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Abstract

Lambda calculus is the basis of functional programming and higher order proof
assistants. However, little is known about combinatorial properties of lambda
terms, in particular, about their asymptotic distribution and random generation.
This paper tries to answer questions like: How many terms of a given size are there?
What is a “typical” structure of a simply typable term? Despite their ostensible
simplicity, these questions still remain unanswered, whereas solutions to such prob-
lems are essential for testing compilers and optimizing programs whose expected
efficiency depends on the size of terms. Our approach toward the afore-mentioned
problems may be later extended to any language with bound variables, i.e., with
scopes and declarations.

This paper presents two complementary approaches: one, theoretical, uses com-
plex analysis and generating functions, the other, experimental, is based on a gener-
ator of λ-terms. Thanks to de Bruijn indices, we provide three families of formulas
for the number of closed lambda terms of a given size and we give four relations
between these numbers which have interesting combinatorial interpretations. As a
by-product of the counting formulas, we design an algorithm for generating lambda
terms. Performed tests provide us with experimental data, like the average depth
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of bound variables and the average number of head lambdas. We also create ran-
dom generators for various sorts of terms. Thereafter, we conduct experiments that
answer questions like: What is the ratio of simply typable terms among all terms?
(Very small!) How are simply typable lambda terms distributed among all lambda
terms? (A typable term almost always starts with an abstraction.)

In this paper, abstractions and applications have size 1 and variables have size
0.

Keywords: lambda calculus, combinatorics, functional programming, test, ran-
dom generator

1 Introduction

Let us start with a few questions relevant to the problems we address.

• How many closed λ-terms are of size 50 (up to α-conversion)?

996657783344523283417055002040148075226700996391558695269946852267.

• How many closed terms of size n are there?
We will give a recursive formula for this number in Section 2.

• What does the following sequence enumerate:

0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411?

This sequence enumerates closed terms of size 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. It
is the sequence A220894 of the Online Encyclopedia of Integer Sequences (https:
// oeis. org/ A220894 ). We will provide three ways to compute it (Section 4).

• Is it possible to generate simply typable terms randomly?
Yes, according to the process which consists in generating random lambda terms
with uniform probability and sieving those that are simply typable. Thus, we can
generate random simply typable terms of size up to 50.

• Is a term starting with an abstraction more likely to be typable than a term starting
with an application?
The answer is positive as shown in Figure 9, which gives the distribution of simply
typable lambda terms among all lambda terms.

• Do these results have practical consequences?
Yes, they enable random generation of simply typable terms in an efficient way in
the case of terms of size up to 50 in order to debug compilers or other programs,
manipulating terms, e.g., type checkers or pretty printers.

The above questions seem rather classical, but amazingly very little is known about
combinatorial aspects of lambda terms, probably because of the intrinsic difficulty of
the combinatorial structure of lambda calculus due to the presence of bound variables.
However, the answers to these questions are extremely important not only for a better

2



understanding of the structure of lambda terms, but also for people who build test samples
for debugging compilers. Perhaps the reason of this ignorance lies in the surprising form
of the recurrences. Indeed, due to the presence of bound variables, the recurrence does
not work in the way mathematicians expect and are used to. The induction lies on two
variables, one decreasing (the size), the other increasing (the number of free variables).
Thus none of the methods used in the reference book of Flajolet and Sedgewick [7] applies.
Why is that? In what follows we compute the number of lambda terms (and of normal
forms) of size n with at most m distinct free variables. Denoting the number of such terms
by Tn,m, the formula for Tn,m contains Tn−1,m+1 and this growth of m makes the formula
averse to treatments by generating functions and classical analytic combinatorics. We
notice that for a given n the expression for Tn,m is a polynomial in m. These polynomials
can be described inductively and their coefficients are given by recurrence formulas. These
formulas are still complex, but can be used to compute the constant coefficients, which
correspond to the numbers of closed lambda terms. For instance, the leading coefficients
of the polynomials are the well known Catalan numbers which count binary trees.

In order to find the recurrence formula for the number of λ-terms of a given size, we
make use of the representation of variables in λ-terms by de Bruijn indices. Recall that a
de Bruijn index is a natural number which replaces a term variable and enumerates the
number of λ’s encountered on the way between the variable and the λ which binds the
latter. In this paper, we assume the combinatorial model in which the size of each occur-
rence of abstraction or application is counted as 1, while the size of variables (de Bruijn
indices) as 0. This method is a realistic model of the complexity of λ-terms and allows
us to derive the recurrences very naturally.

From the formula for counting λ-terms we derive one-to-one assignments of terms of
size n with at most m distinct free indices to the numbers in the interval [1..Tn,m]. From
this correspondence, we develop a program for generating λ-terms, more precisely for
building λ-terms associated with numbers in the interval [1..Tn,m]. If we pick a random
number in the interval, then we get a random term of size n with at most m distinct
free variables. Most of the time we consider closed λ-terms, which means m = 0. Beside
the interest in such a random generation for applications like testing, this allows us to
compute practical values of parameters by Monte-Carlo methods. Overall, we are able
to build a random generator for simply typable terms. Unlike the method used so far
[17], which consists in unfolding the typing tree, we generate random λ-terms and test
their typability, until we find a simply typable term. This method allows us to generate
on a laptop simply typable λ-terms up to size 50. We also use this method to describe
the distribution of typable terms among all terms and typable normal forms among all
normal forms.

Structure of the paper

According to its title, the paper is divided into two parts, one focuses on counting terms
and its mathematical treatment, the other on term generation and its applications. The
first part (Sections 2 and 5) is devoted to the formulas counting λ-terms. In Section 2
we study polynomials giving the numbers of terms of size n with at most m distinct free
variables. In Section 3, we show that the numbers of i-contexts give a combinatorial
interpretation of the coefficients of the polynomials and yield a new formula for counting
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the closed terms of size n. If we add formulas for counting lambda terms of size n with
exactly m distinct free variables, we have three formulas of three different origins for
counting closed terms which we describe and compare in Section 4. In Section 5 we
derive generating functions and asymptotic values for these coefficients. In Section 6
we give a formula for counting normal forms. In the second part of the paper, i.e., in
Section 7 and Section 8, we propose programs to generate untyped and typable terms and
normal forms. Section 9 is devoted to experimental results. Section 10 presents related
works.

2 Counting terms with at most m distinct free vari-

ables

We represent terms using de Bruijn indices [5], which means that variables are represented
by numbers 1, 2, . . . ,m, . . ., where an index, for instance k, is the number of λ’s above
the location of the index and below the λ that binds the variable, in a representation
of λ-terms by trees. For instance, the term with variables λx.λy.x y is represented by
the term with de Bruijn indices λλ21. The variable x is bound by the top λ. Above the
occurrence of x there are two λ’s, therefore x is represented by 2, and from the occurrence
of y we count just the λ that binds y, so y is represented by 1. Notice that unlike [12]
and like [5, 1] we start indices at 1, since it fits better with our aim of counting terms.

In what follows, by terms we mean untyped terms with de Bruijn indices and we
often speak indistinctively of variables and (de Bruijn) indices. Assume that in a term t
not all occurrences of indices need to be bound, i.e., there may occur indices that do not
correspond to surrounding λ’s. Such indices are called “free” in t. Now, we introduce the
notational convention for “free” indices occurring in terms. An interval of free indices
for a term t is a set {1, 2, . . . ,m} of indices, written [1..m], such that

(i) if t is an index i, then any interval [1 . . .m] with 1 ≤ i ≤ m is an interval for t,

(ii) if t is an abstraction λs and an interval of free indices for s is [1 . . .m + 1], then
the interval of free indices for t is [1 . . .m] (since the index 1 is now bound and the
others are assumed to decrease by one),

(iii) if t is an application t1t2 and an interval of indices for t1 and t2 is [1 . . .m], then an
interval of indices for t is [1 . . .m].

We measure the size of a term in the following way:

|m| = 0, for every index m,

|λt| = |t|+ 1,

|ts| = |t|+ |s|+ 1.

