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Abstract

Lambda calculus is the basis of functional programming and higher order proof
assistants. However, little is known about combinatorial properties of lambda
terms, in particular, about their asymptotic distribution and random generation.
This paper tries to answer questions like: How many terms of a given size are there?
What is a “typical” structure of a simply typable term? Despite their ostensible
simplicity, these questions still remain unanswered, whereas solutions to such prob-
lems are essential for testing compilers and optimizing programs whose expected
efficiency depends on the size of terms. Our approach toward the aforementioned
problems may be later extended to any language with bound variables, i.e., with
scopes and declarations.

This paper presents two complementary approaches: one, theoretical, uses com-
plex analysis and generating functions, the other, experimental, is based on a gen-
erator of lambda terms. Thanks to de Bruijn indices, we provide three families of
formulas for the number of closed lambda terms of a given size and we give four rela-
tions between these numbers which have interesting combinatorial interpretations.
As a by-product of the counting formulas, we design an algorithm for generating
λ-terms. Performed tests provide us with experimental data, like the average depth
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of bound variables and the average number of head lambdas. We also create ran-
dom generators for various sorts of terms. Thereafter, we conduct experiments that
answer questions like: What is the ratio of simply typable terms among all terms?
(Very small!) How are simply typable lambda terms distributed among all lambda
terms? (A typable term almost always starts with an abstraction.)

In this paper, abstractions and applications have size 1 and variables have size 0.

Keywords: lambda calculus, combinatorics, functional programming, test, ran-
dom generator, ranking, unranking

1 Introduction

Let us start with a few questions relevant to the problems we address.

• How many closed λ-terms are of size 50 (up to α-conversion)?

996657783344523283417055002040148075226700996391558695269946852267.

• How many closed terms of size n are there?
We will give a recursive formula for this number in Section 2.

• What does the following sequence enumerate:

0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411?

This sequence enumerates closed terms of size 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. It
is the sequence A220894 of the Online Encyclopedia of Integer Sequences (https:
// oeis. org/ A220894 ). We will provide three ways to compute it (Section 4).

• Is it possible to generate simply typable terms randomly?
Yes, according to the process which consists in generating random λ-terms with
uniform probability and sieving those that are simply typable. Thus, we can generate
random simply typable terms of size up to 50.

• Is a term starting with an abstraction more likely to be typable than a term starting
with an application?
The answer is positive as shown in Figure 11, which gives the distribution of simply
typable λ-terms among all λ-terms.

• Do these results have practical consequences?
Yes, they enable random generation of simply typable terms in the case of terms of
size up to 50 in order to debug compilers or other programs, manipulating terms,
e.g., type checkers or pretty printers.

The above questions seem rather classical, but amazingly very little is known about
combinatorial aspects of λ-terms, probably because of the intrinsic difficulty of the com-
binatorial structure of lambda calculus due to the presence of bound variables. However,
the answers to these questions are extremely important not only for a better understand-
ing of the structure of λ-terms, but also for people who build test samples for debugging
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compilers. Perhaps the reason for this ignorance lies in the surprising form of the recur-
rences. Indeed, due to the presence of bound variables, the recurrence does not work in
the way mathematicians expect and are used to. The induction lies on two variables, one
decreasing (the size), the other increasing (the number of free variables). Thus none of
the methods used in the reference book of Flajolet and Sedgewick [8] applies. Why is
that? In what follows we compute the number of λ-terms (and of normal forms) of size
n with at most m distinct free variables. Denoting the number of such terms by Tn,m,
the formula for Tn,m contains Tn−1,m+1 and this growth of m makes the formula averse
to treatments by generating functions and classical analytic combinatorics. We notice
that for a given n the expression for Tn,m is a polynomial in m. These polynomials can
be described inductively and their coefficients are given by recurrence formulas. These
formulas are still complex, but can be used to compute the constant coefficients, which
correspond to the numbers of closed λ-terms. For instance, the leading coefficients of the
polynomials are the well known Catalan numbers which count binary trees.

In order to find the recurrence formula for the number of λ-terms of a given size, we
make use of the representation of variables in λ-terms by de Bruijn indices. Recall that a
de Bruijn index is a natural number which replaces a term variable and enumerates the
number of λ’s encountered on the way between the variable and the λ which binds the
latter. In this paper, we assume the combinatorial model in which the size of each occur-
rence of abstraction or application is counted as 1, while the size of variables (de Bruijn
indices) as 0. This method is a realistic model of the complexity of λ-terms and allows
us to derive the recurrences very naturally.

From the formula for counting λ-terms we derive one-to-one assignments of terms of
size n with at most m distinct free indices to the numbers in the interval [1..Tn,m]. From
this correspondence, we develop a program for generating λ-terms, more precisely for
building λ-terms associated with numbers in the interval [1..Tn,m]. In combinatorics the
function that counts objects by assigning a number to each object is called a ranking and
its inverse, i.e., the function that assigns an object to a rank is called an unranking [24].
Thus, in this paper, we can say that we rank and unrank lambda-terms and normal forms.
If we pick a random number in the interval [1..Tn,m], then we get a random term of size
n with at most m distinct free variables. Most of the time we consider closed λ-terms,
which means m = 0. Beside the interest in such a random generation for applications like
testing, this allows us to compute practical values of parameters by Monte-Carlo methods.
Overall, we are able to build a random generator for simply typable terms. Unlike the
method used so far [21], which consists in unfolding the typing tree, we generate random
λ-terms and test their typability, until we find a simply typable term. This method allows
us to generate uniformly simply typable λ-terms up to size 50. We also use this method
to describe the distribution of typable terms among all terms and typable normal forms
among all normal forms.

Structure of the paper

According to its title, the paper is divided into two parts, the first one focuses on counting
terms and its mathematical treatment, the second one addresses term generation and its
applications. The first part (Sections 2 and 5) is devoted to the formulas counting λ-
terms. In Section 2 we study polynomials giving the numbers of terms of size n with
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at most m distinct free variables. In Section 3, we show that the numbers of i-contexts
give a combinatorial interpretation of the coefficients of the polynomials and yield a new
formula for counting the closed terms of size n. If we add formulas for counting λ-terms
of size n with exactly m distinct free variables, we have three formulas of three different
origins for counting closed terms which we describe and compare in Section 4. In Section 5
we derive generating functions and asymptotic values for these coefficients. In Section 6
we give a formula for counting normal forms. In the second part of the paper, i.e., in
Section 7 and Section 8, we propose programs to generate untyped and typable terms and
normal forms. Section 9 is devoted to experimental results. Section 10 presents related
works.

2 Counting terms with at most m distinct free vari-

ables

We represent terms using de Bruijn indices [6], which means that variables are represented
by numbers 1, 2, . . . ,m, . . ., where an index, for instance k, is the number of λ’s above the
location of the index and below the λ that binds the variable, in a representation of λ-
terms by trees. For instance, the term with variables λx.λy.x y is represented by the term
with de Bruijn indices λλ21. The variable x is bound by the top λ. Above the occurrence
of x there are two λ’s, therefore x is represented by 2, and from the occurrence of y we
count just the λ that binds y, so y is represented by 1. Notice that unlike Lescanne [16]
and like de Bruijn [6] and Abadi et al. [1] we start indices at 1, since it fits better with
our aim of counting terms.

In what follows, by terms we mean untyped terms with de Bruijn indices and we
often speak indistinctively of variables and (de Bruijn) indices. Assume that in a term t
not all occurrences of indices need to be bound, i.e., there may occur indices that do not
correspond to surrounding λ’s. Such indices are called “free” in t. Now, we introduce the
notational convention for “free” indices occurring in terms. An interval of free indices
for a term t is a set {1, 2, . . . ,m} of indices, written [1..m], such that

(i) if t is an index i, then any interval [1..m] with 1 ≤ i ≤ m is an interval for t,

(ii) if t is an abstraction λs and an interval of free indices for s is [1..m + 1], then the
interval of free indices for t is [1..m] (since the index 1 is now bound and the others
are assumed to decrease by one),

(iii) if t is an application t1t2 and an interval of indices for t1 and t2 is [1..m], then an
interval of indices for t is [1..m].

To illustrate (ii), assume t = λs = λ3 1. An interval of free indices for s is [1..m + 1] for
any m ≥ 2. For instance for m = 3, [1, 2, 3, 4] is an interval of free indices for s. For
m = 2, [1, 2, 3] is another interval of free indices for s. An interval of free indices for t is
[1..m] for any m ≥ 2 and for m = 3, [1, 2, 3] is an interval of free indices for t. For m = 2,
[1, 2] is another interval of free indices for t. To say it in rough words, whereas one sees
3 as 3 in s, one sees 3 as 2 in t due to the abstraction λ which decreases the indices as
they are seen.

