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REEB PERIODIC ORBITS AFTER A BYPASS ATTACHMENT

On a 3-dimensional contact manifold with boundary, a bypass attachment is an elementary change of the contact structure consisting in the attachment of a thickened half-disc with a prescribed contact structure along an arc on the boundary. We give a model bypass attachment in which we describe the periodic orbits of the Reeb vector field created by the bypass attachment in terms of Reeb chords of the attachment arc. As an application, we compute the contact homology of a product neighbourhood of a convex surface after a bypass attachment, and the contact homology of some contact structures on solid tori.

Introduction

We describe the effect on Reeb dynamics of an elementary change of the contact structure on a 3-manifold with boundary known as a bypass attachment. Our study is based on the explicit construction of a bypass. We encode the dynamics of the associated Reeb vector field and give a symbolic representation of the new periodic orbits. As an application, we compute the contact homology of a product neighbourhood of a convex surface after a bypass attachment, and the contact homology of some contact structures on solid tori.

Honda [START_REF] Honda | On the classification of tight contact structures I[END_REF] introduced bypass attachments to classify contact structures on solid tori, thickened tori, and lens spaces. Bypasses may be seen as basic building-blocks of contact structures. In particular, cobordisms are constructed out of bypasses as contact structures on a thickened surface are obtained from an invariant contact structure and a finite number of bypass attachments and removals (see [START_REF] Honda | Notes for math 599: contact geometry[END_REF]Section 11.1]).

Describing new periodic orbits after a bypass attachment is the first step toward computing the contact homology of the new contact manifold. Introduced in the vein of Floer homology by Eliashberg, Givental, and Hofer [START_REF] Eliashberg | Introduction to Symplectic Field Theory[END_REF] in 2000, contact homology is an invariant of a contact structure on a closed manifold defined through a Reeb vector field. Colin, Ghiggini, Honda, and Hutchings [START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF] generalised it to an invariant of contact structures on manifolds with boundary called sutured contact homology. The simplest associated complex is the Q-vector space generated by Reeb periodic orbits and the differential "counts" pseudo-holomorphic cylinders in the symplectisation of the contact manifold. Gromov [START_REF] Gromov | Pseudo-holomorphic curves in symplectic manifolds[END_REF] introduced pseudoholomorphic curves in symplectic geometry in 1985. Hofer [START_REF] Hofer | Pseudoholomorphic curves in symplectization with applications to the Weinstein conjecture in dimension three[END_REF] generalised them to symplectisations in 1993. Our theorem is similar to a theorem of Bourgeois, Ekholm, and Eliashberg [START_REF] Bourgeois | Effect of Legendrian Surgery[END_REF] describing the new Reeb periodic orbits after a surgery along a Legendrian sphere Λ in terms of Reeb chords of Λ. In addition, the authors deduce exact triangles between contact homology, symplectic homology and Legendrian contact homology. Finding an analogous triangle would be a natural extension to this paper.

The computation of contact homology hinges on finding periodic orbits and solving elliptic partial differential equations and thus is usually out of reach. To our knowledge, Golovko's work [START_REF] Golovko | The cylindrical contact homology of universally tight sutured contact solid tori[END_REF][START_REF] Golovko | The embedded contact homology of sutured solid tori[END_REF] contains the only explicit computations in the sutured case. Actual computations are of importance to clarify our intuition and understand connections between sutured Heegaard-Floer homology and sutured embedded contact homology. Sutured embedded contact homology is a variant of sutured contact homology introduced in [START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF] in the vein of Hutchings' work [START_REF] Hutchings | An index inequality for embedded pseudoholomorphic curves in symplectizations[END_REF]. Taubes [START_REF] Henry | Embedded contact homology and Seiberg-Witten Floer cohomology I[END_REF] proved that it is an invariant of the manifold. In the closed case, Kutluhan, Lee, and Taubes [START_REF] Kutluhan | [END_REF] and, independently, Colin, Ghiggini, and Honda [START_REF] Vincent Colin | HF = ECH via open book decompositions : a summary[END_REF] announced an isomorphism between the two homologies. In addition, computations can be of use to understand the algebraic structures associated to sutured contact homology and obtain a comprehensive gluing theorem from the partial theorem in [START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF].

Outline. This paper is derived from the PhD thesis of the author [START_REF] Vaugon | Étude dynamique des champs de Reeb et propriétés de croissance de l'homologie de contact[END_REF]. It is organised as follows. In Section 2, we present our main theorems. In Section 3, we recall some usual definitions in contact geometry and contact homology that will be used in the sequel. In Section 4, we apply our main theorem to the simplest manifold with boundary: the product neighbourhood of a convex surface. In Section 5, we compute the contact homology of a product neighbourhood of a convex surface after a bypass attachment, and the contact homology of some contact structures on solid tori. The proof of our main theorem (Theorem 2.1) is technical. We give a sketch of proof in Section 6 and a detailed proof in Section 7. Section 8 is devoted to the proof of Theorem 2.6 which describe the Conley-Zehnder index of the new Reeb periodic orbits.

Main results

2.1.

Bypasses. Let us review some basic definitions (see Section 3 for more details). Let M be a 3-manifold. A 1-form α on M is called a contact form if α ∧ dα is a volume form. A contact structure ξ is a plane field locally defined as the kernel of a contact form. To any contact form α, we associate the vector field, called the Reeb vector field, such that ι Rα α = 1 and ι Rα dα = 0. A Reeb chord of an arc γ 0 is a Reeb arc with endpoints on γ 0 . A curve tangent to ξ is called Legendrian. In a contact manifold, "pleasant" surfaces are convex surfaces (see Section 3.1 for a precise definition). In a neighbourhood of a convex surface S, the contact structure is encoded by a smooth multi-curve Γ, the dividing set, separating S into positive and negative regions (Giroux [16]). In what follows we specify the dividing set associated to a convex surface S by the pair (S, Γ). Convexity is a natural condition to impose to the boundary of a contact manifold. To deal with contact forms as opposed to contact structures, for instance to define sutured contact homology, one usually refines this condition as follows. A contact form α is adapted to a convex surface (S, Γ) if Γ is the set of tangency points between R α and S and, along Γ, the vector field R α points toward the sub-surface S + where R α is positively transverse to S. On a manifold with convex boundary, the dividing set of the boundary is a suture as defined by Gabai [START_REF] Gabai | Foliations and the topology of 3-manifolds[END_REF].

An attaching arc of the convex boundary (S, Γ) of (M, ξ) is a Legendrian arc which intersects the dividing set Γ in precisely three points, namely, its two endpoints and one interior point. A bypass attachment along an attachment arc γ 0 is the gluing of a half-disc D with a prescribed continuation of ξ along γ 0 . We get a new manifold with boundary by thickening (D, ξ).

Main theorem.

Let I b = -3π 4 , 11π 4 . Let (M, α) be a contact manifold with convex boundary (S, Γ) and γ 0 be an attachment arc on S. We assume that (C1) there exists a neighbourhood Z of γ 0 with coordinates (x, y, z) ∈ I b × [-y max , 0] × I max where I max = [-z max , z max ] such that • α = sin(x)dy + cos(x)dz;

• γ 0 = [0, 2π] × {0} × {0};

• S Z = I b × {1} × I max = S ∩ Z (C2) α is adapted to S \ S Z . Fix K > 0. Let δ K (γ 0 ) denote the image of γ 0 \ Γ on S by the Reeb flow for times smaller than K. Additionally, we assume that (C3) δ K (γ 0 ) is transverse to γ 0 . Condition (C3) is generic and ensures that the number of Reeb chord of γ 0 with period smaller than K is finite. We denote by a 1 , . . . a N these chords. Let l(a i1 . . . a i k ) = T (a i1 ) + • • • + T (a i k ) where T (a i ) is the period of the Reeb chord a i . Theorem 2.1. Under conditions (C1), (C2) and (C3), there exists a contact manifold (M , S , α ) obtained from (M, S, α) after a bypass attachment along γ 0 , such that • S is convex;

• α is adapted to S and arbitrarily close to α in M ;

• Reeb periodic orbits of period smaller than K intersecting the bypass correspond bijectively to words a on the letters a 1 , . . . , a N such that l(a) < K up to cyclic permutation. In addition, the periodic orbit γ a associated to a = a i1 . . . a i k intersects S Z in 2k points denoted by p - 1 , p + 1 , . . . , p - k , p + k and is arbitrarily close to the chord a j between p - j and p + j . Therefore, if the contact form α is non-degenerate on M , the Reeb periodic orbits of period smaller than K on M are exactly the Reeb periodic orbits of M of period smaller than K and the orbits described in Theorem 2.1. This theorem is proved in Sections 6 and 7. We will see in the proof that the condition "α is adapted to S " is crucial to obtain this symbolic representation of the new periodic orbits. The following proposition ensures that conditions (C1) and (C2) are satisfied for any contact manifold after an isotopy. Proposition 2.2. Let (M, ξ) be a contact manifold with convex boundary (S, Γ) and γ 0 be an attaching arc. There exists a contact structure ξ isotopic to ξ and a contact form α of ξ satisfying conditions (C1) and (C2).

This proposition derives from Giroux theory of convex surfaces (Sections 3 and 4) and the explicit construction of Proposition 5.1.

2.3.

Computations of contact homology. We now apply Theorem 2.1 to compute some sutured contact homologies. The sutured contact homology is an invariant associated to a contact structure with boundary (M, ξ, Γ) where Γ is the dividing set of the boundary. Though commonly accepted, existence and invariance of contact homology remain unproven. In what follows this assumption will be called Hypothesis H (see Section 3.3.3 for more details).

Let S be a convex surface and Γ = n i=0 Γ i be a dividing set of S without contractible components. Let M = S × [-1, 1] be the product neighbourhood of S with invariant contact structure1 .

Proposition 2.3.

There exists a contact form α without contractible Reeb periodic orbits such that the cylindrical sutured contact homology of (M, α, Γ × {±1}) is the Q-vector space generated by n+1 periodic orbits homotopic to Γ k ×{0}, k = 0, . . . , n and by their multiples. Theorem 2.4. Let γ 0 be an attachment arc in S intersecting three distinct components of Γ. Let Γ 0 be the component intersecting the interior of γ 0 . We denote by (M , ξ ) the contact manifold obtained from (M, ξ) after a bypass attachment along γ 0 × {1} and by Γ a dividing set of ∂M . Then, under Hypothesis H, the cylindrical sutured contact homology of (M , ξ , Γ ) is the Q-vector space generated by n periodic orbits homotopic to Γ k × {0}, k = 1, . . . , n and by their multiples.

Thus, a bypass attachment removes Γ 0 and its multiples from the generators of the sutured contact homology.

Contact structures with longitudinal dividing set on the boundary are characterised by the dividing set of any convex meridian disc [START_REF] Honda | On the classification of tight contact structures I[END_REF]. Golovko [START_REF] Golovko | The embedded contact homology of sutured solid tori[END_REF] computed the contact homology in the case where the dividing set of a meridian discs consists of segments parallel to the boundary. He also computed contact the homology of solid tori with non-longitudinal boundary dividing set [START_REF] Golovko | The cylindrical contact homology of universally tight sutured contact solid tori[END_REF]. We extend his computations to contact structures such that (see Figure 1) (C4) the boundary dividing set Γ has 2n longitudinal components;

(C5) if (D, Γ = n i=0 Γ i )
is the dividing set of a convex meridian disc D there exists a partition of ∂D in two sub-intervals I 1 and I 2 such that

• ∂I 1 is contained in two bigons (called extremal bigons);

• if I = {i, ∂Γ i ⊂ I 1 or ∂Γ i ⊂ I 2 } then any connected component of D \ i / ∈I Γ i contains at most one component of Γ.
extremal bigon extremal bigon -+ ---

+ + I 1 I 2 Figure 1. A chord diagram satisfying condition (C5)
Theorem 2.5. Let ξ be a contact structure on M = D 2 × S 1 satisfying conditions (C4) and (C5) above. Under Hypothesis H, the sutured contact homology of (M, ξ, Γ) is the Q-vector space generated by n + curves homotopic to { * } × S 1 , n - curves homotopic to { * } × (-S 1 ) and by their multiples where

n ± = χ(S ± ) + #{∓non-extremal bigons} -#{± bigons}.
2.4. Two improvements to the main theorem. We now describe the Conley-Zehnder index µ(γ a ) of the periodic orbit γ a from Theorem 2.1. This index gives the graduation in contact homology and is associated to a trivialisation of the normal bundle of the orbit. We first construct a "nice" trivialisation extending trivialisations along the Reeb chords. In the setting of Theorem 2.1, we denote by a -and a + the inward and outward endpoints of a Reeb chord a, by [p, p ] the segment between p and p in the chart associated to Z and, if p and p are on γ a , by [p, p ] a the arc of γ a between p and p . For each i = 1, . . . , N , choose a collar neighbourhood

S i of a i ∪ [a + i , a - i ]
. We obtain a collar neighbourhood S a of the periodic orbit γ a corresponding to a = a i1 . . . a i k by gluing together

• collar neighbourhoods of [p - ij , p + ij ] a ∪ [p - ij , p + ij ]
given by a small perturbation of S ij ,

• and an immersed disc in the bypass with boundary

j [p + ij , p - ij+1 ] a ∪[p + ij , p - ij ]
, embedded near its boundary. For all i, the annulus S i gives a symplectic trivialisation (e 1 , e 2 ) of ξ along a i . Let (R t ) t∈[0,T (ai)] denote the path of symplectic matrices induced by the differential of the Reeb flow along a i . For all t ∈ [0, T (a i )], we denote by θ t the angle between e 1 and R t (e 1 ). Let μ(a i ) be the integer such that θ T (ai) ∈ (π μ(a i ), π(μ(a i ) + 1)]. Then μ(a i ) depends only on the homology class of S i .

Theorem 2.6. If a = a i1 . . . a i k is a word such that l(a) ≤ K, then µ(γ a ) = k j=1 μ(a ij ) in the trivialisation S a .
In addition, our explicit construction of bypasses allows us to control all the new periodic orbits after a bypass attachment but with less precision. This property is used in our actual computations of contact homology. Let (M, α) be a contact manifold with convex boundary (S, Γ) and γ 0 an attachment arc satisfying conditions (C1) and (C2). We assume that (C6) there exists λ 0 > 0 such that for all ε > 0 and for any small enough perturbation of α, the distance between the dividing set and the endpoints of the Reeb chords of [0, 2π] × {1} × I max is either smaller that ε or greater than λ 0 .

Theorem 2.7. Under conditions (C1), (C2) and (C6), there exists a contact manifold (M , S , α ) obtained from (M, S, α) after a bypass attachment along γ 0 , such that • S is convex;

• α is adapted to S and arbitrarily close to α in M ; If the hypotheses of Theorem 2.1 and Theorem 2.7 are simultaneously satisfied, the associated constructions coincide. In addition, the periodic orbit γ a associated to a = a i1 . . . a i k corresponds to the unique fixed point of ϕ

• if ψ : [π + λ 0 , 2π -λ 0 ] × I max → [λ 0 , π -λ 0 ] × I max is
• ψ i k • • • • • ϕ • ψ i1
where ψ ij is the restriction of ψ to the connected component of dom(ψ) containing a - ij .

Contact geometry

3.1. Contact geometry and convex surfaces. A more detailed presentation can be found in [START_REF] Geiges | An Introduction to Contact Topology[END_REF]. Let (M, ξ = ker(α)) be a contact manifold. A vector field whose flow preserves ξ is said to be contact. A fundamental step in the classification of contact structures in dimension 3 was the definition of tight and overtwisted contact structures given by Eliashberg [START_REF] Eliashberg | Classification of overtwisted contact structures on 3-manifolds[END_REF] in the line of Bennequin's work [START_REF] Bennequin | Entrelacement et équations de Pfaff[END_REF]. A contact structure ξ is overtwisted if there exists an embedded disc tangent to ξ on its boundary. Otherwise ξ is said to be tight. Eliashberg's work [START_REF] Eliashberg | Classification of overtwisted contact structures on 3-manifolds[END_REF][START_REF] Eliashberg | Contact 3-manifolds, twenty years since J. Martinet's work[END_REF] initiated the study of surfaces in contact manifolds. The characteristic foliation F of a surface S is the singular 1-dimensional foliation of S such that

• x is a singular point if ξ x = T x S; • F x = ξ x ∩ T x S if x is non-singular.
If ω is a volume form on S and i : S → M is the inclusion, F is defined by the vector field X satisfying ι X ω = i * α. The characteristic foliation determines the germ of ξ near S [START_REF] Giroux | Convexité en topologie de contact[END_REF]Proposition II.1.2].