Since lambda terms can be represented as unary-binary trees with labels or pointers,
the notion of size of a term t corresponds to the number of unary and binary vertices
in the tree representing t. This also means that adding a new variable (in other words,
adding a new leaf to a tree) or a new operator (a unary or a binary vertex) increases
always the size of a term by 1.
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n\m 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 3 7 13 21 31 43
2 3 13 41 99 199 353 573
3 14 76 312 962 2386 5064 9596
4 82 542 2784 10732 32510 82122 181132
5 579 4493 27917 131715 482015 1440929 3687513
6 4741 42131 307943 1741813 7612097 26763551 79193491
7 43977 439031 3690055 24537945 126536933 519788827 1771730211
8 454283 5020105 47635777 365779679 2198772055 10477986133 40973739725
9 5159441 62382279 658405747 5744911157 39769404045 218213327131 974668783199
10 63782411 835980065 9695617821 94786034723 746744227319 4681133293821 23769847893305
11 851368766 12004984120 151488900012 1639198623818 14531624611594 103244315616876 593009444765240
12 12188927818 183754242626 2502346785164 29658034018852 292747054367966 2338363467319958 15112319033576416
13 186132043831 2984264710781 43560247035581 560484305049943 6100545513799835 54347237563601321 393031286917940401
14 3017325884473 51220227153987 796828655891895 11046637024014049 131425939696979805 1295642289776992983 10425601907159190187

Figure 1: Values of Tn,m for n and m up to 14 and 6, respectively

Let us denote by Tn,m the set of terms of size n with at most m distinct free de Bruijn
indices. This notation for combinatorial structures is borrowed from [7].

T0,m = [1 . . .m]

Tn+1,m = λTn,m+1 ]
n⊎
k=0

Tn−k,m@Tk,m.

For all n,m ∈ N, let Tn,m denote the cardinality of the set Tn,m (again a notation
of [7]). According to the definition of size, operators λ and @ have size 1 and de Bruijn
indices have size 0. Therefore, we get the following two equations specifying Tn,m:

T0,m = m

Tn+1,m = Tn,m+1 +
n∑
i=0

Ti,mTn−i,m.

This means that there are m terms of size 0 with at most m distinct free de Bruijn
indices, which are terms that are just these indices. Terms of size n + 1 with at most
m distinct free de Bruijn indices are either abstractions with at most m+ 1 distinct free
indices on a term of size n or applications of terms with at most m distinct free indices
to make a term of size n + 1. As we said in the introduction, the 11 first values of Tn,0
are:

0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411.

Tn,0 is sequence A220894 in the On-line Encyclopedia of Integer Sequences.
Figure 1 gives all the values of Tn,m for n up to 14 and m up to 6. For instance,

there is 1 closed term of size 1, namely λ1, there are 3 closed terms of size 2, namely
λλ1, λλ2, λ1 1, and there are 14 closed terms of size 3, namely

λλλ1 λλλ2 λλλ3 λλ1 1 λλ1 2 λλ2 1 λλ2 2
λ(1λ1) λ(1λ2) λ1(11) λ((λ1) 1) λ((λ2) 1) λ((1 1) 1) (λ1)λ1.

Notice that in Section 7 we describe how to assign a term to a number and therefore
how to list terms with increasing numbers. The above terms are listed in that order.
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2.1 Computing the Tn,m’s

The recursive definition of T yields an easy naive program in a functional programming
language (here Haskell):

naiveT :: Int -> Int -> Integer

naiveT 0 m = (fromIntegral m)

naiveT n m = naiveT (n-1) (m+1) +

foldl (+) 0 (let tt = [naiveT i m | i<- [0..(n-1)]] in

(map (uncurry (*)) (zip tt (reverse tt))))

This program is inefficient since it recomputes the values of T at each recursive call. For
actual computations a program with memoization is required. In Sage this is obtained
by requiring the function to be “cashed”. In Haskell we use the laziness of streams:

ttab :: [[Integer]]

ttab = [0..]:[[ttab !! (n-1) !! (m+1) + s n m

| m <- [0..]] | n <- [1..]]

where s n m = let ti = [ttab !! i !! m | i <- [0..(n-1)]] in

foldl (+) 0 (map (uncurry (*)) (zip ti (reverse ti)))

t :: Int -> Int -> Integer

t n m = ttab !! n !! m

The first computation of ttab !! n !! 0 requires O(n2) additions and O(n2) multiplications.
Therefore, the complexity of the first computation of t n 0 depends on the complexity of
the addition and of the multiplication of big numbers which we may assume (intuitively)
to be O(log(Tn,0)). Although the question of the asymptotic size of the number Tn,0 is
open, we know that it is superexponential in n and, on the other hand, it is asymptotically
smaller than nn. Therefore, t n 0 runs in O(n2 × log(Tn,0)) which is at least of order n3

and at most of order n3 log(n). Such estimations seem to be in accordance with our
experiments. Once the table ttab is constructed, the runtime of t is constant.

2.2 The polynomials Pn

In the end of this section and in the four coming sections we present results of mainly combi-

natorial flavor. We focus there on the quantitative approach to lambda calculus, with special

emphasis on the challenging problem of counting lambda terms and approximating its asymptotic

behavior. Therefore, a reader interested mostly in term generation and experimental results can

skip this material and go directly to Section 7.

The problem of determining the asymptotic estimation of the number of closed terms
of a given size turns out to be a non-trivial task. Due to the unusual combinatorial struc-
ture of lambda terms, such objects seem to resist methods developed in combinatorics
so far. There are a few papers devoted to this challenging problem [2, 4, 13], however,
none of the methods used by now could provide the final solution. Our approach can be
considered as the development of the previous research carried out by the second author
in [13].
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n Pn

0 m
1 m2 +m+ 1
2 2m3 + 3m2 + 5m+ 3
3 5m4 + 10m3 + 22m2 + 25m+ 14
4 14m5 + 35m4 + 94m3 + 154m2 + 163m+ 82
5 42m6 + 126m5 + 396m4 + 838m3 + 1277m2 + 1235m+ 579
6 132m7 + 462m6 + 1654m5 + 4260m4 + 8384m3 + 11791m2 + 10707m+ 4741
7 429m8 + 1716m7 + 6868m6 + 20742m5 + 49720m4 + 90896m3 + 120628m2 + 104055m+ 43977
8 1430m9 + 6435m8 + 28396m7 + 98028m6 + 275886m5 + 617096m4 + 1068328m3 + 1352268m2 + 1117955m+ 454283

Figure 2: The first eight polynomials Pn

For every n ≥ 0, we associate with Tn,m a polynomial Pn(m) in m. First, let us define
polynomials Pn in the following recursive way:

P0(m) = m,

Pn+1(m) = Pn(m+ 1) +
n∑
i=0

Pi(m)Pn−i(m).

The sequence (Pn(0))n≥0 corresponds to the sequence (Tn,0)n≥0 enumerating closed
lambda terms. The first nine polynomials are given in Figure 2.

This means that the constant coefficient of a polynomial Pn(m) is exactly the number
of closed lambda terms of size n.

Lemma 1 For every n, the degree of the polynomial Pn is equal to n+ 1.

Proof: The result follows immediately by induction on n from the definition
of Pn. �

For i > 0 and n ≥ 0, let us denote by p
(i)
n the ith leading coefficient of the polynomial

Pn, i.e., we have

Pn(m) = p(1)n mn+1 + p(2)n mn + . . .+ p(i)n m
n+2−i + . . .+ p(n+1)

n m+ p(n+2)
n .

Lemma 2 For every n ≥ 0 and i > 0,

p
(1)
0 = 1, p

(i)
0 = 0 for i > 1,

p
(i)
n+1 =

i−2∑
j=0

(
n+ 1− j
i− 2− j

)
p(j+1)
n +

i∑
k=1

n∑
j=0

p
(k)
j p

(i+1−k)
n−j .

Proof: Since P0(m) = m, equations from the first line in the above lemma are
trivial.

