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(M, p, k)-friendly points: a table-based method for trigonometric function evaluation

We present a new way of approximating the sine and cosine functions by a few table look-ups and additions. It consists in first reducing the input range to a very small interval by using rotations with "(M, p, k) friendly angles", proposed in this work, and then by using a bipartite table method in a small interval. An implementation of the method for 24bit case is described and compared with CORDIC. Roughly, the proposed scheme offers a speedup of 2 compared with an unfolded double-rotation radix-2 CORDIC.

I. INTRODUCTION

We propose and investigate a new way of reducing the input argument, so that a bipartite method and networks of redundant adders can be employed for evaluating trigonometric functions with a reasonably large precision. We have illustrated the method applicability by describing a fully combinational scheme for computing 24-bit cos and sin functions.

A. The bipartite method

Sunderland et al. [START_REF] Sunderland | CMOS/SOS frequency synthesizer LSI circuit for spread spectrum communications[END_REF] considered approximating the sine of a 12-bit number x less than π/2 using tables. They proposed to split the binary representation of x into three 4-bit words, and to approximate the sine of x = A + B + C, where A < π/2, B < 2 -4 π/2 and C < 2 -8 π/2, using sin(A + B + C) ≈ sin(A + B) + cos(A) sin(C). [START_REF] Sunderland | CMOS/SOS frequency synthesizer LSI circuit for spread spectrum communications[END_REF] By doing that, instead of one table with 12 address bits (i.e., with 2 12 elements), one needed two tables (one for sin(A + B) and one for cos(A) sin(C)), each of them with 8 address bits only. In 1995, DasSarma and Matula [START_REF] Sarma | Faithful bipartite ROM reciprocal tables[END_REF] introduced a new method for evaluation of reciprocals by table look-up and addition, and used it to generate seed values for computing reciprocals using the Newton-Raphson iteration. They named it the bipartite method. Generalized to other functions [START_REF] Schulte | Symmetric bipartite tables for accurate function approximation[END_REF], [START_REF] Schulte | Accurate function evaluation by symmetric table lookup and addition[END_REF], the bipartite method turned out, when applied to the trigonometric functions, to be the same as Sunderland et al. method. Although the bipartite method is a fairly general method of approximating functions by table lookup and addition, in this section, we only focus on the problem of approximating sin(θ) and cos(θ), where θ is a small (p -j)-bit value less than 2 -j :

θ = 0.0000 • • • 0θ j+1 θ j+2 θ j+3 • • • θ p , θ i = 0, 1.
To simplify the presentation, assume that p -j is a multiple of 3, say p -j = 3q (typical practical values are p = 24 and q = 6), and write θ = ρ 1 + ρ 2 + ρ 3 , with

ρ 1 = j bits 0.0 • • • 0 q bits θ j+1 • • • θ j+q , ρ 2 = j bits 0.0 • • • 0 q bits 0 • • • • • • 0 q bits θ j+q+1 • • • θ j+2q , and 
ρ 3 = j bits 0.0 • • • 0 q bits 0 • • • • • • 0 q bits 0 • • • • • • 0 q bits θ j+2q+1 • • • θ p .
We have:

sin(θ) = sin(ρ 1 + ρ 2 ) cos(ρ 3 ) + cos(ρ 1 + ρ 2 ) sin(ρ 3 ) ≈ sin(ρ 1 + ρ 2 ) + cos(ρ 1 ) sin(ρ 3 ), (2) 
and cos(θ) ≈ cos(ρ 1 + ρ 2 ) -sin(ρ 1 ) sin(ρ 3 ).
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Define four tables T 1 , T 2 , T 3 , and T 4 , each one with 2q address bits, as