4



We measure the size of a term in the following way:

|m| = 0, for every index m,

|λt| = |t|+ 1,

|ts| = |t|+ |s|+ 1.

Since λ-terms can be represented as unary-binary trees with labels or pointers, the
notion of size of a term t corresponds to the number of unary and binary vertices in the
tree representing t. This also means that adding a new variable (in other words, adding
a new leaf to a tree) or a new operator (a unary or a binary vertex) always increases the
size of a term by 1.

One can define m using the concept of term openness (due to John Tromp). The
openness of a terms is the minimum number of outer λ’s necessary to close the terms,
i.e., to make the term a closed term. For instance, the openness of (λx.(x y))(λx.(x z)) is
equal to 2 since the term needs two abstractions to become closed.

Let us denote by Tn,m the set of terms of size n with at most m distinct free de Bruijn
indices. Tn,m is isomorphic to the set of terms having an openness equal to at most m.
In what follows, we use the symbol @ to denote applications, whereas classical theory of
λ-calculus uses concatenation, which we find not explicit enough for our purpose.

T0,m = [1..m]

Tn+1,m = λTn,m+1 ]
n⊎
i=0

Ti,m@Tn−i,m.

For all n,m ∈ N, let Tn,m denote the cardinality of the set Tn,m. According to
the definition of size, operators λ and @ have size 1 and de Bruijn indices have size 0.
Therefore, we get the following two equations specifying Tn,m:

T0,m = m

Tn+1,m = Tn,m+1 +
n∑
i=0

Ti,mTn−i,m.

This means that there are m terms of size 0 with at most m distinct free de Bruijn
indices, which are terms that are just these indices. Terms of size n + 1 with at most
m distinct free de Bruijn indices are either abstractions with at most m+ 1 distinct free
indices on a term of size n or applications of terms with at most m distinct free indices
to make a term of size n + 1. As we said in the introduction, the 11 first values of Tn,0
are:

0, 1, 3, 14, 82, 579, 4741, 43977, 454283, 5159441, 63782411.

Tn,0 is sequence A220894 in the On-line Encyclopedia of Integer Sequences.
Figure 1 gives all the values of Tn,m for n up to 14 and m up to 6. For instance,

there is 1 closed term of size 1, namely λ1, there are 3 closed terms of size 2, namely
λλ1, λλ2, λ1 1, and there are 14 closed terms of size 3, namely
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n\m 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 3 7 13 21 31 43
2 3 13 41 99 199 353 573
3 14 76 312 962 2386 5064 9596
4 82 542 2784 10732 32510 82122 181132
5 579 4493 27917 131715 482015 1440929 3687513
6 4741 42131 307943 1741813 7612097 26763551 79193491
7 43977 439031 3690055 24537945 126536933 519788827 1771730211
8 454283 5020105 47635777 365779679 2198772055 10477986133 40973739725
9 5159441 62382279 658405747 5744911157 39769404045 218213327131 974668783199
10 63782411 835980065 9695617821 94786034723 746744227319 4681133293821 23769847893305
11 851368766 12004984120 151488900012 1639198623818 14531624611594 103244315616876 593009444765240
12 12188927818 183754242626 2502346785164 29658034018852 292747054367966 2338363467319958 15112319033576416
13 186132043831 2984264710781 43560247035581 560484305049943 6100545513799835 54347237563601321 393031286917940401
14 3017325884473 51220227153987 796828655891895 11046637024014049 131425939696979805 1295642289776992983 10425601907159190187

Figure 1: Values of Tn,m for n and m up to 14 and 6, respectively

λλλ1 λλλ2 λλλ3 λλ1 1 λλ1 2 λλ2 1 λλ2 2
λ(1λ1) λ(1λ2) λ1(11) λ((λ1) 1) λ((λ2) 1) λ((1 1) 1) (λ1)λ1.

Notice that in Section 7 we describe how to assign a term to a number and therefore
how to list terms with increasing numbers. The above terms are listed in that order.

2.1 Computing the Tn,m’s

The recursive definition of T yields an easy naive program in a functional programming
language (here Haskell):

naiveT :: Int -> Int -> Integer

naiveT 0 m = fromIntegral m

naiveT n m = naiveT (n-1) (m+1) +

sum [naiveT i m * naiveT (n-1-i) m | i <- [0..n-1]]

This program is inefficient since it recomputes the values of T at each recursive call. For
actual computations a program with memoization is required. In Sage this is obtained
by requiring the function to be “cached”. In Haskell we use the laziness of streams:

ttab’ :: [[Integer]]

ttab’ = [0..] : [[t’ (n-1) (m+1) + s n m | m <- [0..]] | n <- [1..]]

where s n m = sum $ zipWith (*) (ti n m) (reverse $ ti n m)

ti n m = [t’ i m | i <- [0..(n-1)]]

t’ :: Int -> Int -> Integer

t’ n m = ttab !! n !! m

This program is not efficient enough and John Tromp proposed us a better program:

ttab :: [[[Integer]]]

ttab = iterate nextn . map return $ [0..]

where

nextn ls = zipWith rake (tail ls) ls

rake (m1:_) ms = (m1 + conv ms) : ms

conv ms = sum $ zipWith (*) ms (reverse ms)

t :: Int -> Int -> Integer

t n m = head $ ttab !! n !! m

6



Assume that we compute ttab n 0 for the first time. The basic operation rake requires O(n)
additions and O(n) multiplications. nextn requires O(n) calls to rake and iterate requires
O(n) to nextn. Therefore, the complexity of the first computation of t n 0 depends on the
complexity of the addition and of the multiplication of arbitrary-precision integers which
we may assume (intuitively) to be O(log2(Tn,0)). Although the question of the asymptotic
size of the number Tn,0 is open, we know that it is superexponential in n and, on the other
hand, it is asymptotically smaller than nn. Therefore, t n 0 runs in O(n3 × log2(Tn,0))
which is at least of order n5 and at most of order n5 log2(n). Such estimations seem to
be in accordance with our experiments. Once the table ttab is constructed, the runtime
of t is in O(n+m).

2.2 The polynomials Pn

In the end of this section and in the four coming sections we present results of mainly combi-

natorial flavor. We focus there on the quantitative approach to lambda calculus, with special

emphasis on the challenging problem of counting λ-terms and approximating its asymptotic be-

havior. Therefore, a reader interested mostly in term generation and experimental results can

skip this material and go directly to Section 7.

The problem of determining the asymptotic estimation of the number of closed terms
of a given size turns out to be a non-trivial task. Due to the unusual combinatorial struc-
ture of λ-terms, such objects seem to resist methods developed in combinatorics so far.
There are a few papers devoted to this challenging problem [2, 5, 17], however, none of the
methods used by now could provide the final solution. Bodini et al. [2] use essentially an-
alytic methods exploiting the functional equation of Proposition 3 (Section 3.1), whereas
David et al. [5] use upper and lower bound approximations and Lescanne [17] uses alge-
braic computations on polynomials and power series. Our approach can be considered as
the development of the previous research carried out by [17].

For every n ≥ 0, we associate with Tn,m a polynomial Pn(m) in m. First, let us define
polynomials Pn in the following recursive way:

P0(m) = m,

Pn+1(m) = Pn(m+ 1) +
n∑
i=0

Pi(m)Pn−i(m).

The sequence (Pn(0))n≥0 corresponds to the sequence (Tn,0)n≥0 enumerating closed
λ-terms. The first nine polynomials are given in Figure 2.

This means that the constant coefficient of a polynomial Pn(m) is exactly the number
of closed λ-terms of size n.

Lemma 1 For every n, the degree of the polynomial Pn is equal to n+ 1.

Proof: The result follows immediately by induction on n from the definition
of Pn. �

For i > 0 and n ≥ 0, let us denote by p
[i]
n the ith leading coefficient of the polynomial

Pn, i.e., we have

Pn(m) = p[1]n m
n+1 + p[2]n m

n + . . .+ p[i]nm
n+2−i + . . .+ p[n+1]

n m+ p[n+2]
n .
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n Pn

0 m
1 m2 +m+ 1
2 2m3 + 3m2 + 5m+ 3
3 5m4 + 10m3 + 22m2 + 25m+ 14
4 14m5 + 35m4 + 94m3 + 154m2 + 163m+ 82
5 42m6 + 126m5 + 396m4 + 838m3 + 1277m2 + 1235m+ 579
6 132m7 + 462m6 + 1654m5 + 4260m4 + 8384m3 + 11791m2 + 10707m+ 4741
7 429m8 + 1716m7 + 6868m6 + 20742m5 + 49720m4 + 90896m3 + 120628m2 + 104055m+ 43977
8 1430m9 + 6435m8 + 28396m7 + 98028m6 + 275886m5 + 617096m4 + 1068328m3 + 1352268m2 + 1117955m+ 454283

Figure 2: The first nine polynomials Pn

Lemma 2 For every n ≥ 0 and i > 0,

p
[1]
0 = 1, p

[i]
0 = 0 for i > 1,

p
[i]
n+1 =

i−2∑
j=0

(
n+ 1− j
i− 2− j

)
p[j+1]
n +

i∑
k=1

n∑
j=0

p
[k]
j p

[i+1−k]
n−j .

