Katarzyna Grygiel
email: grygiel@tcs.uj.edu.pl

Pierre Lescanne
email: pierre.lescanne@ens-lyon.fr

Pierre Lescanne Counting

Counting and generating lambda terms

Keywords: lambda calculus, combinatorics, functional programming, test, random generator, ranking, unranking

come

Introduction

Let us start with a few questions relevant to the problems we address.

• How many closed λ-terms are of size 50 (up to α-conversion)? 996657783344523283417055002040148075226700996391558695269946852267.

• How many closed terms of size n are there?

We will give a recursive formula for this number in Section 2.

• What does the following sequence enumerate: 0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411?

This sequence enumerates closed terms of size 0, 1,

It is the sequence A220894 of the Online Encyclopedia of Integer Sequences (https: // oeis. org/ A220894). We will provide three ways to compute it (Section 4).

• Is it possible to generate simply typable terms randomly? Yes, according to the process which consists in generating random λ-terms with uniform probability and sieving those that are simply typable. Thus, we can generate random simply typable terms of size up to 50.

• Is a term starting with an abstraction more likely to be typable than a term starting with an application?

The answer is positive as shown in Figure 11, which gives the distribution of simply typable λ-terms among all λ-terms.

• Do these results have practical consequences? Yes, they enable random generation of simply typable terms in the case of terms of size up to 50 in order to debug compilers or other programs, manipulating terms, e.g., type checkers or pretty printers.

The above questions seem rather classical, but amazingly very little is known about combinatorial aspects of λ-terms, probably because of the intrinsic difficulty of the combinatorial structure of lambda calculus due to the presence of bound variables. However, the answers to these questions are extremely important not only for a better understanding of the structure of λ-terms, but also for people who build test samples for debugging compilers. Perhaps the reason for this ignorance lies in the surprising form of the recurrences. Indeed, due to the presence of bound variables, the recurrence does not work in the way mathematicians expect and are used to. The induction lies on two variables, one decreasing (the size), the other increasing (the number of free variables). Thus none of the methods used in the reference book of Flajolet and Sedgewick [START_REF] Flajolet | Analytic Combinatorics[END_REF] applies. Why is that? In what follows we compute the number of λ-terms (and of normal forms) of size n with at most m distinct free variables. Denoting the number of such terms by T n,m , the formula for T n,m contains T n-1,m+1 and this growth of m makes the formula averse to treatments by generating functions and classical analytic combinatorics. We notice that for a given n the expression for T n,m is a polynomial in m. These polynomials can be described inductively and their coefficients are given by recurrence formulas. These formulas are still complex, but can be used to compute the constant coefficients, which correspond to the numbers of closed λ-terms. For instance, the leading coefficients of the polynomials are the well known Catalan numbers which count binary trees.

In order to find the recurrence formula for the number of λ-terms of a given size, we make use of the representation of variables in λ-terms by de Bruijn indices. Recall that a de Bruijn index is a natural number which replaces a term variable and enumerates the number of λ's encountered on the way between the variable and the λ which binds the latter. In this paper, we assume the combinatorial model in which the size of each occurrence of abstraction or application is counted as 1, while the size of variables (de Bruijn indices) as 0. This method is a realistic model of the complexity of λ-terms and allows us to derive the recurrences very naturally.

From the formula for counting λ-terms we derive one-to-one assignments of terms of size n with at most m distinct free indices to the numbers in the interval [1..T n,m]. From this correspondence, we develop a program for generating λ-terms, more precisely for building λ-terms associated with numbers in the interval [1..T n,m]. In combinatorics the function that counts objects by assigning a number to each object is called a ranking and its inverse, i.e., the function that assigns an object to a rank is called an unranking [START_REF]The On-Line Encyclopedia of Integer Sequences R (OEIS R) Wiki. Ranking and unranking functions[END_REF]. Thus, in this paper, we can say that we rank and unrank lambda-terms and normal forms. If we pick a random number in the interval [1..T n,m], then we get a random term of size n with at most m distinct free variables. Most of the time we consider closed λ-terms, which means m = 0. Beside the interest in such a random generation for applications like testing, this allows us to compute practical values of parameters by Monte-Carlo methods. Overall, we are able to build a random generator for simply typable terms. Unlike the method used so far [START_REF] Pa | Testing an optimising compiler by generating random lambda terms[END_REF], which consists in unfolding the typing tree, we generate random λ-terms and test their typability, until we find a simply typable term. This method allows us to generate uniformly simply typable λ-terms up to size 50. We also use this method to describe the distribution of typable terms among all terms and typable normal forms among all normal forms.

Structure of the paper

According to its title, the paper is divided into two parts, the first one focuses on counting terms and its mathematical treatment, the second one addresses term generation and its applications. The first part (Sections 2 and 5) is devoted to the formulas counting λterms. In Section 2 we study polynomials giving the numbers of terms of size n with at most m distinct free variables. In Section 3, we show that the numbers of i-contexts give a combinatorial interpretation of the coefficients of the polynomials and yield a new formula for counting the closed terms of size n. If we add formulas for counting λ-terms of size n with exactly m distinct free variables, we have three formulas of three different origins for counting closed terms which we describe and compare in Section 4. In Section 5 we derive generating functions and asymptotic values for these coefficients. In Section 6 we give a formula for counting normal forms. In the second part of the paper, i.e., in Section 7 and Section 8, we propose programs to generate untyped and typable terms and normal forms. Section 9 is devoted to experimental results. Section 10 presents related works.

Counting terms with at most m distinct free variables

We represent terms using de Bruijn indices [START_REF] De Bruijn | Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem[END_REF], which means that variables are represented by numbers 1, 2, . . . , m, . . ., where an index, for instance k, is the number of λ's above the location of the index and below the λ that binds the variable, in a representation of λterms by trees. For instance, the term with variables λx.λy.x y is represented by the term with de Bruijn indices λλ21. The variable x is bound by the top λ. Above the occurrence of x there are two λ's, therefore x is represented by 2, and from the occurrence of y we count just the λ that binds y, so y is represented by 1. Notice that unlike Lescanne [START_REF] Lescanne | From λσ to λυ, a journey through calculi of explicit substitutions[END_REF] and like de Bruijn [START_REF] De Bruijn | Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem[END_REF] and Abadi et al. [START_REF] Abadi | Explicit substitutions[END_REF] we start indices at 1, since it fits better with our aim of counting terms.

In what follows, by terms we mean untyped terms with de Bruijn indices and we often speak indistinctively of variables and (de Bruijn) indices. Assume that in a term t not all occurrences of indices need to be bound, i.e., there may occur indices that do not correspond to surrounding λ's. Such indices are called "free" in t. Now, we introduce the notational convention for "free" indices occurring in terms. An interval of free indices for a term t is a set {1, 2, . . . , m} of indices, written [1..m], such that (i) if t is an index i, then any interval [1..m] with 1 ≤ i ≤ m is an interval for t, (ii) if t is an abstraction λs and an interval of free indices for s is [1..m .m] for any m ≥ 2 and for m = 3, [1, 2, 3] is an interval of free indices for t. For m = 2, [START_REF] Abadi | Explicit substitutions[END_REF][START_REF] Bodini | Lambda terms of bounded unary height[END_REF] is another interval of free indices for t. To say it in rough words, whereas one sees 3 as 3 in s, one sees 3 as 2 in t due to the abstraction λ which decreases the indices as they are seen.

We measure the size of a term in the following way:

|m| = 0, for every index m, |λt| = |t| + 1, |ts| = |t| + |s| + 1.
Since λ-terms can be represented as unary-binary trees with labels or pointers, the notion of size of a term t corresponds to the number of unary and binary vertices in the tree representing t. This also means that adding a new variable (in other words, adding a new leaf to a tree) or a new operator (a unary or a binary vertex) always increases the size of a term by 1.

One can define m using the concept of term openness (due to John Tromp). The openness of a terms is the minimum number of outer λ's necessary to close the terms, i.e., to make the term a closed term. For instance, the openness of (λx.(x y))(λx.(x z)) is equal to 2 since the term needs two abstractions to become closed.

