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Hidden Cliques and the Certification of the Restricted

Isometry Property

Pascal Koiran∗ Anastasios Zouzias†

November 2, 2012

Abstract

Compressed sensing is a technique for finding sparse solutions to un-
derdetermined linear systems. This technique relies on properties of the
sensing matrix such as the restricted isometry property. Sensing matrices
that satisfy this property with optimal parameters are mainly obtained
via probabilistic arguments. Deciding whether a given matrix satisfies the
restricted isometry property is a non-trivial computational problem. In-
deed, we show in this paper that restricted isometry parameters cannot
be approximated in polynomial time within any constant factor under the
assumption that the hidden clique problem is hard.

Moreover, on the positive side we propose an improvement on the
brute-force enumeration algorithm for checking the restricted isometry
property.

1 Introduction

Let Φ be a n × N matrix with N ≥ n. A vector x ∈ C
N is said to be k-

sparse if it has at most k nonzero coordinates. Given δ ∈]0, 1[, φ is said to
satisfy the Restricted Isometry Property (RIP) of order k with parameter δ if
it approximately preserves the Euclidean norm in the following sense: for every
k-sparse vector x, we have

(1− δ)||x||2 ≤ ||Φx||2 ≤ (1 + δ)||x||2.

Clearly, for this to be possible we must have k ≤ n. Given δ, n and N , the
goal is to construct RIP matrices with k as large as possible. This problem is
motivated by its applications to compressed sensing: it is known from Candès,
Romberg and Tao [9, 10, 11] that the restricted isometry property enables the
efficient recovery of sparse signals using linear programming techniques. For
that purpose one can take any fixed δ <

√
2− 1 [9].
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Various probabilistic models are known to generate random matrices that
satisfy the RIP with a value of k which is (almost) linear n. See for instance
Theorem 2 in Section 3 for the case of matrices with entries that are independent
symmetric (±1) Bernouilli matrices. The recent survey [22] provides additional
results of this type and extensive references to the probabilistic literature. Some
significant effort has been devoted to the construction of explicit (rather than
probabilistic) RIP matrices, but this appears to be a difficult problem. As
pointed out by Bourgain et al. in a recent paper [7, 8], most of the known explicit
constructions [18, 3, 14] are based on the construction of systems of unit vectors
with a small coherence parameter (see section 2 for a definition of this parameter
and its connection to the RIP). Unfortunately, this method cannot produce RIP
matrices of order k >

√
n [7, 8]. Bourgain et al. still manage to break through

the
√
n “barrier” using techniques from additive combinatorics: they construct

RIP matrices of order k = n1/2+ǫ0 where ǫ0 > 0 is an unspecified “explicit
constant”. Note that this is still far from the order achieved by probabilistic
constructions.

Here we study the restricted isometry property from the point of view of
computational complexity: what is the complexity of deciding whether a matrix
satisfies the RIP, and of computing or approximating its order k or its RIP
parameter δ? An efficient (deterministic) algorithm would have applications to
the construction of RIP matrices. One would draw a random matrix Φ from
one of the well-established probabilistic models mentioned above, and run this
hypothetical algorithm on Φ to compute or approximate k and δ. The result
would be a matrix with certified restricted isometry properties (see Section 3 for
an actual result along those lines). This may be the next best thing short of an
explicit construction (and as mentioned above, the known explicit constructions
are far from optimal).

The definition of the restricted isometry property suggests an exhaustive
search over

(

N
k

)

subspaces, but prior to this work there was little evidence that
checking the RIP is computationally hard (more on this in Section 1.2). There
has been more work from the algorithm design side. In particular, it was shown
that semi-definite programming can be used to verify the restricted isometry
property [12] and other related properties from compressed sensing [13, 17].
Unfortunately, as pointed out in [13] these methods are unable to certify the
restricted isometry property for k larger than O(

√
n), even for matrices that

satisfy the RIP up to order Ω(n). As we have seen, k = O(
√
n) is also the range

where coherence-based methods reach their limits.
In this paper we provide both positive and negative results on the compu-

tational complexity of the RIP, including the range k >
√
n.

1.1 Positive Results

In Section 2, we study the relation between the RIP parameters of different
orders for a given matrix Φ. Very roughly, we show in Theorem 1 that the RIP
parameter is at most proportional to the order. We therefore have a trade-off
between order and RIP parameter: in order to construct a matrix of given order
and RIP parameter, it suffices to construct a matrix of lower order and smaller
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RIP parameter. We illustrate this point in Section 3. Our starting point is the
above-mentioned (very naive) exhaustive search algorithm, which enumerates
all

(N
k

)

subspaces generated by k column vectors. We obtain a “lazy algorithm”
which enumerates instead all subspaces generated by l basis vectors for some
l < k. We show that the lazy algorithm can go slightly beyond the

√
n barrier

if a quasi-polynomial running time is allowed.