Proof: Since P0(m) = m, equations from the first line in the above lemma are
trivial.

The ith leading coefficient in the polynomial Pn+1(m) is equal to the sum of
coefficients standing atmn+3−i in polynomials Pn(m+1) and

∑n
j=0 Pj(m)Pn−j(m).

The first of these polynomials, Pn(m+ 1), is as follows:

p[1]n (m+ 1)n+1 + . . .+ p[i−1]n (m+ 1)n+3−i + . . .+ p[n+2]
n ,

therefore the coefficient of mn+3−i in Pn(m+ 1) is equal to(
n+ 1

i− 2

)
p[1]n +

(
n

i− 3

)
p[2]n + . . .+

(
n+ 3− i

0

)
p[i−1]n =

i−2∑
j=0

(
n+ 1− j
i− 2− j

)
p[j+1]
n .

In the case of the second polynomial,
∑n

j=0 Pj(m)Pn−j(m), we have(
p
[1]
j m

j+1 + . . .+ p
[k]
j m

j+2−k + . . .+ p
[j+2]
j

)
·
(
p
[1]
n−jm

n−j+1 + . . .+ p
[i+1−k]
n−j mn−j+1+k−i + . . .+ p

[n−j+2]
n−j

)
,

therefore the coefficient of mn+3−i in
∑n

j=0 Pj(m)Pn−j(m) is equal to

i∑
k=1

n∑
j=0

p
[k]
j p

[i+1−k]
n−j .

�

The next section proposes a combinatorial interpretation of the coefficients p
[i]
j .
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3 Counting contexts

In λ-calculus, an i-context is a closed term with i holes. Variables and holes are similar
in the sense that they can be replaced by terms. But whereas a variable may occur many
times in a term and so may be replaced by terms at more than one place at a time, a hole
is anonymous, occurs once and only once (like a linear variable in linear λ-calculus [3])
and can be filled only once. Since as we said holes look like anonymous variables occurring
once we suppose that each hole has size 0 and we assume that the holes are numbered
1, . . . , i as they appear in the term from left to right. For instance, if we denote every
hole by [ ], then (λ1[ ])λλ[ ]2 is a 2-context of size 6 and its holes are numbered as follows
(λ1[ ]1)λλ[ ]22. 0-contexts correspond to closed terms. There is only one 1-context of
size 0 and there are no i-contexts of size 0 for i 6= 1. Let us write cn,i for the number of
i-contexts of size n. Then we have

c0,1 = 1
c0,i = 0 for i 6= 1.

}
(†)

Now, let us see how we construct an i-context of size n+ 1 from smaller ones.

By abstraction: let us take a j-context (for j ∈ [i..n + 1]) of size n and add a new
lambda above it. Then we choose a set of j − i holes among the j holes which we
substitute by variables (or indices) abstracted by the new lambda. For a fixed j
there are

(
j
i

)
cn,j such i-contexts. Finally, we sum these quantities over every j from

i to n+ 1 to get the numbers of i-contexts constructed this way.

By application: let us apply a j-context of size k to an (i− j)-context of size n−k (for
j ∈ [0..i] and k ∈ [0..n]). This gives us an i-context of size n+1 since the application
operator has size 1. For fixed j and k there are ck,jcn−k,i−j such i-contexts. Finally,
we sum these numbers from j = 0 to j = i and from k = 0 to k = n.

Hence, we get the following formula:

cn+1,i =
n+1∑
j=i

(
j

i

)
cn,j +

i∑
j=0

n∑
k=0

ck,jcn−k,i−j. (?)

Let us see how we can build terms from contexts. Recall that, by construction, an i-
context has only holes and no free index, which means that all the indices are bound.
Therefore to build a term of size n with i occurrences of free indices taken among m ones
from an i-context of size n and a map f from [1..i] to [1..m], we insert the index f(j) in
the jth hole. There are cn,im

i such terms. Therefore

Tn,m = cn,n+1m
n+1 + . . .+ cn,im

i + . . .+ cn,0

is the number of λ-terms of size n with at most m distinct free variables, which is the
polynomial Pn(m). In particular, cn,n+2−i = p

[i]
n . This can be written as follows:

Pn(m) =
n+1∑
i=0

cn,im
i.

The coefficients cn,i of the polynomials Pn’s count the i-contexts of size n. We see that
cn,i = 0 when i > n+ 1.
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The case i = n+2. In the case when i = n+2, using the fact that cn,i = 0 for i > n+1,
the equations (†) and (?) boil down to:

c0,1 = 1

cn+1,n+2 =
n∑
k=0

ck,k+1cn−k,n−k+1,

which is characteristic of the Catalan numbers. Indeed, (n + 1)-contexts of size n have
only applications and no abstractions and are therefore binary trees.

3.1 The generating function for (cn,i)n,i∈N

Proposition 3 Consider the bivariate generating function L(z, u) =
∑
n,i≥0

cn,iz
nui. Then

L(z, u) = u+ zL(z, u+ 1) + zL(z, u)2.

Proof: Notice that

L(z, u) =
∞∑
n=0

(
∞∑
i=0

cn,iu
i

)
zn

=
∞∑
n=0

Pn(u)zn

= u+ z
∞∑
n=0

Pn+1(u)zn

= u+ z
∞∑
n=0

Pn(u+ 1)zn + z
∞∑
n=0

n∑
k=0

Pk(u)Pn−k(u)zn

= u+ zL(z, u+ 1) + zL(z, u)2.

�

A similar equation was known from Bodini, Gardy and Gittenberger [2] (for variable
size 1). However, notice that what they call L is not the class of open λ-terms, but the
class of i-contexts. Notice that the function L(z, 0) is the generating function for the
number of closed terms of size n.

The equation
zL(z, u)2 − L(z, u) + u+ zL(z, u+ 1) = 0

has the following solution

L(z, u) =
1−

√
1− 4z(u+ zL(z, u+ 1))

2z
.

Let us state
M(z, u) = 2z L(z, u).
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Then
M(z, u) = 1−

√
1− 4zu− 2zM(z, u+ 1)

and hence

M(z, 0) = 1−

√√√√
1− 2z(1−

√
1− 4z − 2z(1−

√
1− 8z − 2z(1−

√
1− 12z − 2z(1−

√
1− 16z − . . .)))).

3.2 The asymptotic behavior of Tn,0

The function M(z, u) has a singularity zu for 1− 4zuu− 2zuM(zu, u+ 1) = 0, in addition
to the singularities of M(z, u+ 1). Notice that since zuM(zu, u+ 1) > 0, we get zu <

1
4u

.
Therefore L(z, 0) has a sequence of singularities (zu)u∈N which tends to 0. Thus the radius
of convergence of L(z, 0) is 0. Recall that a fundamental theorem on analytic functions
connects the radius of convergence of a generating function with the exponential growth
of its coefficients (see Section IV.3 Singularities and exponential growth of the coefficients
in Flajolet and Sedgewick’s book [8]). This theorem says that if a generating function
has a radius of convergence R, then its coefficients grow like

(
1
R

)n
. This means that if

the radius of convergence is 0, then the coefficients grow faster that an for any a ∈ R.
Such a behavior is called superexponential.

4 Three formulas for counting closed terms

We have found three formulas to compute the number of closed terms of size n. Let us
summarize them. In what follows the bracketed notation [k = j] is the function which
is 1 if k = j and 0 if k 6= j.

Case m = 0 for terms with at most m distinct free variables
Tn,0 where

T0,m = m

Tn+1,m = Tn,m+1 +
n∑
i=0

Ti,mTn−i,m.

This formula is clearly the simplest. Its simplicity, one sum and no binomial, allows it to
be unfolded and used as a basis for programming a term generator (see Section 7).

Case m = 0 for terms with exactly m distinct free variables
fn,0 where

f0,m = [m = 1]

fn,m = 0 if m > n+ 1

fn+1,m = fn,m + fn,m+1 +
n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.

This formula is the most complex. Appendix A.1 shows how it is constructed.
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0-contexts
cn,0 where

c0,i = [i = 1]

cn+1,i =
n+1∑
j=i

(
j

i

)
cn,j +

i∑
j=0

n∑
k=0

ck,jcn−k,i−j.

Four relations. Let us use the notation R
(m)
i (see Flajolet and Sedgewick’s book [8])

for the number of surjections from [1..i] to [1..m]. Recall that

R
(m)
i =

i∑
j=0

(
i

j

)
(−1)j(i− j)m.