Let us denote by T n,m the set of terms of size n with at most m distinct free de Bruijn indices. T n,m is isomorphic to the set of terms having an openness equal to at most m.

In what follows, we use the symbol @ to denote applications, whereas classical theory of λ-calculus uses concatenation, which we find not explicit enough for our purpose.

T 0,m = [1..m] T n+1,m = λT n,m+1 n i=0 T i,m @T n-i,m .
For all n, m ∈ N, let T n,m denote the cardinality of the set T n,m . According to the definition of size, operators λ and @ have size 1 and de Bruijn indices have size 0. Therefore, we get the following two equations specifying T n,m :

T 0,m = m T n+1,m = T n,m+1 + n i=0 T i,m T n-i,m .
This means that there are m terms of size 0 with at most m distinct free de Bruijn indices, which are terms that are just these indices. Terms of size n + 1 with at most m distinct free de Bruijn indices are either abstractions with at most m + 1 distinct free indices on a term of size n or applications of terms with at most m distinct free indices to make a term of size n + 1. As we said in the introduction, the 11 first values of T n,0 are: 0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411.

T n,0 is sequence A220894 in the On-line Encyclopedia of Integer Sequences.

Figure 1 gives all the values of T n,m for n up to 14 and m up to 6. For instance, there is 1 closed term of size 1, namely λ1, there are 3 closed terms of size 2, namely λλ1, λλ2, λ1

λλλ1 λλλ2 λλλ3 λλ1 1 λλ1 2 λλ2 1 λλ2 2 λ(1 λ1) λ(1 λ2) λ1(11) λ((λ1) 1) λ((λ2) 1) λ((1 1) 1) (λ1) λ1.
Notice that in Section 7 we describe how to assign a term to a number and therefore how to list terms with increasing numbers. The above terms are listed in that order.

Computing the T n,m 's

The recursive definition of T yields an easy naive program in a functional programming language (here Haskell):

naiveT :: Int -> Int -> Integer naiveT 0 m = fromIntegral m naiveT n m = naiveT (n-1) (m+1) + sum [naiveT i m * naiveT (n-1-i) m | i <-[0..n-1]]

The polynomials P n

In the end of this section and in the four coming sections we present results of mainly combinatorial flavor. We focus there on the quantitative approach to lambda calculus, with special emphasis on the challenging problem of counting λ-terms and approximating its asymptotic behavior. Therefore, a reader interested mostly in term generation and experimental results can skip this material and go directly to Section 7.

The problem of determining the asymptotic estimation of the number of closed terms of a given size turns out to be a non-trivial task. Due to the unusual combinatorial structure of λ-terms, such objects seem to resist methods developed in combinatorics so far. There are a few papers devoted to this challenging problem [START_REF] Bodini | Lambda terms of bounded unary height[END_REF][START_REF] David | Asymptotically almost all λ-terms are strongly normalizing[END_REF][START_REF] Lescanne | On counting untyped lambda terms[END_REF], however, none of the methods used by now could provide the final solution. Bodini et al. [START_REF] Bodini | Lambda terms of bounded unary height[END_REF] use essentially analytic methods exploiting the functional equation of Proposition 3 (Section 3.1), whereas David et al. [START_REF] David | Asymptotically almost all λ-terms are strongly normalizing[END_REF] use upper and lower bound approximations and Lescanne [START_REF] Lescanne | On counting untyped lambda terms[END_REF] uses algebraic computations on polynomials and power series. Our approach can be considered as the development of the previous research carried out by [START_REF] Lescanne | On counting untyped lambda terms[END_REF].

For every n ≥ 0, we associate with T n,m a polynomial P n (m) in m. First, let us define polynomials P n in the following recursive way:

P 0 (m) = m, P n+1 (m) = P n (m + 1) + n i=0 P i (m)P n-i (m).
The sequence (P n (0)) n≥0 corresponds to the sequence (T n,0) n≥0 enumerating closed λ-terms. The first nine polynomials are given in Figure 2.

This means that the constant coefficient of a polynomial P n (m) is exactly the number of closed λ-terms of size n.

Lemma 1 For every n, the degree of the polynomial P n is equal to n + 1.

Proof:

The result follows immediately by induction on n from the definition of P n .

For i > 0 and n ≥ 0, let us denote by p

[i]
n the i th leading coefficient of the polynomial P n , i.e., we have P n (m) = p [1] n m n+1 + p [2] n m n + . . .

+ p [i] n m n+2-i + . . . + p [n+1] n m + p [n+2] n . n Pn 0 m 1 m 2 + m + 1 2 2m 3 + 3m 2 + 5m + 3 3 5m 4 + 10m 3 + 22m 2 + 25m + 14 4 14m 5 + 35m 4 + 94m 3 + 154m 2 + 163m + 82 5 42m 6 + 126m 5 + 396m 4 + 838m 3 + 1277m 2 + 1235m + 579 6 132m 7 + 462m 6 + 1654m 5 + 4260m 4 + 8384m 3 + 11791m 2 + 10707m + 4741 7 429m 8 + 1716m 7 + 6868m 6 + 20742m 5 + 49720m 4 + 90896m 3 + 120628m 2 + 104055m + 43977 8 1430m 9 + 6435m 8 + 28396m 7 + 98028m 6 + 275886m 5 + 617096m 4 + 1068328m 3 + 1352268m 2 + 1117955m + 454283
p [1] 0 = 1, p [i] 0 = 0 for i > 1, p [i] n+1 = i-2 j=0 n + 1 -j i -2 -j p [j+1] n + i k=1 n j=0 p [k] j p [i+1-k] n-j
.

Proof: Since P 0 (m) = m, equations from the first line in the above lemma are trivial.

The i th leading coefficient in the polynomial P n+1 (m) is equal to the sum of coefficients standing at m n+3-i in polynomials P n (m+1) and n j=0 P j (m)P n-j (m). The first of these polynomials, P n (m + 1), is as follows:

p [1] n (m + 1) n+1 + . . .

+ p [i-1] n (m + 1) n+3-i + . . . + p [n+2] n , therefore the coefficient of m n+3-i in P n (m + 1) is equal to n + 1 i -2 p [1] n + n i -3 p [2] n + . . . + n + 3 -i 0 p [i-1] n = i-2 j=0 n + 1 -j i -2 -j p [j+1] n .
In the case of the second polynomial, n j=0 P j (m)P n-j (m), we have

p [1] j m j+1 + . . . + p [k] j m j+2-k + . . . + p [j+2] j • p [1] n-j m n-j+1 + . . . + p [i+1-k] n-j m n-j+1+k-i + . . . + p [n-j+2] n-j , therefore the coefficient of m n+3-i in n j=0 P j (m)P n-j (m) is equal to i k=1 n j=0 p [k] j p [i+1-k] n-j
.

The next section proposes a combinatorial interpretation of the coefficients p

[i] j .

Counting contexts

In λ-calculus, an i-context is a closed term with i holes. Variables and holes are similar in the sense that they can be replaced by terms. But whereas a variable may occur many times in a term and so may be replaced by terms at more than one place at a time, a hole is anonymous, occurs once and only once (like a linear variable in linear λ-calculus [START_REF] Curien | Introduction to linear logic and ludics, part I[END_REF]) and can be filled only once. Since as we said holes look like anonymous variables occurring once we suppose that each hole has size 0 and we assume that the holes are numbered 1, . . . , i as they appear in the term from left to right. For instance, if we denote every hole by [], then (λ1[])λλ[]2 is a 2-context of size 6 and its holes are numbered as follows (λ1[] 1)λλ[] 2 2. 0-contexts correspond to closed terms. There is only one 1-context of size 0 and there are no i-contexts of size 0 for i = 1. Let us write c n,i for the number of i-contexts of size n. Then we have

c 0,1 = 1 c 0,i = 0 for i = 1. (†)
Now, let us see how we construct an i-context of size n + 1 from smaller ones.