1.2 Negative Results: the Connection to Hidden Cliques

We show that RIP parameters are hard to approximate within any constant
factor under the assumption that the hidden clique problem is hard. In fact,
we need an assumption (spelled out at the end of this subsection) which is
somewhat weaker than the usual one. Our hardness result applies to any order
of the form k = nα, where α is any constant in the interval ]0, 1[. It applies to
square as well as to rectangular matrices. We gave similar results in the unpub-
lished manuscript [19] under a (nonstandard) assumption on the complexity of
detecting dense subgraphs. By contrast, as explained below the hypothesis that
we use in this paper is well established. Prior to our work, little was known
on the hardness of checking the restricted isometry property. It was pointed
out by Terence Tao [21] that “there is no fast (e.g. sub-exponential time) algo-
rithm known to test whether any given matrix is UUP or not.”1 As to hardness
results, one can mention the NP-hardness proof of [6], which is based on the
following (known) fact: it is NP-hard to distinguish a matrix with a nonzero
k-sparse vector in its kernel from a matrix without any such vector in its kernel.
In the first case, the matrix does not satisfy the RIP of order k, while in the
second case it does satisfy the RIP of order k for some parameter δ. Since δ
may be very close to 1, this result does not say much on the complexity of
approximating the RIP parameters. A similar result was obtained in [20].

The size of the largest clique in a typical graph drawn from the G(n, 1/2)
distribution is roughly 2 log2 n. In the hidden clique problem, one must find
a clique of size t ≫ 2 log2 n which was planted at random in a random graph.
This problem is solvable in polynomial time for a clique of size t = Θ(

√
n) [4].

It is widely believed, however, that the problem cannot be solved in polynomial
time for a planted clique of size t = nc, where c is any constant in the open
interval ]0, 1/2[. Even the more modest goal of distinguishing between a random
graph and a random graph with a planted clique of size nc is believed to require
more than polynomial time [2] (see appendix B.4 of [1] for a comparison of
distinguishing versus finding hidden cliques).

In the last few years, several hardness results have been obtained under the
assumption that the hidden clique problem is not polynomial time solvable [2,
1, 16]. We refer to [2] for more information on the history of this problem.

In this paper, we show hardness of approximation for RIP parameters under
the following assumption. We actually have a family of assumptions, parame-
terized by the clique size (in keeping with the tradition in this area [4], we omit
floor and ceiling signs to simplify the presentation).

1In his blog post, Tao uses the notation “UUP” for the RIP.
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Hypothesis (Hǫ). There is no polynomial time algorithm A which, given as
input a graph G on n vertices:

• always outputs “yes” if G contains a clique of size n
1

2
−ǫ.

• Outputs “no clique” on most graphs G when G is drawn from the uniform
distribution G(n, 1/2).

In other words, (Hǫ) asserts that no polynomial time algorithm can certify

the absence of a clique of size n
1

2
−ǫ from most graphs on n vertices (where

“most graphs” means: with probability approaching 1 as n → +∞). Note that
this is a one-sided hypothesis: algorithm A is allowed to err (rarely) but only

on input graphs that do not contain a a clique of size n
1

2
−ǫ.

Note also that Hypothesis Hǫ becomes increasingly stronger as ǫ → 0 (and it
becomes false for ǫ < 0: if α > 1/2, a simple spectral algorithm can certify that
most graphs on n vertices do not contain any clique of size nα. For completeness,
we give a proof in the appendix). Hypothesis Hǫ is clearly true if it is hard to
distinguish beween a random graph and a random graph with a planted clique
of size n

1

2
−ǫ. It is therefore consistent with current knowledge to assume that

(Hǫ) holds true for all constants ǫ ∈]0, 1/2[.

1.3 Organization of the Paper

As explained above, the next two sections are devoted to positive results. In
Section 4 we work out some bounds on the eigenvalues of random matrices,
for later use in our reductions from hidden clique to the approximation of RIP
parameters. We rely mainly on the classical work of Füredi and Komlós [15] as
well as on a more recent concentration inequality due to Alon, Krivelevich and
Vu [5]. In Section 5 we use these eigenvalue bound to show that approximat-
ing RIP parameters is hard even for square matrices. In Section 6 we derive
similar results for matrices of “strictly rectangular” format (which is the case
of interest in compressed sensing). We proceed by reduction from the square
case. Interestingly, this last reduction relies on the known constructions (de-
terministic [7, 8] and probabilistic [22]) of matrices with good RIP parameters
mentioned earlier in the introduction. We therefore turn these positive results
into negative results. The table at the end of Section 6 gives a summary of our
hardness results.

2 Increasing the Order by Decreasing the RIP Pa-

rameter

As explained at the beginning of [7, 8], certain (suboptimal) constructions are
based on the construction of systems of unit vectors (u1, . . . , uN ) ∈ C

n with
small coherence. The coherence parameter µ is defined as maxi 6=j |〈ui, uj〉|.
Indeed, we have the following proposition.