The development of convexity by Giroux [START_REF] Giroux | Convexité en topologie de contact[END_REF] following Eliashberg and Gromov's definition [START_REF] Eliashberg | Convex symplectic manifolds[END_REF] represents a major progress in the study of contact geometry. A surface S is convex if there exists a contact vector field transverse to S. If S has a boundary, we require it to be Legendrian. Closed convex surfaces are generic [START_REF] Giroux | Convexité en topologie de contact[END_REF]Proposition II.2.6]. The convexity of a surface is equivalent to the existence of a dividing set for the characteristic foliation (Giroux,[START_REF] Giroux | Convexité en topologie de contact[END_REF]Proposition II.2.1]). A multi-curve Γ on S is a dividing set for a singular 1-dimensional foliation F of S if there exist two sub-surfaces S ± of S, a vector field Y and a volume form ω on S such that

• ∂S ± = Γ;

• div ω Y > 0 on S + and div ω Y < 0 on S -;

• Y points toward S + along Γ. The dividing set Γ inherits the orientation of ∂S + . All dividing sets of a given foliation are isotopic. If X is a contact vector field transverse to S, the set of tangency points between X and ξ along S is a dividing set. The dividing set Γ encodes ξ near S as any foliation divided by Γ can be realised as the characteristic foliation of a perturbed surface. This property is due to Giroux [START_REF] Giroux | Convexité en topologie de contact[END_REF]Proposition II.3.6] and known as the realisation lemma. In favourable situations, the Reeb vector field provides us with a dividing set. Lemma 3.1. Let S be a compact surface in (M, α). If R α is tangent to S along a smooth curve Γ and if, along Γ, the characteristic foliation of S points toward S + , the sub-surface where R α is positively transverse to S, then S is convex and Γ is a dividing set.

Proof. In the definition of dividing set, choose any volume form ω of S and Y such that ι Y ω = i * α where i : S → M is the inclusion. • the singularities of the characteristic foliation of D are (see Figure 2) -a negative elliptic singularity in the interior of γ 1 ; -two positive elliptic singularities at the endpoints of γ 1 ; -positive singularities along γ 2 alternating between elliptic and hyperbolic singularities. The arc γ 1 is called the attaching arc of the bypass.

- + + + γ 2 γ 1 Figure 2.
The characteristic foliation of a bypass Proposition 3.2 (Honda [27]). Let D be a bypass for S with attaching arc γ 1 .

There exists an neighbourhood of

S ∪ D diffeomorphic to S × [0, 1] such that • S S × {ε}; • the contact structure is invariant in S × [0, ε];
• the surfaces S × {0} and S × {1} are convex with dividing sets Γ and Γ where Γ and Γ are identical except in a neighbourhood of γ 1 on which the arrangements are shown in Figure 3.

Let (M, ξ) be a contact manifold with convex boundary S. Let Γ be a dividing set of S and γ 1 be an attaching arc. A bypass attachment along γ 1 is a contact manifold (M , ξ ) with convex boundary S extending (M, ξ) such that there exists a neighbourhood S × [0, 1] of S satisfying • S S × {1}; • S × {0} is convex and is the image of S by the flow of an inward contact vector field; • there exists a contact retraction of S × [0, 1] on an arbitrarily small neighbourhood of S × {0} ∪ D where D is a bypass for S × {0} with attaching arc the image of γ 1 on S × {0}. The differences between the dividing sets of S and S are shown on Figure 3. Honda [START_REF] Honda | On the classification of tight contact structures I[END_REF] constructed an explicit bypass attachment on a convex boundary satisfying condition (C1) (see Section 7.1).

There exist two degenerate bypass attachments: the trivial one that does not change the contact structure up to isotopy and the overtwisted one that creates an overtwisted contact structure (see Figure 4). Giroux [START_REF] Giroux | Structures de contact en dimension trois et bifurcations des feuilletages de surfaces[END_REF] and Honda [START_REF] Honda | On the classification of tight contact structures I[END_REF] independently classified contact structures on solid tori. Honda's proof hinges on bypasses. We follow Mathews' presentation [START_REF] Mathews | Chords diagrams, contact-topological quantum field theory, and contact categories[END_REF]. A chord diagram is a finite set of disjoint properly embedded arcs in the disc D2 up to isotopy relative to the boundary. Theorem 3.3 (Giroux [17], Honda [START_REF] Honda | On the classification of tight contact structures I[END_REF]). Let F ⊂ S 1 be a set with 2n elements and F be a singular foliation on T 2 divided by Γ = F × S 1 and containing a meridian leaf which intersects Γ in 2n points. Tight contact structures on D 2 × S 1 with characteristic foliation F on the boundary up to isotopy relative to the boundary correspond bijectively to chord diagrams of n chords with boundary in F . In addition, the associated chord diagram is the dividing set of any convex meridian disc intersecting Γ in 2n points.

By the realisation lemma, we can assume that the characteristic foliation of the boundary satisfies the hypothesis of Theorem 3.3. Proposition 3.4 (Honda [27]). Let ξ be a contact structure on D 2 × S 1 such that the boundary dividing set Γ has 2n longitudinal components. Let D be a convex meridian disc intersecting Γ in 2n points. Fix an attaching arc γ ⊂ ∂D . Then, the contact structure ξ on D 2 × S 1 obtained after a bypass attachment along γ has a boundary dividing set with 2(n -1) longitudinal components. In addition, the chord diagram associated to ξ is obtained from the diagram associated to ξ by gluing the endpoints of the two chords intersecting 2 γ (see Figure 5). We consider the generalisation of contact homology to manifolds with boundary called sutured contact homology and introduced by Colin, Ghiggini, Honda and Hutchings [START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF]. Let (M, ξ = ker(α)) be a contact manifold.

3.3.1. Holomorphic cylinders. The differential of contact homology "counts" pseudoholomorphic curves in the symplectisation of the contact manifold. One can refer to [START_REF] Mcduff | J-holomorphic Curves and Symplectic Topology[END_REF] for more information. The symplectisation of (M, ξ = ker(α)) is the noncompact symplectic manifold (R × M, d(e τ α)) where τ is the R-coordinate. An almost complex structure on a even-dimensional manifold M is a map J : T M → T M preserving the fibres and such that J 2 = -Id.

An almost complex structure J on R × M is adapted to α if J is τ -invariant, J ∂ ∂τ = R α , Jξ = ξ and ω(•, J•) is a Rie- mannian metric. A map u : (M 1 , J 1 ) → (M 2 , J 2 ) is pseudo-holomorphic if du • J 1 = J 2 • du. Here we consider pseudo-holomorphic cylinders u : (R × S 1 , j) → R × M .
The simplest non-constant pseudo-holomorphic maps are trivial cylinders:

R × S 1 -→ R × M (s, t) -→ (T s, γ(T t)).
where γ is a T -periodic Reeb orbit. Note that there also exist trivial pseudoholomorphic maps over any Reeb orbit. For every non-constant map

u : (R × S 1 , j) → (R × M, J)
which is not a trivial cylinder, the points (s, t) such that du = 0 or ∂ ∂τ ∈ im(du(s, t)) are isolated (see [START_REF] Mcduff | J-holomorphic Curves and Symplectic Topology[END_REF]Lemma 2.4.1]).

The map u = (a, f

) : R × S 1 → R × M is positively asymptotic to a T -periodic orbit γ at +∞ if lim s→+∞ a(s, t) = +∞ and lim s→+∞ f (s, t) = γ (-T t). It is negatively asymptotic to γ at -∞ if lim s→-∞ a(s, t) = -∞ and lim s→-∞ f (s, t) = γ (+T t).
It is a theorem of Hofer [START_REF] Hofer | Pseudoholomorphic curves in symplectization with applications to the Weinstein conjecture in dimension three[END_REF]Theorem 31] that holomorphic curves u : (R×S 1 , j) → (R×M, J) with finite Hofer energy are asymptotic to a Reeb periodic orbit at ±∞ if the contact form α is non-degenerate.

3.3.2.

Conley-Zehnder index. The Conley-Zehnder index gives the graduation in contact homology. Consider (M, ξ = ker(α)) a contact manifold, γ a T -periodic Reeb orbit and p ∈ γ. If ϕ t denote the Reeb flow, the map dϕ T (p) : (ξ p , dα) → (ξ p , dα) is a symplectomorpism. A non-degenerate periodic orbit γ is called even if dϕ T (p) has two real positive eigenvalues and odd if dϕ T (p) has two complex conjugate or two real negative eigenvalues. In addition, if dϕ T (p) has real eigenvalues, the orbit is said hyperbolic. If it has two complex conjugate eigenvalues, the orbit is called elliptic. Let γ m be the m-th multiple of a simple orbit γ 1 . Then γ m is said to be good if γ 1 and γ m have the same parity, otherwise γ m is said to be bad.

The Conley-Zehnder index was introduced in [START_REF] Conley | Morse-type index theory for flows and periodic solutions of Hamiltonian equations[END_REF] for paths of symplectic matrices. Our short presentation follows [START_REF] Laudenbach | Symplectic geometry and Floer homology[END_REF]. Let Sp(2) denote the set of symplectic matrices in M 2 (R). The open set Sp * = {A ∈ Sp(2), det(A -I) = 0} has two connected components and they are contractible. Any path R : [0, 1] → Sp(2) such that R 0 = I and R 1 ∈ Sp * (2) can be extended by a path (R t ) t∈ [START_REF] Bennequin | Entrelacement et équations de Pfaff[END_REF][START_REF] Bourgeois | Effect of Legendrian Surgery[END_REF] in Sp * such that

R 2 = W + = -1 0 0 -1 or R 2 = W -= 2 0 0 1/2 .
Using polar decomposition, we write R t = S t O t where S t is positive-definite and O t is a rotation of angle θ t . The Conley-Zehnder index of R is µ (R) = θ2-θ0 π . It is an integer and does not depend on the choice of an extension of R.

As dϕ t (p) : (ξ p , dα) → (ξ ϕt(p) , dα) is a symplectomorpism, a trivialisation of ξ along γ provides us with a path of symplectic matrices. If γ is non degenerate, its Conley-Zehnder index is well defined. It gives a relative (depending on a choice of trivialisation) grading of Reeb periodic orbits. Its parity matches with the above definition.

3.3.3. Sutured contact homology. We now assume that (M, ξ) has a convex boundary (S, Γ) and that α is a non-degenerate contact equation adapted to the boundary. We sketch the construction of cylindrical sutured contact homology chain complex (C cyl * (M, Γ, α), ∂) defined in [START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF]. The chain complex C cyl * (M, Γ, α) is the Q-vector space generated by good Reeb periodic orbits (here we consider simple periodic orbits and their good multiples). Choose an almost complex structure J adapted to the symplectisation. To define ∂γ, consider the set M [Z] (J, γ, γ ) of equivalence classes (modulo reparametrisation) of solutions of the Cauchy-Riemann equation with finite energy, positively asymptotic to γ, negatively asymptotic to γ and in the relative homotopy class [Z]. The R-translation in R × M induces a R-action on M [Z] (J, γ, γ ). Due to severe transversality issues for multiply-covered curves, there is no complete proof that M [Z] (J, γ, γ ) = M [Z] (J, γ, γ ) / R admits a smooth structure. We use Hypothesis H to make this assumption.

Hypothesis H. There exists an abstract perturbation of the Cauchy-Riemann equation such that M [Z] (J, γ, γ ) is a union of branched labelled manifolds with corners and rational weights whose dimensions are given by [Z] and the Conley-Zehnder indices of the asymptotic periodic orbits.

There exists several approaches to the perturbation of moduli spaces due to Fukaya and Ono [START_REF] Fukaya | Arnold conjecture and Gromov-Witten invariants[END_REF], Liu and Tian [START_REF] Liu | Floer homology and Arnold conjecture[END_REF], Hofer, Wysocki and Zehnder [START_REF] Hofer | Polyfolds and a General Fredholm Theory[END_REF][START_REF] Hofer | Applications to Polyfold Theory I : The Polyfolds of Gromov-Witten Theory[END_REF][START_REF] Hofer | Applications of Polyfold Theory II : The Polyfolds of Symplectic Field Theory[END_REF] or Cieliebak and Oancea in the equivariant contact homology setting [START_REF] Bourgeois | Fredholm theory and transversality for the parametrized and for the S 1 -invariant symplectic action[END_REF][START_REF] Cieliebak | Non-equivariant contact homology[END_REF]. There also exist partial transversality results due to Dragnev [START_REF] Dragnev | Fredholm theory and transversality for non compact pseudoholomorphic curves in symplectisations[END_REF].

The differential of a periodic orbit γ is

∂γ = γ n γ,γ κ(γ ) γ
where κ(γ ) is the multiplicity of γ and n γ,γ denote the signed weighted counts of points in 0-dimensional components of M [Z] (J, γ, γ ) for all relative homology classes [Z]. In particular, the differential of an even (resp. odd) periodic orbit contains only odd (resp. even) periodic orbits.

Under Hypothesis H, it is reasonable to expect the following: if there exists an open set U ⊂ R × M containing all the images of J-holomorphic curves positively asymptotic to γ, negatively asymptotic to γ , then U contains the images of all solutions of perturbed Cauchy-Riemann equations with the same asymptotics for all small enough abstract perturbations.

Hypothesis H is the key ingredient to prove the existence and invariance of contact homology. The condition "α adapted to the boundary" implies that a family of holomorphic cylinders stays in a compact subset in the interior of M .

Theorem 3.5 (Colin-Ghiggini-Honda-Hutchings). Under Hypothesis H,

(1) ∂ 2 = 0;

(2) the associated homology HC cyl * (M, ξ, Γ) does not depend on the choice of the contact form, complex structure and abstract perturbation.

If ∂ 2 = 0 for some contact form α, we denote HC cyl * (M, Γ, α, J) the associated homology.

Theorem 3.6 (Golovko [20]). Let ξ be a contact structure on D 2 × S 1 such that the boundary dividing set has 2n longitudinal components and the dividing set of a meridian disc has n components parallel to the boundary. Then the sutured cylindrical contact homology is the Q-vector space generated by n -1 orbits homotopic to { * } × S 1 and by their multiples.

Positivity of intersection.

In dimension 4, two distinct pseudo-holomorphic curves C and C have a finite number of intersection points and that each of these points contributes positively to the algebraic intersection number C •C . This result is known as positivity of intersection and was introduced by Gromov [START_REF] Gromov | Pseudo-holomorphic curves in symplectic manifolds[END_REF] and Mc-Duff [START_REF] Mcduff | Singularities and positivity of intersections of J-holomorphic curves[END_REF]. In this text we will only consider the simplest form of positivity of intersection: let M be a 4-dimensional manifold, C and C be two J-pseudo-holomorphic curves and p ∈ M so that C and C intersect transversely at p. Consider v ∈ T p C and v ∈ T p C two non-zero tangent vectors. Then (v, Jv, v , Jv ) is a direct basis of T p M (J induces a natural orientation on T p M ). In the symplectisation of a contact manifold, positivity of intersection of a pseudo-holomorphic curve with a trivial holomorphic map results in the following lemma. Lemma 3.7. Let (M, ξ) be a contact manifold, α be a contact form and J be an adapted almost complex structure. Consider U an open subset of C, u = (a, f ) : U → R × M a J-pseudo holomorphic curve and p ∈ U such that df p is injective and transverse to R(f (p)).Then, R(f (p)) is positively transverse to df p .

The hypothesis "df p injective and transverse to R(f (p))" is generic. We will use positivity of intersection in the following situation to carry out explicit computations of sutured contact homology in Sections 4 and 5. Let (M, ξ = ker(α)) be a contact manifold with convex boundary and α be a contact form. We assume there exist two sets of Reeb chords of ∂M , denoted by X + and X -, with non-empty interior. Let J be an almost complex structure adapted to α. Lemma 3.8. Let u : (R × S 1 , j) → (R × M, J) be a J-holomorphic cylinder asymptotic to γ + and γ -. Assume that for any Reeb chord c ∈ X ± there exists a path of properly embedded arcs in M \ (γ + ∪ γ -) connecting c and a Reeb chord in int(X ∓ ) with reversed orientation. Then im(u) is disjoint from int(X + ) ∪ int(X -).

Proof. Generically a Reeb chord is transverse to u. Let c + be a Reeb chord in X + transverse to u. There exists c -in X -transverse to u and connected to -c + by a path of properly embedded arcs in M \ (γ + ∪ γ -). By positivity of intersection,

c ± • u ≥ 0. Yet c + • u = -c -• u and c + does not intersect im(u).