By abstraction: let us take a j-context (for j ∈ [i..n + 1]) of size n and add a new lambda above it. Then we choose a set of j -i holes among the j holes which we substitute by variables (or indices) abstracted by the new lambda. For a fixed j there are j i c n,j such i-contexts. Finally, we sum these quantities over every j from i to n + 1 to get the numbers of i-contexts constructed this way.

By application: let us apply a j-context of size k to an (i -j)-context of size n -k (for j ∈ [0..i] and k ∈ [0.

.n]). This gives us an i-context of size n+1 since the application operator has size 1. For fixed j and k there are c k,j c n-k,i-j such i-contexts. Finally, we sum these numbers from j = 0 to j = i and from k = 0 to k = n.

Hence, we get the following formula:

c n+1,i = n+1 j=i j i c n,j + i j=0 n k=0 c k,j c n-k,i-j . ()
Let us see how we can build terms from contexts. Recall that, by construction, an icontext has only holes and no free index, which means that all the indices are bound. Therefore to build a term of size n with i occurrences of free indices taken among m ones from an i-context of size n and a map f from [1..i] to [1..m], we insert the index f (j) in the j th hole. There are c n,i m i such terms. Therefore

T n,m = c n,n+1 m n+1 + . . . + c n,i m i + . . . + c n,0
is the number of λ-terms of size n with at most m distinct free variables, which is the polynomial P n (m). In particular, c n,n+2-i = p

[i]

n . This can be written as follows:

P n (m) = n+1 i=0 c n,i m i .
The coefficients c n,i of the polynomials P n 's count the i-contexts of size n. We see that c n,i = 0 when i > n + 1.

The case i = n+2. In the case when i = n+2, using the fact that c n,i = 0 for i > n+1, the equations (†) and () boil down to:

c 0,1 = 1 c n+1,n+2 = n k=0 c k,k+1 c n-k,n-k+1 ,
which is characteristic of the Catalan numbers. Indeed, (n + 1)-contexts of size n have only applications and no abstractions and are therefore binary trees.

The generating function for

(c n,i) n,i∈N Proposition 3 Consider the bivariate generating function L(z, u) = n,i≥0 c n,i z n u i . Then L(z, u) = u + zL(z, u + 1) + zL(z, u) 2 .
Proof: Notice that

L(z, u) = ∞ n=0 ∞ i=0 c n,i u i z n = ∞ n=0 P n (u)z n = u + z ∞ n=0 P n+1 (u)z n = u + z ∞ n=0 P n (u + 1)z n + z ∞ n=0 n k=0 P k (u)P n-k (u)z n = u + zL(z, u + 1) + zL(z, u) 2 .
A similar equation was known from Bodini, Gardy and Gittenberger [START_REF] Bodini | Lambda terms of bounded unary height[END_REF] (for variable size 1). However, notice that what they call L is not the class of open λ-terms, but the class of i-contexts. Notice that the function L(z, 0) is the generating function for the number of closed terms of size n.

The equation zL(z, u) 2 -L(z, u) + u + zL(z, u + 1) = 0 has the following solution

L(z, u) = 1 -1 -4z(u + zL(z, u + 1)) 2z . Let us state M (z, u) = 2z L(z, u). Then M (z, u) = 1 -1 -4zu -2zM (z, u + 1) and hence M (z, 0) = 1 -1 -2z(1 -1 -4z -2z(1 -1 -8z -2z(1 -1 -12z -2z(1 - √ 1 -16z -. . .)))).

3.2

The asymptotic behavior of T n,0

The function M (z, u) has a singularity z u for 1 -4z u u -2z u M (z u , u + 1) = 0, in addition to the singularities of M (z, u + 1). Notice that since z u M (z u , u + 1) > 0, we get z u < 1 4u . Therefore L(z, 0) has a sequence of singularities (z u) u∈N which tends to 0. Thus the radius of convergence of L(z, 0) is 0. Recall that a fundamental theorem on analytic functions connects the radius of convergence of a generating function with the exponential growth of its coefficients (see Section IV.3 Singularities and exponential growth of the coefficients in Flajolet and Sedgewick's book [START_REF] Flajolet | Analytic Combinatorics[END_REF]). This theorem says that if a generating function has a radius of convergence R, then its coefficients grow like 1 R n . This means that if the radius of convergence is 0, then the coefficients grow faster that a n for any a ∈ R. Such a behavior is called superexponential. Case m = 0 for terms with at most m distinct free variables T n,0 where

Three formulas for counting closed terms

T 0,m = m T n+1,m = T n,m+1 + n i=0 T i,m T n-i,m .
This formula is clearly the simplest. Its simplicity, one sum and no binomial, allows it to be unfolded and used as a basis for programming a term generator (see Section 7).

Case m = 0 for terms with exactly m distinct free variables f n,0 where

f 0,m = [m = 1] f n,m = 0 if m > n + 1 f n+1,m = f n,m + f n,m+1 + n p=0 m c=0 m-c k=0 m c m -c k f p,k+c f n-p,m-k .
This formula is the most complex. Appendix A.1 shows how it is constructed. 0-contexts c n,0 where

c 0,i = [i = 1] c n+1,i = n+1 j=i j i c n,j + i j=0 n k=0 c k,j c n-k,i-j .
Four relations. Let us use the notation R (m) i

(see Flajolet and Sedgewick's book [START_REF] Flajolet | Analytic Combinatorics[END_REF]) for the number of surjections from [1..i

] to [1..m]. Recall that R (m) i = i j=0 i j (-1) j (i -j) m .
The numbers T n,m , f n,m and c n,i are related as follows (see Appendix A.2):

T n,m = m i=0 m i f n,i = n+1 i=1 c n,i m i f n,m = m i=0 (-1) m+i m i T n,i = n+1 i=1 c n,i R (m)
i .

More generating functions

In this section, we provide the asymptotic approximation of the growth of the k th coefficients of the polynomials P n , where the first coefficient is the coefficient of the monomial of highest degree.

For every positive integer i, let us denote by a i the generating function for the sequence p

[i] n n≥0
, i.e.,

a i (z) = ∞ n=0 p [i] n z n = ∞ n=0 c n,n+2-i z n .
The p

[i]
n 's count the number of contexts of size n having n + 2 -i holes. For the sake of clarity, instead of writing a i (z) sometimes we simply write a i .

In order to compute the functions a i , we apply the following basic fact about generating functions.

Fact 4 Let f and g be generating functions for sequences (f n) n≥0 and (g n) n≥0 , respectively. Then (i) the generating function for the sequence n k f n n≥0 , where k is a fixed positive integer, is given by z k f (k) k! , (ii) the generating function for the sequence (n i=0 f i g n-i) n≥0 is given by f • g, (iii) the generating function for the sequence n-j i f n n≥0 , where i ≥ 0 and j > 0, is given by i

k=0 (-1) k k+j-1 j-1 z i-k f (i-k) (i-k)! .
Proof: Items (i) and (ii) can be found, e.g., in Chapter 7 of [START_REF] Graham | Concrete mathematics[END_REF].

The third part follows from (i) and the following equality:

n -j i = i k=0 (-1) k n i -k k + j -1 j -1 ,
which holds for every n, i ≥ 0 and j > 0. This equality can be easily derived from two equalities known as "upper negation" and "Vandermonde convolution", which can be found in Table 174 of [START_REF] Graham | Concrete mathematics[END_REF].

Now we are ready to provide a recurrence for functions a i .

Theorem 5

The following equations are valid:

a 1 = za 2 1 + 1, a 1 (0) = 1 a 2 = za 1 + 2za 1 a 2 a i = z i-1 a (i-2) 1 (i -2)! + z i-2 a (i-3) 1 (i -3)! + z i-2 a (i-3) 2 (i -3)! +z • i-3 j=1 i-3-j k=0 (-1) k k + j -1 j -1 z i-3-j-k a (i-3-j-k) j+2 (i -3 -j -k)! +z • i j=1 a j a i-j+1 , for i > 2.
Proof: All these equations follow from Lemma 2 and Fact 4.

