλ1, λλ2, λ1 1, and there are 14 closed terms of size 3, namely

λλλ1, λλλ2, λλλ3, λλ1 1, λλ1 2, λλ2 1, λλ2 2, λ(1λ1),
λ(1λ2), λ1(11), λ((λ1) 1), λ((λ2) 1), λ((1 1) 1), (λ1)λ1.

Notice that in Section 7, we describe how to assign a number to a term and therefore
how to list terms with increasing numbers. The above terms have been listed in that
order.

For every n ≥ 0, we can associate with Tn,m a polynomial Pn(m) in m. First, let us
define polynomials Pn in the following recursive way:

P0(m) = m

Pn+1(m) = Pn(m+ 1) +
n∑
i=0

Pi(m)Pn−i(m)

The sequence (Pn(0))n≥0 corresponds to the sequence (Tn,0)n≥0 enumerating closed
lambda terms. The first eight polynomials are given in Figure 2.

This means that the constant coefficient of a polynomial Pn(m) is exactly the number
of closed lambda terms of size n. We propose a way of computing the coefficients of these
polynomials.

Lemma 1 For every n, the degree of the polynomial Pn is equal to n+ 1.

5

n Pn

0 m
1 m2 +m+ 1
2 2m3 + 3m2 + 5m+ 3
3 5m4 + 10m3 + 22m2 + 25m+ 14
4 14m5 + 35m4 + 94m3 + 154m2 + 163m+ 82
5 42m6 + 126m5 + 396m4 + 838m3 + 1277m2 + 1235m+ 579
6 132m7 + 462m6 + 1654m5 + 4260m4 + 8384m3 + 11791m2 + 10707m+ 4741
7 429m8 + 1716m7 + 6868m6 + 20742m5 + 49720m4 + 90896m3 + 120628m2 + 104055m+ 43977
8 1430m9 + 6435m8 + 28396m7 + 98028m6 + 275886m5 + 617096m4 + 1068328m3 + 1352268m2 + 1117955m+ 454283

Figure 2: The first eight polynomials Pn

Proof: The result follows immediately by induction on n from the definition
of Pn. �

For i > 0 and n ≥ 0, let us denote by pin the i-th leading coefficient of the polynomial
Pn, i.e., we have

Pn(m) = p1nm
n+1 + p2nm

n + . . .+ pinm
n+2−i + . . .+ pn+1

n m+ pn+2
n .

Lemma 2 For every n ≥ 0 and i > 0,

p10 = 1, pi0 = 0 for i > 1,

pin+1 =
i−2∑
j=0

(
n+ 1− j
i− 2− j

)
pj+1
n +

i∑
k=1

n∑
j=0

pkjp
i+1−k
n−j .

Proof: Since P0(m) = m, equations from the first line in the above lemma are
trivial.

The i-th leading coefficient in the polynomial Pn+1(m) is equal to the sum
of coefficients standing atmn+3−i in polynomials Pn(m+1) and

∑n
j=0 Pj(m)Pn−j(m).

The first of these polynomials, Pn(m+ 1), is as follows:

p1n(m+ 1)n+1 + . . .+ pi−1n (m+ 1)n+3−i + . . .+ pn+2
n ,

therefore the coefficient of mn+3−i in Pn(m+ 1) is equal to(
n+ 1

i− 2

)
p1n +

(
n

i− 3

)
p2n + . . .+

(
n+ 3− i

0

)
pi−1n =

i−2∑
j=0

(
n+ 1− j
i− 2− j

)
pj+1
n .

In the case of the second polynomial,
∑n

j=0 Pj(m)Pn−j(m), we have(
p1jm

j+1 + . . .+ pkjm
j+2−k + . . .+ pj+2

j

)
·
(
p1n−jm

n−j+1 + . . .+ pi+1−k
n−j mn−j+1+k−i + . . .+ pn−j+2

n−j
)
,

therefore the coefficient of mn+3−i in
∑n

j=0 Pj(m)Pn−j(m) is equal to

i∑
k=1

n∑
j=0

pkjp
i+1−k
n−j .

�

6

3 Counting contexts

In λ-calculus, an i-context is a closed term with i holes. We consider that a hole has size 0
and we assume that the holes are numbered 1, . . . , i as we meet them when traversing the
term from left to right. For instance, if we represent the holes by [], then (λ1[])λλ[]2 is
a 2-context of size 5 and its holes are numbered as follows (λ1[]1)λλ[]22. The 0-contexts
are the closed terms. Therefore there is only one 1-context of size 0 and no i-context of
size 0 for i 6= 0. Let us write cn,i the number of i-contexts of size n. One notices that

c0,1 = 1

c0,i = 0 for i 6= 1.

Now, let us see how we construct a context from smaller contexts.

By abstraction, an i-context of size n+ 1 can be built from a j-context of size n and a
set of j − i holes among the j holes of the j-contexts where one puts variables (or
indices) to be abstracted. There are

(
j
i

)
cn,j such i-contexts. One has to sum those

quantities from i to n+ 1 to get the numbers of i-contexts built this way.

By application, an i-context of size n+1 can be built by applying a context on another
context, i.e., a j-context of size k applied on an i − j-context of size n − k (recall
that the composition operator has size 1). To get all the contexts built this way,
one has to sum from j = 0 to j = i and from k = 0 to k = n.