Thickened convex surfaces

In this section we study the simplest example of contact manifold with boundary. We compute its sutured contact homology and apply our main theorem. Let S be a convex surface and Γ = n i=0 Γ i be a dividing set of S. Assume Γ has no contractible component. Let M = S × [-1, 1] be the product neighbourhood of S with invariant contact structure. This contact structure is tight [START_REF] Giroux | Structures de contact sur les variétés fibrées en cercles au-dessus d'une surface[END_REF]Théoreme 4.5a]. Let γ 0 be an attachment arc. The multi-curve Γ × {±1} is a dividing set of the boundary. Giroux [START_REF] Giroux | Convexité en topologie de contact[END_REF]Proposition 2.1] proved that there exists a contact form α 0 such that (C7) for all n = 1, . . . , n, there exists a neighbourhood U i of Γ i with coordinates

(x, y, z) ∈ [-x max , x max ] × [-1, 1] × S 1 such that • S ∩ U i [-x max , x max ] × {0} × S 1 ; • Γ i {0} × {0} × S 1 ; • α 0 = f (x)dy+cos(x)dz where f : [-x max , x max ] → R is non-decreasing, f = ±1 near ±x max and f = sin near 0; (C8) α 0 = β ± ± dy on S ± × [-1, 1] \ U where ±dβ ± > 0 and U = n i=0 U i .
The Reeb periodic orbits are exactly the curves Γ i × {t} for all t ∈ [-1, 1] and i = 0, . . . , n (see Figure 6). The contact form is degenerate and is not adapted to x y x y Figure 6. The vector fields R α0 and R αp projected on the (x, y)-plane the boundary. In U i , near x = 0, we perturb α 0 into

α p = sin(x)dy + (1 + k(x)l(y)) cos(x)dz where (C9) k is a cut-off function such that k = 1 near 0 and k = 0 near ±x max ; (C10) l is a C ∞ -
small strictly convex function with minimum 0 at 0.

The associated Reeb vector field is

R αp = 1 p(x, y)   l (y)k(x) cos(x) p(x, y) sin(x) -k (x)l(y) cos(x) cos(x)   .
Proposition 4.1. The contact form α p is non-degenerate, adapted to the boundary. Its Reeb periodic orbits are the curves Γ i × {0} for i = 0, . . . , n. These orbits are even and hyperbolic.

Proof. In M \ U , the Reeb vector field is R = ± ∂ ∂y . Thus the Reeb periodic orbits are contained in U . In addition, if l is small enough, they are contained in the neighbourhood where k = 1. In this neighbourhood, the projection of the Reeb vector field in the plane (x, y) is collinear to the Hamiltonian vector field of (x, y) → l(y) cos(x). There are no closed levels so the Reeb periodic orbits correspond to critical points of the Hamiltonian (see Figure 6). By linearising the Reeb flow ϕ t along Γ i × {0} we get tr dϕ t (0, 0, 0

) |ξ = 2 cosh tl (0) > 2.
Thus the Reeb periodic orbits are even and hyperbolic.

Proof of Proposition 2.3. Proposition 2.3 is a corollary of Proposition 4.1. Indeed ∂ = 0 in C cyl * (M, Γ × {±1}, α p ) as all the orbits are even.

We now apply our main theorem to M . By Proposition 2.2 and [16, Proposition 2.1] there exists an isotopic the contact structure with a contact form satisfying conditions (C1) and (C2) and coordinates in a neighbourhood of Γ, compatible with the coordinates in Z and satisfying conditions (C7) and (C8). We perturb the contact form into

α b = f (x)dy + (1 + k(x)l(y)m(z)) cos(x)dz
where k and l satisfy conditions (C9) and (C10) and

(C11) m is a smooth cut-off function, m = 0 on [-z max , z max ] and m = 1 outside a small neighbourhood of [-z max , z max ]. Let p(x, y, z) = 1 + k(x)l(y)m(z). The Reeb vector field is R α b = 1 p -k (x)l(y)m(z) cos(x) sin(x)   l (y)k(x)m(z) cos(x) p sin(x) -k (x)l(y)m(z) cos(x) cos(x)   .
Proposition 4.2. The contact form α b is non-degenerate, adapted to the boundary. Its Reeb periodic orbits are the curves Γ i × {0} for i = 0, . . . , n. These orbits are even and hyperbolic.

Proof. As in the proof of Proposition 4.1, for l small enough, the Reeb periodic orbits are contained in the neighbourhood where k = 1. In this neighbourhood, any Reeb orbit intersecting the set xy ≤ 0 meets the boundary or is equal to Γ i ×{0} (see Figure 6). In addition, any Reeb orbit intersecting the set xy ≥ 0 meets the set xy ≤ 0. Thus the Reeb periodic orbits are the curves Γ i × {0}. By linearising the Reeb flow ϕ t along Γ i × {0}, we get tr dϕ t (0, 0, 0) |ξ > tr dϕ 0 (0, 0, 0) |ξ = 2.

We denote by Γ 0 the connected component of Γ which intersects the interior of γ 0 . If γ 0 intersects three distinct components of Γ, then γ 0 intersect U 0 along [-x max , x max ] × {1} × {0}. If γ 0 intersects only two distinct components of Γ, there exists z 1 ∈ S 1 such that γ 0 intersects U 0 along [-x max , x max ] × {1} × {0} and [0, x max ] × {1} × {z 1 } (reverse the orientation of S if necessary). If c is a Reeb chord of γ 0 , we denote by c the union of c and the arc of γ 0 joining c + and c -. Recall that c + and c -are the endpoints of c. Proposition 4.3. The contact form α b satisfies condition (C3) for all K > 0. In addition (see Figure 7),

• if γ 0 intersects three distinct components of Γ, the set of Reeb chords of γ 0 is {c k , k ∈ N * } and [c k ] = [Γ 0 ] k ; • if γ 0 corresponds to a trivial bypass attachment, the set of Reeb chords of γ 0 is {c k , d k , k ∈ N * } where [c k ] = [d k ] = [Γ 0 ] k and the z-coordinates of c + k and d + k are respectively 0 and z 1 ; • if γ 0 corresponds to an overtwisted bypass attachment, the set of Reeb chords of γ 0 is {d 0 , c k , d k , k ∈ N * } where c k and d k are as above for k ∈ N * , d 0 is contractible and the z-coordinate of d + 0 is z 1 .

In a trivialisation that does not intersect small translations of the Reeb chord along

∂ ∂y , we have μ(c k ) = 1 and μ(d k ) = 0.
Corollary 4.4. We assume that γ 0 intersects three distinct components of Γ. Let L > 0. There exists a contact manifold (M , α ) obtained from (M, α b )after a bypass attachment along γ 0 such that for all l < L the set of Reeb periodic orbits homotopic to 7). There exists s max < x max such that dom(δ) = (-s max , 0). In addition lim s→-smax z S (s) = +∞ and lim s→0 z S (s) = z 0 .

[Γ 0 ] l is κ = (k 1 , . . . , k m ) ∈ (N * ) l , l = k 1 + • • • + k m / {cyclic permutation}. In addition, µ(γ κ ) = m if γ κ is the orbit associated to κ = (k 1 , . . . , k m ). x x d 0 c 1 d 1 c 2 c 2 d 1 c 1 d 2 c 2 z z trivial bypass overtwisted bypass 2π 2π z 1 x c 1 c 2 z 2π z 1 z 0 image of γ 0 on S Z
= 1. Let z 0 = sup{z, m([0, z]) = 0}. We lift the S 1 -coordinate in U 0 to R and denote by δ = (x S , z S ) the image of γ 0 on [-x max , x max ] × {1} × R (see Figure
Let (x z1 , y z1 ) denote the image of γ 0 by the Reeb flow in the plane z = z 1 . For all z ≥ z 0 and for all small enough η > 0, d dz x z (s+η)-x z (s) and d dz y z (s+η)-y z (s) are non-negative. It holds that (1)

x z (s) ≥ 1 y z (s) ≥ 1 cos 2 (x 0 ) z 0
(renormalise R α b and use condition (C10)). Thus, if (s 0 , 1, 0) and (x, 1, z) are the endpoints of the lift of a Reeb chord, we have

z S (s 0 ) = - 1 tan(x z (s 0 )) y z (s 0 ) < 0
and δ intersects the segments [-x max , x max ] × {1} × {2kπ} exactly for k ∈ N * . In addition, there is only one intersection point. This point is the endpoint of a Reeb chord. If the bypass is trivial or overtwisted, let z 1 denote to the smallest positive lift of

z 1 ∈ S 1 . Then δ also intersects [0, x max ] × {1} × {2kπ + z 1 } if and only if k ∈ N *
and there is exactly one intersection point. This concludes the description of the Reeb chords when γ 0 intersects three distinct components of Γ. We now compute μ(a) for some Reeb chord a. In the coordinates (R, e 1 , e 2 ) given by the symplectic trivialisation of ξ along a, let v denote the projection of ∂ ∂y on (e 1 , e 2 ). Then v = e 1 and v is positively collinear to e 2 at t = 0. Let R t denote the symplectic matrix induced by the differential of the Reeb flow on ξ a(t) . The vector dR t • e 1 does not cross R + v as x z (s) ≥ 1. Write dR t • e 1 = r(t)e iθ (t) . If a = c k , then v is positively collinear to -e 2 at t = T (a). The tangent vector to the image of γ 0 on ξ a + at the endpoint of a is

  x z0 (s 0 ) y z0 (s 0 ) cos 2 (x 0 ) -y z0 (s 0 ) cos(x 0 ) sin(x 0 )  
where the endpoints of a are (s 0 , 1, 0) and (x 0 , 1, z 0 ). Using (1), we get

θ(T (a)) ∈ (π, 3π 2 ) + 2πZ. Thus θ(T (c k )) ∈ [π, 2π] and μ(c k ) = 1. If a = d k , then v is positively collinear to e 2 at t = T (a)
. In addition, it holds that

θ(T (a)) ∈ (0, π 2 ) + 2πZ. Thus, we obtain θ(T (c k )) ∈ [0, π] and μ(d k ) = 0.

Proof of Corollary 4.4.

There exists ν > 0 such that for any small perturbation of α, the Reeb chords of [-ν, ν]×{1}×I max are arbitrarily close to {0}×{1}×I max . We apply Theorem 2.1 and Proposition 2.7 for λ = ν and K such that

i 1 + • • • + i k ≤ L implies Σ k j=1 T (c ij ) < K.
The set of Reeb periodic orbits homotopic to [Γ 0 ] l in Corollary 4.4 corresponds to Reeb periodic orbits with period smaller that K described in Theorem 2.1. It remains to prove that there are no other Reeb periodic orbits homotopic to

[Γ 0 ] l . If γ is such a Reeb periodic orbit then γ is associated to a periodic point of ϕ • ψ (Proposition 2.7). We decompose ψ into (Ψ k ) k∈N * so that, if a is a Reeb chord that contributes to Ψ k , then [a] = [Γ 0 ] k . For k ≤ L, we have Ψ k = ψ k (see Proposition 2.7). Therefore γ corresponds to a fixed point of ϕ • Ψ i k • • • • • ϕ • Ψ i1 and i 1 + • • • + i k = l and we obtain T (γ) < K.

Applications to sutured contact homology

In this section we apply Theorem 2.1 and Proposition 2.7 to prove Theorem 2.4 and Theorem 2.5. To compute the contact homology of a convex surface after a bypass attachment and of some contact structures on solid tori, we construct suitable contact structures on the associated manifolds. On a thickened convex surface (Theorem 2.4) we start from the contact form described in Section 4. Theorem 2.5 gives the contact homology of a contact structure ξ on D 2 × S 1 such that (C4) the boundary dividing set Γ has 2n longitudinal components; (C5) for a convex meridian disc dividing set (D, Γ = n i=0 Γ i ) there exists a partition of ∂D in two sub-intervals I 1 and I 2 such that -∂I 1 is contained in two bigons (called extremal bigons);

-if I = {i, ∂Γ i ⊂ I 1 or ∂Γ i ⊂ I 2 } then D \ i / ∈I Γ i contains at most one component of Γ.
All these contact structures are obtained from the contact structure (D 2 × S 1 , ξ ) with parallel dividing set on convex meridian discs after a finite number of bypass attachments. In Section 5.1 we compute the sutured contact homology of (D 2 ×S 1 , ξ ) and apply Theorem 2.1 and Proposition 2.7 to obtain the Reeb periodic orbits after a finite number of bypass attachments. To compute the contact homology (and prove Theorem 2.5), it remains to control the differential. By Corollary 4.4, a bypass attachment creates many homotopic periodic orbits. This complicates the direct study of the differential. We get round this difficulty in Section 5.2 by proving that all the holomorphic cylinders are contained in a standard neighbourhood. We deduce the differential in this neighbourhood by use of computations of contact homology in simple situations on a solid torus.

Contact forms on solid tori. For

n ∈ N * and 0 < η < π 4 , let D n,η = {(x, y), x ∈ [-π + η -h(y), nπ -η + h(y)] , y ∈ [-1, 1]}
where h : [-1, 1] → R is a strictly concave function with maximum h(0) < η, vertical and zero at ±1 (see Figure 8). On M n,η = D n,η × S 1 , we consider the contact form α = f (x)dy + cos(x)dz + g(x, y)dx where • f is 2π-periodic, f = (-1) k+1 in a neighbourhood of kπ + π 4 , kπ + 3π 4 and f = sin near kπ, k = -1, . . . , n;

• g does not depend on y for y ≥ 1 2 ; • g = 0 for y ≤ 0 and outside a neighbourhood of x = -3π 4 where f = -1; • the leaves of the characteristic foliation of ∂M n,η are closed. Then (M n,η, , ker(α)) satisfies property (C4) and a dividing set Γ of the boundary is given by the curves

x = -π + η -h(0), x = kπ + π 2 , k = 0, . . . , n -1 and x = nπ -η + h(0). Let D be a disc in M n,η transverse to ∂ ∂z with Legendrian boundary. As ∂ ∂z is a contact vector field, D is convex. A dividing set is given by condition ∂ ∂z ∈ ξ and is thus composed of the curves x = kπ + π 2 , k = -1, . . . , n -1. Therefore (M, ker(α)) is diffeomorphic to (D 2 × S 1 , ξ ) (Theorem 3.3).

Proposition 5.1. There exists a contact form α p on M n,η without contractible

Reeb periodic orbits such that (M n,η , ker(α p )) is diffeomorphic to (D 2 × S 1 , ξ ) and the sutured contact homology of (M n,η , α p , Γ ) is the Q-vector space generated by

n + = n-1 2 curves homotopic to { * } × S 1 , n -= n -1 -n + curves homotopic to { * } × (-S 1
) and by their multiples.

Proof. As in Section 4, we perturb α into

α p = sin(x)dy + (1 + k(x)l(y)) cos(x)dz
in a neighbourhood of x = kπ, k = 0, . . . n -1 such that x → k(x -kπ) satisfies condition (C9) and l satisfies condition (C10). By Proposition 4.1, the contact form α p is non-degenerate, adapted to the boundary. Its Reeb periodic orbits are the curves {kπ} × {0} S 1 for k = 0, . . . , n -1. These orbits are even and hyperbolic. Therefore ∂ = 0.

Let ξ be a contact structure on M = D 2 ×S 1 satisfying conditions (C4) and (C5) for some n 0 ∈ N * . There exist n, m > 0, a family of integers {k j } and {ε j } ∈ {-1, 1} for j = 1, . . . , m such that

• 1 ≤ k j ≤ n -2 and k j+1 -k j ≥ 3; • (M, ξ) is diffeomorphic to the contact manifold obtained from (M n,η , ker(α))
after bypass attachments along the arcs

γ j = [(k j -1)π, (k j + 1)π] × {-ε j } × 2πk j n
for j = 1, . . . , m (see Figure 8).

γ 1 γ 2 k 1 π k 2 π Figure 8. Attaching arcs γ j Let δ k = {kπ} × {0} × S 1 .
We describe a contact structure on M n,η adapted to the bypass attachments along the curves γ j .

Proposition 5.2. Let L > 0 and 0 < x max 1. There exists an arbitrarily small perturbation α b of α in M n,η such that • γ j satisfies conditions (C1) and (C3) for all K > 0 and for all j = 1, . . . , m;

• α b is adapted to S \ S Zj ; • α b = α outside U k = [-x max + kπ, x max + kπ] × [-1, 1] × S 1 for k = 0, . . . , n -1;
• the Reeb periodic orbits are the curves δ k for k = 0, . . . , n -1, these orbits are even and hyperbolic;

• the set of Reeb chords of γ j is {c l,j , l ∈ N * } and [c l,j ] = { * } × S 1 (-1) k j l .
Proof of Proposition 5.2. In U k , consider the contact form

α b = f (x)dy + (1 + k(x)l(y)m(z)) cos(x)dz
such that x → k(x -kπ) satisfies condition (C9), l satisfies condition (C10) and m = 0 in Z = Z j and m = 1 outside a neighbourhood of Z. By Propositions 4.2 and 4.3, we obtain the desired conditions.