Proposition 1. Assume that the column vectors u1, . . . , uN of Φ are of norm 1
and coherence µ. Then Φ satisfies the RIP of order k with parameter δ =
(k − 1)µ.
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We reproduce the proof from [7, 8] since if fits in one line: for any k-sparse
vector x,

|||Φx||2 − ||x||2| ≤ 2
∑

i<j

|xixj〈ui, uj〉| ≤ µ((
∑

i

|xi|)2 − ||x||2) ≤ (k − 1)µ||x||2.

We now give a result, which (as we shall see) generalizes Proposition 1.

Theorem 1. Assume that Φ has unit column vectors and satisfies the RIP of
order m with parameter ǫ. For k ≥ m, Φ also satisfies the RIP of order k with
parameter δ = ǫ(k − 1)/(m − 1).

Proof. Let u1, . . . , uN be the column vectors of Φ. Let x be a k-sparse vector,
and write x =

∑

i∈T xiui where T is a subset of {1, . . . , N} of size k. Since
||Φx||2 = ||x||2 + 2

∑

i<j xixj〈ui, uj〉, to check the RIP of order k we need to
show that

|
∑

i<j

xixj〈ui, uj〉| ≤ δ||x||2/2, (1)

where δ = ǫ(k − 1)/(m − 1). To estimate the left hand side, we compare it to
the sum of the similar quantity taken over all subsets of size m of T , namely:

|
∑

|S|=m

∑

i,j∈S,i<j

xixj〈ui, uj〉|. (2)

Since each pair (i, j) appears in exactly
( k−2
m−2

)

subsets of size m, this sum is

equal to
( k−2
m−2

)

times the left-hand side of (1). But we can also estimate (2)
using the RIP of order m. For each subset S of size m, we have

|
∑

i,j∈S,i<j

xixj〈ui, uj〉| ≤ ǫ
∑

i∈S
x2i /2.

This follows from (1), replacing δ by ǫ (the RIP parameter of order m). Since
each term x2i will appear exactly in

( k−1
m−1

)

subsets, we obtain ǫ
( k−1
m−1

)

||x||2/2 as
an upper bound for (2). We conclude that the left-hand side of (1) is bounded
by ǫ

2

( k−1
m−1

)

||x||2/
( k−2
m−2

)

= ǫ k−1
m−1 ||x||2/2.

We claim that Proposition 1 is the case m = 2 of Theorem 1. This follows
from the following observation.

Remark 1. For a matrix Φ with unit column vectors, the coherence parameter
µ is equal to the RIP parameter of order 2.

Proof. Let δ be the RIP parameter of order 2. We have δ ≤ µ by Proposition 1.
It remains to show that δ ≥ µ. Consider therefore two column vectors ui and
uj with |〈ui, uj〉| = µ. Let x = ui+uj . We have ||x||2 = 2 and ||Φx||2 = 2±2µ,
so that δ ≥ µ indeed.
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3 A Matrix Certification Algorithm

The naive algorithm for computing the RIP parameter of order k will involve
the enumeration of the

(N
k

)

submatrices of Φ made up of k column vectors of
Φ. For each T ⊆ {1, . . . , N} of size k let us denote by ΦT the corresponding
n× k matrix. We need to compute (or upper bound) δ = maxT δT , where

δT = sup
x∈Ck

| ||ΦTx||2/||x||2 − 1 |.

For each T , δT can be computed efficiently by linear algebra. For instance, δT
is the spectral radius of the self-adjoint matrix Φ∗

TΦT − Ik. The cost of the
computation is therefore dominated by the combinatorial factor

(N
k

)

due to the
enumeration of all subsets of size k.

Here we analyze what the naive algorithm can gain from Theorem 1. We
therefore consider the following lazy algorithm. The correctness of the algorithm

Algorithm 1

1: procedure Lazy(Φ, m, δ)
2: Input: a n×N matrix Φ with unit column vectors, an integer m ≤ n,

and a parameter δ ∈]0, 1[.
3: Compute as explained above the RIP parameter of order m. Call it ǫ.
4: Output: Certify Φ as a RIP matrix of order k with parameter δ, for

all k ≥ m such that ǫ(k − 1)/(m − 1) ≤ δ.
5: end procedure

follows immediately from Theorem 1. We now analyze its behavior on random
matrices, which are in many cases known to satisfy the RIP with high proba-
bility. Consider for instance the case of a matrix whose entries are independent
symmetric Bernouilli random variables.

Theorem 2. Let A be a n×N matrix whose entries are independent symmetric
Bernouilli random variables and assume that n ≥ Cǫ−2m log(eN/m). With
probability at least 1 − 2 exp(−cǫ2n), the normalized matrix Φ = 1√

n
A satisfies

the RIP of order m with parameter ǫ. Here C and c are absolute constants.

In fact the same theorem holds for a very large class of random matrix mod-
els, namely, subgaussian matrices with either independent rows or independent
columns ([22], Theorem 64).