The numbers Tn,m, fn,m and cn,i are related as follows (see Appendix A.2):

Tn,m =
m∑
i=0

(
m

i

)
fn,i =

n+1∑
i=1

cn,im
i

fn,m =
m∑
i=0

(−1)m+i

(
m

i

)
Tn,i =

n+1∑
i=1

cn,iR
(m)
i .

5 More generating functions

In this section, we provide the asymptotic approximation of the growth of the kth coeffi-
cients of the polynomials Pn, where the first coefficient is the coefficient of the monomial
of highest degree.

For every positive integer i, let us denote by ai the generating function for the sequence(
p
[i]
n

)
n≥0

, i.e.,

ai(z) =
∞∑
n=0

p[i]n z
n =

∞∑
n=0

cn,n+2−iz
n.

The p
[i]
n ’s count the number of contexts of size n having n + 2− i holes. For the sake of

clarity, instead of writing ai(z) sometimes we simply write ai.
In order to compute the functions ai, we apply the following basic fact about gener-

ating functions.

Fact 4 Let f and g be generating functions for sequences (fn)n≥0 and (gn)n≥0, respec-
tively. Then

(i) the generating function for the sequence
((
n
k

)
fn
)
n≥0, where k is a fixed positive

integer, is given by zkf (k)

k!
,

(ii) the generating function for the sequence (
∑n

i=0 fign−i)n≥0 is given by f · g,

12



(iii) the generating function for the sequence
((
n−j
i

)
fn
)
n≥0, where i ≥ 0 and j > 0, is

given by
∑i

k=0(−1)k
(
k+j−1
j−1

)
zi−k f

(i−k)

(i−k)! .

Proof: Items (i) and (ii) can be found, e.g., in Chapter 7 of [10].
The third part follows from (i) and the following equality:(

n− j
i

)
=

i∑
k=0

(−1)k
(

n

i− k

)(
k + j − 1

j − 1

)
,

which holds for every n, i ≥ 0 and j > 0. This equality can be easily derived
from two equalities known as “upper negation” and “Vandermonde convolu-
tion”, which can be found in Table 174 of [10]. �

Now we are ready to provide a recurrence for functions ai.

Theorem 5 The following equations are valid:

a1 = za21 + 1, a1(0) = 1

a2 = za1 + 2za1a2

ai = zi−1
a
(i−2)
1

(i− 2)!
+ zi−2

a
(i−3)
1

(i− 3)!
+ zi−2

a
(i−3)
2

(i− 3)!

+z ·
i−3∑
j=1

i−3−j∑
k=0

(−1)k
(
k + j − 1

j − 1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i− 3− j − k)!

+z ·
i∑

j=1

ajai−j+1, for i > 2.

Proof: All these equations follow from Lemma 2 and Fact 4. �

Notice that the ai’s can be computed by induction. Indeed, ai occurs twice in the last
sum on the right hand side of the last equation and we have:

ai(1− 2a1z) = zi−1
a
(i−2)
1

(i− 2)!
+ zi−2

a
(i−3)
1

(i− 3)!
+ zi−2

a
(i−3)
2

(i− 3)!

+z ·
i−3∑
j=1

i−3−j∑
k=0

(−1)k
(
k + j − 1

j − 1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i− 3− j − k)!

+z ·
i−1∑
j=2

ajai−j+1.

Since 1− 2a1z =
√

1− 4z, we get:

ai =


zi−1

a
(i−2)
1

(i−2)! + zi−2
a
(i−3)
1

(i−3)! + zi−2
a
(i−3)
2

(i−3)!

+z ·
∑i−3

j=1

∑i−3−j
k=0 (−1)k

(
k+j−1
j−1

)
zi−3−j−k

a
(i−3−j−k)
j+2

(i−3−j−k)!
+z ·

∑i−1
j=2 ajai−j+1

 /
√

1− 4z. (‡)
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a1(z) =

(
1

2
− (1− 4z)1/2

2

)
z−1

a2(z) = −1

2
+

1

2 (1− 4z)1/2

a3(z) =

(
1

1− 4z
+

z

(1− 4z)3/2

)
z

a4(z) =

(
3

(1− 4z)2
+

z

(1− 4z)5/2

)
z2

a5(z) =

(
4z + 9

(1− 4z)3
+
z2 − 19z + 5

(1− 4z)7/2

)
z3

a6(z) =

(
24z + 31

(1− 4z)4
+

3z2 − 203z + 51

(1− 4z)9/2

)
z4

a7(z) =

(
16z2 − 128z + 181

(1− 4z)5
+

2z3 − 194z2 − 1541z + 398

(1− 4z)11/2

)
z5

Figure 3: The generating functions for the coefficients of the polynomials Pn(m)

Corollary 6 Exact formulas for the functions a1–a7 are given in Figure 3.

Proof: Let us first compute the function a1 which, according to Theorem 5,
is given by

a1 = za21 + 1, a1(0) = 1.

By solving this equation, we obtain a1(z) = 1−
√
1−4z
2z

, which is exactly the
generating function for Catalan numbers—see, e.g., Chapter I.1 of [8].

Now, let us notice that on the basis of Theorem 5 all the other functions
can be immediately obtained by tedious, however elementary, computations.
In order to get exact values we applied Sage software [23]. �

Let [zn]f(z) denote the nth coefficient of zn in the formal power series f(z) =
∑∞

n=0 fnz
n.

As usual, we use the symbol ∼ to denote the asymptotic equivalence of two sequences, i.e.,
we write fn ∼ gn iff the limit of the sequence (fn/gn)n≥0 is 1. Similarly, by f(z) ∼

z→z0
g(z)

we mean that the limit of f(z)/g(z) is 1 when z → z0. We say that a function f(z) is of
order g(z) for z → z0 iff there exists a positive constant A such that f(z) ∼

z→z0
A · g(z).

The theorem below (Theorem VI.1 of [8]) serves as a powerful tool that allows us to
estimate coefficients of certain functions that frequently appear in combinatorial consid-
erations.

Fact 7 Let α be an arbitrary complex number in C \ Z≤0. The coefficient of zn in

f(z) = (1− z)α
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admits the following asymptotic expansion:

[zn]f(z) ∼ nα−1

Γ(α)

(
1 +

α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2

+
α2(α− 1)2(α− 2)(α− 3)

48n3
+O

(
1

n4

))
,

where Γ is the Euler Gamma function defined for <(α) > 0 as

Γ(α) :=

∫ ∞
0

e−ttα−1dt.

Now we are ready to prove the following approximation.

Proposition 8 The exact order of functions ai for z → 1/4 is given by

ai(z) ∼
z→ 1

4

Ci−2
23i−5(1− 4z)(2i−3)/2

,

where Ci is the ith Catalan number.

Proof: We prove the result by induction using Theorem 5. For the sake of
simplicity, we write ∼ and “is of order” to denote ∼

z→ 1
4

and “is of order for

z → 1/4”.
The result is true for i = 1. For i > 1 and j ≤ i, assume that aj(z) is of

order 1
(1−4z)(2j−3)/2 and look at equation (‡) to prove that ai+1(z) is of order

1
(1−4z)(2i−1)/2 .

Notice that the ith derivative of a1 is of order 1
(1−4z)(2i−1)/2 , hence its (i −

2)th derivative is of order 1
(1−4z)(2i−5)/2 and its (i − 3)th derivative is of order

1
(1−4z)(2i−7)/2 . Similarly, the ith derivative of a2 is of order 1

(1−4z)(2i+1)/2 , hence

its (i− 3)th derivative is of order 1
(1−4z)(2i−5)/2 .

By induction for j + 2 ≤ i − 3, aj+2 is of order 1
(1−4z)(2j+1)/2 . Among its

successive derivatives we derive at most i − 3 − j times, hence the items in
the sum are of order at most 1

(1−4z)(2i−5)/2 .

Now, every product ajai−j+1 is of order 1
(1−4z)i−2 , therefore the first four

terms in (‡) do not contribute to the asymptotic value of ai+1(z). Hence
the contribution to the asymptotic value is given only by products ajai−j+1’s.
Multiplying their order by 1√

1−4z we obtain that the last sum is of order
1

(1−4z)(2i−1)/2 .

Let us denote byKi the multiplicative coefficient Ci−2/2
3i−5 of 1

(1−4z)(2j−3)/2 .

One notices that K2 = 1
2

= C0

23×2−5 . The sum z
∑i−1

j=2 ajai−j+1 shows the
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inductive part. Indeed, when z = 1
4
:

z

i−1∑
j=2

KjKi−j+1 =
1

4

i−1∑
j=2

Cj−2
23j−5

Ci−j+1−2

23(i−j+1)−5

=
1

23i−5

i−3∑
j=0

CjCi−j−3

=
Ci−2
23i−5 = Ki.