Notice that the a i 's can be computed by induction. Indeed, a i occurs twice in the last sum on the right hand side of the last equation and we have:

a i (1 -2a 1 z) = z i-1 a (i-2) 1 (i -2)! + z i-2 a (i-3) 1 (i -3)! + z i-2 a (i-3) 2 (i -3)! +z • i-3 j=1 i-3-j k=0 (-1) k k + j -1 j -1 z i-3-j-k a (i-3-j-k) j+2 (i -3 -j -k)! +z • i-1 j=2 a j a i-j+1 .
Since 1 -2a 1 z = √ 1 -4z, we get:

a i =     z i-1 a (i-2) 1 (i-2)! + z i-2 a (i-3) 1 (i-3)! + z i-2 a (i-3) 2 (i-3)! +z • i-3 j=1 i-3-j k=0 (-1) k k+j-1 j-1 z i-3-j-k a (i-3-j-k) j+2 (i-3-j-k)! +z • i-1 j=2 a j a i-j+1     / √ 1 -4z. (‡) a 1 (z) = 1 2 - (1 -4z) 1/2 2 z -1 a 2 (z) = - 1 2 + 1 2 (1 -4z) 1/2 a 3 (z) = 1 1 -4z + z (1 -4z) 3/2 z a 4 (z) = 3 (1 -4z) 2 + z (1 -4z) 5/2 z 2 a 5 (z) = 4z + 9 (1 -4z) 3 + z 2 -19z + 5 (1 -4z) 7/2 z 3 a 6 (z) = 24z + 31 (1 -4z) 4 + 3z 2 -203z + 51 (1 -4z) 9/2 z 4 a 7 (z) = 16z 2 -128z + 181 (1 -4z) 5 + 2z 3 -194z 2 -1541z + 398 (1 -4z) 11/2 z 5
Figure 3: The generating functions for the coefficients of the polynomials P n (m)

Corollary 6 Exact formulas for the functions a 1 -a 7 are given in Figure 3.

Proof: Let us first compute the function a 1 which, according to Theorem 5, is given by a 1 = za 2 1 + 1, a 1 (0) = 1. By solving this equation, we obtain a

1 (z) = 1- √ 1-4z 2z
, which is exactly the generating function for Catalan numbers-see, e.g., Chapter I.1 of [START_REF] Flajolet | Analytic Combinatorics[END_REF]. Now, let us notice that on the basis of Theorem 5 all the other functions can be immediately obtained by tedious, however elementary, computations. In order to get exact values we applied Sage software [START_REF] Stein | Sage Mathematics Software (Version 4.8). The Sage Development Team[END_REF].

Let [z n]f (z) denote the n th coefficient of z n in the formal power series f (z) = ∞ n=0 f n z n . As usual, we use the symbol ∼ to denote the asymptotic equivalence of two sequences, i.e., we write f n ∼ g n iff the limit of the sequence (f n /g n) n≥0 is 1. Similarly, by f (z) ∼ z→z 0 g(z)

we mean that the limit of f (z)/g(z) is 1 when z → z 0 . We say that a function f (z) is of order g(z) for z → z 0 iff there exists a positive constant A such that f (z)

∼ z→z 0 A • g(z).
The theorem below (Theorem VI.1 of [START_REF] Flajolet | Analytic Combinatorics[END_REF]) serves as a powerful tool that allows us to estimate coefficients of certain functions that frequently appear in combinatorial considerations.

Fact 7 Let α be an arbitrary complex number in C \ Z ≤0 . The coefficient of z n in

f (z) = (1 -z) α
admits the following asymptotic expansion:

[z n]f (z) ∼ n α-1 Γ(α) 1 + α(α -1) 2n + α(α -1)(α -2)(3α -1) 24n 2 + α 2 (α -1) 2 (α -2)(α -3) 48n 3 + O 1 n 4 ,
where Γ is the Euler Gamma function defined for (α) > 0 as

Γ(α) := ∞ 0 e -t t α-1 dt.
Now we are ready to prove the following approximation.

Proposition 8

The exact order of functions a i for z → 1/4 is given by

a i (z) ∼ z→ 1 4 C i-2 2 3i-5 (1 -4z) (2i-3)/2 ,
where C i is the i th Catalan number.

Proof: We prove the result by induction using Theorem 5. For the sake of simplicity, we write ∼ and "is of order" to denote ∼ z→ 1 4 and "is of order for z → 1/4".

The result is true for i = 1. For i > 1 and j ≤ i, assume that a j (z) is of order 1 (1-4z) (2j-3)/2 and look at equation (‡) to prove that a i+1 (z) is of order

1 (1-4z) (2i-1)/2 .
Notice that the i th derivative of a 1 is of order

1 (1-4z) (2i-1)/2
, hence its (i -2) th derivative is of order 1 (1-4z) (2i-5)/2 and its (i -3) th derivative is of order 1 (1-4z) (2i-7)/2 . Similarly, the i th derivative of a 2 is of order

1 (1-4z) (2i+1)/2 , hence its (i -3) th derivative is of order 1 (1-4z) (2i-5)/2 .
By induction for j + 2 ≤ i -3, a j+2 is of order 1 (1-4z) (2j+1)/2 . Among its successive derivatives we derive at most i -3 -j times, hence the items in the sum are of order at most

1 (1-4z) (2i-5)/2 . Now, every product a j a i-j+1 is of order 1 (1-4z) i-2
, therefore the first four terms in (‡) do not contribute to the asymptotic value of a i+1 (z). Hence the contribution to the asymptotic value is given only by products a j a i-j+1 's. Multiplying their order by 1 √ 1-4z we obtain that the last sum is of order

1 (1-4z) (2i-1)/2 .
Let us denote by

K i the multiplicative coefficient C i-2 /2 3i-5 of 1 (1-4z) (2j-3)/2 . One notices that K 2 = 1 2 = C 0 2 3×2-5 . The sum z i-1
j=2 a j a i-j+1 shows the inductive part. Indeed, when z = 1 4 :

z i-1 j=2 K j K i-j+1 = 1 4 i-1 j=2 C j-2 2 3j-5 C i-j+1-2 2 3(i-j+1)-5 = 1 2 3i-5 i-3 j=0 C j C i-j-3 = C i-2 2 3i-5 = K i .
Finally, we are able to provide asymptotic values of coefficients of functions a i .

Theorem 9

The coefficient of z n in the function a k (z) admits the following asymptotic expansion:

[z n]a k (z) = 1 2 k-1 (k -1)! √ π 4 n n (2k-5)/2 • Ψ(n, k)
where

Ψ(n, k) = 1 + (2k -3)(2k -5) 8n + (2k -3)(2k -5)(2k -7)(3k -11) 384n 2 + (2k -3) 2 (2k -5) 2 (2k -7)(2k -9) 3672n 3 + O 1 n 4 . Proof: First recall that Γ((2k -3)/2) = Γ (k -2) + 1 2 = (2(k -2))! √ π 2 2(k-2) (k -2)! .
Now using Fact 7, we can compute the principal part:

[z n]a k (z) = C k-2 2 3k-5 4 n [z n](1 -z) (2k-3)/2 ∼ C k-2 2 3k-5 4 n n (2k-5)/2 Γ((2k -3)/2) = C k-2 2 3k-5 (k -2)!2 2(k-2) (2(k -2))! √ π 4 n n (2k-5)/2 = C k-2 (k -2)! 2 k-1 (2(k -2))! √ π 4 n n (2k-5)/2 = 1 2 k-1 (k -1)! √ π 4 n n (2k-5)/2 .
For Ψ(n, k) we use Fact 7 with α = 2k-3 2 .

By looking at Figure 3, we can easily notice a recurring pattern concerning the structure of functions a i . Therefore, we state the following proposition.

Proposition 10 For every i > 2 we have

a i (z) = z i-2 Q i (z) (1 -4z) i-2 + S i (z) (1 -4z) i-3 2 ,
where Q i and S i are polynomials over Z in z and deg

Q i = i-3 2 and deg S i = i-1 2 .
Proof: By induction using formula (‡), in the same vein as the proof of Proposition 8. In particular, the two first members of (‡) are derivatives of the generating function of Catalan numbers studied in [START_REF] Lang | On polynomials related to derivatives of the generative functions of the Catalan numbers[END_REF].