Let σ + = {k j , k j even} and σ -= {k j , k j odd}. As in Corollary 4.4 we apply Theorem 2.1 and Proposition 2.7 to deduce the Reeb periodic orbits after the bypass attachments along the curves (γ j ) j=1,...,m . Proposition 5.3. Fix L > 0. Let (M , α ) be the contact manifold obtained from (M n,η , α b ) after bypass attachments along the arcs (γ j ) j=1,...,m for K large enough.

• For all 1 ≤ l ≤ L, the Reeb periodic orbits homotopic to S 1 l are the curves δ l 2k for 1 ≤ 2k ≤ n -1 and the periodic orbits γ a associated to

a = c i1,j . . . c i k ,j with i 1 + • • • + i k = l and k j ∈ σ + .
• For all -L ≤ l ≤ -1, the Reeb periodic orbits homotopic to S 1 l are the curves δ l 2k+1 for 1 ≤ 2k + 1 ≤ n -1 and the periodic orbits γ a associated to a = c i1,j . . . c i k ,j with i

1 + • • • + i k = -l and k j ∈ σ -.
We denote by B j the bypass attached to the attaching arc γ j . 5.2. Holomorphic cylinders. It remains to control the holomorphic cylinders in the symplectisation of the contact manifold (M , α ) given in Proposition 5.3. Let E l j be the Q-vector space generated by the periodic orbit δ kj and by the periodic orbits obtained after the bypass attachment along γ j homotopic to S 1 l . Let E l + and E l -be the Q-vector spaces generated by the periodic orbits δ l 2k for 2k / ∈ σ + and δ l 2k+1 for 2k + 1 / ∈ σ -. The complex of contact homology is written

C [S 1 ] l * (M , α ) = kj ∈σ+ E l j ⊕ E l + if l > 0, C [S 1 ] l * (M , α ) = kj ∈σ- E l j ⊕ E l -if l < 0. Let I j b = k j π -7π 4 , k j π + 7π 4 . Consider I j max such that S Zj = [-x max + k j π, x max + k j π] × {1} × I j max .
Lemma 5.4. For any adapted almost complex structure on the symplectisation of (M , α )

• ∂ |E l ± = 0;
• for all j = 1, . . . , m, we have ∂(E l j ) ⊂ E l j and any holomorphic cylinder with finite energy and asymptotics in E j is contained in U j ∪ B j (see Figure 9) where

U j = U kj -1 ∪ U kj ∪ U kj +1 ∪ I j b × [-1, 1] × I j max . U 3 U 4 U 5 U 0 U 1 U 2 U 1 U 2 Figure 9. Neighbourhoods U j Proof. Let U = j=1...n U kj ∪ j∈σ± I j b × [-1, 1] × I j max ∪ B j , W = [-π + η, nπ -η] × [-1, 1] × S 1 \ U.
The connected components of U are the sets U l for l ∈ σ ± ∪ (σ ± -1) ∪ (σ ± + 1) and U j for j = 1, . . . , m. In W, all Reeb orbits are Reeb chords joining the planes y = 1 and y = -1. Let γ be a Reeb periodic orbit (see Proposition 5.3). If γ = δ l j let U γ = U j . If γ is derived from the bypass attachment along γ j , let

U γ = U j ∪ I j b × {-ε j } × I j max ∪ B j .
In both cases γ ⊂ U γ . Let γ + and γ -be two homotopic Reeb periodic orbits and X = W \ U γ+ ∪ U γ-. As γ + and γ -are homotopic and k j+1 -k j ≥ 3, for any Reeb chord c in X there exists a path of properly embedded arcs in X connecting c and a Reeb chord in int(X) with reversed orientation. Thus, by positivity of intersection (Proposition 3.8), all holomorphic cylinders are contained in U.

Let (M, ξ 0 = ker(α)) be the contact structure obtained from (M 4,η , α b ) after a bypass attachment along γ 1 = [0, 2π] × {1} × {π} (Theorem 2.1). Let Γ an adapted dividing set of the boundary. The dividing set of a convex meridian disc contains exactly three connected components which are parallel to the boundary (Proposition 3.4). By Golovko's result (Theorem 3.6), the contact homology of (M, α, Γ) is generated by two periodic orbits homotopic to S 1 and by their multiples. We now compare this result with our construction and obtain useful properties of ∂ E l 1 . There are two periodic orbits of R α homotopic to S 1 (Proposition 5.3). If l > 0, we have C

[S 1 ] l * (M , α ) = E l + and ∂ E l + = 0 (Lemma 5.4). If l < 0, we have C [S 1 ] l * (M , α ) = E l 1 . Thus ker(∂ E l 1 )/im(∂ E l 1 ) = 0. Let U denote the set U 1 given by Lemma 5.4.
Proof of Theorem 2.5. Let ξ be a contact structure on M = D 2 × S 1 satisfying conditions (C4) and (C5). We choose the contact form given by Proposition 5.2.

The neighbourhoods U j described in Lemma 5.4 are contactomorphic to U. Thus ker

(∂ E l j )/im(∂ E l j ) = 0. Therefore HC [S 1 ] ±l (M, ξ 0 , Γ) = E l ± for l > 0. As dim(E l ± ) + #{σ ± } + #{± extremal bigon} = χ(S ± ) + #{σ ∓ }, we obtain the desired dimension.
We now turn to the case of a thickened convex surface. Let S be a convex surface and Γ = n i=0 Γ i be a dividing set of S without contractible components. Let γ 0 be an attachment arc in S intersecting three distinct components of Γ. Let M = S×[-1, 1] be the product neighbourhood of S and ξ be the associated invariant contact structure. Choose a contact form α b of ξ given in Section 4. We denote by (M , ξ ) the contact manifold obtained from (M, ξ) after a bypass attachment along γ 0 × {1} and by Γ a dividing set of ∂M . Fix K > 0 and apply Theorem 2.1 to obtain a contact form α of ξ . Let B denote the attached bypass. The proof of the following lemma is similar to the proof of Lemma 5.4. Lemma 5.5. For any adapted almost complex structure, the J-holomorphic curves in the symplectisation of (M , α ) are contained in (see Figure 10)

U = n i=0 U i ∪ (I b × [-1, 1] × I max ) ∪ B.
In addition, U is contactomorphic to U.

γ 0 Γ 0 Γ 2 Γ 1 U Figure 10
. The neighbourhood U projected on S Proof of Theorem 2.4. Theorem 2.4 is a corollary of Lemma 5.5. The proof is similar to the proof of Theorem 2.5.

Sketch of proof of the bypass attachment theorem

We now sketch the proof of our main theorem (Theorem 2.1). A complete proof is given in Section 7. Fix K > 0. Let (M, ξ = ker(α)) be a contact manifold with convex boundary (S, Γ) and γ 0 be an attaching arc satisfying condition (C1), (C2) and (C3). To describe the Reeb periodic orbits after a bypass attachment, we study the maps ϕ B and ψ M induced on S Z by the Reeb flow in the bypass and in M . Their domains and ranges consist of rectangles and these maps contract or expand the associated fibres. The maximal invariant set of the composite function is hyperbolic and this function is similar to a "generalised horseshoe" (see [START_REF] Katok | Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of mathematics and its applications[END_REF][START_REF] Moser | Stable and random motions in dynamical systems[END_REF]). The Reeb periodic orbits correspond to the periodic points and are given by the symbolic dynamics.

In Section 6.1 we present our notations. We describe the Reeb dynamics in M in Section 6.2 and in the bypass in Section 6.3. In Section 6.4, we prove that these dynamic properties indeed give the symbolic description of Reeb periodic orbits. Finally, in Section 6.5, we sketch the construction of a hyperbolic bypass: a bypass with Reeb dynamics described in Section 6.3. 6.1. Notations. We say that a (partial) function ϕ : X → Y is decomposed into (ϕ i ) i∈I if dom(ϕ i ) is a union of connected components of dom(ϕ), (dom(ϕ i )) i∈I is a partition of dom(ϕ) and ϕ i = ϕ |dom(ϕi) .

In coordinates (x, y, z), let S y0 denote the plane y = y 0 , X ≤y0 = X∩{(x, y, z), y ≤ y 0 }, X ≥y0 = X ∩ {(x, y, z), y ≥ y 0 } and X [y0,y1] = X ≤y1 ∩ X ≥y0 . For all 0 < λ < π 8 , we consider the following subsets of S Z (see Figure 11)

R λ = 4 k=-1 kπ 2 + λ, (k + 1)π 2 -λ × I max , Q λ = 2 k=0 kπ - λ 2 , kπ + λ 2 × I max , X = 0, π 4 × [-z max , 0)) ∪ π 4 , 3π 4 
× I max ∪ 3π 4 , π × (0, z max , Y = π, 5π 4 × [-z max , 0)) ∪ 5π 4 , 7π 4 
× I max ∪ 7π 4 , 2π × (0, z max .
For positive z prod and y std , let

I prod = [-z prod , z prod ], S R = π 2 , π × {y std } × I prod -π 2 π 2 π z x R λ R λ R λ λ Q λ Q λ 2π Y X z x π R λ 2π R λ Q λ R λ Figure 11. The subsets R λ , Q λ , X and Y and S ε,k = kπ 2 -ε, kπ 2 + ε × I max . A rectangle is a closed set diffeomorphic to [0, 1] × [0, 1]
. This set inherits horizontal and vertical fibres from [0, 1] × [0, 1].

In (R 2 , •, • ), let D be a straight line and ν > 0. The ν-cone centred at D is the set

C(D, ν) = w ∈ R 2 , | w, v | < ν| w, u |
where u is tangent to D and (u, v) is an orthonormal basis. We denote by H and V the horizontal and vertical axes. Let U and V be two open sets in R 2 and f :

U → V be a diffeomorphism. The image of a cone field C on U is the cone field f * C on V defined by (f * C) p = df f -1 (p) C f -1 (p) . If C and C are two cones fields on U we write C ⊂ C if C p ⊂ C p for all p ∈ U . If z → γ(z) is a smooth curve in R 2 , let C x,z (γ, ε) = C(γ (z), ε) and C x,z (γ ⊥ , ε) = C(γ (z) ⊥ , ε).

6.2.

Reeb dynamics in M . We now study the Reeb dynamics is the manifold M with boundary. To attach an adapted bypass we will perturb the contact form α.

We want to control the map ψ M induced by the Reeb flow in M for times smaller than K and for the contact form α and perturbations of α. The Reeb chords of S Z that contribute to ψ M for the contact form α are close to the Reeb chords of γ 0 . Nevertheless, as Γ ∩ Z is contained in Reeb orbits, this decomposition is not stable by perturbation and some Reeb chords may appear near the dividing set.

Let λ > 0, the pair (S Z , λ) is said to be K-hyperbolic if ψ M can be decomposed into (ψ j ) j=0,...,N and (see Figure 12):

(1) dom(ψ 0 ) ⊂ Q λ and im(ψ 0 ) ⊂ Q λ ; (2) if x ∈ kπ -λ 2 , kπ + λ 2 and (x, z) ∈ dom(ψ 0 ) then • (ψ 0 ) x (x, z) ∈ kπ -λ 2 , kπ + λ 2 ; • (ψ 0 ) z (x, z) < z if k is odd; • (ψ 0 ) z (x, z) > z if k is even;
(3) for all j ∈ 1, N , dom(ψ j ) and im(ψ j ) are rectangles in R λ with horizontal fibres and the ψ j reverse the fibres.

Note that one can have dom(ψ 0 ) = ∅ or N = 0. Let µ, ν and τ be real positive

-π 2 π 2 π z x R λ R λ R λ Q λ Q λ D 2,j ψ 0 ψ j ψ 0 2π R λ R λ Q λ D 1,j ψ 0 R λ Figure 12.
A K-hyperbolic surface numbers. A K-hyperbolic surface is dominated by ω = (µ, ν, τ ) if for j = 1, . . . , N there exist segments D 1,j ⊂ dom(ψ j ) and D 2,j ⊂ im(ψ j ) with boundary on z = ±z max such that (see Figure 12):

(1) the tangents of the vertical fibres of dom(ψ j ) and im(ψ j ) are respectively in C(D 1,j , ν) and C(D 2,j , ν);

(2) (ψ j ) * C(H, ν) ⊂ C(D 2,j , µ) and ψ -1 j * C(H, ν) ⊂ C(D 1,j , µ); (3) the return time of ψ j is contained in (T (a j ) -τ, T (a j ) + τ ).
Let ε > 0. A K-hyperbolic (ω-dominated) surface (S γ , λ) is ε-stable if for all εperturbation of α preserving γ 0 , (S γ , λ) remains K-hyperbolic (and ω-dominated). Proposition 6.1. Let τ > 0 and µ > 0. There exists a contact form arbitrarily close to α, z max small and some real positive numbers ν, λ and ε such that

• α satisfies conditions (C1), (C2) and (C3); • (S Z , λ) is K-hyperbolic (µ, ν, τ )-dominated and ε-stable.
Proof. After a small perturbation of α, we can assume that the images of γ 0 \ Γ on S Z by the Reeb flow and the opposite of the Reeb flow for times smaller that K are transverse to γ 0 . The intersection points correspond to the endpoints of the Reeb chords a 1 , . . . , a N . For z max small enough, the domain and range of ψ M are contained in a small neighbourhood of the endpoints of the Reeb chords. We choose dom(ψ 0 ) = ∅. Let D 1,j and D 2,j be the tangent to the image of γ 0 \ Γ on S Z at the endpoints of the Reeb chords a 1 , . . . , a N (see Figure 13). We obtain the vertical fibres of dom(ψ M ) and im(ψ M ) as the inverse images and images of the horizontal segments in im(ψ M ) and dom(ψ M ). For small enough perturbations of α, the structure of ψ M is preserved outside Q λ . In Q λ × [-y max , 0], the component |R z | is close to 1 and ψ 0 satisfies the desired conditions. (2) the map ϕ B induced on S Z by the Reeb flow in B can be decomposed into maps ϕ 0 and ϕ 1 such that

• dom(ϕ 0 ) ⊂ Q λ and im(ϕ 0 ) ⊂ Q λ ; • dom(ϕ 1 ) ⊂ X and im(ϕ 1 ) ⊂ Y ; • if x ∈ kπ -λ 2 , kπ + λ 2 and (x, z) ∈ dom(ϕ 0 ) then -(ϕ 0 ) x (x, z) ∈ kπ -λ 2 , kπ + λ 2 ; -(ϕ 0 ) z (x, z) < z if k is odd; -(ϕ 0 ) z (x, z) > z if k is even;
(3) the restriction of ϕ 1 to R λ can be decomposed into (ϕ i,j ) i,j∈{0,1} (see Figure 14) where dom(ϕ i,j ) and im(ϕ i,j ) are rectangle as large as R λ with vertical fibres and the ϕ i,j reverse the fibres.

π R λ R λ R λ R λ x z ϕ 0,1 ϕ 1,0 ϕ 0,0 ϕ 1,1
Figure 14. The rectangles dom(ϕ i,j ) and im(ϕ i,j )

As in the previous section we want to control the return time and obtain some cone-preservation properties. A hyperbolic bypass (B, α B , λ) is dominated by

ω B = (ν, τ, A, η) if (1) (ϕ i,j ) * C(V, A) ⊂ C(H, ν) and ϕ -1 i,j * C(V, A) ⊂ C(H, ν); (2) dϕ i,j (p, v) > 1 η v for all p ∈ dom(ϕ i,j ) and v ∈ C p (V, A); (3) dϕ -1 i,j (p, v) > 1 η v for all p ∈ im(ϕ i,j
) and v ∈ C p (V, A); (4) the return time in R λ is bounded by 8τ . The following theorem is the main ingredient in the proof of Theorem 2.1. Theorem 6.2. Fix K > 0. Let (M, ξ = ker(α)) be a contact manifold with convex boundary (S, Γ) and γ 0 be an attaching arc satisfying conditions (C1), (C2) and (C3). For all real positive numbers ν, τ , A, η, ε and λ and for z max small enough there exists a hyperbolic bypass (V B , α B , λ) obtained from (V, ξ B ) after a bypass attachment along γ 0 , dominated by (ν, τ, A, η) and such that α B is ε-close to α.