The ith leading coefficient in the polynomial Pn+1(m) is equal to the sum of
coefficients standing atmn+3−i in polynomials Pn(m+1) and

∑n
j=0 Pj(m)Pn−j(m).

The first of these polynomials, Pn(m+ 1), is as follows:

p(1)n (m+ 1)n+1 + . . .+ p(i−1)n (m+ 1)n+3−i + . . .+ p(n+2)
n ,
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therefore the coefficient of mn+3−i in Pn(m+ 1) is equal to(
n+ 1

i− 2

)
p(1)n +

(
n

i− 3

)
p(2)n +. . .+

(
n+ 3− i

0

)
p(i−1)n =

i−2∑
j=0

(
n+ 1− j
i− 2− j

)
p(j+1)
n .

In the case of the second polynomial,
∑n

j=0 Pj(m)Pn−j(m), we have(
p
(1)
j mj+1 + . . .+ p

(k)
j mj+2−k + . . .+ p

(j+2)
j

)
·
(
p
(1)
n−jm

n−j+1 + . . .+ p
(i+1−k)
n−j mn−j+1+k−i + . . .+ p

(n−j+2)
n−j

)
,

therefore the coefficient of mn+3−i in
∑n

j=0 Pj(m)Pn−j(m) is equal to

i∑
k=1

n∑
j=0

p
(k)
j p

(i+1−k)
n−j .

�

The next section proposes a combinatorial interpretation of the coefficients p
(i)
j .

3 Counting contexts

In λ-calculus, an i-context is a closed term with i holes. We consider that each hole has
size 0 and we assume that the holes are numbered 1, . . . , i as they appear in the term from
left to right. For instance, if we denote every hole by [ ], then (λ1[ ])λλ[ ]2 is a 2-context
of size 6 and its holes are numbered as follows (λ1[ ]1)λλ[ ]22. 0-contexts correspond to
closed terms. There is only one 1-context of size 0 and there are no i-contexts of size 0
for i 6= 0. Let us write cn,i for the number of i-contexts of size n. One notices that

c0,1 = 1
c0,i = 0 for i 6= 1.

}
(†)

Now, let us see how we construct an i-context of size n+ 1 from smaller ones.

By abstraction: let us take a j-context (for j ∈ [i..n + 1]) of size n and add a new
lambda above it. Then we choose a set of j − i holes among the j holes which we
substitute by variables (or indices) abstracted by the new lambda. For a fixed j
there are

(
j
i

)
cn,j such i-contexts. Finally, we sum these quantities over every j from

i to n+ 1 to get the numbers of i-contexts constructed this way.

By application: let us apply a j-context of size k to an (i− j)-context of size n−k (for
j ∈ [0..i] and k ∈ [0..n]). This gives us an i-context of size n+1 since the application
operator has size 1. For fixed j and k there are ck,jcn−k,i−j such i-contexts. Finally,
we sum these numbers from j = 0 to j = i and from k = 0 to k = n.
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Hence, we get the following formula:

cn+1,i =
n+1∑
j=i

(
j

i

)
cn,j +

i∑
j=0

n∑
k=0

ck,jcn−k,i−j. (?)

From the contexts we can see how we can build terms. More precisely, from an i-context
of size n and a map f from [1..i] to [1..m], we can insert the index f(j) in the jth hole
to build a term of size n with i occurrences of free variables taken among m ones. There
are cn,im

i such terms. Therefore

Tn,m = cn,n+1m
n+1 + . . .+ cn,im

i + . . .+ cn,0

is the number of λ-terms of size n with at most m distinct free variables, which is the
polynomial Pn. In particular, cn,n+2−i = p

(i)
n . This can be written as follows:

Pn(m) =
n+1∑
i=0

cn,im
i.

The coefficients cn,i of the polynomials Pn’s count the i-contexts of size n. We see that
cn,i = 0 when i > n+ 1.

The case i = n+2. In the case when i = n+2, using the fact that cn,i = 0 for i > n+1,
the equations (†) and (?) boil down to:

c0,1 = 1

cn+1,n+2 =
n∑
k=0

ck,k+1cn−k,n−k+1,

which is characteristic of the Catalan numbers. Indeed, (n + 1)-contexts of size n have
only applications and no abstractions and are therefore binary trees.

3.1 The generating function for (cn,i)n,i∈N

Proposition 3 Consider the bivariate generating function L(z, u) =
∑
n,i≥0

cn,iz
nui. Then

L(z, u) = u+ zL(z, u+ 1) + zL(z, u)2.

Proof: Notice that

L(z, u) =
∞∑
n=0

(
∞∑
i=0

cn,iu
i

)
zn

=
∞∑
n=0

Pn(u)zn

= u+ z
∞∑
n=0

Pn+1(u)zn

= u+ z
∞∑
n=0

Pn(u+ 1)zn + z

∞∑
n=0

n∑
k=0

Pk(u)Pn−k(u)zn

= u+ zL(z, u+ 1) + zL(z, u)2.
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A similar equation was known from Bodini, Gardy and Gittenberger [2] (for variables size
1). However, notice that what they call L is not the class of open λ-terms, but the class
of i-contexts. Notice that the function L(z, 0) is the generating function for the number
of closed terms of size n.

The equation
zL(z, u)2 − L(z, u) + u+ zL(z, u+ 1) = 0

has the following solution

L(z, u) =
1−

√
1− 4z(u+ zL(z, u+ 1))

2z
.

Let us state
M(z, u) = 2z L(z, u).

Then
M(z, u) = 1−

√
1− 4zu− 2zM(z, u+ 1)

and hence

M(z, 0) = 1−

√√√√
1− 2z(1−

√
1− 4z − 2z(1−

√
1− 8z − 2z(1−

√
1− 12z − 2z(1−

√
1− 16z − . . .)))).

3.2 The asymptotic behavior of Tn,0

The function M(z, u) has a singularity zu for 1− 4zuu− 2zuM(zu, u+ 1) = 0, in addition
to the singularities of M(z, u+ 1). Notice that since zuM(zu, u+ 1) > 0, we get zu <

1
4u

.
Therefore L(z, 0) has a sequence of singularities (zu)u∈N which tends to 0. Thus the radius
of convergence of L(z, 0) is 0.

4 Three formulas for counting closed terms

We have found three formulas to compute the number of closed terms of size n. Let us
summarize them. In what follows the bracketed notation [k = j] is the function which
is 1 if k = j and 0 if k 6= j.

Case m = 0 for terms with at most m distinct free variables
Tn,0 where

T0,m = m

Tn+1,m = Tn,m+1 +
n∑
i=0

Ti,mTn−i,m.

This formula is clearly the simplest. Its simplicity, one sum and no binomial, allows
to unfold it and on this basis it enables building a program for term generation (see
Section 7).
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Case m = 0 for terms with exactly m distinct free variables
fn,0 where

f0,m = [m = 1]

fn,m = 0 if m > n+ 1

fn+1,m = fn,m + fn,m+1 +
n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.

This formula is the most complex. Appendix A.1 shows how it is constructed.

0-contexts
cn,0 where

c0,i = [i = 1]

cn+1,i =
n+1∑
j=i

(
j

i

)
cn,j +

i∑
j=0

n∑
k=0

ck,jcn−k,i−j.

Four relations. Let us use the notation R
(m)
i (see Flajolet and Sedgewick’s book [7])

for the number of surjections from [1..i] to [1..m]. Recall that

R
(m)
i =

i∑
j=0

(
i

j

)
(−1)j(i− j)m.

The numbers Tn,m, fn,m and cn,i are related as follows (see Appendix A.2):

Tn,m =
m∑
i=0

(
m

i

)
fn,i =

n+1∑
i=1

cn,im
i

fn,m =
m∑
i=0

(−1)m+i

(
m

i

)
Tn,i =

n+1∑
i=1

cn,iR
(m)
i .

5 More generating functions

For every positive integer i, let us denote by ai the generating function for the sequence(
p
(i)
n

)
n≥0

, i.e.,

ai(z) =
∞∑
n=0

p(i)n z
n =

∞∑
n=0

cn,n+2−iz
n.