Proposition 2. Let A be a random matrix as in Theorem 2, and δ ∈]0, 1[.
With probability at least 1− 2(eN/m)−cCm, the lazy algorithm presented above
will certify that A satisfies the RIP of order k with parameter δ for all k such
that:

k ≤ δ

√

mn

c log(eN/m)
.

Here c and C are the absolute constants from Theorem 2.

Proof. All parameters being fixed we take ǫ as small as allowed by Theorem 2,
so that nǫ2 = Cm log(eN/m). This yields the announced probability estimate,
and the upper bound on k is δm/ǫ.
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To compare the lazy algorithm to the naive algorithm, set for instance m =√
n. In applications to compressed sensing one can set δ to a small constant

value (any δ <
√
2 − 1 will do). Thus, disregarding constant and logarithmic

factors, with high probability the lazy algorithm will certify the RIP property
for k of order roughly n3/4. This is achieved by enumerating

( N
n1/2

)

subspaces,

whereas the naive algorithm would enumerate roughly
(

N
n3/4

)

subspaces.
Another choice of parameters in Proposition 2 shows that one can beat the√

n bound by a logarithmic factor with a quasi-polynomial time algorithm. For
instance:

Corollary 1. If we set m = (logN)3, the lazy algorithm runs in time 2O(log4 N)

and, with probability at least 1 − 2−Ω((logN)4) certifies that A satisfies the RIP
of order k with parameter δ for all k ≤ Kδ logN

√
n, where K is an absolute

constant.

4 Eigenvalues of Random Symmetric Matrices

Proposition 4 is the main probabilistic inequality that we derive in this section.
It shows that square matrices obtained by Cholesky decomposition from a cer-
tain class of random matrices have good RIP parameters with high probability.
This result is then used in Section 5 to give a reduction from hidden clique to
the approximation of RIP parameters.

4.1 Model A

Consider the following random matrix model: A is a symmetric k × k matrix
with aii = 0, and for i < j the aij are independent symmetric Bernouilli random
variables.

Let λ1(A) ≥ λ2(A) ≥ . . . λk(A) be the eigenvalues of A. Let ms be the
median of λs(A). From the main result of [5] (bottom of p. 263) we have for
t ≥ 0 the inequality:

Pr[λs(A)−ms ≥ t] ≤ 2e−t2/32s2 .

From Füredi and Komlós ([15], Theorem 2) we know that m1 ≤ 3σ
√
k for k

large enough, where σ = 1 is the standard deviation of the aij in the case i < j.
Therefore we have

Pr[λ1(A) ≥ 3
√
k + t] ≤ 2e−t2/32.

Since λk(A) = −λ1(−A) and −A has same distribution as A, we also have

Pr[λk(A) ≤ −3
√
k − t] ≤ 2e−t2/32

(one could also apply directly the bound on λk(A) for the more general model
considered in [5]). As a result:

Proposition 3. There is an integer k0 such that for all k ≥ k0 and for all
t ≥ 0 we have:

Pr[max
i

|λi(A)| ≥ 3
√
k + t] ≤ 4e−t2/32.
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Remark 2. The constant 3 in Proposition 3 can be replaced by any constant
bigger than 2 (see Theorem 2 in [15]).

4.2 Model B

Next we consider the model where B is a symmetric k × k matrix satisfying
the following condition: bii = 1, and bij = c · aij/

√
n for i < j, where the aij

are independent symmetric Bernouilli random variables. Here c > 0 is a fixed
constant, and n is an additional parameter which should be thought of as going
to infinity with k.

Corollary 2. Assume that k ≥ k0 and that δ
√
n ≥ 3c

√
k. Then the eigenvalues

of B all lie in the interval [1− δ, 1 + δ] with probability at least

1− 4 exp[−(
δ
√
n

c
− 3

√
k)2/32].

Proof. We have B = Ik + cA/
√
n, where A follows the model of Proposition 3.

The result therefore follows from that proposition by choosing t so that c(3
√
k+

t)/
√
n = δ, i.e., t = δ

√
n/c− 3

√
k.

In the next corollary we look at the case n = k of this model.

Corollary 3. Assume that n ≥ k0 and 3c < 1. Then B is positive semi-definite
with probability at least

1− 4 exp[−(1/c − 3)2n/32].

Proof. Set n = k and δ = 1 in Corollary 2.

In the last result of this subsection we consider again the model B = In +
cA/

√
n. Given a n × n matrix M and two subsets S, T ⊆ {1, . . . , n} of size k,

let us denote by MS,T the k × k sub-matrix made up of all entries of M of row
number in S and column number in T .

Corollary 4. Consider the random matrix B = In+ cA/
√
n where A is drawn

from the uniform distribution on the set n × n symmetric matrices with null
diagonal entries and ±1 off-diagonal entries.

If n ≥ k ≥ k0, then with probability at least

1− 4 exp

[

k ln(ne/k) − (
δ
√
n

c
− 3

√
k)2/32

]

the submatrices BS,S have all their eigenvalues in the interval [1− δ, 1 + δ] for
all subsets S ⊆ {1, . . . , n} of size k.