If (S Z , λ) is K-hyperbolic, ε-stable and (µ, ν, τ )-dominated, we call the bypass attachment described in Theorem 6.2 a K-hyperbolic bypass attachment.

6.4.

Reeb periodic orbits after a bypass attachment. Before turning to the proof of Theorem 6.2, we prove that Theorem 6.2 and Proposition 6.1 imply Theorem 2.1 and Proposition 2.7. We prove this result in two steps:

(1) we obtain a symbolic representation of the Reeb flow in restriction to R λ ;

(2) we prove that all new Reeb periodic orbits intersect R λ . Fix K > 0. Let (M, ξ = ker(α)) be a contact manifold with convex boundary (S, Γ) and γ 0 be an attaching arc satisfying conditions (C1), (C2) and (C3). We assume K = l(a) for all words a on the letters a 1 , . . . , a N . Thus, there exists ε K such that |K -l(a)| > ε K for all words a. Let l 0 be such that l(a i ) > l 0 for all i = 1, . . . , N . There exists ε 0 such that these estimations remain satisfied for all 2ε 0perturbations of α. Without loss of generality l 0 < 1 and ε K K < 1. Let τ < l0 18K ε K . We apply Proposition 6.1 to obtain a K-hyperbolic surface, (µ, ν, τ )-dominated and ε-stable. Without loss of generality ε < ε 0 , ν ≤ µ and

C(D i,j , µ) ∩ C(H, µ) = {0} for i = 1, 2 and j = 1, . . . , N . Choose A > 0 such that C(D i,j , µ) ⊂ C(V, A) and C(V, A) ∩ C(H, µ) = {0} for i = 1
, 2 and j = 1, . . . , N and for all contact forms ε-close to α. Choose M > 0 such that dψ j < M and dψ -1 j < M for j = 1, . . . , N and for all ε-perturbations of α. Let η < 1 3M . Apply Theorem 6.2, to obtain a hyperbolic bypass (M B , α B , λ) dominated by (ν, τ, A, η) and such that α B is ε-close to α.

To obtain a symbolic representation of the new Reeb periodic orbits, we apply a fixed point theorem in hyperbolic situations. The following proposition derives from [36, Theorem 3.2]. Proposition 6.3. Let R and R be two rectangles in [0, 1] × [0, 1] such that the vertical boundaries of R are contained in {0, 1}×[0, 1] and the horizontal boundaries of R are contained in [0, 1] × {0, 1}. Let F : R → R be a diffeomorphism such that, for some A > 0, ν > 0 and a > 2

• F * C(V, A) ⊂ C(V, A) and F -1 * C(H, ν) ⊂ C(H, ν); • dF -1 (p, v) ≥ a v for all p ∈ R and v ∈ C p (H, ν); • dF (p, v) ≥ a v for all p ∈ R and v ∈ C p (V, A).
Then F has a unique fixed point. Proof. By induction on k, the map F a can be decomposed into F a 0 and F a 1 such that (see Figure 15) :

Proposition 6.4. Let a = a i1 . . . a i k and F a = ψ i k • ϕ B . . . ψ i1 • ϕ B in restriction to R λ . The map
• im(F a i ) are rectangles as high as R λ with horizontal fibres; • dom(F a i ) are rectangles with vertical fibres contained in two different components of R λ and as large as the associated component;

• F a * C(V, A) ⊂ C(D 2,i k , µ) and F -1 a * C(H, ν) ⊂ C(H, ν); • dF -1 a (p, v) ≥ 1 (ηM ) k v for all p ∈ im(F a ) and v ∈ C p (H, ν); • dF a (p, v) ≥ 1 (ηM ) k v for all p ∈ dom(F a ) and v ∈ C p (V, A). π x z F a 0 F a 1 im(ψ ai k ) dom(ϕ B |R λ )
Figure 15. The maps F a 0 and F a 1

To obtain a unique fixed point, we apply Proposition 6.3 to the component of F a such that dom(F a i ) ∩ im(F a i ) = ∅. The estimates on the period of the associated Reeb periodic orbit derives from the estimates on the return time.

We now turn to the second step of the proof. Proposition 6.5. Let γ be a Reeb periodic orbit intersecting S Z in p γ and such that T (γ) < K. Then p γ / ∈ Q λ .

Proof. We control the Reeb orbits intersecting Q λ and prove that they are not periodic. Let X k = kπ -λ 2 , kπ + λ 2 and p 0 = q 0 ∈ im(ψ 0 ). As long as these expressions are well-defined, let p 2l+1 = ψ M -1 (p 2l ), p 2l+2 = ϕ B -1 (p 2l+1 ), q 2l+1 = ϕ B (p 2l ) and q 2l+2 = ψ M (q 2l+1 ). Write p l = (x l , y l ) and q l = (x l , y l ). There exists k such that x 0 ∈ X k . The following implications hold.

• If k is odd and z 0 ≥ 0, then x l ∈ X k and z 2l < z 2l+1 < z 2l+2 .

• If k is even and z 0 ≤ 0, then x l ∈ X k and z 2l > z 2l+1 > z 2l+2 .

• If k is even and z 0 ≥ 0, then x l ∈ X k and z 2l < z 2l+1 < z 2l+2 .

• If k is odd and z 0 ≤ 0, then x l ∈ X k and z 2l > z 2l+1 > z 2l+2 . We give a detailed proof in the case k odd and z 0 ≥ 0. The proof of the other cases is similar. We prove the result by induction. If x 2l ∈ X k , z 2l ≥ 0 and p 2l+1 is well-defined then p 2l = ψ M (p 2l+1 ) and p 2l ∈ j im(ψ i ). As p 2l ∈ Q λ , we have p 2l ∈ im(ψ 0 ). Therefore, p 2l = ψ 0 (p 2l+1 ) and p 2l+1 ∈ dom(ψ 0 ). Thus, we obtain x 2l+1 ∈ X k and z 2l+1 > z 2l . If x 2l+1 ∈ X k , z 2l+1 ≥ 0 and p 2l+2 is well-defined, then p 2l+1 = ϕ B (p 2l+2 ) and p 2l+1 ∈ Y ∪ im(ϕ 0 ). As k is odd, we obtain z 2l+1 ≥ 0 and p 2l+1 ∈ Q λ and therefore p 2l+1 ∈ im(ϕ 0 ). Thus, we have p 2l+1 = ϕ 0 (p 2l+2 ) and p 2l+2 ∈ dom(ϕ 0 ). Consequently, x 2l+2 ∈ X k and z 2l+2 > z 2l+1 .

Let γ be a Reeb periodic orbits intersecting S Z in p γ ∈ Q λ and such that T (γ) < K. If p γ ∈ S -, then ϕ B (p γ ) ∈ S + ∩ Q λ . Thus, without loss of generality, we can assume p γ ∈ S + . Therefore p γ ∈ dom(ϕ B ) ∩ im(ψ 0 ) and x γ ∈ X k . If k is odd and z γ ≥ 0, then p l is well defined for all l ∈ N, z l in increasing and γ is not periodic. This leads to a contradiction. The proof of the other cases is similar.

Proof of Theorem 2.1. Let a = a i1 . . . a i k be a word such that l(a) < K. By definition of l 0 , we have k

≤ K l0 . Thus T (γ a ) ∈ l(a) -ε K 2 , l(a) + ε K 2
and T (γ a ) < K (Proposition 6.4).

Conversely, let γ be a Reeb periodic orbit intersecting S Z and such that T (γ) < K. Let p 1 , . . . , p k denote its successive intersection points with S + and q 1 , . . . , q k its successive intersection points with S -. By Proposition 6.5, for all j = 1 . . . k there exists i j such that q j ∈ dom(ψ ij ) and p j+1 = ψ ij (q j ). Let a = a i1 . . . a i k . Then p 0 is the fixed point of F a . Then l(a) < K + 9kτ (Proposition 6.4). Thus k ≤ K+9kτ l0 and k ≤ 2K l0 . Therefore l(a) < K + ε K and l(a) < K. Proof of Proposition 2.7. There exists ε such that for any ε-perturbation of α, the map ψ M can be decomposed into ψ 0 and ψ 1 such that ψ 0 has properties similar to those described in the definition of K-hyperbolic surface, dom(ψ 1 ) ⊂ R λ0 and im(ψ 1 ) ⊂ R λ0 . Apply Theorem 6.2 for λ = λ 0 and any ν, τ , A and η. As in Proposition 6.5, if γ is a Reeb periodic orbits intersecting S Z in p γ , then p γ / ∈ Q λ . Thus any Reeb periodic orbit intersects S -at a periodic point of ϕ B • ψ. 6.5. Hyperbolic bypasses. We now give an overview of the proof of Theorem 6.2. It is the main and last step in the proofs of Theorem 2.1 and Proposition 2.7. The complete proof is technical and is the subject of Section 7.

Honda's construction (see Sections 3.2 and 7.1) provides us with a bypass attachment (M , α ) along the attaching arc γ 0 but α is not adapted to the boundary. This attachment, if properly performed, does not create any Reeb periodic orbit. Indeed, near S Z , the Reeb vector field is tangent to the planes x = cst and its slope is tan(x). Thus, all Reeb orbits intersecting S Z outside a neighbourhood of x = π 2 or x = 3π 2 go out of the bypass (see Figure 16). Therefore the domain and . By definition of a K-hyperbolic surface, there is no new Reeb periodic orbit.

To obtain a contact form adapted to the boundary, we use the convexification process described in [START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF]. It consists in gluing a small "bump" with prescribed contact form along the non-adapted part of the dividing set (see Figure 17 vertical curve is stretched into the convexification bump, then transported (and slightly stretched) in the upper part of the bypass. After a last visit to the convexification area, the curve becomes nearly horizontal. The effect on the level of rectangles is shown on Figure 20. We now translate these intuitive pictures into more explicit conditions on the Reeb flow in the bypass. Section 7 is devoted to the construction of a bypass satisfying these conditions. Let (M, ξ = ker(α)) be a contact manifold with convex boundary (S, Γ) and γ 0 be an attaching arc satisfying conditions (C1), (C2) and (C3). We divide the bypass into two regions, the region y ≤ y std where the contact form is standard and the convexification bump is added and the region y ≥ y std where the contact structure corresponds to a thickened half overtwisted disc. We use the notations from Section 7.1. Fix real positive numbers K, ν, τ , A, η, ε 2 -λ] (see Figure 20); • im(ϕ i ) are rectangles in an ε R -neighbourhood of δ i with horizontal fibres and basis I prod (see Figure 20); • ϕ i preserves the fibres (see Figure 19);

z z x x π R λ S Z y = y std δ 0 δ 1 δ 1 δ 0 S R ϕ 0 ϕ 1 ϕ 0 ϕ 1
• (ϕ i ) * C(V, A) ⊂ C(δ i , ε R ) and ϕ -1 i * C(δ ⊥ i , A R ) ⊂ C(H, ν); • dϕ -1 i (p, v) > 1 √ η v for all p ∈ im(ϕ i ) and v ∈ C p (δ ⊥ i , A R ); • dϕ i (p, v) > 1
√ η v for all p ∈ dom(ϕ i ) and v ∈ C p (V, A); -the return time is bounded by 4τ . (B2) The map induced between S R and S Z for positive times can be decomposed into ϕ 0 and ϕ 1 and there exist two graphs δ 0 and δ 1 satisfying similar properties.

(B3) C(δ i , ε R ) ⊂ C(δ j ⊥ , A R ), C(δ i , ε R ) ⊂ C(δ ⊥ j , A R ) and δ and δ intersect trans- versely in one point if d C 1 (δ, δ i ) < ε R and d C 1 (δ , δ j ) < ε R .
Reeb dynamics in B ≥y std .

(B4) The domain of the map induced by the Reeb flow on S y std is contained in

π 2 -λ 2 , π 2 + λ 2 × I prod and its range in 3π 2 -λ 2 , 3π 2 + λ 2 × I prod . Reeb dynamics in B [0,y std ] .
(B5) There is no return map on S y std . (B6) The return map on S Z can be decomposed into θ 0 , θ 1 and θ 2 such that

• dom(θ k ) ⊂ S λ 2 ,2k and im(θ k ) ⊂ S λ 2 ,2k ; • (θ k ) z (x, z) < z if k is odd; • (θ k ) z (x, z) > z if k is even.
The Reeb chords which contribute to θ k do not intersect a neighbourhood of S y std . (B7) The map induced between S Z and S y std for positive times can be decomposed into two maps with domains in X and X + 2π and ranges in S λ Proof. The map ϕ B can be decomposed into ϕ 0 and ϕ 1 where the Reeb chords which contribute to ϕ 0 do not intersect S y std and the Reeb chords which contribute to ϕ 1 intersect S y std . The properties of ϕ 0 derive from condition (B6). By condition (B5), ϕ 1 is the the composite of the maps described in conditions (B7), (B4) and (B8). Thus dom(ϕ 1 ) ⊂ X and im(ϕ 1 ) ⊂ Y . By conditions (B4) and (B5), the restriction of ϕ 1 to R λ is the composite of the maps described in conditions (B1) and (B2). Conditions (B1) and (B3) ensures that the composite map is a map between rectangles. The hyperbolic properties derive from conditions (B1), (B2) and (B3).

Hyperbolic bypasses

In this section we construct a bypass satisfying conditions (B1) to (B8) and thus end the proofs of Theorem 2.1 and Proposition 2.7. Fix some positive numbers λ < π 8 , y std , τ and z prod < z max . In what follows, we have z max 1. The construction of a hyperbolic bypass is technical. We start from an explicit contact form on a bypass inspired from Honda [START_REF] Honda | On the classification of tight contact structures I[END_REF] (Section 7.1). In Section 7.2, we present some preliminary lemmas ensuring a precise control of the Reeb flow. Section 7.3 presents a preparatory perturbation of the contact structure in the bypass called a pre-convex bypass. This pre-convex bypass determines the curves δ i and δ j (condition (B1)). The actual construction begins in Section 7.4 with the description of adapted coordinates. In Section 7.5, we present the convexification contact form in the coordinates described in Section 7.4. In Section 7.6 we prove that our construction satisfies the desired conditions. 7.1. Explicit constructions of bypasses. In this section we present an explicit construction of a bypass attachment. This construction is due to Honda [START_REF] Honda | On the classification of tight contact structures I[END_REF] and is the first step of our explicit construction in the proof of Theorem 2.1. We construct a contact structure on the product of a smoothed half overtwisted disc and smoothen the product.