The p
(i)
n ’s count the number of contexts of size n having n+ 2− i holes. For the sake of

clarity, instead of writing ai(z) sometimes we simply write ai.
In order to compute the functions ai, we apply the following basic fact about gener-

ating functions.

11



Fact 4 Let f and g be generating functions for sequences (fn)n≥0 and (gn)n≥0, respec-
tively. Then

(i) the generating function for the sequence
((
n
k

)
fn
)
n≥0, where k is a fixed positive

integer, is given by zkf (k)

k!
,

(ii) the generating function for the sequence (
∑n

i=0 fign−i)n≥0 is given by f · g,

(iii) the generating function for the sequence
((
n−j
i

)
fn
)
n≥0, where i ≥ 0 and j > 0, is

given by
∑i

k=0(−1)k
(
k+j−1
j−1

)
zi−k f

(i−k)

(i−k)! .

Proof: Items (i) and (ii) can be found, e.g., in Chapter 7 of [8].
The third part follows from (i) and the following equality:(

n− j
i

)
=

i∑
k=0

(−1)k
(

n

i− k

)(
k + j − 1

j − 1

)
,

which holds for every n, i ≥ 0 and j > 0. This equality can be easily derived
from two equalities known as “upper negation” and “Vandermond convolu-
tion”, which can be found in Table 174 of [8]. �

Now we are ready to provide a recurrence for functions ai.

Theorem 5 The following equations are valid:

a1 = za21 + 1, a1(0) = 1

a2 = za1 + 2za1a2

ai = zi−1
a
(i−2)
1

(i− 2)!
+ zi−2

a
(i−3)
1

(i− 3)!
+ zi−2

a
(i−3)
2

(i− 3)!

+z ·
i−3∑
j=1

i−3−j∑
k=0

(−1)k
(
k + j − 1

j − 1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i− 3− j − k)!

+z ·
i∑

j=1

ajai−j+1, for i > 2.

Proof: All these equations follow from Lemma 2 and Fact 4. �

Notice that the ai’s can be computed by induction. Indeed, ai occurs twice in the
lefthand side of the last equation and we have:

ai(1− 2a1) = zi−1
a
(i−2)
1

(i− 2)!
+ zi−2

a
(i−3)
1

(i− 3)!
+ zi−2

a
(i−3)
2

(i− 3)!

+z ·
i−3∑
j=1

i−3−j∑
k=0

(−1)k
(
k + j − 1

j − 1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i− 3− j − k)!

+z ·
i−1∑
j=2

ajai−j+1.

12



a1(z) =

(
1

2
− (1− 4z)1/2

2

)
z−1

a2(z) = −1

2
+

1

2 (1− 4z)1/2

a3(z) =

(
1

1− 4z
+

z

(1− 4z)3/2

)
z

a4(z) =

(
3

(1− 4z)2
+

z

(1− 4z)5/2

)
z2

a5(z) =

(
4z + 9

(1− 4z)3
+
z2 − 19z + 5

(1− 4z)7/2

)
z3

a6(z) =

(
24z + 31

(1− 4z)4
+

3z2 − 203z + 51

(1− 4z)9/2

)
z4

a7(z) =

(
16z2 − 128z + 181

(1− 4z)5
+

2z3 − 194z2 − 1541z + 398

(1− 4z)11/2

)
z5

Figure 3: The generating functions for the coefficients of the polynomials Pn(m)

Since 1− 2a1 =
√

1− 4z, we get:

ai =


zi−1

a
(i−2)
1

(i−2)! + zi−2
a
(i−3)
1

(i−3)! + zi−2
a
(i−3)
2

(i−3)!

+z ·
∑i−3

j=1

∑i−3−j
k=0 (−1)k

(
k+j−1
j−1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i−3−j−k)!
+z ·

∑i−1
j=2 ajai−j+1

 /
√

1− 4z. (‡)

Corollary 6 Exact formulas for the functions a1–a7 are given in Figure 3.

Proof: Let us first compute the function a1 which, according to Theorem 5,
is given by

a1 = za21 + 1, a1(0) = 1.

By solving this equation, we obtain a1(z) = 1−
√
1−4z
2z

, which is exactly the
generating function for Catalan numbers—see, e.g., Chapter I.1 of [7].

Now, let us notice that on the basis of Theorem 5 all the other functions
can be immediately obtained by tedious, however elementary, computations.
In order to get exact values we applied Sage software [19]. �

Let [zn]f(z) denote the nth coefficient of zn in the formal power series f(z) =
∑∞

n=0 fnz
n.

As usual, we use the symbol ∼ to denote the asymptotic equivalence of two sequences, i.e.,
we write fn ∼ gn iff the limit of the sequence (fn/gn)n≥0 is 1. Similarly, by f(z) ∼

z→z0
g(z)

we mean that the limit of f(z)/g(z) is 1 when z → z0. We say that a function f(z) is of
order g(z) for z → z0 iff there exists a positive constant A such that f(z) ∼

z→z0
A · g(z).

The theorem below (Theorem VI.1 of [7]) serves as a powerful tool that allows us to
estimate coefficients of certain functions that frequently appear in combinatorial consid-
erations.
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Fact 7 Let α be an arbitrary complex number in C \ Z≤0. The coefficient of zn in

f(z) = (1− z)α

admits the following asymptotic expansion:

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2

+
α2(α− 1)2(α− 2)(α− 3)

48n3
+O

(
1

n4

))
,

where Γ is the Euler Gamma function defined for <(α) > 0 as

Γ(α) :=

∫ ∞
0

e−ttα−1dt.

Now we are ready to prove the following approximation.

Proposition 8 The exact order of functions ai for z → 1/4 is given by

ai(z) ∼
z→ 1

4

Ci−2
23i−5(1− 4z)(2i−3)/2

,

where Ci is the ith Catalan number.

Proof: We prove the result by induction using Theorem 5. For the sake of
simplicity, we write ∼ and “is of order” to denote ∼

z→ 1
4

and “is of order for

z → 1/4”.
The result is true for i = 1. For i > 1 and j ≤ i, assume that aj(z) is of

order 1
(1−4z)(2j−3)/2 and look at equation (‡) to prove that ai+1(z) is of order

1
(1−4z)(2i−1)/2 .

Notice that the ith derivative of a1 is of order 1
(1−4z)2i−1/2 , hence its (i −

2)th derivative is of order 1
(1−4z)(2i−5)/2 and its (i − 3)th derivative is of order

1
(1−4z)(2i−7)/2 . Similarly, the ith derivative of a2 is of order 1

(1−4z)2i+1/2 , hence its

(i− 3)th derivative is of order 1
(1−4z)(2i−5)/2 .

By induction for j + 2 ≤ i − 3, aj+2 is of order 1
(1−4z)(2j+1)/2 . Among its

successive derivatives we derive at most i − 3 − j times, hence the items in
the sum are of order at most 1

(1−4z)(2i−5)/2 .

Now, every product ajai−j+1 is of order 1
(1−4z)i−2 , therefore the first four

terms in (‡) do not contribute to the asymptotic value of ai+1(z). Hence
the contribution to the asymptotic value is given only by products ajai−j+1’s.
Multiplying their order by 1√

1−4z we obtain that the last sum is of order
1

(1−4z)(2i−1)/2 .

Let us denote byKi the multiplicative coefficient Ci−2/2
3i−5 of 1

(1−4z)(2j−3)/2 .

One notices that K2 = 1
2

= C0

23.2−5 . The sum z
∑i−1

j=2 ajai−j+1 shows the

14



inductive part. Indeed, when z = 1
4
:

z

i−1∑
j=2

KjKi−j+1 =
1

4

i−1∑
j=2

Cj−2
23j−5

Ci−j+1−2

23(i−j+1)−5

=
1

23i−5

i−3∑
j=0

CjCi−j−3

=
Ci−2
23i−5 = Ki.

�

Finally, we are able to provide asymptotic values of coefficients of functions ai.