Proof. By Corollary 2, for each fixed S matrix BS,S has an eigenvalue outside

of the interval [1− δ, 1 + δ] with probability at most 4 exp[−( δ
√
n

c − 3
√
k)2/32].

The result follows by taking a union bound over the
(n
k

)

≤ (ne/k)k subsets of
size k.
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4.3 Model C

In Corollaries 3 and 4 we considered the following random model for B: set
B = In + cA/

√
n, where A is chosen from the uniform distribution on the set

Sn of all symmetric matrices with null diagonal entries and ±1 off-diagonal
entries. If B is positive semi-definite, we can find by Cholesky decomposition a
n × n matrix C such that CTC = B. If B is not positive semi-definite, we set
C = 0. This is the random model for C that we study in this subsection.

Proposition 4. Assume that n ≥ k ≥ k0 and that 3c < min(1, δ
√
n/

√
k). With

probability at least

1− 4 exp

[

k ln(ne/k)− (
δ
√
n

c
− 3

√
k)2/32

]

− 4 exp[−(1/c − 3)2n/32],

C satisfies the RIP of order k with parameter δ.

Proof. If B = In + cA/
√
n is not positive semi-definite then C = 0 and this

matrix obviously does not satisfy the RIP. By Corollary 3, B can fail to be
positive semi-definite with probability at most 4 exp[−(1/c − 3)2n/32].

If B is positive semi-definite then CTC = B. Using the notation of Corol-
lary 4, matrix C satisfies the RIP of order k with parameter δ if for all subsets
S of size k, the eigenvalues of the k×k matrices (CTC)S,S all lie in the interval
[1− δ, 1 + δ]. Since CTC = B, by Corollary 4 this can happen with probability

at most 4 exp[k ln(ne/k)− ( δ
√
n

c − 3
√
k)2/32].

5 Large Cliques and the Restricted Isometry Prop-

erty

In this section we show (in Theorems 3, 4 and more generally in Theorem 5)
that RIP parameters are hard to approximate even for square matrices. We
establish connections between hidden clique problems and the RIP thanks to a
generic reduction which we call the Cholesky reduction. This reduction maps a
graph G on n vertices to a n× n matrix C(G). Let A be the signed adjacency
matrix of G: we have aii = 0 and for i 6= j, aij = 1 if ij ∈ E; aij = −1 if ij 6∈E.
We construct C = C(G) from A using the procedure described in Section 4.3.
That is, we first compute B = In + cA/

√
n. Here c is some absolute constant

smaller for 1/3, for instance c = 0.3. If B is not positive semi-definite, we set
C = 0. Otherwise, we find by Cholesky decomposition a matrix C such that
CTC = B.

For suitable values of k, C(G) satisfies the RIP of order k for most graphs
G. This was made precise in Proposition 4. On the other hand, if G has a
k-clique then C(G) cannot satisfy the RIP of order k for a small value of the
parameter δ. In order to show this, we first need a simple lemma.

Lemma 1. Let A be the signed adjacency matrix of a graph G. If G has a
clique of size k then there is a unit vector supported by k basis vectors such that
xTAx = k − 1.
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Proof. Let H be the k-clique. Here is a suitable vector: set xi = 1/
√
k if i ∈ H

and xi = 0 otherwise.

Proposition 5. If G has a clique of size k and δ < c(k − 1)/
√
n then C(G)

does not satisfy the RIP of order k with parameter δ.

Proof. If B is not semi-definite positive, C(G) = 0 does not satisfy the RIP.
Otherwise CTC = B. Let x be the vector of Lemma 1. We have ||Cx||2 =
xTCTCx = xTBx = 1 + cxTAx/

√
n > 1 + δ.

We can now prove our first hardness results. We first illustrate our method
on two examples, and then prove a general result at the end of this section.

Theorem 3. Assume hypothesis (H1/6), that is: no polynomial time algorithm

can certify that most graphs do not contain a clique of size n1/3. Then, no
polynomial time algorithm can distinguish a matrix with RIP parameter of order
n1/3 at most n−1/4 from a matrix with RIP parameter of order n1/3 at least
n−1/6/4.

Proof. We show the contrapositive: assuming the existing of a distinguishing
algorithm A, we construct an algorithm that contradicts hypothesis (H1/6).
Fix a constant c < 1/3, for instance c = 0.3. On input G, this algorithm first
contruct C(G).

If G contains a clique of size k = n1/3 then by Proposition 5 the matrix
C(G) does not satisfy the RIP of order k with parameter c′n−1/6. Here c′ < c
is another constant (for n large enough we can take c′ = 1/4).

We consider now the case where G was drawn from the G(n, 1/2) distribu-
tion. Set δ = n−1/4. We can apply Proposition 4 since δ

√
n/

√
k = n1/12 > 1 >

3c. This proposition shows that with probability approaching 1 as n → +∞,
C(G) satisfies the RIP of order k with parameter δ.