Let (M, α) be a contact manifold with convex boundary (S, Γ) and γ 0 be an attachment arc satisfying condition (C1). In coordinates (x, y)

∈ I b × R + , let U y = -π 6 , 13π 6 
× [y, +∞) and γ 1 = I b × {0}. Consider closed set A diffeomorphic to a square (see Figure 21) such that A = I b × [0, y 0 ] outside U 0 and

∂A = γ 1 ∪ - 3π 4 × [0, y 0 ] ∪ 11π 4 × [0, y 0 ] ∪ γ 2 .
Choose a 1-form β on A such that (1) there exists y β > 2y std such that β = sin(x)dy in A \ U 2y std and β is a positive multiple of sin(x)dy for y ≤ y β ; (2) in U y β ∩ A the singularities of β are

• a half-elliptic negative singularity in (π, y β );

• two half-hyperbolic singularities in (0, y β ) and (2π, y β );

• two positive elliptic singularities on ∂A for x = 0 and x = 2π;

• positive singularities on ∂A ∩ U y β ; (3) there exists a smooth proper multi-curve Γ A dividing A into two subsurfaces A ± such that ±dβ > 0 on A ± , ∂A + is oriented as Γ A and

β Γ A > 0; (4) if Γ D is the component of Γ A joining π
2 , 0 and 3π 2 , 0 , there exist coordinates (r, θ)

∈ 3π 2 -ε, 3π 2 + ε × [0, θ max ] = U near Γ D such that Γ D 3π 2
× [0, θ max ] and β = sin(r)dθ. We now follow [START_REF] Giroux | Convexité en topologie de contact[END_REF] to construct an invariant contact structure on A × R. Let α = β + f (x, y)dz where

• f (x, y) = cos(x) for y ≤ 3 2 y std or x / ∈ -π 3 , 7π 3 ; • in U, the function f depends only on r and is decreasing, in addition f (r, θ) = cos(r) near r = 3π 2 ;

• in U y β \ U, f = ±1 if ±dβ > 0;
• elsewhere f (•, y) has the same variations as cos and if y ≥ 2y std , the function f does not depend on y and interpolates between cos and 1 -if y < 2y std , the function f interpolates between cos and f (•, 2y std ). We now smooth A × I prod to glue it on S Z . There are three types of corners: the convex corners γ 2 × {±z prod }, the concave corners γ 1 × {±z prod } and the corners associated to x = -3π 4 and x = 11π 4 . We smooth the convex corners using a function l sup :

I b × I prod → R * + independent of x for x / ∈ -π 6 , 13π 6 
and such that l sup (•, z) is strictly concave with maximum γ 2 (x) at z = 0 (see Figure 22). Similarly we smooth the concave corners using an even function remaining corners, we first perturb the previous smoothing for z < 0 and x close toπ 2 so that the perturbed boundary is the graph of a function

l inf : [-z max , -z prod ] ∪ [z prod , z max ] → [0, y smooth ]
h : - π 2 -ε s , - π 2 + ε s × (0, y 0 ) → (-z max , 0)
such that ∂h ∂y ≥ 0 on dom(h) and ∂h ∂y (x, y) > η > 0 for all x -π 2 ≤ εs 2 . There exists ε < ε s such that cotanπ 2 -ε < η. We smooth the boundary of the bypass for x ∈ -π 2 -ε, -π 2 -ε 2 so that the new boundary is the graph of

k : - π 2 -ε, - π 2 - ε 2 × [-z max , z max ] → [0, y 0 ]
and

• k = 0 for x close to -π 2 -ε; • 0 ≤ ∂k ∂z < 1
η for all z < 0; • ∂k ∂z ≤ 0 for all z ≥ 0. We smooth the boundary for x close to 5π 2 with a similar construction and denote by B the smoothed product. Let M = M ∪ B. Then M is a smooth manifold with boundary S . Proposition 7.2. After an arbitrarily small perturbation of the contact form near γ 2 × {0}, the boundary S is convex. A dividing set, denoted by Γ smooth , is given by the tangency points between the Reeb vector field and S (see Figure 23).

z x z max z prod R - R + R - R + R + Figure 23.
The dividing set Γ smooth Remark 7.3. The dividing set Γ smooth is disjoint from the graphs of h and k. Indeed, the Reeb vector field is tangent to the graphs of h or k if and only if ∂h ∂y (x, y) = cotan(x) or ∂k ∂z (x, z) = tan(x). Proof. By use of the implicit function theorem, the set of tangency points between the Reeb vector field and S is a smooth curve Γ. In addition the characteristic foliation of S is positively transverse to Γ except along U 0 ∩ (γ 2 × {0}). In a neighbourhood of U 0 ∩ (γ 2 × {0}), we consider the contact form α + ε(x, y)dx where ε is a non-positive, small and smooth function that does not depend on y in a neighbourhood ofπ 6 , 13π 6 × {y 0 }. This perturbation does not change Γ and the characteristic foliation of S is now positively transverse to Γ everywhere. We apply Lemma 3.1 to obtain the convexity of S . Proposition 7.4 (Honda [27]). M is obtained from M after a bypass attachment along γ 1 .

The dividing set is pictured on Figure 23. Figure 24 shows the associated Reeb vector field. In particular, α is not adapted to S . Lemma 7.5. For small enough perturbations of α, the x-coordinate of any Reeb orbit in Ω covers an interval of length at most λ 8 . Proof. The x-coordinate of R α is zero and the amount of time spent in Ω by a Reeb orbit is uniformly bounded. Lemma 7.6. For z max small enough and for any small enough perturbation of α

z y R + R - z x R - R + R - R + R +
• condition (B6) is satisfied;

• for all 0 ≤ y ≤ Proof. For z max small enough, the domain and range of the map from S y to S y std are contained in S λ 4 ,1 and S λ 4 ,5 for all 0 ≤ y ≤ 3 4 y std . Similarly, the domain and range of the map from S y std to S y are contained in S λ 4 ,3 and S λ 4 ,-1 . Thus the conditions on the map between S y and S y std are satisfied for any small perturbation of α.

We now prove condition (B6) and the return time condition. For any small perturbation of α Finally, the period of any Reeb chord of S Z is bounded by 2z max . Thus, for small enough perturbations, the y-coordinate covers an interval of length at most 2z max and 2z max < y std for z max small enough. Thus the Reeb chords which contribute to θ k do not intersect a neighbourhood of S y std and condition (B6) is satisfied. We smooth the corners of Ω as described in Section 7.1. The dividing set is given by the smooth curve Γ smooth (see Proposition 7.2). We still denote by Γ smooth its restriction to Ω. The convexification process will take place in a neighbourhood of Γ smooth and will radically change the contact form. To control the new Reeb orbits, we first control the Reeb chord of a neighbourhood of Γ smooth .

• |R y | ≥ 1 2 outside S λ 8 ,0 ∪ S λ 8 ,2 ∪ S λ 8 ,4 × [0, y std ]; • |R z | ≥ 1 2 into S λ 2 ,0 ∪ S λ 2 ,2 ∪ S λ 2 ,

Lemma 7.8.

There exists an arbitrarily small neighbourhood V smooth of Γ smooth such that, for any small perturbation of α, the Reeb chords joining two distinct connected components of V smooth are contained in S λ 4 ,2k × [0, y std ]. In addition, the orientation of these Reeb chords is given by the sign of the z-component of R α .

Proof. There exists ε < λ 2 such that for any small perturbation of α, any Reeb

orbit intersecting S ε,2k+1 × [0, y std ] × [z prod -ε, z max ] remains in S ε,2k+1 × [0, y std ] × z prod 2 , z max for k = -1, . . . , 2.
In addition, we ask that the x-coordinate of any Reeb orbit in Ω covers an interval of length at most ε 2 . Choose some neighbourhood V smooth of Γ smooth with radius smaller that ε

2 . Any connected component of V smooth is contained in kπ 2 - ε 2 , (k + 1)π 2 + ε 2 × [0, y std ] × I max for k = -1, . . . , 5. Consider the connected component contained in lπ - π 2 - ε 2 , lπ + ε 2 × [0, y std ] × I max .
Any Reeb chord connecting this component to another is contained in S ε,2l-1 × [0, y std ] or in S ε,2l × [0, y std ]. By definition of ε, there is no Reeb orbit in S ε,2l-1 × [0, y std ].

Lemma 7.9. Let (A, β) be a bypass foliation. For z max small enough, for any smoothing as described in Section 7.1 and for any small perturbation α of α such that α = α in S π 4 ,0 ∪ S π 4 ,2 ∪ S π 4 ,4 × [y std , 2y std ] the condition (B4) is satisfied. In addition, the return time is bounded by θ max .

Proof. For y ∈ y std , 3 2 y std , we have α = sin(x)dy + cos(x)dz. Thus the domain and range of the return map can be made as close to x = kπ as desired for z max small enough. In addition, the only R α -chord is Γ D × {0} and the return time is bounded by θ max . 7.3. Pre-convex bypasses. Let (B, α) be a bypass as defined in Section 7. [START_REF] Bennequin | Entrelacement et équations de Pfaff[END_REF]. In what follows we will always assume the the smoothing map l inf is invariant by mirror symmetry along the plane z -z prod -y = 0 for z ≥ z prod . We assume y smooth < y std 2 . Recall that the Reeb vector field is tangent to the dividing set Γ smooth of ∂B = S when S is vertical and points toward S -in the concave part of S (Proposition 7.2). To apply the convexification process we first "eliminate" the tangency points between R α and Γ smooth by perturbing α to obtain a pre-convex bypass. We use the symmetries of the bypass to extend local constructions. In particular, if (x, y, z)

∈ π 4 , 3π 4 × [0, y std ] × [z prod , z prod + y std ], let (2) σ(x, y, z) = -x + 3π 2
, z -z prod , y + z prod be the rotation of angle π with axis x = 3π 4 , y = z -z prod . For (x, y, z)

∈ -3π 4 , π 4 × [0, y std ] × [0, z max ], let (3) τ (x, y, z) = (-x, y, -z)
be the rotation of angle π with axis

x = z = 0. Let Γ + A = Γ A × {z prod }, Γ - A = Γ A × {-z prod } and Γ ± A = Γ - A ∪ Γ + A .
We use similar notations for Γ D . A pre-convex perturbation (k sup , k inf ) of a bypass (B, α) is composed of two smooth maps B → R * + such that (see Figure 25): • there exist a neighbourhood V + of the restriction of Γ ± A to y ≥ y std 2 and a neighbourhood V -of the restriction of Γ ± A to y ≤ y std 2 such that k sup = 1 outside V + and k inf = 1 outside V -;

• ∂ksup ∂z > 0 near Γ + A and ∂ksup ∂z < 0 near Γ - A ; • k sup does not depend on x near Γ A \ Γ D and on r near Γ D ; • k inf (x, y, z) = (1 -f inf (y)ρz) near Γ + D ∩ {(x, y, z), x ∈ π 4 , 3π 4 } where ρ > 0, f inf : [0, y std ] → R + , f inf = 0 near 0 and for y ≥ y std 2 , f inf is increasing on [0, y - ρ ], f inf = 1 on [y - ρ , y + ρ ]
and is decreasing on [y + ρ , y std 2 ]; • k sup is τ -invariant and "π-periodic" for y ∈ [0, y std ] and k inf is τ -invariant and "π-periodic".

x y V - V + Figure 25. The neighbourhoods V + and V -
In what follows, we assume y ρ < 2y std 5 , y - ρ > y smooth , and that the radius of V - is smaller than λ 2 . Let k sup = k sup • σ. We extend k sup in a neighbourhood of B to obtain a π-periodic, τ -invariant function. We define k inf similarly. Let

α prec = (k sup k inf ) sin(x)dy + (k sup k inf ) cos(x)dz.
For k sup and k inf close to 1, α prec is a contact form. Let η(k sup ) and η(k inf ) be the radius of the neighbourhoods of Γ ± A where k sup and k inf do not depends on x or r. Proposition 7.10. Fix η > 0. Let (B, α) be a bypass. There exist real positive numbers ε inf and ε sup such that for any pre-convex perturbation

(k sup , k inf ) satisfy- ing η(k sup ) ≥ η, η(k sup ) ≥ η, k sup -1 < ε sup and k inf -1 < ε inf the following holds
• S is convex with dividing set Γ prec , the set of tangency points between R prec and S ; • R prec points toward S + for y > y std 2 and toward S -for y < y std 2 . Note that ε inf > 0 and ε sup > 0 depend on the smoothing of A × I prod .

Proof. The tangency condition is open. By Proposition 7.2 and Lemma 3.1 the first condition is satisfied for small enough perturbations of α.

The Reeb vector field R α is transverse to Γ smooth for x = kπ 2 as the tangents to Γ smooth have a non-vanishing x-component. Thus, for small enough perturbations, the transversality still holds for x -kπ 2 ≥ η. We study the case y < y std 2 . We prove transversality for x -π 2 < η and extend the result by symmetry. The Reeb vector field is

(4) R α = 1 k inf (y, z)   -∂k inf ∂z (y, z) sin(x) sin(x) k inf (y, z) cos(x)  
and the tangency condition between R αprec and S is

k inf (y, z) cos(x) -L inf (y) sin(x) = 0 where L inf = l -1
inf (see Section 7.1). Thus a parametrisation of Γ prec is given by

y → cos sin -1 L inf (y) k inf (y, L inf (y))
, y, L inf (y) = (x(y), y, z(y)).

The tangency condition between R αprec and Γ prec implies

x (y) + ∂k inf ∂z y, z(y) = 0.
Yet ∂k inf ∂z y, z(y) < 0 and x (y) has the sign of -L inf (y). Thus x (y) < 0 for k inf close to 1 and R αprec is not tangent to Γ prec .

We now study the case y > y std 2 . The tangency condition between R αprec and S is k sup (y, z) cos(x) -L sup (y) sin(x) = 0. The tangency condition between R αprec and Γ prec implies

x (y) + ∂k sup ∂z y, z(y) = 0. Yet ∂ksup ∂z
y, z(y) > 0 and x (y) has the sign of L sup (y).

The convexification process takes place near Γ prec . We carefully choose (B, α) and a pre-convex perturbation to control the image of the dividing set by the Reeb flow. For s ∈ [0, π 2 ], let γ 0 (s) = (s, 0, -z prod ) γ 1 (s) = (π -s, 0, z prod ) γ 0 (s) = (s + π, 0, -z prod ) γ 1 (s) = (2π -s, 0, z prod ) . We denote by p V and p R the images on S Z and S R by the Reeb flow.

A quadruple (B, α, k sup , k inf ) is a pre-convex bypass if (B, α) is a bypass as defined in Section 7.1, (k sup , k inf ) is a pre-convex perturbation and there exist positive real numbers ε R , A R and ε Z (ε Z is arbitrarily small), four z-graphs in S R denoted by δ 0 , δ 1 , δ 0 and δ 1 and product neighbourhoods (5)

V Γ A = V x × 0, 3 4 y std × V z of the restriction of Γ ± A to y ∈ 0, 3y std 4 with |V x | = λ B < λ such that (1) there is no Reeb chord between V Γ A and S y std ; (2) if Γ B is the restriction of Γ prec for x ∈ π 2 + λ B 2 , π -λ B 2 then Γ B α < τ and d C 1 (p Z (Γ B ), γ 1 ) < ε Z 2 ; (3) δ i is increasing and δ i decreasing, the graphs intersect the segment r = 3π 2 ; (4) C(δ i , ε R ) ∩ C(H, ε R ) = {0} and C(δ i , ε R ) ⊂ C(δ ⊥ j , A R ) and δ i satisfies sym- metric conditions; (5) if d C 1 (δ, δ i ) < ε R and d C 1 (δ , δ j ) < ε R then δ and δ intersect transversely in one point ; (6) if γ is a curve in S Z such that d C 1 (γ, γ i ) < ε Z or d C 1 (γ, γ i ) < ε Z then either d C 1 (p R (γ), δ i ) < ε R or d C 1 (p R (γ), δ i ) < ε R ; (7 
) the return time between S Z and S R is bounded by τ . Proposition 7.11. Let (M, ξ = ker(α)) be a contact manifold with convex boundary (S, Γ) and γ 0 be an attaching arc satisfying condition (C1), (C2) and (C3). Let (A, β) be a bypass foliation (see Section 7.1). For z max small enough, there exists a pre-convex bypass (B, α, k sup , k inf ) with k sup and k inf arbitrarily close to 1.

The rest of this section is devoted to the proof of Proposition 7.11. Let η < λ 4 . Choose l sup and k sup such that η(k sup ) ≥ η and k sup -1 < ε sup . Lemma 7.12. If k sup is close to 1 and z max small enough, then p R (γ i ) and p R (γ i ) satisfy condition [START_REF] Bourgeois | Fredholm theory and transversality for the parametrized and for the S 1 -invariant symplectic action[END_REF].

Proof. For z max small, the Reeb chords of α that contribute to the map between S Z and S R are contained in the neighbourhood where α = sin(r)dθ + cos(r)dz and k sup does not depend on r. In coordinates (r, θ, z), the image of γ 1 on S θ is

s -→ 2π -s, θ, - cos(s) sin(s) θ + z prod .
For z max small enough, this curve in a decreasing graph in z and contains ( 3π 2 , θ, z prod ). Consider the perturbation α sup of α associated to k sup . As

R α = 1 k sup (y, z)   - ∂ksup ∂z (y, z) sin(x) sin(x) k sup (y, z) cos(x)   ,
we have ∂ksup ∂z = 0 for y ≤ y std 2 and ∂ksup ∂z > 0 for z > y std 2 near Γ + D . Therefore, the curve p R (γ 1 ) intersects the segment r = 3π 2 . The proof is similar in the other cases.

Let p R (γ i ) = δ i and p R (γ i ) = δ i . The curves δ i and δ j intersect transversely in exactly one point and there exist ε R , A R and ε Z satisfying conditions (4) and ( 5) for any small perturbation of α sup . Additionally, all R αsup -orbits intersecting π 2 × 0, 3 4 y std × {z prod } go out of the bypass. Then, there exists V Γ A such that the Reeb vector field of all small perturbation of α sup satisfies condition [START_REF] Bennequin | Entrelacement et équations de Pfaff[END_REF]. We now carefully choose l inf . A parametrisation of Γ B is

π 2 + λ B 2 , π -λ B 2 -→ R 3 x -→ x, l inf l inf -1 tan(x) , l inf -1 tan(x) thus p Z (Γ B ) is parametrised by x -→ x, 0, l inf -1 tan(x) -cotan(x) × l inf l inf -1 tan(x)
and its derivative is

x -→ 1, 0, - 1 sin 2 (x) × l inf l inf -1 tan(x) .
Thus, the second half of condition ( 2) is satisfied for l inf small. In addition, we have

Γ α = π- λ B 2 π 2 + λ B 2 1 sin 3 (x) × 1 l inf (l inf ) -1 (tan(x)) dx.
Fix C > 0 and c > 0 we chose l inf such that l inf < c and l inf (l inf ) -1 (y) > C for all

y ∈ tan π 2 + λ B 2 , tan π - λ B 2 .
For C big enough and c small enough, condition (2) is satisfied. Additionally, such a function exists: it is the anti-derivative of a function f : (0, 1] -→ (-∞, 0] such that

• f is increasing and

1 0 f = c; • for all k ∈ N, f (k) (1) = 0 and lim x→0 |f (k) (x)| = ∞; • f (f ) -1 (y) > C for all y ∈ tan π 2 + λ B 2 , tan π -λ B 2 .
Finally, we choose k inf small enough. Condition 7 derives from Lemmas 7.6 and 7.9 and Remark 7.1. This concludes the proof of Proposition 7.11.