T 1 (ρ 1 , ρ 2 ) = sin(ρ 1 + ρ 2 ), T 2 (ρ 1 , ρ 3 ) = cos(ρ 1 ) sin(ρ 3 ), T 3 (ρ 1 , ρ 2 ) = cos(ρ 1 + ρ 2 ), T 4 (ρ 1 , ρ 3 ) = -sin(ρ 1 ) sin(ρ 3 ). (4) 
Then, according to the bipartite method,

sin(θ) ≈ T 1 (ρ 1 , ρ 2 ) + T 2 (ρ 1 , ρ 3 ), cos(θ) ≈ T 3 (ρ 1 , ρ 2 ) + T 4 (ρ 1 , ρ 3 ). (5) 
Elementary calculation shows that the error of the first approximation is bounded by 3 • 2 -3j-3q-1 + 2 -3j-4q-1 , and the error of the second approximation is bounded by

2 -2j-3q + 2 -2j-4q-1 + 2 -4j-4q-1 . Of course, tables T 1 ,
T 2 , T 3 , and T 4 store their values with limited precision: functions sin(ρ 1 + ρ 2 ), cos(ρ 1 ) sin(ρ 3 ), cos(ρ 1 + ρ 2 ), and sin(ρ 1 ) sin(ρ 3 ) are rounded to some precision, and these rounding errors must be added to the approximation errors given above. For instance, if j = q = 6 and if each value in the tables T 1 , T 2 , T 3 and T 4 is rounded to the nearest 28-bit number, then the error on sin(θ) is bounded by 0.0313•2 -24 and the error on cos(θ) is bounded by 0.047 • 2 -24 .

The major advantage of the bipartite method, compared to a straightforward tabulation of sin(θ) and cos(θ) is that instead of two tables with 3q address bits, we need four tables with 2q address bits only. Also, no multiplication is required: the bipartite method just uses tabulation and addition.

However, unless j is large (that is, unless θ is small), we cannot tackle large precisions (i.e., large values of p) with this method. Variants have been suggested (see, e.g., [START_REF] De Dinechin | Multipartite table methods[END_REF]), and yet, since the bipartite method is intrinsically a linearapproximation method, it has an inherent limitation: to be able to evaluate functions with large precisions, we need to reduce the input arguments to very small values.

Recently, Matula and Panu suggested to "prescale" the input value before using the bipartite algorithm to obtain a single-precision ulp accurate reciprocal [START_REF] Matula | A prescale-lookup-postscale additive procedure for obtaining a single precision ulp accurate reciprocal[END_REF]. Concerning trigonometric functions, a prescaling (i.e., a preliminary multiplication by some value) would not help. However, given an input value x, subtracting from x an adequately chosen value x could make it possible to use the bipartite method for single-precision evaluation of sines and cosines.

This is what we address in Section II.

B. Canonical recoding

To simplify implementation of the proposed sin/cos computation, we minimize the number of non-zero digits in table entries by using the canonical recoding [START_REF] Reitwiesner | Binary arithmetic[END_REF]. It has the property that any n-bit integer D ∈ {0, . . . , 2 n -1} in radix 2 can be recoded into its canonical form:

D = f n f n-1 • • • f 0 , f i = ±1 or 0,
such that the number of non-zero digits is n/3 on average. Moreover, there can be no two consecutive non-zero digits, so that the maximum number of nonzero digits is always less than or equal to n+1
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. The canonical recoding is an improvement of the Booth recoding [START_REF] Booth | A signed binary multiplication technique[END_REF] (where a string of v consecutive 1s, starting in position u, is replaced by a pair (1 • 2 u+v , (-1)2 u )).

From an input binary number d n-1 d n-2 • • • d 0 , we obtain its canonical representation f n f n-1 • • • f 0 using the following expressions [START_REF] Reitwiesner | Binary arithmetic[END_REF], where f n = c n , with c 0 = 0 and d n = 0:

c i+1 = ⌊(d i+1 + d i + c i )/2⌋ f i = d i + c i -2c i+1 (6) 
or, in a tabular form as shown Fig. 1.

c i d i+1 d i f i c i+1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 0 1 Figure 1. Canonical recoding.