As we have already mentioned, the number of closed terms of size n is given by P n (0), which corresponds to the n th term of the Taylor expansion of the function a n+2 . Hence, the sequence of the numbers of closed λ-terms is equal to the sequence ([z n]a n+2 (z)) n≥0 . From Proposition 10, the number of closed terms of size n is equal to Q n+2 (0) + S n+2 (0). Currently, we have no recursive formula for the Q n 's and the S n 's. However, by Proposition 8, we know that

S n+2 1 4 = C n 2 n+1 .

Counting normal forms

Beside counting terms, it is also interesting to count normal forms. To this end, we describe the set of normal forms as follows

G n+1,m = [1..m] n i=0 G i,m @F n-i,m F n+1,m = λ F n,m+1 G n,m
Recall that a normal form consists of a (possibly empty) sequence of abstractions followed by the application of a de Bruijn index to normal forms. F n,m represents the normal forms of size n with at most m free indices and G n,m represents the neutral terms, i.e., terms starting with an index, of size n with at most m free indices. From this we derive the formulas for counting:

G 0,m = m G n+1,m = n k=0 G n-k,m F k,m , F 0,m = m F n+1,m = F n,m+1 + G n+1,m .
The values of F n,0 up to n = 10 are: 0, 1, [START_REF] Curien | Introduction to linear logic and ludics, part I[END_REF][START_REF] Roger Hindley | s typability algorithm for lambda-calculus[END_REF]53,323,2359,19877,188591,1981963,22795849. The efficiency of this program can be improved (Figure 5). Like for terms we derive polynomials:

NF P 0 (m) = m NF P n+1 (m) = NF P n (m + 1) + NF Q n+1 (m), NF Q 0 (m) = m NF Q n+1 (m) = n k=0 NF P k (m) NF Q n-k (m).
Lemma 11 For every n, the degree of the polynomials NF P n and NF Q is equal to n + 1.

Proof: Like the proof of Lemma 1, by induction on n from the definition of NF P n and NF Q.

6.1 Coefficients of the polynomials NF P n and NF Q n Let us count i-nf-contexts. They are closed normal forms with i holes. The i-nf-contexts of size n are counted by d n,i . They are abstractions of i-contexts of the form [] N 1 . . . N p , which we call i-nf-pre-contexts, where each N j is a i j -nf-context (with i 1 +. . .+i j +. . .+i p = i -1) and which are counted by g n,i . There is one 1-nf-context and one 1-nf-pre-context of size 0, whereas there are 0 i-nf-contexts and 0 i-nf-pre-contexts for i = 1 of size 0. Thus we get

d 0,i = [i = 1], g 0,i = [i = 1].
By reasoning similarly as in Section 3 and by using the description of normal forms given above, we get:

d n+1,i = n+1 j=i j i d n,j + g n+1,i , g n+1,i = i j=0 n k=0 g k,j d n-k,i-j . Therefore NF P n (m) = n i=0 d n,i m i , NF Q n (m) = n i=0
g n,i m i .

Generating functions

Consider the two generating functions:

D(z, u) = n,i≥0 d n,i z n u i , G(z, u) = n,i≥0
g n,i z n u i .

Then we have

D(z, u) = ∞ n=0 NF P n (u)z n , G(z, u) = ∞ n=0 NF Q n (u)z n . Therefore D(z, u) = u + z ∞ n=0 NF P n (u + 1)z n + ∞ n=1 NF Q n (u)z n = zD(z, u + 1) + G(z, u)
and

G(z, u) = u + z ∞ n=0 NF Q n (u) NF P n (u)z n = u + z ∞ n=0 n k=0 g k,j z k u i d n-k,i-j z n-k nu i-j = u + zD(z, u) G(z, u).
Consequently the two functions D and G satisfy

D(z, u) = zD(z, u + 1) + G(z, u), G(z, u) = u + zD(z, u) G(z, u).
D(z, 0) is the generating function for the numbers of closed normal forms of size n. By solving the above system of equations, we get:

zD(z, u) -(1 + z 2 D(z, u + 1))D(z, u) + u + zD(z, u + 1) = 0, which yields D(z, u) = 1 + z 2 D(z, u + 1) -(1 + z 2 D(z, u + 1)) 2 -4z(u + zD(z, u + 1)) 2z .

Lambda term generation

From the simple equation defining the number T n,m of terms, we define the function generating them. More precisely, we define a function unrankT n m k which returns the k th term of size n with at most m distinct free variables (see the Haskell program in Figure 6). The variable k is an Integer (i.e., an arbitrary-precision integer) which belongs to the interval [1..T n,m]. The unranking program mimics counting terms. If n is 0, then the program returns the de Bruijn index k. Otherwise, if k is less than T n-1,m+1 , the rank k lies in the part of the interval [1..T n,m] with terms that are abstractions. Therefore, for k ≤ T n-1,m+1 unrankT n m k returns λ (unrankT (n-1) (m+1) k). If the rank k is larger than T n-1,m+1 , it lies in the part of the interval [1..T n,m] with applications. Therefore we call a function appTerm which tries to identify which sub-interval contains a pair of terms with indices k and k such that k + k is at the right place. The product of these values correspond to one of the products T j,m T n-j,m in the sum. When the number j is found, two recursive calls of unrankT, with appropriate k and k , build the subterms of the application. One may notice (h -1) and +1 which take into account the fact that k lies in an interval [1..T ,] while divMod works in an interval [0..(T , -1)].

The function unrankT relies on the function t presented in Section 2.1 and called here O(n) times. Assuming that t has been called once already and therefore runs in O(n+m), unrankT performs O(n) recursive calls and its complexity depends on one side linearly on the operations divMod, (-) and (*) performed on arbitrary-precision integers and on the other side is in O(n 2) due to the accesses generated by t.

For a given n, this program can be used to enumerate all the closed λ-terms of size n and, more generally, all the λ-terms of size n with at most m distinct free variables. This is Similarly, on the basis of the recursive formula for the number of normal forms, one defines a program for their generation (Figure 7).

Simply typable terms

Once we have a random generator for untyped terms, it is easy to build a random generator for simply typable terms. It suffices to sieve all terms by a predicate, which we call isTypable. This predicate is a classical principal type algorithm [START_REF] Max | Stratified systems of logic[END_REF][START_REF] Damas | Principal type-schemes for functional programs[END_REF][START_REF] Roger Hindley | s typability algorithm for lambda-calculus[END_REF]. In Appendix B, we give a Haskell program. For instance, applying the random generator with parameter 10 (for the size of the term), we got:

λ(λ(((1 λ(1)) λ((3 λ(((1
2) 3))))))).
This is a "typical" simply typable random closed λ-term of size 10 written with de Bruijn indices. Its type is

((α → (((β → β) → (α → γ) → δ) → ζ)) → ζ) → γ → ((β → β) → (α → γ) → δ) → δ.
We were able to generate typable terms of size 50. For such terms, the generating process is slow, since it requires 50 000 generations of terms, with (unsuccessful) tests of their typability before getting a typable one. But for size 40, the number of attempts falls to 3 for 10 000. This kind of random generator is useful for testing functional programs. Micha l Pa lka [START_REF] Lka | Testing an optimising compiler by generating random lambda terms[END_REF][START_REF] Pa | Testing an optimising compiler by generating random lambda terms[END_REF] proposed a tool to debug Haskell compilers based on a λ-term generator. His generator is designed on the development of a typing tree, with choices made when a new rule is created. Such a method needs to cut branches in developing the tree to avoid loops. This way his generator is not random, which may be a drawback in some cases. As a matter of fact, a method for generating simply typed terms based on developing a typing tree does not produce terms on a uniform random distribution since it requires to cut the tree at arbitrary locations to avoid loops, "arbitrary" in the sense of randomness preservation. In other words, there is no simple recursive definition of simply typed terms, as well as of simply typable terms, that would allow an easy uniform random generation. This is also what makes the combinatorial study of typed terms difficult. A term is typable because it satisfies some constraints, not because it is generated in a specific way.