We can therefore call algorithm A to certify the absence of a clique of
size n1/3. More precisely, if G contains a k-clique our algorithm always finds
out. On the other hand, if G was drawn from G(n, 1/2) our algorithm answers
correctly with high probability.

This theorem implies in particular than RIP parameters cannot be approx-
imated within any constant factor. We can obtain a similar result for an order
k >

√
n under the same hypothesis. This is possible essentially because a ma-

trix that doesn’t satisfy the RIP for a given order k cannot satisfy the RIP for
any order k′ > k.

Theorem 4. Assume Hypothesis (H1/6) as in the previous theorem. Then
no polynomial time algorithm can distinguish a matrix with RIP parameter of
order n0.6 at most n−0.19 from a matrix with RIP parameter of order n0.6 at
least n−1/6/4.

Proof. We proceed as in the proof of the previous theorem: assuming the exist-
ing of a distinguishing algorithm A, we construct an algorithm that contradicts
the hypothesis.
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If G contains a clique of size n1/3 then we saw that C(G) does not satisfy
the RIP of order n1/3 with parameter n−1/6/4. It is a fortiori the case that
this matrix does not satisfy the RIP of order k = n0.6 > n1/3 with parameter
n−1/6/4.

We consider now the case where G was drawn from the G(n, 1/2) distribu-
tion. Set δ = n−0.19. We can apply Proposition 4 since δ

√
n/

√
k = n0.01 > 1 >

3c. Consider the argument of the first exponential in the probability bound
of Proposition 4. The positive term k ln(ne/k), which is of order n0.6 lnn, is

dominated by the negative term ( δ
√
n

c − 3
√
k)2/32, which is of order n0.62. We

conclude that with probability approaching 1 as n → +∞, C(G) satisfies the
RIP of order k with parameter δ.

We can therefore call algorithm A to certify the absence of a clique of
size n1/3. More precisely, if G contains a clique of size n1/3 our algorithm always
finds out. On the other hand, if G was drawn from G(n, 1/2) our algorithm
answers correctly with high probability.

More generally, we have the following result.

Theorem 5. Set k = n(1−2ǫ)(1−ǫ) where ǫ ∈]0, 1/2[. Set also δ = n−5ǫ/4+ǫ2/2.
Hypothesis (Hǫ) implies that no polynomial time algorithm can distinguish

a matrix with RIP parameter of order k at most δ from a matrix with RIP
parameter of order k at least n−ǫ/4.

In particular, since δ = o(n−ǫ/4), it follows that no polynomial time al-
gorithm can approximate the RIP parameter of order k within any constant
factor.

Remark 3. The exponent α = (1 − 2ǫ)(1 − ǫ) ranges over ]0, 1[ as ǫ ranges
over the interval ]0, 1/2[. This theorem therefore shows that for any exponent
α ∈]0, 1[, the RIP parameter of order k = nα cannot be approximated within
any constant factor in polynomial time.

Proof of Theorem 5. That δ = o(n−ǫ/4) follows from the inequality −5ǫ/4 +
ǫ2/2 < −ǫ/4. This inequality holds true for all ǫ ∈]0, 2[, and in particular for
all ǫ in the range ]0, 1/2[ that is of interest here.

We now prove the main part of the theorem. Assuming the existence of
a distinguishing algorithm A, we construct again an algorithm that refutes
hypothesis (Hǫ).

We set as usual c = 0.3. If G contains a clique of size n1/2−ǫ then by
Proposition 5 C(G) does not satisfy the RIP of order n1/2−ǫ with parameter
n−ǫ/4. It is a fortiori the case that this matrix does not satisfy the RIP of
order k = n(1−2ǫ)(1−ǫ) > n(1−2ǫ)/2 for the same parameter value.

Consider now the case where G is drawn from the G(n, 1/2) distribution.
We can apply Proposition 4 since δ

√
n/

√
k = n

ǫ
4
(1−2ǫ) > 1 > 3c. Consider the

argument of the first exponential term in the probability bound of Proposition 4.
The positive term k ln(ne/k), which is of order k lnn = n(1−2ǫ)(1−ǫ) lnn, is

dominated by the negative term ( δ
√
n

c − 3
√
k)2/32, which is of order δ2n =

n1−5ǫ/2+ǫ2 . Indeed, the difference in the two exponents is

1− 5ǫ

2
+ ǫ2 − (1− 2ǫ)(1− ǫ) =

ǫ

2
− ǫ2 > 0.
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As a result, with probability approaching 1 as n → +∞, C(G) satisfies the
RIP of order k with parameter δ. We can therefore refute hypothesis (Hǫ) by
running algorithm A on input C(G).

6 Hardness for Rectangular Matrices

In this section we show that the RIP parameters of rectangular matrices are
hard to approximate. This is the case of interest in compressed sensing. In a
sense this was already done in Section 5: we have shown that the special case
of square matrices is already hard. Nevertheless, it is of interest to know that
the problems remains hard for strictly rectangular matrices. This is what we
do in this section. Proofs are essentially by reduction from the square case. We
begin with a simple lemma.