Hence we get the formula:

cn+1,i =
n+1∑
j=i

(
j

i

)
cn,j +

i∑
j=0

n∑
k=0

ck,jcn−k,i−j. (∗)

From contexts we can see how we can build terms. More precisely, from an i-context of
size n and a map f from [1..i] to [1..m], we can insert the index f(j) in the jth hole to
build a term of size n with i occurrences of free variables taken among m ones. There
are cn,im

i such terms. Therefore

Tn,m = cn,n+1m
n+1 + . . .+ cn,im

i + . . .+ cn,0

is the number of λ-terms of size n with at most m variables, which is the polynomial Pn.
In particular, cn,n+2−i = pin. The coefficients cn,i of the polynomials Pn’s count the
i-contexts of size n. We see that cn,i = 0 when i > n+ 1.

The case i = n+2. In the case when i = n+2, using the fact that cn,i = 0 for i > n+1,
the equation (∗) boils down to:

cn+1,n+2 =
n∑
k=0

ck,k+1cn−k,n−k+1

which is characteristic of the Catalan numbers. Indeed, n+1-contexts of size n have only
applications and no abstractions and are therefore binary trees.

7

The generating function of the cn,i’s

Proposition 3 Consider the generating function: L(z, u) =
∑
n,i≥0

cn,iz
nui. Then

L(z, u) = u+ zL(z, u+ 1) + zL(z, u)2.

Proof: Notice that

L(z, u) =
∞∑
n=0

(
∞∑
i=0

cn,iu
i

)
zn

=
∞∑
n=0

Pn(u)zn

= u+ z

∞∑
n=0

Pn+1(u)zn

= u+ z

∞∑
n=0

Pn(u+ 1)zn + z
∞∑
n=0

n∑
k=0

Pk(u)Pn−k(u)zn

= u+ zL(z, u+ 1) + zL(z, u)2.

�

This relation was known from Bodini, Gardy and Gittenberger [1] (for size of variables
equal to 1). However notice that what they call L is not the class of open λ-terms, but
the class of i-contexts. Notice that the function L(z, 0) is the generating function of the
number of closed terms of size n.

A lower approximation of the cn,0’s

First, notice that in the case i = 0 we get:

cn+1,0 =
n+1∑
j=0

cn,j +
n∑
k=0

ck,0cn−k,0.

If we call δn the number of i’s such that cn,i ≥ cn,0

cn+1,0 > δncn,0.

Second, if we draw the values of the δn’s (Figure 3), we notice empirically that δn =
b2 ln(n) + ln(ln(n)c. This shows that δn is increasing. Therefore for m = n+ k

cn+k,0 > δkncn,0.

and for any δ, there exists a K such that cn,0 grows faster than Kδn. In other words, if
we admit that the sequence (δn)n∈N is increasing,

∀δ ∈ R, cn,0 = Ω(δn)

8

0 50 100 150 200 250 300

2

4

6

8

10

12

Above 2 ln(x) + ln(ln(x) and below 2 ln(x) + ln(ln(x)− 1.

Figure 3: Evolution of the numbers δn of cn,i’s larger than cn,0

4 Three formulas for counting closed terms

We have found three formulas to compute the number of closed terms of size n. Let us
summarize them:

Case m = 0 for terms with at most m distinct free variables
Tn,0 where

T0,m = m

Tn+1,m = Tn,m+1 +
n∑
i=0

Ti,mTn−i,m

This formula is clearly the simplest. Its simplicity, one sum and no binomial, allows
unfolding it and on this basis building a program for term generation.

Case m = 0 for terms with exactly m distinct free variables
fn,0 where

f0,0 = 0

f0,1 = 1

fn,m = 0 if m > n+ 1

fn+1,m = fn,m + fn,m+1 +
n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.

This formula is the most complex. The way it can be derived is given in Appendix A.1.

9

0-contexts
cn,0 where

c0,1 = 1

c0,i = 0 for i 6= 1

cn+1,i =
n+1∑
j=i

(
j

i

)
cn,j +

i∑
j=0

n∑
k=0

ck,jcn−k,i−j.

Four relations Let us use the notation R
(m)
i (see Flajolet and Sedgewick’s book [6])

for the number of surjections from [1..i] to [1..m]. Recall that

R
(m)
i =

i∑
j=0

(
i

j

)
(−1)j(i− j)m.

The numbers Tn,m, fn,m and cn,i are related as follows (see Appendix A.2):

Tn,m =
m∑
i=0

(
m

i

)
fn,i =

n+1∑
i=1

cn,im
i

fn,m =
m∑
i=0

(−1)m+i

(
m

i

)
Tn,i =

n+1∑
i=1

cn,iR
(m)
i .

5 More generating functions

For every positive integer i, let us denote by ai the generating function for the sequence
(pin)n≥0, i.e.,

ai(z) =
∞∑
n=0

pinz
n =

∞∑
n=0

cn,n+2−iz
n.

The pin’s count the number of contexts of size n having n+ 2− i holes i.e., having almost
as many holes as their size, where “almost as many as” means “except a fixed number
i− 2”. For the sake of clarity, instead of writing ai(z) sometimes we simply write ai.

In order to compute functions ai, we apply the following basic fact about generating
functions.