Experimental data

Given a random term generator, we are able to write programs to make statistics on some features of terms. While there are many possible experiments of this type, here we present only two that we find interesting and suggestive of other possibilities.

Average variable depth in closed terms and closed normal forms

Let us define the variable depth as the number of symbols (abstractions and applications) between a variable and the top of the term. For instance, given the term λx.(λyz.x)(λu.u), the first occurrence of variable x has depth 1 and the second occurrence of variable x has depth 3, while the depth of u is 2. This gives the average depth 2 for this term.

Looking at the de Bruijn indices of the brother term λ1 (λλ3 λ1), we say that the first index 1 has depth 1, the second index 3 has depth 3 and the third index 1 has depth 2, with the same average 2 as previously. In Figure 8, we draw the average variable depth for 300 random closed terms of size 15 up to size 175 (top scatter plot) and the average variable depth for 300 random normal forms of size 15 up to size 175 (bottom scatter plot) squeezed between the curves 2n ln(n) a for a = 1 and a = 1.1 (plain lines). In Figure 9 we see the same four curves enlarged in the interval [170..175]. This shows clearly that the average variable depth of closed terms and closed normal forms are different. On this basis, we conjecture that the average depth of variables in closed terms is asymptotically bounded from above by 2n ln(n) and that the average variable depth is slightly smaller for normal forms than for closed terms.

Average number of head λ's per closed term

We say that λx is a head lambda in a term t if the latter is of the form λx 1 . . . λx n λx.s for some positive integer n and a certain term s. In order to know the structure of an average term, we are interested in the average number of head λ's occurring in closed terms. In Figure 10, we compare values of some functions n ln(n) a with the number of head λ's in 1000 random closed terms and the average number of head λ's in 1000 normal forms, both in the case when size goes from 15 to 150. We see that, in the case of closed terms, these numbers are in accordance with Theorem 35 in [START_REF] David | Asymptotically almost all λ-terms are strongly normalizing[END_REF].

Ratio of simply typable terms among all terms

It is interesting to investigate the ratio of simply typable closed terms among all closed terms. There are 851 368 766 closed λ-terms of size 11, whereas there are 63 782 411 closed λ-terms of size 10. Therefore, we performed computations for closed terms of size less than 11. In fact, one cannot go much further due to the superexponential growth of the sequence enumerating closed terms. Table 1 gives the ratio of simply typable closed terms over all closed terms by an exhaustive examination of the closed terms up to 10. For closed terms of size 8 or larger, we computed the ratio by the Monte Carlo method. The results are given in Table 2. We added the sequence of the numbers of simply typable closed terms of a given size to the On-line Encyclopedia of Integer Sequences and it can be found under the number A220471. We conclude that simply typable closed terms become very scarce as the size of the closed terms grows, falling to less than one over 100 000 when the size gets larger than 50. Likewise, we have done the same task for normal forms. We got the ratio by an exhaustive examination of normal forms up to 10 in Table 3

Distribution of simply typable lambda terms among terms

We said that simply typable terms are scarce, but we may wonder what scarce exactly means. More precisely, we may wonder how terms are distributed.

To provide an answer to this question, we conducted experiments to approximate the distribution of typable closed λ-terms in segments of the interval [1..T 0,n]. We divided the interval into regular segments and computed the ratio of simply typable terms for a random sample of terms in each segment. Figure 11 is typical of the results we got. This corresponds to an experiment on closed terms of size 25 on 250 segments with tests for simple typability on 200 random closed terms in each segment. For each segment the height of the vertical bar represents the ratio of typable closed terms to general closed terms in the corresponding segment. The simply typable closed terms are not uniformly distributed. They are more concentrated on the left of the interval corresponding to closed terms with low numbers. Those closed terms correspond to closed terms starting more often with abstractions than with applications and this is recursively so for subterms giving the impression of rolling waves. For instance, there are 2% to 3% of typable closed terms (of size 25) starting with many abstractions, whereas for closed terms starting with many applications there are large subintervals with almost no typable closed terms. Figure 12, which gives the same statistics for closed terms of size 30, shows that typable closed terms get more scarce as the size of the closed terms grows. The typable closed normal forms are even more scarcely distributed. As a comparison, we drew the same graphs for closed normal forms (size of the closed normal forms: 25 and 30, number of segments 250, tests on 200 closed terms) in Figure 13. The typable closed normal forms aggregate more on the left of the interval where closed terms start mostly with abstractions, with peaks of 4% to 6% by segments. Figure 14 shows that scarcity of typable normal forms increases as the size of closed terms grows.

Related work

There are very few papers on counting λ-terms, whereas counting first order terms is a classical domain of combinatorics. Apparently, the first traces of counting expressions with (unbound) variables can be attributed to Hipparchus of Rhodes (c. 190-120 BC) (see [START_REF] Flajolet | Analytic Combinatorics[END_REF] p. 68). Flajolet and Sedgewick's book [START_REF] Flajolet | Analytic Combinatorics[END_REF] is the reference on this subject. Concerning counting λ-terms, we can cite only five works. [START_REF] David | Asymptotically almost all λ-terms are strongly normalizing[END_REF] and [START_REF] Bodini | Lambda terms of bounded unary height[END_REF] study asymptotic behavior of formulas on counting λ-terms. Strictly speaking, they do not exhibit a recurrence formula for counting. In particular, David et al. [START_REF] David | Asymptotically almost all λ-terms are strongly normalizing[END_REF] provide only upper and lower bounds for the numbers of λ-terms in order to get information about the distribution of families of terms. For instance, they prove that "asymptotically almost all λ-terms are strongly normalizing". In [START_REF] Lescanne | On counting untyped lambda terms[END_REF] the second author of the present paper proposes formulas for counting λ-terms in the case of variables of size 1, with more complex formulas and less results. On another hand, Christophe Raffalli proposed a formula for counting closed λ-terms, which he derives from the formula for counting λ-terms with exactly m distinct free variables. His formula appears in the On-line Encyclopedia of Integer Sequences under the number A135501. He considers size 1 for the variables. Beside those works, John Tromp [START_REF] Tromp | Binary lambda calculus and combinatory logic[END_REF] proposes a rather different way of counting λ-terms which deserves to be investigated further from the viewpoint of combinatorics. His size function works on terms with de Bruijn indices like ours and is (in our convention of starting at 1) as follows:

|n| = n + 1 |λM | = |M | + 2 |M N | = |M | + |N | + 2
producing sequence A114852 (and sequence A195691 for closed normal forms) in the On-line Encyclopedia of Integer Sequences. This work is connected to program size complexity and Algorithmic Information Theory [START_REF] Li | An introduction to Kolmogorov complexity and its applications[END_REF].