�

Finally, we are able to provide asymptotic values of coefficients of functions ai.

Theorem 9 The coefficient of zn in the function ak(z) admits the following asymptotic
expansion:

[zn]ak(z) =
1

2k−1(k − 1)!
√
π

4nn(2k−5)/2 · Ψ(n, k)

where

Ψ(n, k) = 1 +
(2k − 3)(2k − 5)

8n
+

(2k − 3)(2k − 5)(2k − 7)(3k − 11)

384n2
+

(2k − 3)2(2k − 5)2(2k − 7)(2k − 9)

3672n3
+O

( 1

n4

)
.

Proof: First recall that

Γ((2k − 3)/2) = Γ
(

(k − 2) +
1

2

)
=

(2(k − 2))!
√
π

22(k−2)(k − 2)!
.

Now using Fact 7, we can compute the principal part:

[zn]ak(z) =
Ck−2
23k−5 4n [zn](1− z)(2k−3)/2

∼ Ck−2
23k−5 4n

n(2k−5)/2

Γ((2k − 3)/2)

=
Ck−2
23k−5

(k − 2)!22(k−2)

(2(k − 2))!
√
π

4nn(2k−5)/2

=
Ck−2(k − 2)!

2k−1(2(k − 2))!
√
π

4nn(2k−5)/2

=
1

2k−1(k − 1)!
√
π

4nn(2k−5)/2.

For Ψ(n, k) we use Fact 7 with α = 2k−3
2

. �

By looking at Figure 3, we can easily notice a recurring pattern concerning the struc-
ture of functions ai. Therefore, we state the following proposition.
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Proposition 10 For every i > 2 we have

ai(z) = zi−2

(
Qi(z)

(1− 4z)i−2
+

Si(z)

(1− 4z)i−
3
2

)
,

where Qi and Si are polynomials over Z in z and degQi =
⌊
i−3
2

⌋
and degSi =

⌊
i−1
2

⌋
.

Proof: By induction using formula (‡), in the same vein as the proof of Propo-
sition 8. In particular, the two first members of (‡) are derivatives of the
generating function of Catalan numbers studied in [15]. �

As we have already mentioned, the number of closed terms of size n is given by Pn(0),
which corresponds to the nth term of the Taylor expansion of the function an+2. Hence,
the sequence of the numbers of closed λ-terms is equal to the sequence ([zn]an+2(z))n≥0.
From Proposition 10, the number of closed terms of size n is equal to Qn+2(0) +Sn+2(0).
Currently, we have no recursive formula for the Qn’s and the Sn’s. However, by Proposi-
tion 8, we know that

Sn+2

(
1

4

)
=

Cn
2n+1

.

6 Counting normal forms

Beside counting terms, it is also interesting to count normal forms. To this end, we
describe the set of normal forms as follows

Gn+1,m = [1..m] ]
n⊎
i=0

Gi,m@Fn−i,m

Fn+1,m = λFn,m+1 ] Gn,m

Recall that a normal form consists of a (possibly empty) sequence of abstractions followed
by the application of a de Bruijn index to normal forms. Fn,m represents the normal forms
of size n with at most m free indices and Gn,m represents the neutral terms, i.e., terms
starting with an index, of size n with at most m free indices. From this we derive the
formulas for counting:

G0,m = m

Gn+1,m =
n∑
k=0

Gn−k,mFk,m,

F0,m = m

Fn+1,m = Fn,m+1 +Gn+1,m.

The values of Fn,0 up to n = 10 are:

0, 1, 3, 11, 53, 323, 2359, 19877, 188591, 1981963, 22795849.
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ftab :: [[Integer]]

ftab = [0..] : [[f’ (n-1) (m+1) + g’ n m | m<-[0..]] | n<-[1..]]

gtab :: [[Integer]]

gtab = [0..] : [[s n m | m <- [0..]] | n <- [1..]]

where s n m = let fi = [f’ i m | i <- [0..(n-1)]]

gi = [g’ i m | i <- [n-1,n-2..0]]

in sum $ zipWith (*) fi gi

f’ :: Int -> Int -> Integer

f’ n m = ftab !! n !! m

g’ n m = gtab !! n !! m

Figure 4: Haskell program for counting normal forms

fgtab :: [[[(Integer,Integer)]]]

fgtab = iterate nextn . map return $ zip [0..] [0..]

where

nextn ls = zipWith rake (tail ls) ls

rake ((f1,_):_) ms = let cv = conv ms in (f1 + cv, cv) : ms

conv ms = sum $ zipWith (\(a,_) -> \(_,b) -> a*b) ms (reverse ms)

f :: Int -> Int -> Integer

f n m = fst $ head $ fgtab !! n !! m

g n m = snd $ head $ fgtab !! n !! m

Figure 5: Haskell improved program for counting normal forms

This sequence, added by us to the On-line Encyclopedia of Integer Sequences, has its
entry number A224345. A Haskell program for computing the values of Fn,m and Gn,m

is given in Figure 4.
The efficiency of this program can be improved (Figure 5). Like for terms we derive

polynomials:

NFP0(m) = m
NFPn+1(m) = NFPn(m+ 1) + NFQn+1(m),

NFQ0(m) = m

NFQn+1(m) =
n∑
k=0

NFPk(m)NFQn−k(m).

Lemma 11 For every n, the degree of the polynomials NFPn and NFQ is equal to n+ 1.

Proof: Like the proof of Lemma 1, by induction on n from the definition of
NFPn and NFQ. �
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6.1 Coefficients of the polynomials NFPn and NFQn

Let us count i-nf-contexts. They are closed normal forms with i holes. The i-nf-contexts
of size n are counted by dn,i. They are abstractions of i-contexts of the form [ ]N1 . . . Np,
which we call i-nf-pre-contexts, where eachNj is a ij-nf-context (with i1+. . .+ij+. . .+ip =
i− 1) and which are counted by gn,i. There is one 1-nf-context and one 1-nf-pre-context
of size 0, whereas there are 0 i-nf-contexts and 0 i-nf-pre-contexts for i 6= 1 of size 0.
Thus we get

d0,i = [i = 1],

g0,i = [i = 1].

By reasoning similarly as in Section 3 and by using the description of normal forms
given above, we get:

dn+1,i =
n+1∑
j=i

(
j

i

)
dn,j + gn+1,i,

gn+1,i =
i∑

j=0

n∑
k=0

gk,jdn−k,i−j.

Therefore

NFPn(m) =
n∑
i=0

dn,im
i,

NFQn(m) =
n∑
i=0

gn,im
i.

6.2 Generating functions

Consider the two generating functions:

D(z, u) =
∑
n,i≥0

dn,iz
nui,

G(z, u) =
∑
n,i≥0

gn,iz
nui.

Then we have

D(z, u) =
∞∑
n=0

NFPn(u)zn,

G(z, u) =
∞∑
n=0

NFQn(u)zn.

Therefore

D(z, u) = u+ z

∞∑
n=0

NFPn(u+ 1)zn +
∞∑
n=1

NFQn(u)zn

= zD(z, u+ 1) +G(z, u)
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and

G(z, u) = u+ z
∞∑
n=0

NFQn(u)NFPn(u)zn

= u+ z
∞∑
n=0

n∑
k=0

gk,jz
kuidn−k,i−jz

n−knui−j

= u+ zD(z, u)G(z, u).

Consequently the two functions D and G satisfy

D(z, u) = zD(z, u+ 1) +G(z, u),

G(z, u) = u+ zD(z, u)G(z, u).

D(z, 0) is the generating function for the numbers of closed normal forms of size n. By
solving the above system of equations, we get:

zD(z, u)− (1 + z2D(z, u+ 1))D(z, u) + u+ zD(z, u+ 1) = 0,

which yields

D(z, u) =
1 + z2D(z, u+ 1)−

√
(1 + z2D(z, u+ 1))2 − 4z(u+ zD(z, u+ 1))

2z
.

7 Lambda term generation

From the simple equation defining the number Tn,m of terms, we define the function
generating them. More precisely, we define a function unrankT n m k which returns the
kth term of size n with at most m distinct free variables (see the Haskell program in
Figure 6). The variable k is an Integer (i.e., an arbitrary-precision integer) which belongs
to the interval [1..Tn,m]. The unranking program mimics counting terms. If n is 0, then
the program returns the de Bruijn index k. Otherwise, if k is less than Tn−1,m+1, the rank
k lies in the part of the interval [1..Tn,m] with terms that are abstractions. Therefore, for
k ≤ Tn−1,m+1 unrankT n m k returns λ (unrankT (n-1) (m+1) k). If the rank k is larger
than Tn−1,m+1, it lies in the part of the interval [1..Tn,m] with applications. Therefore
we call a function appTerm which tries to identify which sub-interval contains a pair of
terms with indices k′ and k′′ such that k′+ k′′ is at the right place. The product of these
values correspond to one of the products Tj,mTn−j,m in the sum. When the number j is
found, two recursive calls of unrankT, with appropriate k′ and k′′, build the subterms of
the application. One may notice (h− 1) and +1 which take into account the fact that k
lies in an interval [1..T , ] while divMod works in an interval [0..(T , − 1)].