Fact 4 Let f and g be generating functions for sequences (fn)n≥0 and (gn)n≥0, respec-
tively. Then

(i) the generating function for the sequence
((
n
k

)
fn
)
n≥0, where k is a fixed positive

integer, is given by zkf (k)

k!
,

(ii) the generating function for the sequence (
∑n

i=0 fign−i)n≥0 is given by f · g.

(iii) the generating function for the sequence
((
n−j
i

)
fn
)
n≥0, where i ≥ 0 and j > 0, is

given by∑i
k=0(−1)k

(
k+j−1
j−1

)
zi−k f

(i−k)

(i−k)! .

10

Proof: Items (i) and (ii) can be found, e.g., in Chapter 7 of [7].
The third part follows from (i) and the following equality:(

n− j
i

)
=

i∑
k=0

(−1)k
(

n

i− k

)(
k + j − 1

j − 1

)
,

which holds for every n, i ≥ 0 and j > 0. This equality can be easily derived
from two equalities known as “upper negation” and “Vandermond convolu-
tion”, which can be found in Table 174 of [7]. �

Now we are ready to provide a recurrence for functions ai.

Theorem 5 The following equations are valid:

a1 = za21 + 1, a1(0) = 1

a2 = za1 + 2za1a2

ai = zi−1
a
(i−2)
1

(i− 2)!
+ zi−2

a
(i−3)
1

(i− 3)!
+ zi−2

a
(i−3)
2

(i− 3)!

+z ·
i−3∑
j=1

i−3−j∑
k=0

(−1)k
(
k + j − 1

j − 1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i− 3− j − k)!

+z ·
i∑

j=1

ajai−j+1, for i > 2.

Proof: All these equations follow from Lemma 2 and Fact 4. �

Notice that the ai’s can be computed by induction. Indeed ai occurs twice in the
lefthand side of the last equation and we have:

ai(1− 2a1) = zi−1
a
(i−2)
1

(i− 2)!
+ zi−2

a
(i−3)
1

(i− 3)!
+ zi−2

a
(i−3)
2

(i− 3)!

+z ·
i−3∑
j=1

i−3−j∑
k=0

(−1)k
(
k + j − 1

j − 1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i− 3− j − k)!

+z ·
i−1∑
j=2

ajai−j+1.

Since 1− 2a1 =
√

1− 4z we get:

ai =

zi−1

a
(i−2)
1

(i−2)! + zi−2
a
(i−3)
1

(i−3)! + zi−2
a
(i−3)
2

(i−3)!

+z ·
∑i−3

j=1

∑i−3−j
k=0 (−1)k

(
k+j−1
j−1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i−3−j−k)!
+z ·

∑i−1
j=2 ajai−j+1

 /
√

1− 4z. (†)

Corollary 6 Exact formulas for the functions a1–a7 are given in Figure 4.

11

a1(z) =

(
1

2
− (1− 4z)1/2

2

)
z−1

a2(z) = −1

2
+

1

2 (1− 4z)1/2

a3(z) =

(
1

1− 4z
+

z

(1− 4z)3/2

)
z

a4(z) =

(
3

(1− 4z)2
+

z

(1− 4z)5/2

)
z2

a5(z) =

(
4z + 9

(1− 4z)3
+
z2 − 19z + 5

(1− 4z)7/2

)
z3

a6(z) =

(
24z + 31

(1− 4z)4
+

3z2 − 203z + 51

(1− 4z)9/2

)
z4

a7(z) =

(
16z2 − 128z + 181

(1− 4z)5
+

2z3 − 194z2 − 1541z + 398

(1− 4z)11/2

)
z5

Figure 4: The generating functions for the coefficients of the polynomials Pn(m)

Proof: Let us first compute the function a1 which, according to Theorem 5,
is given by

a1 = za21 + 1, a1(0) = 1.

By solving this equation, we obtain a1(z) = 1−
√
1−4z
2z

, which is exactly the
generating function for Catalan numbers—see, e.g., Chapter I.1 of [6].

Now, let us notice that on the basis of Theorem 5 all the other functions
can be immediately obtained by tedious, however elementary, computations.
In order to get exact values we applied SAGE software [16]. �

Let [zn]f(z) denote the n-th coefficient of zn in the formal power series f(z) =∑∞
n=0 fnz

n. The theorem below (Theorem VI.1 of [6]) serves as a powerful tool that
allows us to estimate coefficients of certain functions that frequently appear in combina-
torial considerations.

Fact 7 Let α be an arbitrary complex number in C \ Z≤0. The coefficient of zn in

f(z) = (1− z)α

admits the following asymptotic expansion:

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2

+
α2(α− 1)2(α− 2)(α− 3)

48n3
+O

(
1

n4

))
,

where Γ is the Euler Gamma function defined for <(α) > 0 as

Γ(α) :=

∫ ∞
0

e−ttα−1dt.

12

We can prove the following approximation.

Proposition 8

ai(z) ∼ Ci−2
23i−5(1− 4z)(2i−3)/2

when z → 1

4

where Ci is the ith Catalan number.

Proof: In this proof, when we write ∼ or “is of order” we mean when z → 1
4
.

We prove the result by induction using Theorem 5. The result is true for
i = 1. For i > 1 and j ≤ i, assume that aj(z) is of order 1

(1−4z)(2j−3)/2 and look

at equation (†) to prove that ai+1(z) is of order 1
(1−4z)(2i−1)/2

Notice that the ith derivative of a1 is of order 1
(1−4z)2i−1/2 , hence its (i−2)th

is of order 1
(1−4z)(2i−5)/2 and its (i − 3)th derivative is of order 1

(1−4z)(2i−7)/2 .