As concerns random generation, Wang in [START_REF] Wang | Generating random lambda calculus terms[END_REF][START_REF] Wang | The efficient generation of random programs and their applications[END_REF] proposed algorithms for random generation of untyped λ-terms in the spirit of the counting formula of Raffalli for [START_REF] Wang | Generating random lambda calculus terms[END_REF] and in the spirit of T n,m for [START_REF] Wang | The efficient generation of random programs and their applications[END_REF]. On term generation, we can also mention two works. In [START_REF] Duregård | Feat: functional enumeration of algebraic types[END_REF] the authors enumerate and generate many more structures than λ-terms. In [START_REF] Kennedy | Every bit counts: The binary representation of typed data and programs[END_REF], the authors address a problem similar to ours. Indeed they play on the duality encoder-decoder or askbuild, when we speak of counting-generating or ranking-unranking. Our unranking program (Figure 6) can be made easily a game, with questions like "Is k ≤ (t(n -1)(m + 1))?" or like "Is k > (t(n -1)(m + 1))?", but Kennedy and Vytiniotis do not know the precise range of their questions since they do not base their generation on counting. Since the size is not a parameter, their games may have unsuccessful issues and their programs can raise errors and are only error-free on well-formed games. Pa lka [START_REF] Lka | Testing an optimising compiler by generating random lambda terms[END_REF][START_REF] Pa | Testing an optimising compiler by generating random lambda terms[END_REF] uses generation of typable λ-terms to test Haskell compilers. He acknowledges that, due to his method, he cannot guarantee the uniformity of his generator (see discussion in [START_REF] Lka | Testing an optimising compiler by generating random lambda terms[END_REF] p. 21 and p. 45). Nonetheless, he found eight failures and four bugs in the Glasgow Haskell Compiler demonstrating the interest in the method, probably due the ability of generating large terms. Rodriguez Yakushev & Jeuring [START_REF] Rodriguez | Enumerating well-typed terms generically[END_REF] study the feasibility of generic programming for the enumeration of typed terms. The given examples are of size 4 or 5, no realistic examples are provided, randomness is not addressed and the authors confess that their algorithm is not efficient. Knowing that there are 9 006 364 simply typable closed terms of size 10, one wonders if there is an actual use for such enumeration and it seems unrealistic to utilize enumeration for larger numbers. The "related work" section of [START_REF] Rodriguez | Enumerating well-typed terms generically[END_REF] covers similar approaches, which all consist in cutting branches. For this reason they do not generate terms uniformly. A presentation of tree-like structure generation and a history of combinatorial generation is given in [START_REF] Knuth | The Art of Computer Programming, Generating All Trees-History of Combinatorial Generation[END_REF].

Since we cited, as an application, the random generation of terms for the construction of samples for debugging functional programming compilers and the connection with languages with bound variables, it is sensible to mention Csmith [START_REF] Yang | Finding and understanding bugs in C compilers[END_REF], which is the most recent and the most efficient bug tracker of C compilers. It is based on random program generation and uses filters for generating programs enforcing semantic restrictions, like ours when generating simply typable terms. However, the generation is not based on unranking, therefore Csmith lacks the ability to construct test case of a specific size on demand, but Csmith can generate large terms, which reveals to be useful, since the greatest number of distinct crash errors is found by programs containing 8K-16K tokens. However, one may wonder if this feature is not a consequence of the non-uniformity of the distribution.

Acknowledgments

Clearly Nikolaas de Bruijn and Philippe Flajolet were influential all along this research. We would like to thank Marek Zaionc for stimulating discussions and for setting the problem of counting λ-terms, Bruno Salvy for his help in the proof of Proposition 8, Olivier Bodini, Jonas Duregård, Danièle Gardy, Bernhard Gittenberger, Patrik Jansson, Jakub Kozik, John Tromp and the referees of this paper for their useful suggestions and interactions.

Conclusion

This paper opens tracks of research in two directions, which are intrinsically complementary, namely counting and generating, aka ranking and unranking. On counting terms, some hard problems remain to be solved. Probably the hardest and the most informative one is to give an asymptotic estimation for the numbers of closed terms of size n. It seems that big obstacles remain to be hurdled before getting a solution, since combinatorial structures with binders have not been studied so far by combinatorists. On generation of terms, implementations have to be improved to go further in the production of uniformly distributed terms, in particular, of uniformly generated typable terms.

A Terms with exactly m distinct free variables

Here we study the numbers of terms with exactly m distinct free variables, the formulas for counting those numbers and their relations with quantities we considered.

A.1 A formula

Let us show how to derive the formula for counting λ-terms with exactly m distinct free variables. This formula is adapted from a similar one when variables have size 1 due to Raffalli (On-line Encyclopedia of Integer Sequences under the number A135501). We assume that terms are built with usual variables (not de Bruijn indices) and that they are equivalent up to a renaming of bound variables and up to α-conversion. Let us denote the number of λ-terms of size n with exactly m distinct free variables by f n,m .

Notice first that there is no term of size 0 with no free variable, hence f 0,0 = 0. There is one term of size 0 with one free variable, hence f 0,1 = 1. The maximum number of variables for a λ-term of size n is when the only operators are applications and all the variables are different. One has then a binary tree with n internal nodes and n + 1 leaves holding n + 1 variables. This means that for m beyond n + 1 variables there is no term of size n with exactly m distinct free variables. Hence f n,m = 0 when m > n + 1.

In the general case, a term of size n + 1 with m free variables starts either with an abstraction or with an application. Terms starting with an abstraction, say λx, on a term M contribute in two ways: either M does not contain x as a free variables or M contains x as a free variable. There are f n,m such M 's in the first case and f n,m+1 in the second. This gives the two first summands f n,m + f n,m+1 in the formula. Now, let us see how terms starting with an application look like. Assume they are of the form P Q and of size n + 1. For some p ≤ n, the term P is of size p and Q is of size n -p. These terms share c common variables (0 ≤ c ≤ m), while P Q has m distinct free variables altogether. The term P has k distinct free variables, which do not occur in Q, hence P has k + c distinct free variables altogether. The term Q has m -k distinct free variables. Therefore, given a set of private variables for P , a set of common variables, and a set of private variables for Q, there are f p,k+c f n-p,m-k possible pairs (P, Q). There This shows with no surprise that f n,m and T n,m are simply connected. Knowing that the T n,m 's can be easily computed, this provides a formula simpler than Raffalli's to compute the f n,m 's.

A.3 A relation between f n,m and c n,i

We write R (m) i the number of surjections from [1..i] to [1..m]. To get a relation between f n,m and c n,i , we can reproduce the process with which we associated T n,m and c n,i (Section 3), but instead of applications from [1..i] to [1..m], we have surjections from [1..i] to [1..m], since this time we count terms with exactly m variables and all the de Bruijn indices must be reached by the applications. Therefore which is another proof of the formula of Section A.2.

B A program for testing simple typability

In this section we give a simple Haskell program for testing simple typability of a term also called type reconstruction. The program which works on the types Type and Equation:

data Type = Var Int | Arrow Type Type type Equation = (Type,Type) has three parts. First, a function builds the set of typability equational constraints of a closed term. This function called buildConstraint (Figure 15) takes a term and returns its potential principal type, which will be made explicit after solving the constraints, and a list of equational constraints. It requires a function build which will be called through the terms. Along its traversal of the term, the function build has to know the depth d (the number of λ's it crossed). Moreover, build creates type variables. Actually, a constraint builder creates type variables in two situations: when it creates a context for the first time, that is when it deals with a de Bruijn index, and when it creates the type to be returned by an application. Since type variables are objects of the form Var i, where i is an Int, build takes an Int which is increased whenever a new type variable is created. We call the latter a cursor and denote it by cu. build returns a 4-uple, namely the potential principal type of the term, a context (a list of types associated with de Bruijn indices), a set of equational constraints and the updated cursor.

To solve equational constraints we use a method based on transformation rules [START_REF] Gallier | Complete sets of transformations for general Eunification[END_REF][START_REF] Jouannaud | Solving equations in abstract algebras: a rule-based survey of unification[END_REF]. For that, we use a function decompose which splits an equation when both sides are arrow types. Moreover, when decompose meets an equation σ 1 → σ 2 = α, the latter is transformed into α = σ 1 → σ 2 . A predicate nonTrivialEq is necessary to filter out the trivial equations, i.e., of the form α = α. nonTrivialEq :: Equation -> Bool nonTrivialEq (Var i, Var j) = i /= j nonTrivialEq (ty1, ty2) = True A predicate checks whether a given variable belongs to a composed type. This is necessary to detect cycles. For instance, α = β → α is a cycle and shall be detected, whereas α = α is a trivial equation, not a cycle, and shall be removed. Once this test is done, one can replace a variable α occurring in an equation of the form α = σ by σ everywhere else in the set of equational constraints before putting the equation α = σ in the solved part.

Figure 1 :

 1 Figure 1: Values of T n,m for n and m up to 14 and 6, respectively

Figure 2 :Lemma 2

 22 Figure 2: The first nine polynomials P n

 We have found three formulas to compute the number of closed terms of size n. Let us summarize them. In what follows the bracketed notation [k = j] is the function which is 1 if k = j and 0 if k = j.