II. (M, p, k)-FRIENDLY POINTS AND ANGLES

Assume an input angle x between 0 and π/2. We wish to evaluate sin(x) and cos(x). Ideally, we would like to write x = x + θ, where θ is small enough, so that sin(θ) and cos(θ) are easily approximated, with high accuracy, using the bipartite method, and where c = cos(x) and s = sin(x), which would be tabulated, fit in a very small number of bits only, so that multiplications by c and s are reduced to a very small number of additions. We would then obtain cos(x) and sin(x) as c • cos(θ) -s • sin(θ) and s • cos(θ) + c • sin(θ), respectively. However, such values x do not exist: one easily shows that the only numbers whose sine and cosine fit in a finite number of bits are the multiples of π/2.

Hence, we propose to do something slightly different. We will look for numbers x such that cos(x) and sin(x) are of the form a • z and b • z, respectively, where a and b are small integers (so that a multiplication by a and b reduces to a very small number of additions-that can be performed in carry save or borrow save), and so that a multiplication by z = 1/ √ a 2 + b 2 can be performed approximately, with a very good approximation, by a very small number of additions or subtractions. More precisely, if we aim at implementing precision-p arithmetic, we will require that z could be rewritten

2 e • 1.z 1 z 2 z 3 • • • z p z p+1 z p+2 • • • = z i 2 e-i ,
with z i = 0 or ±1 and z 1 = -1, where the number of nonzero values z i for i ≤ p is less than some very small bound k. Hence, multiplying by z with relative error less than 2 -p will require less than k additions/subtractions. An adequate value of k is found by a trial-and-error process: if k is too large, the multiplications by z will be costly, and if k is too small, there won't be many (M, p, k)-friendly points, so that the largest distance between two consecutive (M, p, k)friendly points (which directly determines the accuracy of the algorithm) will be too large. Hence, we are interested in pairs of integers (a, b) that satisfy the following definition.

Definition 1:

A pair of integers (a, b) is an (M, p, k)- friendly point if: 1) 0 ≤ a ≤ M and 0 ≤ b ≤ M ; 2) the number z = 1 √ a 2 + b 2 can be written 2 e • 1.z 1 z 2 z 3 • • • z p z p+1 z p+2 • • • = z i 2 e-i ,
where e is an integer, z i ∈ {-1, 0, 1}, z 1 = -1, and the number of terms z i such that 1 ≤ i ≤ p and z i = 0 is less than or equal to k. An example of (M, p, k)-friendly point is the following. Assume M = 255, p = 24, k = 7, and consider a = 72 and b = 106. We have

z = 1 √ a 2 + b 2 = 0.0000000111111111011100000011110 • • • ,
which can be recoded into its canonical form:

z = 0.0000001000000000100100000100010,
where "1" stands for the digit "-1". A multiplication by z reduces to 3 subtractions and one addition. Hence (a, b) is a (255, 24, 7)-friendly point (even more: it is a (127, 24, 5)friendly point). 

III. THE ALGORITHM

A. General sketch of the algorithm

Following the previous discussion, our algorithm, given an input angle x and parameters p, k and M , with (M, p, k)friendly points precomputed and stored in a table, consists of:

• looking up in a table, addressed by a few leading bits of x, an (M, p, k)-friendly angle x and the associated values a, b, and z (in canonical form);

• computing, using the bipartite method, sin(θ) and cos(θ), according to Eqs. ( 4) and ( 5), where θ = x -x;

• computing C = a cos(θ) -b sin(θ) and S = b cos(θ) + a sin(θ) using a very few additions/subtractions-since a and b are less than M , multiplying by a and b requires at most 1 2 ⌈log 2 M ⌉ additions/subtractions, that can be performed without carry propagation using redundant (e.g., carry-save) arithmetic;

• finally, multiplying C and S by z by adding a very few (at most k) multiples of C (S), using [k : 2] adders followed by a carry-propagate adder (which may be omitted if the results can be used in redundant form). The efficiency of the method essentially relies on how small θ can be for not-too-large values of the parameters M and k. An asymptotic study when p grows remains to be done, but we can see through some examples that it can work well.