Theorem 9 The coefficient of zn in the function ak(z) admits the following asymptotic
expansion:

[zn]ak(z) =
1

2k−1(k − 1)!
√
π

4nn(2k−5)/2 · Ψ(n, k)

where

Ψ(n, k) = 1 +
(2k − 3)(2k − 5)

8n
+

(2k − 3)(2k − 5)(2k − 7)(3k − 11)

384n2
+

(2k − 3)2(2k − 5)2(2k − 7)(2k − 9)

3672n3
+O(

1

n4
).

Proof: First recall that

Γ((2k − 3)/2) = Γ((k − 2) +
1

2
) =

(2(k − 2))!
√
π

22(k−2)(k − 2)!
.

Now using Fact 7, we can compute the principal part:

[zn]ak(z) =
Ck−2
23k−5 4n [zn](1− z)(2k−3)/2

∼ Ck−2
23k−5 4n

n(2k−5)/2

Γ((2k − 3)/2)

=
Ck−2
23k−5

(k − 2)!22(k−2)

(2(k − 2))!
√
π

4nn(2k−5)/2

=
Ck−2(k − 2)!

2k−1(2(k − 2))!
√
π

4nn(2k−5)/2

=
1

2k−1(k − 1)!
√
π

4nn(2k−5)/2.

For Ψ(n, k) we use Fact 7, with α = 2k−3
2

. �

By looking at Figure 3, we can easily notice a recurring pattern concerning the struc-
ture of functions ai. Therefore, we state the following proposition.
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Proposition 10 For every i > 2 we have

ai(z) = zi−2

(
Qi(z)

(1− 4z)i−2
+

Si(z)

(1− 4z)i−
3
2

)
,

where Qi and Si are polynomials over Z in z and degQi =
⌊
i−3
2

⌋
and degSi =

⌊
i−1
2

⌋
.

Proof: By induction using formula (‡), in the same vein as the proof of Propo-
sition 8. In particular, the two first members of (‡) are derivatives of the
generating function of Catalan numbers studied in [11]. �

As we have already mentioned, the number of closed terms of size n is given by
Pn(0), which corresponds to the nth term of the Taylor expansion of the function an+2.
Hence, the sequence of the numbers of closed lambda terms is equal to the sequence
([zn]an+2(z))n≥0. From Proposition 10, the number of closed terms of size n is equal to
Qn+2(0) + Sn+2(0). Currently, we have no recursive formula for the Qn’s and the Sn’s.
However, by Proposition 8, we know that

Sn+2

(
1

4

)
=

Cn
2n+1

.

6 Counting normal forms

Beside counting terms, it is also interesting to count normal forms. To this end, we
describe the set of normal forms as follows

Gm = [1 . . .m] ] Gm@Fm
Fm = λFm+1 ] Gm

Recall that a normal form is made by a (possibly empty) sequence of abstractions on a
term which is made as follows: a de Bruijn index applied to a sequence of normal forms.
Fm represents the normal forms and Gm represents the terms starting with an index.
From this we derive the formulas for counting:

G0,m = m

Gn+1,m =
n∑
k=0

Gn−k,mFk,m,

F0,m = m

Fn+1,m = Fn,m+1 +Gn+1,m.

The values of Fn,0 up to n = 10 are:

0, 1, 3, 11, 53, 323, 2359, 19877, 188591, 1981963, 22795849.

This sequence is A224345 in the On-line Encyclopedia of Integer Sequences. A Haskell
program for computing the values of Fn,m and Gn,m efficiently is as follows:
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ftab :: [[Integer]]

ftab = [0..]:[[ftab !! (n-1) !! (m+1) + gtab !! n !! m

| m<-[0..]]

| n<-[1..]]

gtab :: [[Integer]]

gtab = [0..] : [[s n m | m <- [0..]] | n <- [1..]]

where s n m = let fi = [ftab !! i !! m | i <- [0..(n-1)]]

gi = [gtab !! i !! m | i <- [0..(n-1)]]

in foldl (+) 0 (map (uncurry (*))

(zip fi (reverse gi)))

f :: Int -> Int -> Integer

f n m = ftab !! n !! m

Like for terms we derive polynomials:

NFP0(m) = m
NFPn+1(m) = NFPn(m+ 1) + NFQn+1(m)

NFQ0(m) = m

NFQn+1(m) =
n∑
k=0

NFPk(m)NFQn−k(m).

Lemma 11 For every n, the degree of the polynomials NFPn and NFQ is equal to n+ 1.

Proof: Like the proof of Lemma 1, by induction on n from the definition of
NFPn and NFQ. �

We have not derived the formulas for the coefficients yet. But these formulas are useful
to derive generators of normal forms used in the rest of the paper.

6.1 Coefficients of the polynomials NFPn and NFQn

Let us count i-nf-contexts. They are closed normal forms with i holes. The i-nf-contexts
of size n are counted by dn,i. They are abstractions of i-contexts of the form [ ]N1 . . . Np,
which we call i-pre-nf-contexts, where eachNj is a ij-nf-context (with i1+. . .+ij+. . .+ip =
i− 1) and which are counted by gn,i. There is one 1-nf-context and one 1-nf-pre-context
of size 0, whereas there are 0 i-nf-contexts and 0 i-nf-pre-contexts for i 6= 1 of size 0.
Thus we get

d0,i = [i = 1],

g0,i = [i = 1].

17



By reasoning similarly as in Section 3 and by using the description of normal forms
given above, we get:

dn+1,i =
n+1∑
j=i

(
j

i

)
dn,j + gn+1,i,

gn+1,i =
i∑

j=0

n∑
k=0

gk,jdn−k,i−j.

Therefore

NFPn(m) =
n∑
i=0

dn,im
i,

NFQn(m) =
n∑
i=0

gn,im
i.

6.2 Generating functions

Consider the two generating functions:

D(z, u) =
∑
n,i≥0

dn,iz
nui,

G(z, u) =
∑
n,i≥0

gn,iz
nui.

Then we have

D(z, u) =
∞∑
n=0

NFPn(u),

G(z, u) =
∞∑
n=0

NFQn(u).

Therefore

D(z, u) = u+ z
∞∑
n=0

NFPn(u+ 1) +
∞∑
n=1

NFQn(u)

= zD(z, u+ 1) +G(z, u)

and

G(z, u) = u+ z

∞∑
n=0

NFQn(u)NFPn(u)z

= u+ z

∞∑
n=0

n∑
k=0

gk,jz
kuidn−k,i−jz

n−knui−j

= u+ zD(z, u)G(z, u).
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Consequently the two functions D and G satisfy

D(z, u) = zD(z, u+ 1) +G(z, u),

G(z, u) = u+ zD(z, u)G(z, u).

D(z, 0) is the generating function for the numbers of closed normal forms of size n.

6.3 An expression for D(z, u)

By solving the above system of equations, we get:

zD(z, u)− (1 + z2D(z, u+ 1))D(z, u) + u+ zD(z, u+ 1) = 0,

which yields

D(z, u) =
1 + z2D(z, u+ 1)−

√
(1 + z2D(z, u+ 1))2 − 4z(u+ zD(z, u+ 1))

2z
.

7 Lambda term generation

From the simple equation defining the number Tn,m of terms, we define the function
generating them. More precisely, we define a function term(k, n,m) which returns the
kth term of size n with at most m distinct free variables (see the Haskell program in
Figure 4). The variable k is an Integer (i.e., a big number) which belongs to the interval
[1..Tn,m]. The program mimics counting terms. If n is 0, then the program returns the
de Bruijn index k. Otherwise, if k is less than Tn−1,m+1, the rank k lies in the part
of the interval [1..Tn,m] with terms that are abstractions. Therefore, for k ≤ Tn−1,m+1

term(k, n,m) returns λ term(k, n − 1,m + 1). If the rank k is larger than Tn−1,m+1, it
lies in the part of the interval [1..Tn,m] with applications. Therefore we call a function
appTerm which tries to identify which sub-interval contains a pair of terms with indices
k′ and k′′ such that k′ + k′′ is at the right place. The product of these values correspond
to one of the products Tj,mTn−j,m in the sum. When the number j is found, two recursive
calls of term, with appropriate k′ and k′′, build the subterms of the application. One may
notice (h− 1) and +1 which take into account the fact that k lies in an interval [1..T , ]
and div and mod work in an interval [0..(T , − 1)].