The function unrankT relies on the function t presented in Section 2.1 and called here
O(n) times. Assuming that t has been called once already and therefore runs in O(n+m),
unrankT performs O(n) recursive calls and its complexity depends on one side linearly on
the operations divMod, (−) and (∗) performed on arbitrary-precision integers and on the
other side is in O(n2) due to the accesses generated by t.

For a given n, this program can be used to enumerate all the closed λ-terms of size n
and, more generally, all the λ-terms of size n with at most m distinct free variables. This is
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data Term = Index Integer

| Abs Term

| App Term Term

unrankT :: Int -> Int -> Integer -> Term

unrankT 0 m k = Index k

unrankT n m k

| k <= (t (n-1) (m+1)) = Abs (unrankT (n-1) (m+1) k)

| (t (n-1) (m+1)) < k = appTerm (n-1) 0 (k - t (n-1) (m+1))

where appTerm n j h

| h <= tjmtnjm = let (dv,md) = ((h-1) ‘divMod‘ tnjm)

in App (unrankT j m (dv+1))

(unrankT (n-j) m (md+1))

| otherwise = appTerm n (j + 1) (h -tjmtnjm)

where tnjm = t (n-j) m

tjmtnjm = (t j m) * tnjm

Figure 6: Haskell program for term unranking

appropriate only for small values of n, since the number of λ-terms gets superexponentially
large with n. But overall, in order to generate a random term of size n with at most m
distinct free variables, it suffices to feed T with a random value k in the interval [1..Tn,m].
Similarly, on the basis of the recursive formula for the number of normal forms, one
defines a program for their generation (Figure 7).

8 Simply typable terms

Once we have a random generator for untyped terms, it is easy to build a random gen-
erator for simply typable terms. It suffices to sieve all terms by a predicate, which we
call isTypable. This predicate is a classical principal type algorithm [19, 4, 11]. In Ap-
pendix B, we give a Haskell program. For instance, applying the random generator with
parameter 10 (for the size of the term), we got:

λ(λ(((1 λ(1)) λ((3 λ(((1 2) 3))))))).

This is a “typical” simply typable random closed λ-term of size 10 written with de Bruijn
indices. Its type is

((α→ (((β → β)→ (α→ γ)→ δ)→ ζ))→ ζ)→ γ →
((β → β)→ (α→ γ)→ δ)→ δ.

We were able to generate typable terms of size 50. For such terms, the generating
process is slow, since it requires 50 000 generations of terms, with (unsuccessful) tests of
their typability before getting a typable one. But for size 40, the number of attempts
falls to 3 for 10 000.
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unrankNF :: Int -> Int -> Integer -> Term

unrankNF 0 m k = Index k

unrankNF n m k

| k <= f (n-1) (m+1) = Abs (unrankNF (n-1) (m+1) k)

| f (n-1) (m+1) < k = unrankNG n m (k - f (n-1) (m+1))

unrankNG :: Int -> Int -> Integer -> Term

unrankNG 0 m k = Index k

unrankNG n m k = appNF (n-1) 0 m k

appNF :: Int -> Int -> Int -> Integer -> Term

appNF n j m h

| h <= gjmfnjm = let (dv,md) = (h-1) ‘divMod‘ fnjm

in App (unrankNG j m (dv+1))

(unrankNF (n-j) m (md +1))

| otherwise = appNF n (j + 1) m (h -gjmfnjm)

where fnjm = f (n-j) m

gjmfnjm = g j m * fnjm

Figure 7: Haskell program for normal form unranking

This kind of random generator is useful for testing functional programs. Micha l Pa lka
[20, 21] proposed a tool to debug Haskell compilers based on a λ-term generator. His
generator is designed on the development of a typing tree, with choices made when a
new rule is created. Such a method needs to cut branches in developing the tree to avoid
loops. This way his generator is not random, which may be a drawback in some cases.
As a matter of fact, a method for generating simply typed terms based on developing a
typing tree does not produce terms on a uniform random distribution since it requires to
cut the tree at arbitrary locations to avoid loops, “arbitrary” in the sense of randomness
preservation. In other words, there is no simple recursive definition of simply typed terms,
as well as of simply typable terms, that would allow an easy uniform random generation.
This is also what makes the combinatorial study of typed terms difficult. A term is
typable because it satisfies some constraints, not because it is generated in a specific way.

9 Experimental data

Given a random term generator, we are able to write programs to make statistics on
some features of terms. While there are many possible experiments of this type, here we
present only two that we find interesting and suggestive of other possibilities.

22



50 100 150

10

20

30

40

50

60

size of terms

a
v
e
ra

g
e
 v

a
ri

a
b
le

 d
e
p
th

a=1

a=1.1

size of terms

a
v
e
ra

g
e
 v

a
ri

a
b
le

 d
e
p
th

a=1

a=1.1

Figure 8: From top to bottom: Curve 2n
ln(n)

, average variable depth for closed terms,

average variable depth for closed normal forms and curve 2n
ln(n)1.1

.

9.1 Average variable depth in closed terms and closed normal
forms

Let us define the variable depth as the number of symbols (abstractions and applications)
between a variable and the top of the term. For instance, given the term λx.(λyz.x)(λu.u),
the first occurrence of variable x has depth 1 and the second occurrence of variable x
has depth 3, while the depth of u is 2. This gives the average depth 2 for this term.
Looking at the de Bruijn indices of the brother term λ1 (λλ3λ1), we say that the first
index 1 has depth 1, the second index 3 has depth 3 and the third index 1 has depth 2,
with the same average 2 as previously. In Figure 8, we draw the average variable depth
for 300 random closed terms of size 15 up to size 175 (top scatter plot) and the average
variable depth for 300 random normal forms of size 15 up to size 175 (bottom scatter
plot) squeezed between the curves 2n

ln(n)a
for a = 1 and a = 1.1 (plain lines). In Figure 9

we see the same four curves enlarged in the interval [170..175]. This shows clearly that
the average variable depth of closed terms and closed normal forms are different. On this
basis, we conjecture that the average depth of variables in closed terms is asymptotically
bounded from above by 2n

ln(n)
and that the average variable depth is slightly smaller for

normal forms than for closed terms.
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Figure 9: Magnification of Figure 8 between n = 170 and n = 175.

9.2 Average number of head λ’s per closed term

We say that λx is a head lambda in a term t if the latter is of the form λx1 . . . λxnλx.s
for some positive integer n and a certain term s. In order to know the structure of an
average term, we are interested in the average number of head λ’s occurring in closed

terms. In Figure 10, we compare values of some functions
√

n
ln(n)a

with the number of

head λ’s in 1000 random closed terms and the average number of head λ’s in 1000 normal
forms, both in the case when size goes from 15 to 150. We see that, in the case of closed
terms, these numbers are in accordance with Theorem 35 in [5].

9.3 Ratio of simply typable terms among all terms

It is interesting to investigate the ratio of simply typable closed terms among all closed
terms. There are 851 368 766 closed λ-terms of size 11, whereas there are 63 782 411 closed
λ-terms of size 10. Therefore, we performed computations for closed terms of size less
than 11. In fact, one cannot go much further due to the superexponential growth of
the sequence enumerating closed terms. Table 1 gives the ratio of simply typable closed
terms over all closed terms by an exhaustive examination of the closed terms up to 10.
For closed terms of size 8 or larger, we computed the ratio by the Monte Carlo method.
The results are given in Table 2. We added the sequence of the numbers of simply typable
closed terms of a given size to the On-line Encyclopedia of Integer Sequences and it can
be found under the number A220471.
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size 4 5 6 7 8 9 10
nb of terms 82 579 4 741 43 977 454 283 5 159 441 63 782 411

nb of typables 40 238 1 564 11 807 98 529 904 318 9 006 364
ratio 0.4878 0.4110 0.3299 0.2684 0.2168 0.1752 0.1412

Table 1: Numbers and ratios of simply typable closed terms up to size 10

size 8 9 10 11 12 13 14 15 16 20 30 40 45 50
ratio .216 .175 .141 .111 .089 .073 .056 .047 .039 .0014 .0012 .0003 .00005 <10−5

Table 2: Ratios of simply typable closed terms (of size at least 8)

We conclude that simply typable closed terms become very scarce as the size of the
closed terms grows, falling to less than one over 100 000 when the size gets larger than
50. Likewise, we have done the same task for normal forms. We got the ratio by an
exhaustive examination of normal forms up to 10 in Table 3 and by the Monte Carlo
method thereafter in Table 4.
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size 4 5 6 7 8 9 10
nb of NF 53 323 2 359 19 877 188 591 1 981 963 22 795 849

nb of typable NF 23 108 618 4 092 30 413 252 590 2 297 954
ratio 0.4339 0.3343 0.2619 0.2058 0.1612 0.1274 0.1008

Table 3: Numbers and ratios of simply typable closed normal forms up to size 10

size 8 9 10 11 12 13 14 15 16 20 30 40 45
ratio .159 .128 .102 .079 .063 .049 .040 .031 .024 .010 .0006 2.10−5

<10−5

Table 4: Ratios of simply typable closed normal forms

50 100 150 200 250
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Figure 11: Distribution of simply typable closed λ-terms of size 25. 250 segments on
the horizontal axis, percentage (0% – 3%) of typable closed λ-terms in segments on the
vertical axis.