7.4. Convexification coordinates. In the two following sections, we describe the actual construction of an hyperbolic bypass.

Construction 7.13. There exists a pre-convex bypass (B, α, k sup , k inf ) adapted to τ and λ (Proposition 7.11). For technical reasons, we also consider a second preconvex bypass (B , α, k sup , k inf ) extending B and such that, d C 0 (∂B , B) > 0 for all |z| ≤ z prod + y std and 0 ≤ y ≤ y std . We denote by p Z and p R the projections in B . Without loss of generality ε Z < ν and p Z (dom(p R|Γ B ) ⊂ dom(p R|S Z ).

We are now in position to apply the convexification process described in [START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF].

Recall that S is the boundary of M = M ∪ B, k inf = 1 -ρz on [y - ρ , y + ρ ],
y smooth < y - ρ < y + ρ < 2 5 y std ,
and the upper boundary of

V Γ A is contained in y = 3 4 y std . Choose y - ρ < y -< y + < y + ρ .
Our first step is to obtain nice coordinates near Γ prec ∩ B ≤y std . We construct these coordinates near the connected component Γ 0 contained in π 2 , π ×[0, y std ]×[0, z std ] and extend them using the symmetries of B. Fact 7.14. There exists ε prec such that for all ε prec -perturbation of S , the contact form α prec is adapted to the new boundary for y ≥ 2 3 y std . Proposition 7.15. There exists a surface Σ with coordinates

(u, v) ∈ [u min , u max ]× [-v max , v max ] such that
(1) Σ is transverse to R αprec , Σ ∩ S = Γ 0 and the intersection is transverse;

(2) σ(i Σ (u, v)) = i Σ (u max + u min -u, v) where i Σ : Σ → R3 is the inclusion and σ is defined by equation ( 2 We denote by y Σ the coordinate such that π 2 , y Σ = i Σ (u max , 0). Proof. Choose a surface Σ satisfying conditions (1), ( 2) and (3) and such that i * Σ α prec = g(u, v)dv and g(u, 0) = 1 -ρz prod . Then g(u, v) = 1 -ρz prod -ρv for y close to [y - ρ , y + ρ ] and α prec = g(u, v)du + dt. Moser's trick provides us with a diffeomorphism ϕ 1 such that ϕ 1 = Id along Γ prec and for y close to [y -, y + ], ϕ 1 preserves Σ and ϕ * 1 α prec = dt + (1 -ρz prod -ρv)du as the two Reeb vector fields coincide. In addition ϕ 1 • σ = σ • ϕ 1 . Thus ϕ 1|Σ has the desired properties.

Let u ±

ρ and u ± be the u-coordinates associated to the intersection points between Γ 0 and S y ± ρ or S y ± . Let ψ = (ψ x , ψ y , ψ z ) be the diffeomorphism associated to the change of coordinates. Let S B = ψ -1 (S ). Without loss of generality ψ : U → V and 3

U = I t × I u × I v = [-t max , t max ] × [u min , u max ] × [-v max , v max ], (6) V ⊂ π 2 - λ 8 , π + λ 8 × 0, 3 4 
y std × I max ∩ V smooth ∩ B , (7) α = (1 -ρz) sin(x)dy + cos(x)dz on ψ I t × [u -, u + ] × I v . (8) Fact 7.16. For all (t, u, v) ∈ I t × [u -, u + ] × I v , it holds that σ ψ(t, u, v) = ψ -t, u max + u min -u, v , ψ(0, u, v) = π 2 , y Σ -u max + u, z prod + v , ψ(t, u, v) = ψ(t, 0, v) + (0, y Σ -u max + u, 0), ψ(-t, u, v) = π -ψ x (t, u, v), 2ψ y (0, u, v) -ψ y (t, u, v), ψ z (t, u, v) .
We rewrite our objects and conditions in coordinates (t, u, v). We subdivide [u min , u max ] into u min < u 1 < u 2 < u 3 < u 4 < u 5 < u max (see Figure 26) such that 

ψ(I t × [u 5 , u max ] × I v ) ⊂ V Γ A (9) π 2 , π 2 + λ 2 ⊂ ψ x (I t × [u 4 , u max ] × I v ), ( 10 
)
π 2 + 3λ 4 , π - 3λ 4 ⊂ ψ x (I t × [u 2 , u 3 ] × I v ), (11) π - λ 2 , π ⊂ ψ x (I t × [u min , u 1 ] × I v ). (12) R λ V Γ A x z y u 5 u 4 u 3 u 2 u 1 x ∈ π 2 -λ 2 , π 2 + λ 2 , y = y std
t = 0 for u ∈ [u -, u + ]; (2) there is no Reeb chord of ∂V outside V; (3) C ψ = ψ(t, u, v) -ψ(0, u, 0) ∞ + dψ(t, u, v) -dψ(0, u, 0) ∞ 1:
Proof. S B is a smooth surface containing {0} × [u min , u max ] × {0}, tangent to Span ∂ ∂u , ∂ ∂t along this curve and transverse to ∂ ∂t = R αprec elsewhere. In addition, ∂ ∂t is positively transverse to S B for t < 0 and negatively transverse for t > 0 (see Figure 27).

To prove condition (2), we first note that there is no Reeb chord of Γ prec in B < 3 4 y std . Indeed, in the set where α prec = sin(x)dy + cos(x)dz, we have R x = 0 and Γ prec intersects the planes x = cst in one point. By symmetry, it remains to prove the result for x close to π 2 and z > 0. In this set, we have R x > 0, R y > 0. The projection of Γ prec on the plane (y, x) is decreasing and there is no Reeb chord of Γ prec in B <yprec .

If there exists a sequence γ n n∈N * of Reeb chords of ∂V n where the radius of V n is smaller that 1 n , then the endpoints of γ n converge to Γ prec . In addition, the period of these chords is bounded (Lemma 7.6) and bounded below by t max (associated to the maximal t-coordinate in V 1 ). Thus γ n converges to a Reeb chord of Γ prec . This leads to a contradiction and condition 2 is proved. Lemma 7.18. Without loss of generality we may assume that there exist real positive numbers ε B and B such that for all t Σ ∈ I t , the maps ϕ -and ϕ + induced by the Reeb flow between Σ = {(t, u, v), t = t Σ } and S Z and between Σ and S R satisfy:

(1)

C(H, ε B ) ∩ C(V, B) = {0}; (2) (ϕ -) * (C p (H, ε B )) ⊂ C ϕ-(p) (H, ν) and (ϕ -1 -) * C ϕ-(p) (V, A) ⊂ C p (V, B) for all p ∈ [u 2 , u 3 ] × I v ; (3) (ϕ + ) * (C p (H, ε B )) ⊂ C ϕ+(p) (δ 1 , ε R ) and (ϕ -1 + ) * C ϕ+(p) (δ ⊥ 1 , A R ) ⊂ C p (V, B) for all p ∈ [u 4 , u 5 ] × I v ; (4) ϕ + ([u 4 , u 5 ] × I v ) ⊂ {(x, z), |x -δ 1 (z)| < ε R };
(5) the return time between S Z and Σ is bounded by τ and by 2τ between S R and Σ.

Let L be a bound of dϕ ± and dϕ ± -1 where • is defined in the coordinates (x, y, z) in S R and S Z and in the coordinates (t, u, v) in Σ.

Proof. Let Γ u = Γ prec ∩ ψ (I t × [u 2 , u 3 ] × I v ). Then Γ u ⊂ Γ B
and all the Reeb chords between Γ B and S Z have an endpoint in Γ u . There exists

ε B > 0 such that if d C 1 (γ, Γ u ) < ε B then d C 1 (p Z (γ), p Z (Γ u )) < ε Z 2 .
Thus the fist half of condition (2) derive from conditions (2) and ( 6) in the definition of pre-convex bypasses for U small enough. As p Z (dom(p R|Γ B ) ⊂ dom(p R|S Z ), condition (4) and the first part of condition (3) derive from conditions (2) and ( 6) in the definition of pre-convex bypasses. As (ϕ -1 -) * (C(V, A)) ∩ C(H, ε B ) = ∅ there exists B satisfying the second part of condition [START_REF] Bourgeois | Effect of Legendrian Surgery[END_REF]. The proof of the second part of condition (3) is similar.

We now perturb S to obtain a u-invariant surface. Construction 7.19. We perturb S (see Figure 28) so that there exists v 0 ∈ (0, v max ) satisfying 

+ h(x)), x ∈ π 2 -λ 3 , π 2 + λ 3 , y ∈ [y -, y + ] is contained in V. Let S h = ψ -1
Sh . We denote by v h the maximum of h and z prod + v h by z h . The minimum of S h on the v-axis corresponds to t = 0 and v = v h (see Figure 29). In addition H = ∅. Let v H = sup{max(h), h ∈ H} then v H > 0 and for all 0 < v < v H there exists h ∈ H such that v h = v. Given v h there exists h ∈ H with x h flat arbitrarily small. The surface S h is u-invariant and its restriction to the plan u = cst is a smooth curve composed of two symmetric graphs containing (v h , 0), one positive and increasing and the other negative and decreasing on (v h , v max ];

Proof. For h small enough, the tangency points between the Reeb vector field and Sh are the segment π 2 × [y -, y + ] × {z h }. In addition, ∂ ∂t is positively transverse to S h for t < 0 and negatively transverse for t > 0. The proof is similar to the proof of Lemma 7.17. The symmetry derives from Fact 7.16.

We extend the surface S h by translation in the coordinates (t, u, v) and still denote by S h the extension. The surface S h also extends σ Sh as S h is parametrised by (±l(v), u, v) and σ(ψ(±l(v), u, v) = ψ(∓l(v), u max + u min -u, v). The following lemma is a powerful tool to study the Reeb chords in B ≤y std (conditions (B6), (B7) and (B8)). We will use its corollary (Corollary 7.37) in Section 7.6.

Lemma 7.21.

There exist positive numbers t max , v max , u λ , ∆ and v ∆ such that

• t max < t max , v ∆ < v max < v max and v ∆ < v H ; • ψ x (I t × [u min , u λ ] × I v ) ⊂ π 2 + λ 2 , π + λ where I t = [-t max , t max ] and I v = [-v max , v max ]; • ψ y (p) < ψ y (p ) and ψ x (p ) -ψ x (p) ≤ λ
12 for all p = (t, u, v) and p = (t , u , v ) in

I t × [u λ , u max ] × I v such that t -t > ∆ and u ≥ u; • the planes t = ±∆ intersect S B for v ≤ v ∆ .
Proof. Without loss of generality, there exists η such that 1 η < k inf < η < 2 and η 2 -sin π 2 + λ < η 32 . We start with t max = t max and v max = v max and progressively reduce them. There exists u λ such that for t max and v max small enough

ψ x (I t × [u λ , u max ] × I v ) ⊂ π 2 -λ, π 2 + λ , ψ x (I t × [u min , u λ ] × I v ) ⊂ π 2 + λ 2 , π + λ . Let M = ∂ψy ∂v ∞ + ∂ψx ∂v ∞ + ∂k inf ∂z ∞ .
Choose ∆ such that, upon reducing t max and v max

• t max = 4∆ < λ 96M ; • v max < min ∆ 8M , λ 48M , v H ; • the planes t = ±∆ intersect S B for v ≤ v max . For all (t, u, v) ∈ [0, t max ] × [u λ , u max ] × I v we have 4 ψ y (0, u, v) + t η sin π 2 + λ ≤ ψ y (t, u, v) ≤ ψ y (0, u, v) + ηt, ψ y (0, u, 0) -v max ∂ψ y ∂v ∞ ≤ ψ y (0, u, v) ≤ ψ y (0, u, 0) + v max ∂ψ y ∂v ∞ .
Thus ψ y (p ) -ψ y (p) ≥ ∆ 4 > 0. Similarly, it holds that

ψ x (0, u, 0) -v max ∂ψ x ∂v ∞ -2t max ∂k inf ∂z ∞ ≤ ψ x (t, u, v), ψ x (t, u, v) ≤ ψ x (0, u, 0) + v max ∂ψ x ∂v ∞ + 2t max ∂k inf ∂z ∞ , and ψ x (p ) -ψ x (p) ≤ 2v max ∂ψx ∂v ∞ + 4t max ∂k inf ∂z ∞ .
4 See equation( 4) for the explicit form of the Reeb vector field. 

(z) = exp(-1 z-z0 ), if z > z 0 , Φ z0 (z) = 0, otherwise.
For y ∈ [y - ρ , y + ρ ] and near Γ 0 , α prec = k inf (z) sin(x)dy + cos(x)dz and k inf (z) = 1 -ρz. Let k conv (z) = k inf (z) + aΦ z0 (z) and ( 13)

α conv = k conv (z) sin(x)dy + cos(x)dz
where a > 0.

Fact 7.24. The contact form α conv is adapted to Sh for y ∈ y -, 2 3 y std . In the coordinates (t, u, v), the associated contact form is not a convexification model in the sense of [START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF]. We use a weakened version of convexification. Let J u be such that [u 1 , u 5 ] ⊂ J u ⊂ I u . Two functions f and g from I t × J u × I v to R * + form a convexification pair if (1) f = 1 and g(t, u, v) = 1 -ρz prod -ρv near S and for v ≥ v max ;

(2) f and g do not depend on u for u ∈ [u 1 , u 5 ];

(3) ∂f ∂v ≥ 0 and ∂f ∂v > 0 near (0, v h ); (4) in a neighbourhood of [u 1 , u 5 ], in the planes u = cst, the vector field X g = -∂g ∂v , ∂g ∂t is negatively transverse to S h for t > 0, positively transverse for t < 0 and points toward the half-space t < 0 for t = 0 (see Figure 30). For ρ and C ψ small enough, there exists ε z0 > 0 such that for any small ρ 0 and any z h -ε z0 < z 0 < z h , there exists a contact form α and a pair of convexification (f, g) with J u = [u max + u min -u + , u + ] satisfying (1) R u ≥ 0, R is positively transverse to S h for t < 0, negatively transverse for t > 0 and points toward the half-space t < 0 for t = 0;

(2) σ * α = -α; (3) α = α prec for v ≥ v max and v ≤ v ∆ ; (4) α = f (t, u, v)dt + g(t, u, v)du on I t × J u × I v ; (5) ψ -1 * α = α conv and k conv (z h ) = ρ 0 in a neighbourhood of { π 2 }× y + , 2 5 y std × {z prod }.
By definition k conv C 1 ≤ ρ 0 . The end of Section 7.5.2 is devoted to the proof of Proposition 7.25. Before extending α conv for all u, we study some properties of α conv in the (t, u, v)-coordinates. Fact 7.26. For all (t, u, v)