The function term relies on the function t presented in Section 2.1 and called here
O(n) times. Assuming that t has been called already once and therefore runs in constant
time, term performs O(n) recursive calls and its complexity depends linearly on the
operations div, mod, (−) and (∗) performed on big numbers.

For a given n, this program can be used to enumerate all the closed λ-terms of size n
and, more generally, all the λ-terms of size n with at most m distinct free variables. This is
appropriate only for small values of n, since the number of λ-terms gets superexponentially
large with n. But overall, in order to generate a random term of size n with at most
m distinct free variables, it suffices to feed T with a random value k in the interval
[1..Tn,m]. Similarly, one defines from the recursive formula for the number of normal
forms a program for their generation (Figure 5).
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data Term = Index Integer

| Abs Term

| App Term Term

term :: Integer -> Int -> Int -> Term

term k 0 m = Index k

term k n m

| k <= (t (n-1) (m+1)) = Abs (term k (n-1) (m+1))

| (t (n-1) (m+1)) < k = appTerm (k - t (n-1) (m+1)) (n-1) 0

where appTerm h n j

| h <= tjmtnjm = App (term ((h-1) ‘div‘ tnjm +1) j m)

(term ((h-1) ‘mod‘ tnjm +1) (n-j) m)

| otherwise = appTerm (h -tjmtnjm) n (j + 1)

where tnjm = t (n-j) m

tjmtnjm = (t j m) * tnjm

Figure 4: Haskell program for term generation

nf :: Integer -> Int -> Int -> Term

nf k 0 m = Index k

nf k n m

| k <= ftab !! (n-1) !! (m+1) = Abs (nf k (n-1) (m+1))

| ftab !! (n-1) !! (m+1) < k = ng (k - ftab !! (n-1) !! (m+1)) n m

ng :: Integer -> Int -> Int -> Term

ng k 0 m = Index k

ng k n m = appNF k (n-1) 0 m

appNF :: Integer -> Int -> Int -> Int -> Term

appNF h n j m

| h <= gjmfnjm = App (ng ((h-1) ‘div‘ fnjm +1) j m)

(nf ((h-1) ‘mod‘ fnjm +1) (n-j) m)

| otherwise = appNF (h -gjmfnjm) n (j + 1) m

where fnjm = ftab !! (n-j) !! m

gjmfnjm = gtab !! j !! m * fnjm

Figure 5: Haskell program for normal form generation

8 Simply typable terms

Once we have a random generator for untyped terms, it is easy to build a random gener-
ator for simply typable terms. It suffices to sieve all terms by a predicate, which we call
is typable. This predicate is a classical principal type algorithm [15, 3, 9]. In Appendix B,
we give a Haskell program. For instance, applying the random generator with parameter
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10 (for the size of the term), we got:

λ(λ(((1 λ(1)) λ((3 λ(((1 2) 3))))))).

This is a “typical” simply typable random closed lambda term of size 10 written with de
Bruijn indices. Its type is

((α→ (((β → β)→ (α→ γ)→ δ)→ ζ))→ ζ)→ γ →
((β → β)→ (α→ γ)→ δ)→ δ.

We were able to generate terms of size 50. For such terms, the generating process
is slow, since it requires 50 000 generations of terms, with (unsuccessful) tests of their
typability before getting a typable one. But for size 40, the number of attempts falls to
3 for 10 000, which is acceptable.

This kind of random generator is useful for testing functional programs. Micha l Pa lka
[16, 17] proposed a tool to debug Haskell compilers based on a lambda term generator.
His generator is designed on the development of a typing tree, with choices made when a
new rule is created. Such a method needs to cut branches in developing the tree to avoid
loops. This way his generator is not random, which may be a drawback in some cases.
As a matter of fact, a method for generating simply typed terms based on developing a
typing tree does not produce terms on a uniform random distribution since it requires to
cut the tree at arbitrary locations to avoid loops, “arbitrary” in the sense of randomness
preservation. In other words, there is no simple recursive definition of simply typed terms,
as well as of simply typable terms, that would allow an easy uniform random generation.
This is also what makes the combinatorial study of typed terms difficult. A term is
typable because it satisfies some constraints, not because it is generated in a specific way.

9 Experimental data

Given a random term generator, we are able to write programs to make statistics on some
features of terms. There are plenty of such experiments that can be lead. We have kept
here only two that look interesting and which are somewhat paradigmatic. Experiments
recorded here have been performed on a laptop.

9.1 Average variable depth in terms and normal forms

Let us define the variable depth as the number of symbols (abstractions and applications)
between a variable and the top of the term. For instance, given the term λx.(λyz.x)(λu.u),
the first occurrence of variable x has depth 1 and the second occurrence of variable x has
depth 3, while the depth of u is 2. This gives the average depth 2 for this term. Viewed
on de Bruijn indices of the brother term λ1 (λλ3λ1), we say that the first index 1 has
depth 1, the second index 3 has depth 3 and the third index 1 has depth 2, with the same
average 2 as previously. In Figure 6, we draw the average variable depth for 300 random
terms of size 15 up to size 175 (above scatter plot) and the average variable depth for
300 random normal forms of size 15 up to size 175 (below scatter plot) squeezed between
the curves 2n

ln(n)a
for a = 1 and a = 1.1 (plain lines). In Figure 7 we see the same four
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Figure 6: From above to below: Curve 2n
ln(n)

, average variable depth for terms, average

variable depth for normal forms and curve 2n
ln(n)1.1

.

drawings enlarged in the interval [170..175]. This shows clearly that the average variable
depth of terms and normal forms are different. On this basis, we conjecture that the
average depth of variables in terms has an asymptotic upper bound 2n

ln(n)
and that the

average variable depth is slightly smaller for normal forms than for terms.

9.2 Average number of head λ’s in terms

We say that λx is a head lambda in a term t if the latter is of the form λx1 . . . λxnλx.s
for some positive integer n and a certain term s. In order to know the structure of an
average term, we are interested in the average number of head λ’s occurring in terms. In
Figure 8, we compare the average number of head λ’s in 1000 random terms of size 15

to 150 with some functions
√

n
ln(n)a

and we see that, in the case of all terms, this is in

accordance with Theorem 35 in [4].

9.3 Ratio of simply typable terms among terms

It is interesting to investigate the ratio of simply typable terms among all terms. Actually,
there are 851 368 766 lambda terms of size 11, whereas there are 63 782 411 lambda terms
of size 10. Therefore, we performed computations for terms of size less than 11. In
fact, one cannot go much further due to the superexponential growth of the sequence
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Figure 7: Magnification of Figure 6 between n = 170 and n = 175.

enumerating closed terms. Table 1 gives the ratio of simply typable terms over all terms
by an exhaustive examination of the terms up to 10. For terms of size 8 or larger, we

size 4 5 6 7 8 9 10
nb of terms 82 579 4 741 43 977 454 283 5 159 441 63 782 411

nb of typables 40 238 1 564 11 807 98 529 904 318 9 006 364
ratio 0.4878 0.4110 0.3299 0.2684 0.2168 0.1752 0.1412

Table 1: Numbers and ratios of simply typable terms up to size 10

computed the ratio by the Monte Carlo method. The results are given in Table 2. The
sequence of the numbers of simply typable terms of a given size can be found in the
On-line Encyclopedia of Integer Sequences under the number A220471.

size 8 9 10 11 12 13 14 15 16 20 30 40 45 50
ratio .216 .175 .141 .111 .089 .073 .056 .047 .039 .0014 .0012 .0003 .00005 <10−5

Table 2: Ratios of simply typable terms (of size at least 8)

We conclude that simply typable terms become very scarce as the size of the terms
grows, falling to less than one over 100 000 when the size gets larger than 50. Like before,
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λ’s in normal forms. In between: curves
√

n
ln(n)a

for a = 0.025, 0.2, 0.3, 0.5.