B. Choosing adequate parameters

Consider the case, exemplified by Figure 3, where M = 255, p = 24, and k = 5. First, we have generated all (M, p, k)-friendly angles. Then, for any 7-bit number, less than π/2:

x 0 .x 1 x 2 x 3 x 4 x 5 x 6
we have stored in a table T 0 the angle that is closest to x 0 .x 1 x 2 x 3 x 4 x 5 x 6 1. We will name T 0 (x 0 , x 1 , • • • x 6 ) that closest value (in fact, we have also stored the corresponding values of a, b, and 1/ √ a 2 + b 2 in canonical form). The first and last entries of Table T 0 are given in Figure 4. The largest distance between x 0 .x 1 x 2 x 3 x 4 x 5 x 6 1 and T 0 (x 0 , x 1 , • • • x 6 ) is 2 -7.82181 . Therefore, for any number x = x 0 .x 1 x 2 • • • x 24 ,

x will be at a distance less that

2 -7 + 2 -7.82181 < 2 -6.353 from T 0 (x 0 , x 1 , • • • x 6 ). We will choose x = T 0 (x 0 , x 1 , • • • x 6 ),
so that the corresponding value of θ will have absolute value less than 2 -6.353 : we can then use the bipartite method shown above with k = q = 6 for evaluating cos(θ) and sin(θ), where θ = x -x. The largest value of 1/ √ a 2 + b 2 stored in the table is around 0.01562.

C. Error bounds

Let us assume that M = 255, p = 24, and k = 5, and let us assume that we use the bipartite algorithm, with (as we did in the introduction) j = q = 6. From the error of the bipartite algorithm (0.047 • 2 -24 for cos θ, and 0.0313 • 2 -24 for sin θ) one easily deduces that if a and b are the values selected in Table T 0 , and if z = 1/ √ a 2 + b 2 , the difference between the exact and the computed value of cos(x) or sin(x) is upper-bounded by

2 -25 + h(a, b, z),
where the 2 -25 comes from the last rounding, and

h(a, b, z) = 0.047 • 2 -24 • z • (a + b) + (a + b • 2 -6 ) • 2 -24 • z.
The largest value of h(a, b, z) for the 100 entries of the table is less than 1.049 × 2 -24 , so that the total (absolute) error of the algorithm is less than 1.549 × 2 -24 .

D. Critical path

Assuming M = 255, p = 24, and k = 5, we have on the critical path:

• lookup in a 7-address bit table (that contains 100 elements), to obtain x, a, and b;

• computation of θ = x -x;

• bipartite method for sin(θ) and cos(θ): 1 table lookup in a 12-address-bit table followed by an addition;

• multiplication by a (and b: done in parallel), followed by one addition (e.g., for a cos(θ) -b sin(θ)). This can be done with 4 carry save additions in the critical path followed by one carry-propagate addition;

• final multiplication by z: 3 CS additions followed by one carry-propagate addition.

In the proposed implementation, we consider variants in the reductions and use of redundant representations until the end of computation thus avoiding carry-propagate additions until the end of the algorithm.