Similarly the ith derivative of a2 is of order 1
(1−4z)2i+1/2 , hence its (i − 3)th

derivative is of order 1
(1−4z)(2i−5)/2 .

By induction for j + 2 ≤ i − 3, aj+2 is of order 1
(1−4z)(2j+1)/2 . Among its

successive derivative, one derives at most i− 3− j times, hence the items in
the sum are of order at most 1

(1−4z)(2i−5)/2 .

Hence the four first terms in (†) do not contribute to the asymptotic value
of ai+1(z). Therefore the contribution to the asymptotic value is given by the
product ajai−j+1’s, which are of order 1

(1−4z)i−2 and when multiplied by 1√
1−4z ,

the last sum is of order 1
(1−4z)(2i−1)/2 .

Let us call Ki the multiplicative coefficient Ci−2/2
3i−5 of 1

(1−4z)(2j−3)/2 . One

notices that K2 = 1
2

= C0

23.2−5 . The sum z
∑i−1

j=2 ajai−j+1 shows the inductive

part. Indeed when z = 1
4
:

z

i−1∑
j=2

KjKi−j+1 =
1

4

i−1∑
j=2

Cj−2
23j−5

Ci−j+1−2

23(i−j+1)−5

=
1

23i−5

i−3∑
j=0

CjCi−j−3

=
Ci−2
23i−5 = Ki.

�

Theorem 9

[zn]ak(z) =
1

2k−1(k − 1)!
√
π

4nn(2k−5)/2 . Ψ(n, k)

where

Ψ(n, k) = 1 +
(2k − 3)(2k − 5)

8n
+

(2k − 3)(2k − 5)(2k − 7)(3k − 11)

384n2
+

(2k − 3)2(2k − 5)2(2k − 7)(2k − 9)

3672n3
+O(

1

n4
).

13

Proof: First recall that:

Γ((2k − 3)/2) = Γ((k − 2) +
1

2
) =

(2(k − 2))!
√
π

22(k−2)(k − 2)!
.

Now using Fact 7, we can compute the principal part:

[zn]ak(z) =
Ck−2
23k−5 4n [zn](1− z)(2k−3)/2

∼ Ck−2
23k−5 4n

n(2k−5)/2

Γ((2k − 3)/2)

=
Ck−2
23k−5

(k − 2)!22(k−2)

(2(k − 2))!
√
π

4nn(2k−5)/2

=
Ck−2(k − 2)!

2k−1(2(k − 2))!
√
π

4nn(2k−5)/2

=
1

2k−1(k − 1)!
√
π

4nn(2k−5)/2.

For Ψ(n, k) we use Fact 7, with α = 2k−3
2

. �

By looking at Figure 4, we can easily notice a recurring pattern concerning the struc-
ture of functions ai. Therefore, we state the following proposition.

Proposition 10 For every i > 2 we have

ai(z) = zi−2

(
Qi(z)

(1− 4z)i−2
+

Ri(z)

(1− 4z)i−
3
2

)
,

where Qi and Ri are polynomials over Z in z and degQi =
⌊
i−3
2

⌋
and degRi =

⌊
i−1
2

⌋
.

Proof: By induction using formula (†), on the same vein as the proof of
Proposition 8. In particular, the two first members of (†) are derivatives of
the generating function of Catalan numbers studied in [10]. �

As we have already mentioned, the number of closed terms of size n is given by
Pn(0), which corresponds to the n-th term of the Taylor expansion of the function an+2.
Hence, the sequence of the numbers of closed lambda terms is equal to the sequence
([zn]an+2(z))n≥0. From Proposition 10, the number of closed terms of size n is equal to
Qn+2(0) + Rn+2(0). Currently, we have no recursive formula for the Qn’s and the Rn’s.
However from Proposition 8, we know that

Rn+2

(
1

4

)
=

Cn
2n+1

.

14

6 Counting normal forms

Beside counting terms, one can also count normal forms. To this end, we describe the
set of normal forms as follows

Gm = I(m)] Gm@Fm
Fm = λFm+1] Gm

Recall that a normal form is made by a sequence of abstractions on terms which is a
variable (a de Bruijn index) applied to a sequence of normal forms. Fm represents the
normal forms and Gm represents the terms starting with an index. From this we derive
the formulas for counting:

G0,m = m

Gn+1,m =
n∑
k=0

Gn−k,mFk,m

F0,m = m

Fn+1,m = Fn,m+1 +Gn+1,m

Like for terms we derive polynomials:

NFP0(m) = m
NFPn+1(m) = NFPn(m+ 1) + NFQn+1(m)

NFQ0(m) = m

NFQn+1(m) =
n∑
k=0

NFPk(m)NFQn−k(m).

Lemma 11 For every n, the degree of the polynomials NFPn and NFQ is equal to n+ 1.

Proof: Like the proof of Lemma 1, by induction on n from the definition of
NFPn and NFQ. �

We have not derived the formulas for the coefficients yet. But these formulas are useful
to derive generators of normal forms used in the rest of the paper.