Figure 4 :Figure 5 :

 45 Figure 4: Haskell program for counting normal forms

Figure 6 :

 6 Figure 6: Haskell program for term unranking

Figure 7 :

 7 Figure 7: Haskell program for normal form unranking

Figure 8 :

 8 Figure 8: From top to bottom: Curve 2n ln(n) , average variable depth for closed terms, average variable depth for closed normal forms and curve 2n ln(n) 1.1 .

Figure 9 :

 9 Figure 9: Magnification of Figure 8 between n = 170 and n = 175.

Figure 10 :

 10 Figure 10: Bottom: average number of head λ's per closed term. Top: average number of head λ's per closed normal form. In between: curves n ln(n) a for a = 0.025, 0.2, 0.3, 0.5.

 size

Figure 11 :

 11 Figure 11: Distribution of simply typable closed λ-terms of size 25. 250 segments on the horizontal axis, percentage (0% -3%) of typable closed λ-terms in segments on the vertical axis.

Figure 12 :

 12 Figure12: Distribution of simply typable closed λ-terms of size 30. 250 segments on the horizontal axis, percentage (0% -2.5%) of typable closed λ-terms in segments on the vertical axis.

Figure 13 :

 13 Figure 13: Distribution of simply typable closed normal forms of size 25. 250 segments on the horizontal axis, percentage (0% -6%) of typable closed normal forms in segments on the vertical axis.

Figure 14 :

 14 Figure 14: Distribution of simply typable closed normal forms of size 30. 250 segments on the horizontal axis, percentage (0% -1.45%) of typable closed normal forms in segments on the vertical axis.

 are m c ways to choose the c common variables among m and there are m-c k ways to split the remaining variables into P and Q, namely k for P and m -c -k for Q, hence the third summand of the formula: k+c f n-p,m-k . Now, we obtain the whole formula:f n+1,m = f n,m + f n,m+1 + k+c f n-p,m-k .A.2 Relations between T n,m and f n,mThe number of terms of size n with exactly i indices in [1..m] is m i f n,i . Therefore the number of terms with indices in[1..m] is: By the inversion formula ([10] p. 192), we get:f n,m = m i=0(-1) m+i m i T n,i .

 j (i -j) m .We can now go further in the expression of f n,m .

Figure 15 :

 15 Figure 15: The function buildConstraint

(

) :: Type -> Type -> Bool (Var i) (Var j) = False --strict occurrence only (Var i) (Arrow ty1 ty2) = (Var i) = ty1 || (Var i) = ty2 where (Var i) = (Var j) = i == j (Var i) = (Arrow ty1 ty2) = (Var i) = ty1 || (Var i) = ty2

 1, and there are 14 closed terms of size 3, namely

	n\m	0	1	2	3	4	5
	0	0	1	2	3	4	5
	1	1	3	7	13	21	31
	2	3	13	41	99	199	353
	3	14	76	312	962	2386	5064
	4	82	542	2784	10732	32510	82122
	5	579	4493	27917	131715	482015	1440929
	6	4741	42131	307943	1741813	7612097	26763551
	7	43977	439031	3690055	24537945	126536933	519788827
	8	454283	5020105	47635777	365779679	2198772055	10477986133
	9	5159441	62382279	658405747	5744911157	39769404045	218213327131
	10	63782411	835980065	9695617821	94786034723	746744227319	4681133293821
	11	851368766	12004984120	151488900012	1639198623818	14531624611594	103244315616876
	12	12188927818	183754242626	2502346785164	29658034018852	292747054367966	2338363467319958
	13	186132043831	2984264710781	43560247035581	560484305049943	6100545513799835	54347237563601321
	14	3017325884473	51220227153987	796828655891895	11046637024014049	131425939696979805	1295642289776992983

 Assume that we compute ttab n 0 for the first time. The basic operation rake requires O(n) additions and O(n) multiplications. nextn requires O(n) calls to rake and iterate requires O(n) to nextn. Therefore, the complexity of the first computation of t n 0 depends on the complexity of the addition and of the multiplication of arbitrary-precision integers which we may assume (intuitively) to be O(log 2 (T n,0)). Although the question of the asymptotic size of the number T n,0 is open, we know that it is superexponential in n and, on the other hand, it is asymptotically smaller than n n . Therefore, t n 0 runs in O(n 3 × log 2 (T n,0)) which is at least of order n 5 and at most of order n 5 log 2 (n). Such estimations seem to be in accordance with our experiments. Once the table ttab is constructed, the runtime of t is in O(n + m).

	This program is inefficient since it recomputes the values of T at each recursive call. For
	actual computations a program with memoization is required. In Sage this is obtained
	by requiring the function to be "cached". In Haskell we use the laziness of streams:
	ttab' :: [[Integer]]
	ttab' = [0..] : [[t' (n-1) (m+1) + s n m | m <-[0..]] | n <-[1..]]
	where s n m = sum $ zipWith (*) (ti n m) (reverse $ ti n m)
	ti n m = [t' i m | i <-[0..(n-1)]]
	t' :: Int -> Int -> Integer
	t' n m = ttab !! n !! m
	This program is not efficient enough and John Tromp proposed us a better program:
	ttab :: [[[Integer]]]
	ttab = iterate nextn . map return $ [0..]
	where
	nextn ls = zipWith rake (tail ls) ls
	rake (m1:_) ms = (m1 + conv ms) : ms
	conv ms = sum $ zipWith (*) ms (reverse ms)
	t :: Int -> Int -> Integer
	t n m = head $ ttab !! n !! m

Table 1 :

 1 Numbers and ratios of simply typable closed terms up to size 10

					4	5		6		7	8		9		10
	nb of terms			82	579		4 741 43 977 454 283 5 159 441 63 782 411
	nb of typables		40	238		1 564 11 807 98 529 904 318 9 006 364
	ratio		0.4878 0.4110 0.3299 0.2684 0.2168	0.1752		0.1412
	size	8	9	10	11	12	13	14	15	16	20	30	40	45	50
	ratio .216 .175 .141 .111 .089 .073 .056 .047 .039 .0014 .0012 .0003 .00005 <10 -5

Table 2 :

 2 Ratios of simply typable closed terms (of size at least 8)

Table 3 :

 3 and by the Monte Carlo method thereafter in Table4. Numbers and ratios of simply typable closed normal forms up to size 10

	size			4		5		6		7	8		9	10
	nb of NF		53	323		2 359 19 877 188 591 1 981 963 22 795 849
	nb of typable NF	23	108		618		4 092 30 413 252 590 2 297 954
	ratio			0.4339 0.3343 0.2619 0.2058 0.1612	0.1274	0.1008
	size	8	9	10	11	12	13	14	15	16	20	30	40	45
	ratio .159 .128 .102 .079 .063 .049 .040 .031 .024 .010 .0006 2.10 -5 <10 -5

Table 4 :

 4 Ratios of simply typable closed normal forms

* This work was supported by the National Science Center of Poland, grant number 2011/01/B/HS1/00944, when the author hold a post-doc position at the Jagiellonian University within the SET project co-financed by the European Union.

(←) :: Type -> Equation -> Type (Var j) ← (Var i, ty) = if i == j then ty else Var j (Arrow ty1 ty2) ← (Var i, ty) = Arrow (ty1 ← (Var i, ty)) (ty2 ← (Var i, ty))

replace:: Equation -> Equation -> Equation replace (Var i,ty) (ty1,ty2) = (ty1 ← (Var i,ty), ty2 ← (Var i,ty))

The function solve solves the set of equational constraints. It returns three things: first a list of equations which are the equations yet to be solved, second a list of equations which are the already solved equations and third a condition that says if the set of equational constraints is solvable or not. In other words, solve returns True as the third component if the set of equational constraints has a solution, that is when the set of equational constraints is empty. It returns False when it detects a cycle. Otherwise it tries to apply the transformations whenever it is possible, that is when the set of equational constraints is not empty. Indeed if there is no cycle and if the set of equational constraints is not empty, a transformation is always applicable. Notice that we have everything to build the principal type of the term if it is typable.