Lemma 2. Consider a matrix Φ with the block structure

Φ =

(

A 0
0 B

)

,

where A and B both have at least k columns. This matrix satisfies the RIP of
order k with parameter δ if and only if the same is true for both A and B.

Proof. For an input vector x with the corresponding block structure x = (u v)
we have ||x||2 = ||u2|| + ||v||2 and ||Φx||2 = ||Au||2 + ||Bv||2. Therefore, if Φ
satisfies the RIP of order k with parameter δ then the same is true for A (take
v = 0 and u k-sparse). The same argument applies also to B.

Conversely, assume that A and B satisfy the RIP of order k with parameter
δ. Let x = (u v) be a k-sparse vector. We have ||Φx||2 − ||x||2 = (||Φu||2 −
||u||2) + (||Φv||2 − ||v||2). Both u and v must be k-sparse, so the first term is
bounded in absolute value by δ||u||2 and the second one by δ||v||2. The result
follows since ||u||2 + ||v||2 = ||x||2.

Theorem 6. There are absolute constants ǫ0, ǫ > 0 such that under hypothe-
sis (Hǫ) and the choice of parameters:

k = n
1

2
+ǫ0 , δ = n−5ǫ/4+ǫ2/2

no polynomial time algorithm can distinguish a matrix with RIP parameter of
order k at most δ from a matrix with RIP parameter of order k at least n−ǫ/4.

Moreover, polynomial-time distinction between these two cases remains im-
possible even for matrices of size 2n × (n +N) where N = n1+ǫ0. As a result,
for matrices of this size the RIP parameter of order k cannot be approximated
in polynomial time within any constant factor.

The first part of the theorem follows from Theorem 5. The point of Theo-
rem 6 is that it establishes hardness of approximation for strictly rectangular
matrices.

12



Proof of Theorem 6. The claim on constant factor approximation follows as in
Theorem 5 from the relation δ = o(n−ǫ/4). To prove the remainder of the
theorem, we build on the proof of Theorem 5. From a graph G on n vertices
we construct the matrix

C ′(G) =

(

C(G) 0
0 Bn

)

where C(G) is as in the previous section and Bn is a matrix with good restricted
isometry properties. Its role is to ensure the rectangular format that we need
for C ′(G). Our specific choice for Bn is the matrix constructed in [7, 8]. It is

of size n × N where N = n1+ǫ0 , and it satisfies the RIP of order n
1

2
+ǫ0 with

parameter n−ǫ0 . Moreover, Bn can be constructed deterministically in time
polynomial in n. Note that C ′(G) is of size 2n × (n + N) as required in the
statement of Theorem 6.

Choose ǫ so small that (1 − 2ǫ)(1 − ǫ) ≥ 1
2 + ǫ0 and −5ǫ/4 + ǫ2/2 ≥ −ǫ0.

We thus have δ ≥ n−ǫ0 . It then follows from Lemma 2 that C ′(G) satisfies the
RIP of order k with parameter δ if and only if C(G) does.

To complete the proof, let us assume that we have a distinguishing algo-
rithm A which works for matrices of size 2n × (n + N). We use it to refute
hypothesis (Hǫ).

If G contains a clique of size n1/2−ǫ, we saw in the proof of Theorem 5
that C(G) does not satisfy the RIP of order n1/2−ǫ with parameter n−ǫ/4 (by
Proposition 5). It is a fortiori the case that this matrix does not satisfy the

RIP of order k = n
1

2
+ǫ0 for the same parameter value, and the same is true of

C ′(G).
Consider now the case where G is drawn from the G(n, 1/2) distribution.

We saw in the proof of Theorem 5 that for most G, C(G) satisfies the RIP of

order n(1−2ǫ)(1−ǫ) with parameter δ. That order is at least as large as k = n
1

2
+ǫ0 ,

so it is a fortiori the case that C(G) satisfies the RIP of order k with parameter
δ for most G. As pointed out above, the same is then true for C ′(G). We can
therefore refute hypothesis (Hǫ) by running algorithm A on C ′(G).

Theorem 6 establishes hardness of approximation for an order k which is
only slightly above n1/2. We can bring k much closer to n, but for this we need
a randomized version of hypothesis (Hǫ):

Hypothesis (H′
ǫ). There is no polynomial time randomized algorithm which,

given as input a graph G on n vertices:

• always outputs “yes” if G contains a clique of size n
1

2
−ǫ.

• Outputs “no” with probability at least (say) 3/4 on most graphs G when
G is drawn from the uniform distribution G(n, 1/2).

Note that the probability bound 3/4 in H ′
ǫ refers to the internal coin tosses

of the algorithm.
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Theorem 7. Set k = n(1−2ǫ)(1−ǫ) where ǫ ∈]0, 1/2[. Set also δ = n−5ǫ/4+ǫ2/2.
Hypothesis (H ′

ǫ) implies that no polynomial time algorithm can distinguish
a matrix with RIP parameter of order k at most δ from a matrix with RIP
parameter of order k at least n−ǫ/4.