9.4 Distribution of simply typable lambda terms among terms

We said that simply typable terms are scarce, but we may wonder what scarce exactly
means. More precisely, we may wonder how terms are distributed. To provide an answer
to this question, we conducted experiments to approximate the distribution of typable
closed λ-terms in segments of the interval [1..T0,n]. We divided the interval into regular
segments and computed the ratio of simply typable terms for a random sample of terms
in each segment. Figure 11 is typical of the results we got. This corresponds to an
experiment on closed terms of size 25 on 250 segments with tests for simple typability on
200 random closed terms in each segment. For each segment the height of the vertical bar
represents the ratio of typable closed terms to general closed terms in the corresponding
segment. The simply typable closed terms are not uniformly distributed. They are more
concentrated on the left of the interval corresponding to closed terms with low numbers.
Those closed terms correspond to closed terms starting more often with abstractions than
with applications and this is recursively so for subterms giving the impression of rolling
waves. For instance, there are 2% to 3% of typable closed terms (of size 25) starting with
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Figure 12: Distribution of simply typable closed λ-terms of size 30. 250 segments on the
horizontal axis, percentage (0% – 2.5%) of typable closed λ-terms in segments on the
vertical axis.

many abstractions, whereas for closed terms starting with many applications there are
large subintervals with almost no typable closed terms. Figure 12, which gives the same
statistics for closed terms of size 30, shows that typable closed terms get more scarce as
the size of the closed terms grows.

The typable closed normal forms are even more scarcely distributed. As a comparison,
we drew the same graphs for closed normal forms (size of the closed normal forms: 25
and 30, number of segments 250, tests on 200 closed terms) in Figure 13. The typable
closed normal forms aggregate more on the left of the interval where closed terms start
mostly with abstractions, with peaks of 4% to 6% by segments. Figure 14 shows that
scarcity of typable normal forms increases as the size of closed terms grows.
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Figure 13: Distribution of simply typable closed normal forms of size 25. 250 segments
on the horizontal axis, percentage (0% – 6%) of typable closed normal forms in segments
on the vertical axis.
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Figure 14: Distribution of simply typable closed normal forms of size 30. 250 segments on
the horizontal axis, percentage (0% – 1.45%) of typable closed normal forms in segments
on the vertical axis.

10 Related work

There are very few papers on counting λ-terms, whereas counting first order terms is
a classical domain of combinatorics. Apparently, the first traces of counting expressions
with (unbound) variables can be attributed to Hipparchus of Rhodes (c. 190–120 BC) (see
[8] p. 68). Flajolet and Sedgewick’s book [8] is the reference on this subject. Concerning
counting λ-terms, we can cite only five works. [5] and [2] study asymptotic behavior of
formulas on counting λ-terms. Strictly speaking, they do not exhibit a recurrence for-
mula for counting. In particular, David et al. [5] provide only upper and lower bounds for
the numbers of λ-terms in order to get information about the distribution of families of
terms. For instance, they prove that “asymptotically almost all λ-terms are strongly nor-
malizing”. In [17] the second author of the present paper proposes formulas for counting
λ-terms in the case of variables of size 1, with more complex formulas and less results. On
another hand, Christophe Raffalli proposed a formula for counting closed λ-terms, which
he derives from the formula for counting λ-terms with exactly m distinct free variables.
His formula appears in the On-line Encyclopedia of Integer Sequences under the number
A135501. He considers size 1 for the variables. Beside those works, John Tromp [25]
proposes a rather different way of counting λ-terms which deserves to be investigated
further from the viewpoint of combinatorics. His size function works on terms with de
Bruijn indices like ours and is (in our convention of starting at 1) as follows:

|n| = n+ 1

|λM | = |M |+ 2

|M N | = |M |+ |N |+ 2

producing sequence A114852 (and sequence A195691 for closed normal forms) in the
On-line Encyclopedia of Integer Sequences. This work is connected to program size com-
plexity and Algorithmic Information Theory [18].
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As concerns random generation, Wang in [27, 26] proposed algorithms for random gen-
eration of untyped λ-terms in the spirit of the counting formula of Raffalli for [27] and in
the spirit of Tn,m for [26]. On term generation, we can also mention two works. In [7] the
authors enumerate and generate many more structures than λ-terms. In [13], the authors
address a problem similar to ours. Indeed they play on the duality encoder-decoder or ask-
build, when we speak of counting-generating or ranking-unranking. Our unranking pro-
gram (Figure 6) can be made easily a game, with questions like “Is k ≤ (t(n− 1)(m+ 1))?”
or like “Is k > (t(n− 1)(m+ 1))?”, but Kennedy and Vytiniotis do not know the precise
range of their questions since they do not base their generation on counting. Since the
size is not a parameter, their games may have unsuccessful issues and their programs
can raise errors and are only error-free on well-formed games. Pa lka [20, 21] uses gen-
eration of typable λ-terms to test Haskell compilers. He acknowledges that, due to his
method, he cannot guarantee the uniformity of his generator (see discussion in [20] p. 21
and p. 45). Nonetheless, he found eight failures and four bugs in the Glasgow Haskell
Compiler demonstrating the interest in the method, probably due the ability of gener-
ating large terms. Rodriguez Yakushev & Jeuring [22] study the feasibility of generic
programming for the enumeration of typed terms. The given examples are of size 4 or 5,
no realistic examples are provided, randomness is not addressed and the authors confess
that their algorithm is not efficient. Knowing that there are 9 006 364 simply typable
closed terms of size 10, one wonders if there is an actual use for such enumeration and it
seems unrealistic to utilize enumeration for larger numbers. The “related work” section
of [22] covers similar approaches, which all consist in cutting branches. For this reason
they do not generate terms uniformly. A presentation of tree-like structure generation
and a history of combinatorial generation is given in [14].

Since we cited, as an application, the random generation of terms for the construction
of samples for debugging functional programming compilers and the connection with
languages with bound variables, it is sensible to mention Csmith [28], which is the most
recent and the most efficient bug tracker of C compilers. It is based on random program
generation and uses filters for generating programs enforcing semantic restrictions, like
ours when generating simply typable terms. However, the generation is not based on
unranking, therefore Csmith lacks the ability to construct test case of a specific size
on demand, but Csmith can generate large terms, which reveals to be useful, since the
greatest number of distinct crash errors is found by programs containing 8K-16K tokens.
However, one may wonder if this feature is not a consequence of the non-uniformity of
the distribution.
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12 Conclusion

This paper opens tracks of research in two directions, which are intrinsically complemen-
tary, namely counting and generating, aka ranking and unranking. On counting terms,
some hard problems remain to be solved. Probably the hardest and the most informa-
tive one is to give an asymptotic estimation for the numbers of closed terms of size n.
It seems that big obstacles remain to be hurdled before getting a solution, since com-
binatorial structures with binders have not been studied so far by combinatorists. On
generation of terms, implementations have to be improved to go further in the production
of uniformly distributed terms, in particular, of uniformly generated typable terms.
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A Terms with exactly m distinct free variables

Here we study the numbers of terms with exactly m distinct free variables, the formulas
for counting those numbers and their relations with quantities we considered.

A.1 A formula

Let us show how to derive the formula for counting λ-terms with exactly m distinct free
variables. This formula is adapted from a similar one when variables have size 1 due to
Raffalli (On-line Encyclopedia of Integer Sequences under the number A135501). We
assume that terms are built with usual variables (not de Bruijn indices) and that they are
equivalent up to a renaming of bound variables and up to α-conversion. Let us denote
the number of λ-terms of size n with exactly m distinct free variables by fn,m.