IV. IMPLEMENTATION OF THE PROPOSED METHOD

An implementation of the method is shown in Fig. 5. It consists of several modules which we now describe in some detail. The modules correspond to the steps of the algorithm. The argument is x = x 0 .x 1 . . . x 24 . The outputs are SIN = sin(x) and COS = cos(x): 24 bits, rounded. For (M, p, k) = (255, 24, 5), the main modules are characterized as follows. Module T 0 : A look-up table (Fig. 6), requiring 100 words, is addressed by the 7-bit truncated argument x T = (x 0 , x 1 , . . . , x 6 ). The memory stores: a, b (8-bit wide, stored recoded to radix-4 with digit set {-2,-1,0,1,2} using a total of 2+4×3= 14 bits for each), the angle x (24 bits), and z represented with five fields F 0, F 1, F 2, F 3, F 4, each field (except the first one) consisting of a sign and an index of 4 bits, for a total of 2 + 4×5 =22 bits. The index with value j indicates the position of a non-zero z j bit. Consequently, a field F i defines a signed multiple M i = C × 2 -j , for i = 0, 1, 2, 3, 4, generated in Module OU T with barrel shifters and complementers. Each field has an offset 2 -of f set so that the shifts within a field are relative to the offset. For example, field F 0 covers positions 6, 7, and For each entry (x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ), the distance between x and x 0 .x 1 x 2 • • • x 6 1 is less than 2 -7.82181 . 8. Consequently, its offset is 6 and relative shifts within the field are 0, 1, and 2. The offsets for fields F 1, F 2, F 3, F 4 are 9, 11, 15, and 18, respectively. Shift value j selects a multiplicand shifted right j places using a barrel shifter. The offsets are done by wiring. Note that any field can represent any bit position, i.e., the order is irrelevant. This is used to minimize the width of the fields. We illustrate the z fields (before encoding) for the first 5 words of Table T 0 in Fig. 7. The field value (0,0), (0,j), and (1,j) indicate that no multiple, a positive multiple, or a negative multiple is selected, respectively. The total width of T 0 word is 2×14+24+22 = 64 bits and the size of the memory is 2 7 × 2 6 = 8K bits. The effective use is less since only 100 out of 128 words are needed.

x0x1 • • • xt a b x |x -x0x1 • • • xt1| z 0 128 1 .7812341e -2 .
• • • • • • • • • • • • • • • • • • 1010010
Module BT : It consists of four (2 12 ×28-bit) tables, for a total of 16K ×28 bits, which are used to produce sin(θ) = (T 1 , T 2 ) and cos(θ) = (T 3 , T 4 ) in redundant form according to Eqs. [START_REF] Schulte | Accurate function evaluation by symmetric table lookup and addition[END_REF][START_REF] De Dinechin | Multipartite table methods[END_REF]. This is shown in Fig. 8. Leaving the outputs in redundant form reduces the overall delay at expense of doubling the number of rows to be reduced in Module CS. Alternatively, two CPAs can be used to produce sin(θ) and cos(θ) in conventional form. A direct table lookup would Module CS: It produces

C = a cos(θ) -b sin(θ) = (T 3 , T 4 ) × a -(T 1 , T 2 ) × b = (C C , C S ) S = b cos(θ) + a sin(θ) = (T 3 , T 4 ) × b + (T 1 , T 2 ) × a = (S C , S S )
in redundant form where index C and S denotes carry and sum bit-vectors. The short operands a, b are stored in T 0 , re-coded in 5 radix-4 digits {-2,-1,0,1,2}. Module BT produces cos(θ) and sin(θ) in redundant form (T 3 , T 4 ) and (T 1 , T 2 ), respectively. The multiplication a cos(θ) = (T 3 , T 4 ) × a is performed as reductions by two [5:2] adders in parallel followed by a [4:2] adder. Similarly, for s ¯in(θ), c ¯os(θ), and a sin(θ). Then the outputs C = (C C , C S ) and S = (S C , S S ) in redundant form are obtained with another [4:2] adder, respectively. The overall scheme of the module is shown in Fig. 9. We now estimate the delay of the implementation. Following the path through the main modules, we have A rough comparison with a fully-unfolded CORDIC scheme [START_REF] Duprat | The CORDIC algorithm: New results for fast VLSI implementation[END_REF] for computing cos and sin functions, using double rotations, and having a stage delay of about 2T F A , indicates that the proposed method is roughly twice as fast for 24-bit case. We make no comments on relative cost at this time.

V. SUMMARY AND FUTURE WORK

We have introduced a new way of reducing the input argument, so that a bipartite method can be employed for evaluating trigonometric functions with a reasonably large precision. We have investigated its properties in special cases. We have illustrated the methods applicability by describing a fully combinational scheme for computing 24bit cos and sin functions. The method can be implemented in several alternative ways to achieve desired delay-cost tradeoffs. More detailed implementations and their realizations in particular technologies remain to be done. A preliminary rough comparison with a CORDIC approach indicates a potential speedup of 2. In general, we would like to be able to predict values of M and k, as well as number of bits of address for the first table T 0 , that will be of interest for a given precision p. This requires solving several theoretical problems such as predicting the gap between two consecutive friendly angles, which is linked to the probability that a p-bit chain can be recoded into canonical form with at most k nonzero digits. We plan to address these problems in the near future.