7 Lambda term generation

From the simple equations defining the number Tn,m of terms we can define a function
generating them. More precisely, we define a function T (k, n,m) which returns the kth

term of size n with at most m variables (see the program in Figure 5). The integer k
belongs to the interval [1..Pn(m)] which requires to handle big numbers. This program
can be used to enumerate all the λ-terms of size n with at most m distinct free variables.
This is appropriate only for small values, since the number of λ-terms is very large. But
overall, in order to generate a random term of size n with at most m distinct free variables,
it suffices to feed T with a random value k in the interval [1..Pn(m)]. Similarly, one can
define from the recursive formula for the number of normal forms a program for their
generation.

15

Term(k,n,m) :

if n = 0: return k

elif k ≤ P(n-1)(m+1): return λTerm(k,n-1,m+1)

else:

j := 0

h := k - P(n-1)(m+1)

while True:

if h ≤ P(j)(m) * P(n-1-j)(m):

if h mod P(n-1-j)(m) = 0 :

return Term(h ÷ P(n-1-j)(m),j,m) @ Term(P(n-1-j)(m), n-1-j,m)

else:

return Term(bh ÷ P(n-1-j)(m)c+1,j,m) @ Term((h mod P(n-1-j)(m)), n-1-j,m)

else:

h := h - P(j)(m) * P(n-1-j)(m)

j := j + 1

Figure 5: The program for term generation

8 Simply typed terms

Once we have a random generator for untyped terms, it is easy to build a random gener-
ator for simply typed terms. It suffices to sieve the plain terms by a predicate, which we
call is typable. This predicate, which was implemented in SAGE [16] (i.e., in Python) like
the rest of the programs, is a classical principal type algorithm [12, 2, 8]. For instance,
applying the random generator with parameter 10 (for the size of the term), we got:

λ(λ(((1 λ(1)) λ((3 λ(((1 2) 3)))))))

This is a “typical” simply typed random closed lambda term of size 10 written with de
Bruijn indices. Its type is

((α→ (((β → β)→ (α→ γ)→ δ)→ ζ))→ ζ)→ γ →
((β → β)→ (α→ γ)→ δ)→ δ

We were able to generate terms of size 50 (or of size about 80 provided we work
in the model in which the size of each variable is 1). For such terms, the generating
process is slow, since it requires 50 000 generations of terms, with (unsuccessful) tests
of their typability before getting a typed one. But for size 40, for size about 65 if one
would count also the variables, the number of attempts falls at 1000, which is reasonable.
However, according to the distribution given in Figure 10, if one accepts a bias toward
terms starting with abstractions, the search is easier (see Section 9.5)

This kind of a random generator is useful for testing functional programs. Micha l
Pa lka [13, 14] proposed a tool to debug Haskell compilers based on a lambda term gen-
erator. His generator is designed on the development of a typing tree, with choices made
when a new rule is created. Such a method needs to cut branches in developing the tree
to avoid loops. This way his generator is not random, which may be a drawback in some
cases.

16

9 Experimental data

Given a random term generator, we are able to write programs to make statistics on some
features of terms. Experiments recorded here have been performed on a laptop with a
2.4 GHz Intel Core i5 processor.

9.1 Average depth of variables in terms

Let us define the depth of a variable as the number of symbols (abstractions and ap-
plications) between this variable and the top of the term. For instance, given the term
λx.(λyz.x)(λu.u), the variable x has depth 4, while the depth of u equals 3. In Figure 6,
we draw both the average depth of the variables for 300 throws of random terms of size 15
up to 175 (scatted plot) and the curve 2n

ln(n)
(plain line). We also provide the comparison

between the average depth of variables in normal forms for 300 throws of normal forms
of size 15 up to 175 (scatted plot) and the same curve 2n

ln(n)
(Figure 7). On this basis, we

conjecture that the average depth of variables in terms has an asymptotic upper bound
2n

ln(n)
.

20 40 60 80 100 120 140 160

10

20

30

40

50

60

Figure 6: Average depth of variables and curve 2n
ln(n)

.

9.2 Average number of head λ’s in terms

We say that λx is a head lambda in a term t if the latter is of the form λx1 . . . λxnλx.s
for some positive integer n and a certain term s. In order to know the structure of an
average term, we are interested in the average number of head λ’s occurring in terms.
In Figure 8, we compare the average number of head λ’s in 400 random terms of size
15 to 150 with n

ln(n)
. In Figure 9, we repeat this study in the case of random normal

forms. Our experiments show that, as concern head λ’s, terms and normal forms have
approximatively the same shape, but the average number of head λ’s is slightly larger in
the case of all terms than in the case of normal forms.

17

20 40 60 80 100 120 140 160

10

20

30

40

50

60

Figure 7: Average depth of variables in normal forms and curve 2n
ln(n)

.

20 40 60 80 100 120 140

10

15

20

25

30

Figure 8: Average number of head λ’s in terms and curve n
ln(n)

9.3 Ratio of simply typed terms among terms

It is interesting to investigate the ratio of simply typed terms among untyped ones.
Actually, there are 454 283 lambda terms of size 8, whereas there are 43 977 lambda
terms of size 7. In the case of our implementation, 7 is the upper limit for an exhaustive
computation of this ratio. The array below gives the ratio of simply typed terms over
plain terms by an exhaustive examination of the terms up to 7.

size 4 5 6 7
nb of terms 82 579 4 741 43 977

nb of typed terms 40 238 1 564 11 807
ratio 0.4878 0.4110 0.3299 0.2684

After 8, we computed the ratio by the Monte Carlo method. The results are given in
Table 1.