Moreover, polynomial-time distinction between these two cases remains im-
possible even for matrices of size 2n×100n. Since δ = o(n−ǫ/4), it follows that
for matrices of this size no polynomial time algorithm can approximate the RIP
parameter of order k within any constant factor.

Proof. As in the proof of Theorem 6 we construct from a graph G a matrix of
the form

C ′(G) =

(

C(G) 0
0 Bn

)

.

For Bn, instead of of the deterministic construction from [7, 8] we will use
a n × 99n random matrix given by Theorem 2. As before, we will certify
that G does not contain a clique of size n

1

2
−ǫ if the hypothetical distinguishing

algorithm A for matrices of size 2n × 100n accepts C ′(G). This will yield a
contradiction with Hypothesis (H ′

ǫ).
If G contains a clique of size n1/2−ǫ, we saw in the proof of Theorem 5 that

C(G) does not satisfy the RIP of order k with parameter n−ǫ/4. By Lemma 2,
the same is true of C ′(G).

Consider now the case where G is drawn from the G(n, 1/2) distribution.
We saw in the proof of Theorem 5 that for most G, C(G) satisfies the RIP
of order k with parameter δ. As to Bn, note that nδ2 = nǫ2−5ǫ/2+1 and the
exponent ǫ2 − 5ǫ/2 + 1 = (2 − ǫ)(1/2 − ǫ) is positive. Hence it follows from
Theorem 2 that with probability approaching 1 as n → +∞, Bn satisfies the
RIP of order k with parameter δ. We conclude from Lemma 2 that in this case,
C ′(G) satisfies the RIP of order k with parameter δ for most G.

The constant 100 in Theorem 7 can be replaced by any constant larger
than 2. Note also that the hypothetical polynomial-time algorithm in this
theorem remains deterministic: it is only the (hypothetical) algorithm for cer-
tifiying the absence of large cliques which is randomized. It is clear, however,
that Theorem 7 can be adapted to randomized approximation algorithms with
one-sided error (or even with two-sided error under a suitable adaptation of
hypothesis H ′

ǫ).
The following table gives a summary of our hardness results. They do not

rule out the existence of a polynomial-time algorithm distinguishing between
matrices with a small RIP parameter and matrices with a RIP parameter larger
than say 0.1. Here small means as in Theorems 3 to 7 that the RIP parameter
goes to 0 as n → +∞. If convergence to 0 is not too fast then we could still
use such a weak distinguishing algorithm for certifying most random matrices.
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Hardness Results

k (k, δ1) vs. (k, δ2) - hard Result Assumptions Dimensions (n×N)

n1/3 δ1 = n−1/4, δ2 = n−1/6/4 Theorem 3 H1/6 n× n

n0.6 δ1 = n−0.19, δ2 = n−1/6/4 Theorem 4 H1/6 n× n

n(1−2ǫ)(1−ǫ) δ1 = n−5ǫ/4+ǫ2/2, δ2 = n−ǫ/4 Theorem 5 Hǫ n× n

n
1

2
+ǫ0 δ1 = n−5ǫ/4+ǫ2/2, δ2 = n−ǫ/4 Theorem 6 Hǫ 2n× (n+ n1+ǫ0)

n(1−2ǫ)(1−ǫ) δ1 = n−5ǫ/4+ǫ2/2, δ2 = n−ǫ/4 Theorem 7 H ′

ǫ 2n× 100n

Table 1: We say that a matrix Φ has the (k, δ)-RIP iff (1−δ) ≤ ‖Φx‖2 ≤ (1+δ)
for every k-sparse unit vector x. By (k, δ1) vs. (k, δ2)-hard we abbreviate the
following: no polynomial time algorithm can distinguish matrices Φ that satisfy
the (k, δ1)-RIP from matrices that do not satisfy the (k, δ2)-RIP. The absolute
constant ǫ0 > 0 comes from [7, 8].
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Appendix: Refuting Hǫ for negative ǫ

Set k = nα where α > 1/2. In this section, we describe an algorithm which:

(i) always outputs “yes” if G contains a clique of size k.

(ii) Outputs “no clique” on most graphs G when G is drawn from the uniform
distribution G(n, 1/2).

The algorithm is as follows.

1. Let G be the input graph and A its signed adjacency matrix. Compute
λ1(A), the largest eigenvalue of A.

2. Output “yes” if λ1(A) ≥ k − 1. Otherwise, output “no clique”.

If G contains a clique of size k, Lemma 1 shows that λ1(A) ≥ k − 1 since
λ1(A) = sup||x||=1 x

TAx for any symmetric matrix. This algorithm therefore
satisfies condition (i). On the other hand, for most G the largest eigenvalue of
A is of order 2

√
n by Theorem 2 in [15]. Since α > 1/2, it follows that most G

satisfy the inequality λ1(A) < k − 1 and condition (ii) is satisfied as well.
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