Definition 2 :

 2 The number α, 0 ≤ α ≤ π/2 is an (M, p, k)-friendly angle if either α = 0 or α = arctan b a , where (a, b) is an (M, p, k)-friendly point. For instance, Figure 2 presents the (M, p, k)-friendly points, with M = 64, p = 24, and k = 7, and Figure 3 presents the (M, p, k)-friendly points, with M = 256, p = 24, and k = 5.

Figure 2 .

 2 Figure 2. The (M, p, k)-friendly points, with M = 63, p = 24, and k = 7. The maximum distance between two consecutive angles is 0.0156237 • • • < 2 -6.00011 .

Figure 3 .

 3 Figure 3. The (M, p, k)-friendly points, with M = 255, p = 24, and k = 5. The maximum distance between two consecutive angles is 0.0130652 • • • < 2 -6.258 .

Figure 5 .

 5 Figure 5. Overall block diagram.

Figure 4 .

 4 Figure 4.The first and last values of Table T 0 , for M = 255, p = 24, and k = 5. There are 100 entries in the table. For each entry (x 0 , x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ), the distance between x and x 0 .x 1 x 2 • • • x 6 1 is less than 2 -7.82181 .

Figure 9 .Figure 10 .

 910 Figure 9. Module CS: Computation of C = (C C , C S ) and S = (S C , S S ) .

  Figure 7. Illustration of fields. (The fields store binary encodings relative to offsets.)require two tables of 2 24 × 28 bits for a total of 32M × 28 bits which is 2 11 times larger than the tables in the proposed method. Figure 8. Module BT : Bipartite tables Table T 1 , T 2 , T 3 , T 4 .

		x 0 ... x 6	Table T 0
		(2+4x3)	14	14	24	22
							(2+4x(1,4))
				a b		z 7 x
				Figure 6. Table T 0 .
	Address	F 0	F 1	F 2	F 3	F 4
	0		(0, 7) (1, 22) (0, 0)	(0, 0)	(0, 0)
	1		(0, 7) (1, 22) (1, 19) (0, 31) (0, 0)
	2		(0, 7) (1, 13) (1, 18) (0, 27) (0, 29)
	3		(0, 8) (1, 17) (1, 19) (1, 23) (0, 28)
	4		(0, 8) (0, 17) (0, 10) (0, 26) (0, 30)
	x	θ = x -x ^x 24 24	
	ρ 1 ρ 2		ρ 3	
	6	6		6		
	T 1			T 2		T 3	T 4
	28			28		28	28
	(θ) sin					(θ) cos
		T	T				T	T
		1	2				3	4

T

  COS-SIN ≈ t T0 + t BT + t CS + t OU T + t CP A ≈ t ROM (2 7 ) + t ROM (2 12 ) +(t mgen + t buf f + t 5:2 + 2 × t 4:2 ) +(t buf f + 4 × t mux2 + t XOR + t 5:2 + t 4:2 ) +t CP A An optimized [5:2] adder has a critical path equivalent 4t XOR ≈ 2t F A [9]. A [4:2] adder has a critical delay of about 3t XOR ≈ 1.5t F A . We assume that t buf f , t mgen and t mux2 are roughly 0.5t F A , t ROM (2 7 ) ≈ t F A , and t ROM (2 12 ) ≈ 2t F A . The carry-propagate adder of parallelprefix type over 24 bits is estimated to have a delay of 4t F A . Then we get T COS-SIN ≈ t F A (1 + 2 + 0.5 + 0.5 + 2 + 2 × 1.5 +0.5 + 4 × 0.5 + 0.5 + 2 + 1.5) + 4 = 19.5t F A