We conclude that simply typed terms become very rare as the size of the terms grows,

18

20 40 60 80 100 120 140

5

10

15

20

25

30

Figure 9: Average number of head λ’s in normal forms and curve n
ln(n)

size 8 9 10 11 12 13 14 15 16 20 30 40 45 50
ratio .216 .178 .143 .111 .089 .073 .056 .047 .039 .0014 .0012 .0003 .00005 <10−5

Table 1: Ratio of simply typed terms

falling at less than one over 10000 when the size gets larger than 50. Like before, we have
done the same task for normal forms. We got the ratio by an exhaustive examination of
normal forms up to 7:

size 4 5 6 7
nb of terms 53 323 2 359 19 877

nb of typed terms 23 106 587 3 789
ratio 0.434 0.328 0.249 0.190

and by the Monte Carlo method thereafter (see Table 2).

size 8 9 10 11 12 13 14 15 16 20 30 40 45 50
ratio .140 .108 .094 .068 .057 .048 .038 .029 .024 .0010 .0009 .00006 <10−5 <10−5

Table 2: Ratio of simply typed normal forms

9.4 Distribution of simply typed lambda terms among terms

We said that simply typed terms are rare, but we may wonder what rare means exactly.
More precisely we may wonder how terms are distributed. To provide an answer to
this question, we realized experiments for approaching the distribution of the frequency
of typed lambda terms in segments of the interval [1..Pn(0)]. For that we divided the
interval [1..Pn(0)] in segments and we computed on samples of randomly thrown terms,
the ratio of simply typed terms over general terms we may expect in each segment.
Figure 10 is typical of the results we got. This corresponds to an experiment on terms
of size 25 on 250 segments with tests for simple typability on 200 random terms in each
segment. It shows that the simply typed terms are not evenly distributed. They are more
concentrated on the left of the interval corresponding to terms with low numbers. Those

19

50 100 150 200 250

0.5

1

1.5

2

2.5

3

abstractionsoo applications //

Figure 10: Distribution of simply typed lambda terms of size 25. 250 segments on the
horizontal axis, percentage (0% – 3%) of typable terms in segments on the vertical axis.

50 100 150 200 250

0.5

1

1.5

2

2.5

abstractionsoo applications //

Figure 11: Distribution of simply typed lambda terms of size 30. 250 segments on the
horizontal axis, percentage (0% – 2.5%) of typable terms in segments on the vertical axis.

20

50 100 150 200 250

1

2

3

4

5

6

abstractionsoo applications //

Figure 12: Distribution of simply typed normal forms of size 25. 250 segments on the
horizontal axis, percentage (0% – 6%) of typable normal forms in segments on the vertical
axis.

terms correspond to terms starting rather with abstractions than with applications and
this is recursively so for subterms giving this impressions of rolling waves. For instance,
there are 2% to 3% of typable terms (of size 25) starting with many abstractions, whereas
for terms starting with many applications, there are large subintervals with almost no
typable terms. Figure 11 which gives the same statistics for terms of size 30 shows that
typed terms gets more rare as the size of the terms grows.

The normal forms are even more scarcely distributed. As a comparison, we drew the
same graphs for normal forms (size of the normal forms: 25 and 30, number of segments
250, tests on 200 terms) in Figure 12. The typable normal forms aggregate more on the
left of the interval where terms start mostly with abstractions, with peaks of 4% to 6%
by segments. Figure 13 shows that scarcity of typed normal forms increases as the size
of terms grow. .

9.5 Biased generation

If we renounce full randomness, the distribution of simply typed terms provides us with a
clue for getting large typed terms. We propose to call this a biased generation. This may
be convenient if we look for a closed term of large size, not necessarily random. For that
we search for term numbers in the low part of the interval [1..Pn(0)]. In experiments, we
have chosen for instance the first subinterval of size Pn(0)/2n. This way we were able to
generate large closed simply typed lambda terms of size up to 200. With no surprise we
got terms which are clearly not random, they have a third of the symbols as head λ’s and
the rest as applications, that is that terms thrown that way have a very specific shape as
they are sequences of abstractions followed by a sequence of applications.

21

50 100 150 200 250

0.2

0.4

0.6

0.8

1

1.2

1.4

abstractionsoo applications //

Figure 13: Distribution of simply typed normal forms of size 30. 250 segments on the
horizontal axis, percentage (0% – 1.45%) of typable normal forms in segments on the
vertical axis.

Related works

There are very few works on counting lambda terms, whereas counting first order terms
is a classical domain of combinatorics. Apparently the first traces of counting expres-
sions with (unbound) variables can be attributed to Hipparchus of Rhodes (c. 190–120
BC) (see [6] p. 68). Flajolet and Sedgewick’ book [6] is the reference on this subject.
Concerning counting λ-terms, we can cite only four works. [3] and [1] study asymptotic
behavior of formulas on counting lambda-terms. Strictly speaking they do not exhibit
a recurrence formula for counting. In particular, David et al. [3] only bound superiorly
and inferiorly the numbers of λ-terms in order to get information about the distribution
of families of terms. For instance, they prove that “asymptotically almost all λ-terms are
strongly normalizing”. In [11] the second author of the present paper proposes formulas
for counting λ-terms in the case of variables of weight 1, with more complex formulas
and less results. On another hand, Christophe Raffalli proposed a formula for counting
closed λ-terms, which he derives from the formula for counting λ-terms with exactly m
distinct free variables, whereas in this paper we count terms with at most m such vari-
ables. His formula appears only in the On-line Encyclopedia of Integer Sequences under
number A135501 and is much more complicated with three embedded levels of Σ’s. He
considers weight 1 for the variables. His formula can be easily adapted to variables of
weight 0, but remains complex (see Section 4 and Appendix A).