we have done the same task for normal forms. We got the ratio by an exhaustive exam-
ination of normal forms up to 10 in Table 3 and by the Monte Carlo method thereafter
in Table 4.

size 4 5 6 7 8 9 10
nb of NF 53 323 2 359 19 877 188 591 1 981 963 22 795 849

nb of typable NF 23 108 618 4 092 30 413 252 590 2 297 954
ratio 0.4339 0.3343 0.2619 0.2058 0.1612 0.1274 0.1008

Table 3: Numbers and ratios of simply typable normal forms up to size 10

size 8 9 10 11 12 13 14 15 16 20 30 40 45
ratio .159 .128 .102 .079 .063 .049 .040 .031 .024 .010 .0006 2.10−5

<10−5

Table 4: Ratios of simply typable normal forms

9.4 Distribution of simply typable lambda terms among terms

We said that simply typable terms are scarce, but we may wonder what scarce exactly
means. More precisely, we may wonder how terms are distributed. To provide an answer
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Figure 9: Distribution of simply typable lambda terms of size 25. 250 segments on the
horizontal axis, percentage (0% – 3%) of typable terms in segments on the vertical axis.
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Figure 10: Distribution of simply typable lambda terms of size 30. 250 segments on the
horizontal axis, percentage (0% – 2.5%) of typable terms in segments on the vertical axis.

to this question, we realized experiments for approaching the distribution of the frequency
of typable lambda terms in segments of the interval [1..Tm,n]. For that we divided the
interval [1..Tm,n] in segments and we computed on samples of randomly generated terms,
the ratio of simply typable terms over general terms we may expect in each segment.
Figure 9 is typical of the results we got. This corresponds to an experiment on terms
of size 25 on 250 segments with tests for simple typability on 200 random terms in each
segment. For each segment the height of the vertical bar represents the ratio of typable
terms in the corresponding segment. It shows that the simply typable terms are not
evenly distributed. They are more concentrated on the left of the interval corresponding
to terms with low numbers. Those terms correspond to terms starting more often with
abstractions than with applications and this is recursively so for subterms giving this
impressions of rolling waves. For instance, there are 2% to 3% of typable terms (of size
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25) starting with many abstractions, whereas for terms starting with many applications,
there are large subintervals with almost no typable terms. Figure 10, which gives the
same statistics for terms of size 30, shows that typable terms get more scarce as the size
of the terms grows.

The normal forms are even more scarcely distributed. As a comparison, we drew the
same graphs for normal forms (size of the normal forms: 25 and 30, number of segments
250, tests on 200 terms) in Figure 11. The typable normal forms aggregate more on the
left of the interval where terms start mostly with abstractions, with peaks of 4% to 6%
by segments. Figure 12 shows that scarcity of typable normal forms increases as the size
of terms grow.

50 100 150 200 250

1

2

3

4

5

6
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Figure 11: Distribution of simply typable normal forms of size 25. 250 segments on the
horizontal axis, percentage (0% – 6%) of typable normal forms in segments on the vertical
axis.

10 Related works

There are very few papers on counting lambda terms, whereas counting first order terms
is a classical domain of combinatorics. Apparently, the first traces of counting expressions
with (unbound) variables can be attributed to Hipparchus of Rhodes (c. 190–120 BC) (see
[7] p. 68). Flajolet and Sedgewick’s book [7] is the reference on this subject. Concerning
counting λ-terms, we can cite only five works. [4] and [2] study asymptotic behavior of
formulas on counting lambda-terms. Strictly speaking, they do not exhibit a recurrence
formula for counting. In particular, David et al. [4] provide only upper and lower bounds
for the numbers of λ-terms in order to get information about the distribution of families of
terms. For instance, they prove that “asymptotically almost all λ-terms are strongly nor-
malizing”. In [13] the second author of the present paper proposes formulas for counting
λ-terms in the case of variables of size 1, with more complex formulas and less results. On
another hand, Christophe Raffalli proposed a formula for counting closed λ-terms, which
he derives from the formula for counting λ-terms with exactly m distinct free variables.
His formula appears in the On-line Encyclopedia of Integer Sequences under the number
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Figure 12: Distribution of simply typable normal forms of size 30. 250 segments on the
horizontal axis, percentage (0% – 1.45%) of typable normal forms in segments on the
vertical axis.

A135501. He considers size 1 for the variables. Beside those works, John Tromp [20]
proposes a rather different way of counting λ-terms which deserves to be investigated
further from the viewpoint of combinatorics. His size function works on terms with de
Bruijn indices like ours and is (in our convention of starting at 1) as follows:

|n| = n+ 1

|λM | = |M |+ 2

|M N | = |M |+ |N |+ 2

producing sequence A114852 (and sequence A195691 for closed normal forms). This
work is connected to program size complexity and Algorithmic Information Theory [14].

As concerns random generation, Wang in [21] proposed algorithms for randomly gen-
erating untyped λ-terms in the spirit of the counting formula of Raffalli. On term gener-
ation, we can also mention the work of [6], in which the authors enumerate and generate
many structures other than λ-terms. Pa lka [16, 17] uses generation of typabke λ-terms
to test Haskell compilers. He acknowledges that, due to his method, he cannot guarantee
the randomness of his generator (see discussion in [16] p. 21 and p. 45). Nonetheless, he
found eight failures and four bugs in the Glasgow Haskell Compiler showing the interest
in the method. [18] studies the feasibility of generic programming for the enumeration of
typed terms. The given examples are of size 4 or 5, no realistic examples are provided,
randomness is not addressed and the authors confess that their algorithm is not efficient.
Knowing that there are 63 782 411 simply typable closed terms of size 10, one wonders if
there is the actual use for such enumeration and it seems unrealistic to utilize enumeration
for larger numbers. The “related work” section of [18] covers similar approaches, which
all consist in cutting branches. They all fail to generate random terms. A presentation of
tree-like structure generation and a history of combinatorial generation is given in [10].
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12 Conclusion

This paper opens tracks of research in two directions, which are intrinsically complemen-
tary, namely counting and generating. On counting terms, some hard problems remain
to be solved. Probably the hardest and the most informative one is to give an asymptotic
estimation for the numbers of closed terms of size n. It seems that big obstacles remain to
be hurdled before getting a solution, since combinatorial structures with binders have not
been studied so far by combinatorists. On generation of terms, implementations have to
be improved to go further in the production of uniformly distributed terms, in particular,
of uniformly generated typed terms. This work has to be done in interaction with recent
advances on generation of functional algebraic structures of several kinds.
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[14] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its appli-
cations (2nd ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[15] Max H. A. Newman. Stratified systems of logic. Proceedings of the Cambridge
Philosophical Society, 39:69–83, 1943.

[16] Micha l Pa lka. Testing an optimising compiler by generating random lambda terms.
Licentiatavhandling, Department of Computer Science and Engineering, Chalmers
University of Technology and Göteborg University, May 2012.
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A Terms with exactly m distinct free variables

Here we study the numbers of terms with exactly m distinct free variables, the formulas
for counting those numbers and their relations with quantities we considered.

A.1 A formula

Let us show how to derive the formula for counting λ-terms with exactly m distinct free
variables. This formula is adapted from a similar one when variables have size 1 due to
Raffalli (On-line Encyclopedia of Integer Sequences under the number A135501). We
assume that terms are built with usual variables (not de Bruijn indices) and that they are
equivalent up to a renaming of bound variables and up to α-conversion. Let us denote
the number of λ-terms of size n with exactly m distinct free variables by fn,m.

Notice first that there is no term of size 0 with no free variable, hence f0,0 = 0. There
is one term of size 0 with one free variable, hence f0,1 = 1. The maximum number of
variables for a λ-term of size n is when the only operators are applications and all the
variables are different. One has then a binary tree with n internal nodes and n+ 1 leaves
holding n + 1 variables. This means that for m beyond n + 1 variables there is no term
of size n with exactly m distinct free variables. Hence

fn,m = 0 when m > n+ 1.