Notice first that there is no term of size 0 with no free variable, hence f0,0 = 0. There
is one term of size 0 with one free variable, hence f0,1 = 1. The maximum number of
variables for a λ-term of size n is when the only operators are applications and all the
variables are different. One has then a binary tree with n internal nodes and n+ 1 leaves
holding n + 1 variables. This means that for m beyond n + 1 variables there is no term
of size n with exactly m distinct free variables. Hence

fn,m = 0 when m > n+ 1.

In the general case, a term of size n + 1 with m free variables starts either with an
abstraction or with an application. Terms starting with an abstraction, say λx, on a term
M contribute in two ways: either M does not contain x as a free variables or M contains
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x as a free variable. There are fn,m such M ’s in the first case and fn,m+1 in the second.
This gives the two first summands fn,m + fn,m+1 in the formula. Now, let us see how
terms starting with an application look like. Assume they are of the form P Q and of size
n+ 1. For some p ≤ n, the term P is of size p and Q is of size n− p. These terms share c
common variables (0 ≤ c ≤ m), while P Q has m distinct free variables altogether. The
term P has k distinct free variables, which do not occur in Q, hence P has k+ c distinct
free variables altogether. The term Q has m− k distinct free variables. Therefore, given
a set of private variables for P , a set of common variables, and a set of private variables
for Q, there are fp,k+cfn−p,m−k possible pairs (P,Q). There are

(
m
c

)
ways to choose the

c common variables among m and there are
(
m−c
k

)
ways to split the remaining variables

into P and Q, namely k for P and m − c − k for Q, hence the third summand of the
formula:

n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.

Now, we obtain the whole formula:

fn+1,m = fn,m + fn,m+1 +
n∑
p=0

m∑
c=0

m−c∑
k=0

(
m

c

)(
m− c
k

)
fp,k+cfn−p,m−k.

A.2 Relations between Tn,m and fn,m

The number of terms of size n with exactly i indices in [1..m] is
(
m
i

)
fn,i. Therefore the

number of terms with indices in [1..m] is:

Tn,m =
m∑
i=0

(
m

i

)
fn,i.

By the inversion formula ([10] p. 192), we get:

fn,m =
m∑
i=0

(−1)m+i

(
m

i

)
Tn,i.

This shows with no surprise that fn,m and Tn,m are simply connected. Knowing that the
Tn,m’s can be easily computed, this provides a formula simpler than Raffalli’s to compute
the fn,m’s.

A.3 A relation between fn,m and cn,i

We write R
(m)
i the number of surjections from [1..i] to [1..m]. To get a relation between

fn,m and cn,i, we can reproduce the process with which we associated Tn,m and cn,i (Sec-
tion 3), but instead of applications from [1..i] to [1..m], we have surjections from [1..i]
to [1..m], since this time we count terms with exactly m variables and all the de Bruijn
indices must be reached by the applications. Therefore

fn,m =
n∑
i=0

cn,iR
(m)
i .
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Recall that

R
(m)
i =

m∑
j=0

(
m

j

)
(−1)j(i− j)m.

We can now go further in the expression of fn,m.

fn,m =
n∑
i=0

cn,i

m∑
j=0

(
m

j

)
(−1)j(m− j)i

=
n∑
i=0

cn,i

m∑
k=0

(
m

k

)
(−1)m−kki

=
m∑
k=0

(
m

k

)
(−1)m−k

n∑
i=0

cn,ik
i

=
m∑
k=0

(−1)m+k

(
m

k

)
Tn,k.

which is another proof of the formula of Section A.2.

B A program for testing simple typability

In this section we give a simple Haskell program for testing simple typability of a term also
called type reconstruction. The program which works on the types Type and Equation:

data Type = Var Int

| Arrow Type Type

type Equation = (Type,Type)

has three parts. First, a function builds the set of typability equational constraints of a
closed term. This function called buildConstraint (Figure 15) takes a term and returns its
potential principal type, which will be made explicit after solving the constraints, and a
list of equational constraints. It requires a function build which will be called through the
terms. Along its traversal of the term, the function build has to know the depth d (the
number of λ’s it crossed). Moreover, build creates type variables. Actually, a constraint
builder creates type variables in two situations: when it creates a context for the first
time, that is when it deals with a de Bruijn index, and when it creates the type to be
returned by an application. Since type variables are objects of the form Var i, where i is
an Int, build takes an Int which is increased whenever a new type variable is created. We
call the latter a cursor and denote it by cu. build returns a 4-uple, namely the potential
principal type of the term, a context (a list of types associated with de Bruijn indices),
a set of equational constraints and the updated cursor.

To solve equational constraints we use a method based on transformation rules [9, 12].
For that, we use a function decompose which splits an equation when both sides are
arrow types. Moreover, when decompose meets an equation σ1 → σ2 = α, the latter is
transformed into α = σ1 → σ2.
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buildConstraint :: Term -> (Type, [Equation])

buildConstraint t =

let (ty,[],constraint,_) = build t 0 0

in (ty, constraint)

where

build :: Term -> Int -> Int -> (Type, [Type], [Equation],Int)

build (Index i) d cu =

let ii = fromIntegral i

in (Var (cu+ii-1), [Var j | j<-[cu..cu+d-1]],[],cu+d)

build (Abs t) d cu =

let (ty,(a:cntxt),constraint,cu’) = build t (d+1) cu

in ((Arrow a ty),cntxt,constraint,cu’)

build (App t1 t2) d cu =

let (ty1, cntxt1, constraint1, cu1) = build t1 d cu

(ty2, cntxt2, constraint2, cu2) = build t2 d cu1

ty = (Var cu2) in (ty,

cntxt1,

(ty1,(Arrow ty2 ty)):(zip cntxt1 cntxt2)

++ constraint1 ++ constraint2,

cu2+1)

Figure 15: The function buildConstraint

decompose :: Equation -> [Equation]

decompose ((Arrow ty1 ty2), (Arrow ty1’ ty2’)) =

decompose (ty1,ty1’) ++ decompose (ty2,ty2’)

decompose ((Arrow ty1 ty2),(Var i)) = [(Var i,(Arrow ty1 ty2))]

decompose (ty1,ty2) = [(ty1,ty2)]

A predicate nonTrivialEq is necessary to filter out the trivial equations, i.e., of the
form α = α.

nonTrivialEq :: Equation -> Bool

nonTrivialEq (Var i, Var j) = i /= j

nonTrivialEq (ty1, ty2) = True

A predicate ¤ checks whether a given variable belongs to a composed type. This is
necessary to detect cycles. For instance, α = β → α is a cycle and shall be detected,
whereas α = α is a trivial equation, not a cycle, and shall be removed.

(¤) :: Type -> Type -> Bool

(Var i) ¤ (Var j) = False -- strict occurrence only

(Var i) ¤ (Arrow ty1 ty2) = (Var i) ¤= ty1 || (Var i) ¤= ty2

where (Var i) ¤= (Var j) = i == j

(Var i) ¤= (Arrow ty1 ty2) = (Var i) ¤= ty1 ||

(Var i) ¤= ty2
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Once this test is done, one can replace a variable α occurring in an equation of the
form α = σ by σ everywhere else in the set of equational constraints before putting the
equation α = σ in the solved part.
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(←) :: Type -> Equation -> Type

(Var j) ← (Var i, ty) = if i == j then ty else Var j

(Arrow ty1 ty2) ← (Var i, ty) =

Arrow (ty1 ← (Var i, ty)) (ty2 ← (Var i, ty))

replace:: Equation -> Equation -> Equation

replace (Var i,ty) (ty1,ty2) = (ty1 ← (Var i,ty), ty2 ← (Var i,ty))

The function solve solves the set of equational constraints. It returns three things: first
a list of equations which are the equations yet to be solved, second a list of equations which
are the already solved equations and third a condition that says if the set of equational
constraints is solvable or not. In other words, solve returns True as the third component
if the set of equational constraints has a solution, that is when the set of equational
constraints is empty. It returns False when it detects a cycle. Otherwise it tries to apply
the transformations whenever it is possible, that is when the set of equational constraints
is not empty. Indeed if there is no cycle and if the set of equational constraints is not
empty, a transformation is always applicable.

solve :: [Equation] -> [Equation]

-> ([Equation],[Equation],Bool)

solve ((Var i,ty):l) sol =

if Var i ¤ ty

then ((Var i,ty):l,sol,False) -- cycle detected

else solve (map (replace (Var i,ty)) l) ((Var i,ty):sol)

solve (eq:l) sol = solve (filter nonTrivialEq (decompose eq) ++ l) sol

solve [] sol = ([],sol,True)

Since we have all the ingredients, the test of typability consists in building the equational
constraint and trying to solve it.

isTypable :: Term -> Bool

isTypable t = let (_,c) = buildConstraint t

(_,_,b) = solve c []

in b

Notice that we have everything to build the principal type of the term if it is typable.
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