As concerns random generation, Wang in [18] proposed algorithms for randomly gen-
erating untyped λ-terms in the spirit of the counting formula of Raffalli. Also on term
generation, we can also cite the work of [5]. Pa lka [13, 14] use generation of typed λ-term
to test Haskell compilers. He acknowledges that, due to his method, he cannot guarantee
the randomness of his generator (see discussion in [13] p. 21 and p. 45). Nonetheless, he
found eight failures and four bugs in the Glasgow Haskell Compiler showing the interest
in the method. [15] study the feasibility of generic programming for the enumeration of
typed terms. The given examples are of size 4 or 5, no realistic examples are provided,

22

randomness is not addressed and the authors confess that their algorithm is not efficient.
Knowing that there are 11807 simply typed closed terms of size 7, one wonders the ac-
tual use of such an enumeration and it seems unrealistic to address enumeration for larger
numbers. The “related work” section of [15] covers similar approaches, which all consist
in cutting branches. They all fail to generate random terms. A presentation of tree-like
structure generation and a history of combinatorial generation is given in [9].

10 Acknowledgments

We would like to thank Marek Zaionc for interesting discussions and for setting the prob-
lem of counting lambda terms and Bruno Salvy for his help in the proof of Proposition 8.

11 Conclusion

The results we obtained open many tracks of research. We have to know more about the
polynomials Qi and Ri in Conjecture 10. Here we have considered variables of weight 0,
because it is slightly simpler but still challenging and informative. A model with variable
of weight 1 is worth studying and being compared with one presented here. This has been
initiated in [1, 11] but the generation of random terms has not been considered. Moreover
we have considered simple types (almost no term is simply typed). In further research we
plan to focus on other type systems, e.g., system F . But in this case, counting methods
will not apply, since typing is undecidable [19]. Perhaps like in [3], a method based on
upper and lower approximations of the numbers of terms may apply. From those results
we may expect to say something about beta reduction and its average efficiency in the
untyped case as in the typed case.

Lemma 2 gives recurrence formulas for the coefficients. We may exploit those results
to derive a bivariate generating function for the coefficients pin’s and then a formula or at
least an asymptotic value of the pn+2

n ’s which are the numbers of closed terms of size n.
Finally, we study plain lambda terms, but it seems straightforward to study terms with
specific types like nat and specific constants like suc : nat→ nat. This can be extended
to languages with variable scopes, not necessarily functional programming languages.

Talk about non decidable typability or NP-decidability Generalize toward a generating
function variable of weight 1 langage with scope and other operators.

References

[1] Olivier Bodini, Danièle Gardy, and Bernhard Gittenberger. Lambda terms of
bounded unary height. In Proceedings of the Eighth Workshop on Analytic Algo-
rithmics and Combinatorics, pages 23–32, 2011.

[2] Lúıs Damas and Robin Milner. Principal type-schemes for functional programs. In
POPL, pages 207–212. ACM Press, 1982. Richard A. DeMillo ed.

23

[3] René David, Katarzyna Grygiel, Jakub Kozik, Christophe Raffalli, Guillaume
Theyssier, and Marek Zaionc. Asymptotically almost all λ-terms are strongly nor-
malizing. CoRR, abs/0903.5505v3, 2009.

[4] Nicolaas Govert de Bruijn. Lambda calculus with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Proc. Koninkl. Nederl. Akademie van Wetenschappen, 75(5):381–392, 1972.

[5] Jonas Dureg̊ard, Patrik Jansson, and Meng Wang. Feat: functional enumeration of
algebraic types. In Janis Voigtländer, editor, Haskell, pages 61–72. ACM, 2012.

[6] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Uni-
versity Press, 2008.

[7] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete mathematics. Addison-
Wesley, Reading, MA, 1989.

[8] J. Roger Hindley. M. H. Newman’s typability algorithm for lambda-calculus. J. Log.
Comput., 18(2):229–238, 2008.

[9] Donald E. Knuth. The art of Computer Programming, Generating All Trees-History
of Combinatorial Generation, volume 4 (fascicle 4). Addison-Wesley Publishing
Company, 2006.

[10] Wolfdieter Lang. On polynomials related to derivatives of the generative functions
of the Catalan numbers. The Fibonacci Quarterly, 40(4):299–313, 2002.

[11] Pierre Lescanne. On counting untyped lambda terms. CoRR, abs/1107.1327, 2011.
to be published in Theoretical Computer Science.

[12] M. H. A. Newman. Stratified systems of logic. Proceedings of the Cambridge Philo-
sophical Society, 39:69–83, 1943.

[13] Micha l Pa lka. Testing an optimising compiler by generating random lambda terms.
Licentiatavhandling, Department of Computer Science and Engineering, Chalmers
University of Technology and Göteborg University, may 2012.