In the general case, a term of size n + 1 with m free variables starts either with an
abstraction or with an application. Terms starting with an abstraction, say λx, on a term
M contribute in two ways: either M does not contain x as a free variables or M contains
x as a free variable. There are fn,m such M ’s in the first case and fn,m+1 in the second.
This gives the two first summands fn,m + fn,m+1 of the formula. Now, let us see how
terms starting with an application look like. Assume they are of the form P Q and of size
n+ 1. For some p ≤ n, the term P is of size p and Q is of size n− p. These terms share c
common variables (0 ≤ c ≤ m), while P Q has m distinct free variables altogether. The
term P has k distinct free variables, which do not occur in Q, hence P has k+ c distinct
free variables altogether. The term Q has m− k distinct free variables. Therefore, given
a set of private variables for P , a set of common variables, and a set of private variables
for Q, there are fp,k+cfn−p,m−k possible pairs (P,Q). There are

(
m
c

)
ways to choose the

c common variables among m and there are
(
m−c
k

)
ways to split the remaining variables

into P and Q, namely k for P and m − c − k for Q, hence the third summand of the
formula:

n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.

Now, we obtain the whole formula:

fn+1,m = fn,m + fn,m+1 +
n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.
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A.2 Relations between Tn,m and fn,m

The number of terms of size n with exactly i indices in [1..m] is
(
m
i

)
fn,i. Therefore the

number of terms with indices in [1..m] is:

Tn,m =
m∑
i=0

(
m

i

)
fn,i.

By the inversion formula ([8] p. 192), we get:

fn,m =
m∑
i=0

(−1)m+i

(
m

i

)
Tn,i.

This shows with no surprise that fn,m and Tn,m are simply connected. Knowing that the
Tn,m’s can be easily computed, this provides a formula simpler than Raffalli’s to compute
the fn,m’s.

A.3 A relation between fn,m and cn,i

We write R
(m)
i the number of surjections from [1..i] to [1..m]. To get a relation between

fn,m and cn,i, we can reproduce the process with which we associated Tn,m and cn,i (Sec-
tion 3), but instead of applications from [1..i] to [1..m], we have surjections from [1..i]
to [1..m], since this time we count terms with exactly m variables and all the de Bruijn
indices must be reached by the applications. Therefore

fn,m =
n∑
i=0

cn,iR
(m)
i .

Recall that

R
(m)
i =

m∑
j=0

(
m

j

)
(−1)j(i− j)m.

We can now go further in the expression of fn,m.

fn,m =
n∑
i=0

cn,i

m∑
j=0

(
m

j

)
(−1)j(m− j)i

=
n∑
i=0

cn,i

m∑
k=0

(
m

k

)
(−1)m−kki

=
m∑
k=0

(
m

k

)
(−1)m−k

n∑
i=0

cn,ik
i

=
m∑
k=0

(−1)m+k

(
m

k

)
Tn,k.

which is another proof of the formula of Section A.2.
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B A program for testing simple typability

In this section we give a simple Haskell program for testing simple typability of a term
also called type reconstruction. The program which works on the type Type:

data Type = Var Int

| Arrow Type Type

has three parts. First, the function builds the set of typability constraints of a closed
term. This function called build constraint takes a term and returns its potential principal
type, which will be made explicit after solving the constraints, and a list of constraints. It
requires a function build which will be called through the terms. Along its traversal of the
term, the function build has to know the depth d (the number of λ’s it crossed). Moreover,
build creates type variables. Actually, a constraint builder creates type variables into two
situations, when it creates a context for the first time, that is when it deals with a de
Bruijn index, and when it creates the type to be returned by an application. Since type
variables are objects of the form Var i, where i is an Int, build takes an Int which is increased
whenever a new type variable is created. We call the latter a cursor and denote it by cu.
build returns a 4-uple, namely the potential principal type of the term, a context (a list
of types associated with de Bruijn indices), a set of constraints and the updated cursor.

build_constraint :: Term -> (Type, [(Type,Type)])

build_constraint t =

let (ty,[],constraint,_) = build t 0 0

in (ty, constraint)

where

build :: Term -> Int -> Int -> (Type, [Type], [(Type,Type)],Int)

build (Index i) d cu =

let ii = fromIntegral i

in (Var (cu+ii-1), [Var j | j<-[cu..cu+d-1]],[],cu+d)

build (Abs t) d cu =

let (ty,(a:cntxt),constraint,cu’) = build t (d+1) cu

in ((Arrow a ty),cntxt,constraint,cu’)

build (App t1 t2) d cu =

let (ty1, cntxt1, constraint1, cu1) = build t1 d cu in

let (ty2, cntxt2, constraint2, cu2) = build t2 d cu1 in

let ty = (Var cu2) in (ty,

cntxt1,

(ty1,(Arrow ty2 ty)):(zip cntxt1 cntxt2)

++ constraint1 ++ constraint2,

cu2+1)

To solve constraints we use a method based on transformation rules. For that, we
use a function decompose which splits an equation when both sides are arrow types.
Moreover, when decompose meets an equation σ1 → σ2 = α, the latter is transformed
into α = σ1 → σ2.
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decompose :: (Type,Type) -> [(Type,Type)]

decompose ((Arrow ty1 ty2), (Arrow ty1’ ty2’)) =

decompose (ty1,ty1’) ++ decompose (ty2,ty2’)

decompose ((Arrow ty1 ty2),(Var i)) = [(Var i,(Arrow ty1 ty2))]

decompose (ty1,ty2) = [(ty1,ty2)]

A predicate non trivial eq is necessary to filter out the trivial equations, i.e., of the
form α = α.

non_trivial_eq :: (Type,Type) -> Bool

non_trivial_eq (Var i, Var j) = i /= j

non_trivial_eq (ty1, ty2) = True

A predicate checks whether a composed type contains a given variable. This is necessary
to detect cycles.

occurs_in_type :: Type -> Type -> Bool

occurs_in_type (Var i) (Var j) = False

occurs_in_type (Var i) (Arrow ty1 ty2) = in_type (Var i) ty1 ||

in_type (Var i) ty2

where in_type :: Type -> Type -> Bool

in_type (Var i) (Var j) = i == j

in_type (Var i) (Arrow ty1 ty2) = in_type (Var i) ty1 ||

in_type (Var i) ty2

Once this test is done, one can replace a variable α occurring in an equation of the form
α = σ by σ everywhere in the set of constraints before putting the equation α = σ in the
solved part.

replace_in_type :: (Type,Type) -> Type -> Type

replace_in_type (Var i, ty) (Var j) = if i == j then ty else (Var j)

replace_in_type (Var i, ty) (Arrow ty1 ty2) =

Arrow (replace_in_type (Var i, ty) ty1)

(replace_in_type (Var i, ty) ty2)

replace_in_eq :: (Type,Type) -> (Type,Type) -> (Type,Type)

replace_in_eq (Var i,ty) (ty1,ty2) =

(replace_in_type (Var i,ty) ty1, replace_in_type (Var i,ty) ty2)

The function solve solves the set of constraints. It returns True if the set of constraints
has a solution, that is when the set of constraints is empty. It returns False when it
detects a cycle. Otherwise it tries to apply the transformations whenever it is possible,
that is when the set of constraints is not empty. Indeed if there is no cycle and if the set
of constraints is not empty, a transformation is always applicable.

solve :: [(Type,Type)] -> [(Type,Type)]

-> ([(Type,Type)],[(Type,Type)],Bool)

solve ((Var i,ty):l) sol =

if occurs_in_type (Var i) ty
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then ((Var i,ty):l,sol,False) -- cycle detected

else solve (map (replace_in_equation (Var i,ty)) l)

((Var i,ty):sol)

solve (eq:l) sol =

solve (filter non_trivial_eq (decompose eq) ++ l) sol

solve [] sol = ([],sol,True)

Since we have all the ingredients, the test of typability consists in building the constraint
and trying to solve it.

is_typable :: Term -> Bool

is_typable t = let (_,c) = build_constraint t

in let (_,_,b) = solve c [] in b

Notice that we have everything to build the principal type of the term if it is typable.
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