[14] Micha l H. Pa lka, Koen Claessen, Alejandro Russo, and John Hughes. Testing an
optimising compiler by generating random lambda terms. In Proceedings of the 6th
International Workshop on Automation of Software Test, AST’11, pages 91–97, New
York, NY, USA, 2011. ACM.

[15] Alexey Rodriguez Yakushev and Johan Jeuring. Enumerating well-typed terms
generically. In Ute Schmid, Emanuel Kitzelmann, and Rinus Plasmeijer, editors,
AAIP, volume 5812 of Lecture Notes in Computer Science, pages 93–116. Springer,
2009.

[16] W. A. Stein et al. Sage Mathematics Software (Version 4.8). The Sage Development
Team, 2012. http://www.sagemath.org.

24

[17] The PARI Group. PARI/GP, version 2.5.0. Bordeaux, 2011. available from http:

//pari.math.u-bordeaux.fr/.

[18] Jue Wang. The efficient generation of random programs and their applications.
Master’s thesis, Honors Thesis, Wellesley College, Wellesley, MA, May 2004.

[19] J. B. Wells. Typability and type-checking in the second-order lambda-calculus are
equivalent and undecidable. In LICS, pages 176–185. IEEE Computer Society, 1994.

A Number of terms with exactly m distinct free vari-

ables

Here we study the numbers of terms with exactly m distinct free variables, the formulas
for counting those numbers and their relations with quantities we considered.

A.1 A formula

Let us show how to derive the formula for counting λ-terms with exactly m distinct free
variables. This formula is adapted from a similar one when variables have weight 1 due
to Raffalli (On-line Encyclopedia of Integer Sequences under number A135501). We
assume that terms are built with usual variables (not de Bruijn indices) and that they
are equivalent up to a renaming free variables and up to α-conversion. Let us denote the
number of λ-terms of size n with exactly m distinct free variables by fn,m.

Notice first that there is no term of size 0 with no free variable, hence f0,0 = 0. There
is one term of size 0 with one free variable, namely x, up to a renaming of the variables,
hence f0,1 = 1. The maximum number of variables for a λ-term of size n is when the only
operators are applications and all the variables are different. One has then a binary tree
with n interior nodes and n + 1 leaves holding n + 1 variables. This means that for m
beyond n + 1 variables there is no term of size n with exactly m distinct free variables.
Hence

fn,m = 0 when m > n+ 1.

In the general case, a term of size n + 1 with m free variables starts either with an
abstraction or with an application. Terms starting with an abstraction, say λx, on a
term M contribute in two ways, either M does not contain x as a free variables or M
contains x as a free variable. There are fn,m such M ’s in the first case and fn,m+1 in the
second. This gives the two first summands fn,m + fn,m+1 of the formula. Let us look how
terms starting with an application look like. Assume they are of the form P Q and of size
n+ 1. For some p ≤ n, the term P is of size p and Q is of size n− p. These terms share
c common variables (0 ≤ c ≤ m), while P Q has m distinct free variables altogether.
P has k distinct free variables, which do not occur in Q, hence P has k + c distinct free
variables altogether. The term Q has m − k distinct free variables. Therefore, given a
set of private variables for P , a set of common variables, and a set of private variables
for Q, there are fp,k+cfn−p,m−k possible pairs (P,Q). There are

(
m
c

)
ways to choose the

c common variables among m and there are
(
m−c
k

)
ways to split the remaining variables

25

into P and Q, namely k for P and m − c − k for Q, hence the third summand of the
formula:

n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.

Now, we obtain the whole formula:

fn+1,m = fn,m + fn,m+1 +
n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.

A.2 Relations between Tn,m and fn,m

The number of terms of size n with exactly i indices in [1..m] is
(
m
i

)
fn,i. Therefore the

number of terms with at most indices in [1..m] is:

Tn,m =
m∑
i=0

(
m

i

)
fn,i.

By the inversion formula ([7] p. 192), we get:

fn,m =
m∑
i=0

(−1)m+i

(
m

i

)
Tn,i.

This shows with no surprise that fn,m and Tn,m are simply connected. Knowing that the
Tn,m’s can be easily computed, this provides a formula simpler that Raffalli’s to compute
the fn,m’s.

A.3 A relation between fn,m and cn,i

We write R
(m)
i the number of surjections from [1..i] to [1..m]. To get a relation between

fn,m and cn,i, we can reproduce the process with which we associated Tn,m and cn,i (Sec-
tion 3), but instead of applications from [1..i] to [1..m], we have surjections from [1..i]
to [1..m], since this time we count terms with exactly m variables and all the de Bruijn
indices must be reached by the applications. Therefore

fn,m =
n∑
i=0

cn,iR
(m)
i .

Recall that

R
(m)
i =

m∑
j=0

(
m

j

)
(−1)j(i− j)m.

We can now go further in the expression of fn,m.

fn,m =
n∑
i=0

cn,i

m∑
j=0

(
m

j

)
(−1)j(m− j)i

26

=
n∑
i=0

cn,i

m∑
k=0

(
m

k

)
(−1)m−kki

=
m∑
k=0

(
m

k

)
(−1)m−k

n∑
i=0

cn,ik
i

=
m∑
k=0

(−1)m+k

(
m

k

)
Tn,k.

which is another proof of the formula of Section A.2.

27