∈ I t × [u -, u + ] × I v , we have dψ(t, u, v) =   R x (ψ(t, u, v)) 0 ∂ψx ∂v (t, u, v) R y (ψ(t, u, v)) 1 ∂ψy ∂v (t, u, v) R z (ψ(t, u, v)) 0 ∂ψz ∂v (t, u, v)   , dψ(0, u, v) =   R x ( π 2 , u, v) 0 0 R y ( π 2 , u, v) 1 0 R z ( π 2 , u, v) 0 1   . Fact 7.27. For all (t, u, v) ∈ I t × [u -, u + ] × I v , we have ψ * α prec (t, u, v) = dt + k 0 du and k inf (ψ z ) sin(ψ x ) = k 0 k inf (ψ z ) sin(ψ x ) ∂ψy ∂v + cos(ψ x ) ∂ψz ∂v = 0 where k 0 (v) = k inf (v + z prod ). Fact 7.28. For all (t, u, v) ∈ I t × [u -, u + ] × I v , we have ψ * α conv = k conv (ψ z ) k inf (ψ z ) sin 2 (ψ x ) + cos 2 (ψ x ) dt + k conv (ψ z ) sin(ψ x )du+ k conv (ψ z ) sin(ψ x ) ∂ψ y ∂v + cos(ψ x ) ∂ψ z ∂v dτ, ψ * α conv = k conv (ψ z ) k inf (ψ z ) -1 sin 2 (ψ x ) + 1 dt + k conv (ψ z ) k inf (ψ z ) k 0 du+ k conv (ψ z ) -k inf (ψ z ) sin(ψ x ) ∂ψ y ∂v dτ. In coordinates (t, u, v), α conv = f 1 (t, v)dt + g 1 (t, v)du + h 1 (t, v)dv where f 1 g 1 and h 1 do not depend on u. Note that f 1 (-t, v) = f 1 (t, v), g 1 (-t, v) = g 1 (t, v) and h 1 (-t, v) = -h 1 (t, v) (Fact 7.16). Fix u -< u 0 < u 1 < u + and p : [u 0 , u 1 ] → R such that p = 0 near u 0 and p = 1 near u 1 . Let α = f 1 (t, v)dt + g 1 (t, v)du + p(u)h 1 (t, v)dv.
Lemma 7.29. For ρ and C ψ small and for z 0 close to z h , α is a contact form,

∂f1 ∂v ≥ 0 and ∂f1 ∂v > 0 near (0, v h ); Proof. The differential of α is dα = ∂f 1 ∂v dv ∧ dt + ∂g 1 ∂v dv ∧ du + ∂g 1 ∂t dt ∧ du + p h 1 du ∧ dv + p ∂h 1 ∂t dt ∧ dv.
The contact condition is

∂f 1 ∂v g 1 - ∂g 1 ∂v f 1 + ph 1 ∂g 1 ∂t dt + p h 1 f 1 -p ∂h 1 ∂t g 1 > 0.
Without loss of generality we may assume that the ranges of f 1 , g 1 and h 1 are in 

k conv (z) -k inf (z) = AΦ z0 (z) = (z -z 0 ) 2 AΦ z0 (z), k conv k inf (z) -1 = (z -z 0 ) 2 AΦ z0 (z)O(1), k conv k inf (z) = AΦ z0 (z) 1 k inf (z) + ρ(z -z 0 ) 2 k inf (z) 2 .
Thus, we obtain

f 1 (t, v) = 1 + AΦ z0 (ψ z )(ψ z -z 0 ) 2 O(1), ∂f 1 ∂v = AΦ z0 (ψ z ) 1 + O(ρ) + O(C ψ ) + (ψ z -z 0 ) 2 O(1) .
Therefore for ρ, C ψ , z h -z 0 small enough, we have ∂f1 ∂v ≥ 0 and ∂f1 ∂v (0, v h ) > 0. Similarly, we obtain

g 1 (t, v) = 1 + O(ρ) + (z -z 0 ) 2 O(1) + O(C ψ ), ∂g 1 ∂v = -ρ + AΦ z0 (ψ z ) 1 + (ψ z -z 0 ) 2 O(1) + O(ρ) + O(C ψ ) , ∂g 1 ∂t (t, v) = AΦ z0 (ψ z )O(C ψ ), h 1 (t, v) = AΦ z0 (ψ z )(ψ z -z 0 ) 2 O(1), ∂h 1 ∂t (t, v) = AΦ z0 (ψ z ) (ψ z -z 0 ) 2 O(1) + O(C ψ ) ,
and the contact condition is

(14) ρ + AΦ z0 (ψ z ) O(ρ) + (ψ z -z 0 ) 2 O(1) + O(C ψ ) > 0.
Yet AΦ z0 (z) < 2ρ as k conv (z h ) = ρ 0 < ρ. Thus the contact condition is satisfied for ρ, C ψ and z h -z 0 small enough.

Lemma 7.30. For ρ, ρ 0 , C ψ , z h -z 0 small, R u ≥ 0 and R is positively transverse to S h for t < 0, negatively for t > 0 and points toward the half-plane t < 0 for t = 0.

Proof. The component R u is positively collinear to

∂f 1 ∂v -p ∂h 1 ∂t = AΦ z0 (ψ z ) 1 + O(ρ) + O(C ψ ) + (ψ z -z 0 ) 2 O(1) .
Thus R u ≥ 0. By u-invariance, we study the transversality properties in the planes u = cst. The Reeb vector field is positively collinear to

Y = -∂g1 ∂v + p (u)h 1 ∂g1 ∂t
in the coordinates (t, v). The tangency condition for t = 0 is automatically satisfied as h 1 (0, v) = 0. On the non flat part of h, the transversality conditions are satisfied for ρ 0 < ε pert h as k conv -k inf C 1 ≤ ρ 0 (Fact 7.23). We now prove the result in the flat part of h. The transversality condition is

(15) - ∂g 1 ∂v + p (u)h 1 -l ± ∂g 1 ∂t > 0
for t = 0 where l + and l -parametrise S h . Let ρ 0 = s 0 ρ. Then AΦ z0 (ψ z ) = (1+s 0 )ρ. For p = 1, Y satisfies the desired transversality conditions (Fact 7.24). For p = 0 the transversality condition is ( 16)

-s 0 ρ + ρ(1 + s 0 )a(t, u, v) > 0
where a does not depend on s 0 . There exists s max such that ( 16) is satisfied for

s 0 ∈ (0, s max ]. Thus a > smax 1+smax . For z 0 close to z h , p (u)(ψ z -z 0 ) 2 sin(ψ x ) ∂ψ y ∂v < s max 2(1 + s max ) .
The general transversality condition is

(17) a(t, u, v) + p (u)(ψ z -z 0 ) 2 sin(ψ x ) ∂ψ y ∂v + s(a(t, u, v) -1) > 0.
For s ≤ smax 2 , we obtain a(t, u, v) + s(a(t, u, v) -1) > smax 2(1+smax) and ( 17) is satisfied.

Proof of Proposition 7.25. We choose ρ, ρ 0 , C ψ , z h -z 0 small enough to apply Lemma 7.29 and Lemma 7.30. We extend α to U by α = f 1 dt + g 1 du for u ∈ J u and -σ * α for u ∈ [u min , u min + u max -u + ]. It remains to prove that α = α prec for v ≥ v max and v ≤ v ∆ . The set where

(f 1 (t, v), g 1 (t, v)) = (1, 1 -ρz prod -ρv)
is contained between the surface S z0 associated to the equation z = z 0 and S h . The surface S z0 has properties similar to S h . In particular, its v-coordinates are greater than z 0 -z prod . As z h -z prod > v ∆ (Construction 7.22) z 0 -z prod > v ∆ for z h -z 0 small enough. Additionally, S z0 intersects S h in its non-flat part. Yet for z h -z 0 small enough the intersection points are arbitrarily close to the endpoints of the flat part and the v-coordinates of the intersection points are smaller than v max (Construction 7.22). 

(C p (V, B)) ⊂ C Φ(p) (H, ε B ) and Φ -1 * C Φ(p) (V, B) ⊂ C p (H, ε B ) for all p ∈ [u 2 , u 3 ] × I v ∩ Φ -1 ([u 4 , u 5 ] × I v ); (2) dΦ(p, v) > L 2 √ η v and dΦ -1 (Φ(p), w) > L 2 √ η w for all p ∈ [u 2 , u 3 ] × I v ∩ Φ -1 ([u 4 , u 5 ] × I v ) and v ∈ C p (V, B); (3) the return time in [u 2 , u 3 ] × I v is bounded by τ .
= f (t, u, v)dt + g(t, u, v)du. Thus (18) R α = 1 ∂f ∂v g -∂g ∂v f   -∂g ∂v ∂f ∂v ∂g ∂t   .
We progressively modify f and g so that the difference between the u-coordinates of two Reeb orbits which contribute to Φ widens when the Reeb orbits cross the convexification area.

Remark 7.33. If (f 1 , g 1 ) and (f 1 , g 2 ) are two convexification pairs satisfying conditions (1), ( 3) and (4) of Proposition 7.25 on I t × J u × I v then there exists a convexification pair (f 1 , g) satisfying the same conditions such that g = g 1 outside a neighbourhood of

I t ×[u 1 , u 5 ]×I v and g = g 2 in a neighbourhood of I t ×[u 1 , u 5 ]×I v .
There exists a analogous statement to interpolate between f -coordinates in a convexification pair if f 1 = f 2 near S h .

If (f, g) is a convexification pair given in Proposition 7.25, without loss of generality, we have 1

≤ f ≤ 3 2 . Let Γ v denote the g-level intersecting (0, v) in a plane u = cst for u ∈ [u 1 , u 5 ] and Γ [v,v ] be the set between Γ v and Γ v if v < v . Let m f > 1024 u5-u1
u4-u3 and M g = We may assume that there exist t 1 > 0, v c , v 0 and v 1 such that v ∆ < v 1 < v 0 < v c < v h and for all u ∈ [u 1 , u 5 ] (see Figure 32)

t 1 v c v 0 v 1 v ∆ v t t 1 v c v 0 v 1 v ∆ v t
• 1 2 ≤ g ≤ 1 and ∂g ∂v ≤ ρ; • g(-t, v) = g(t, v) and f (-t, v) = f (t, v); • (0, v c ) is a saddle for g and the g-level intersecting {0} × [v c , v h ] do not intersect Σ + or Σ -(see Figure 31); • g(t, u, v) = 1 -ρz prod -ρv for all (t, u, v) Proof. We extensively use Remark 7.33 to modify f and g. We first modify f and choose v c so that ∂f ∂v > 2m f in a neighbourhood of {0} × [u 1 , u 5 ] × {v c }. To achieve this condition, we modify f near (0, v h ) in a neighbourhood that does not intersect S h and such that ∂f ∂v > 0. The only non-trivial condition on the perturbed f is the contact condition ∂f ∂v g -∂g ∂v f > 0. There exists ε > 0 such that for any f 1 with |f -f 1 | < ε and ∂f1 ∂v > ∂f ∂v -ε, then ∂f1 ∂v g -∂g ∂v f 1 > 0. We choose f 1 such that Mg and the u-interval swept out by the orbit is bounded by 64t1 Mg < u 4 -u 3 . The orbit does not contribute to Φ as R u = 0 for |t| ≥ 2t 1 .

Proof of Proposition 7.31. We prove that Proposition 7.31 is satisfied for C big enough. We first study the difference between the u-coordinates of two Reeb orbits which contribute to Φ. Let (-t max , u, v) and (-t max , ũ, ṽ) be the endpoints of two Reeb chord which contribute to Φ. Without loss of generality ṽ > v. be a renormalisation of the Reeb vector field and t → -t max + t, u(t), v(t) and t → -t max + t, ũ(t), ṽ(t) be the Y -orbits with endpoints (-t max , u, v) and (-t max , ũ, ṽ). Then (ṽ(t) -v(t)).

∂Y u ∂v = - ∂ 2 f
Our orbits are contained in g-levels, therefore it holds that (ṽ(t) -v(t)) min ∂g ∂v ≤ g(-t max , v) -g(-t max , ṽ) ≤ (ṽ(t) -v(t)) max ∂g ∂v and ṽ(t) -v(t) ≥ where θ ∈ π 2 -θ 0 , π 2 + θ 0 . In the basis (e 1 , e 2 ), the matrix of R is P -1 RP = 1 sin(θ) µ 1 sin(θ -θ 1 ) µ 2 sin(θ -θ 2 ) µ 1 sin(θ 1 ) µ 2 sin(θ 2 )

where θ 1 ∈ [-ν(θ 0 ), ν(θ 0 )], θ 2 ∈ π 2 -θ 0 , π 2 + θ 0 and |µ 1 | ≥ 3. As µ 1 µ 2 > 0, we obtain tr(R) > 2 for ν(θ 0 ) small enough. Proof. Note that dχ a (p a ) ∂ ∂x = ±e 1 . We choose θ 0 such that χ a * (C(V, A)) ⊂ C(e 2 , tan(θ 0 )). For µ small enough, we have χ a * (C(H, µ)) ⊂ C(e 1 , tan(ν(θ 0 )). Let l be such that dχ pa (p a ) < l and dχ pa (p a ) -1 < l. Then Proof. Let c be a Reeb chord in the bypass contained in γ a with endpoints c + and c -on S Z . We construct a strip S c along c such that no Reeb chord with one endpoint on the vertical segment containing c + and close to c + intersects S c . We then glue together the half of S c and the collar associated to the Reeb chords to obtain S γa . We choose S c such that (1) between S Z and the convexification, S c is tangent to ∂ ∂x ; (2) in the convexification area, S c is tangent to ∂ ∂u ; (3) is the upper part of the bypass, S c is tangent ∂ ∂r .

We smooth the resulting surface. Figure 34 shows c and a Reeb chord with one endpoint on the vertical segment contained c + (dotted curve). In this figure S c is transverse to the projection. Proof of Theorem 2.6. We consider the trivialisation from Lemma 8.6. Without loss of generality θ(0) = 0. Let 0 = t 1 < t 1 < • • • < t k < t k = T (a) be the times associated to the intersection points between γ a and S Z (γ a (0) is the fixed point of G a ). We prove by induction that for all j = 1, . . . , k As θ(0) = 0, the condition ( 21) is satisfied for j = 1. We now suppose that the equation ( 21) stands for i ∈ 1 . . . j -1. By definition of µ(a ij ), θ(t j ) ∈ 

  the partial function induced by the Reeb flow in M and ϕ is the map induced by the Reeb flow in the bypass then every periodic orbit intersecting S Z intersects S - Z on a periodic point of ϕ • ψ.

3. 2 .

 2 Bypasses. Let S be a closed convex surface without boundary in a contact manifold. A bypass for S is an embedded half-disc D in M such that • D is transverse to S; • D has a Legendrian boundary denoted by γ 1 ∪ γ 2 and D ∩ S = γ 1 ;

γ 1 Figure 3 .

 13 Figure 3. Dividing sets Γ and Γ

γ 1 γ 1 Figure 4 .

 14 Figure 4. Trivial (left) and overtwisted (right) bypasses

γ bypass attachment along γ 0 Figure 5 . 3 . 3 .

 0533 Figure 5. Effect of a bypass attachment on solid torus

Figure 7 .

 7 Figure 7. Reeb chords

Figure 13 .

 13 Figure 13. The segments D 2,1 and the rectangle structure of im(ψ 1 )

  F a has a unique fixed point. The period T (γ a ) of the associated Reeb periodic orbit γ a satisfies T (γ a ) ∈ [l(a) -9kτ, l(a) + 9kτ ].

Figure 16 .

 16 Figure 16. A non-convex bypass attachment range of the map induced on S Z by the Reeb flow in the bypass are contained in neighbourhoods of x = π 2 and x = 3π 2. By definition of a K-hyperbolic surface, there is no new Reeb periodic orbit.To obtain a contact form adapted to the boundary, we use the convexification process described in[START_REF] Vincent Colin | Sutures and Contact Homology I[END_REF]. It consists in gluing a small "bump" with prescribed contact form along the non-adapted part of the dividing set (see Figure17). Inside this

Figure 17 .Figure 18 .Figure 19 .

 171819 Figure 17. The convexification bump

Figure 20 .

 20 Figure 20. Rectangles on intermediate surfaces

Proposition 6 . 6 .

 66 The map induced between S y std and S Z for positive times can be decomposed into two maps with domains in S λ 4 ,3 and S λ 4 ,-1 and ranges in Y and Y -2π. The bypass (B, α B , λ) is hyperbolic and (ν, τ, A, η)-dominated.

Figure 21 .

 21 Figure 21. A smoothed half overtwisted disc

Figure 22 .

 22 Figure 22. Bypass smoothing

Figure 24 . 7 . 2 .

 2472 Figure 24. The Reeb vector field along Γ smooth

4 × 2 (

 42 [0, y std ]; • the hypotheses of Lemma 7.5 are satisfied. Thus any Reeb orbit intersecting S Z outside S λ 4 ,0 ∪ S λ 4 ,2 ∪ S λ 4 ,4 is not a Reeb chord of S Z (Lemma 7.5). Any Reeb chord of S Z stays in S λ 2 ,2k for some k. Along any Reeb orbit, |R y | ≥ 1 2 or |R z | ≥ 1 Lemma 7.5) and we obtain the desired bound on the amount of time spent in Ω.

Remark 7 . 7 .

 77 If the contact form is not perturbed near x = kπ there is no Reeb chord on S Z or S y std . More precisely, let y ∈ [0, y std ) and α be a small perturbation of α such that α = α in S π 4 ,0 ∪ S π 4 ,2 ∪ S π 4 ,4 × [y, y std ]. Then there is no Reeb chord of S y std contained in I b × [y, y std ] × I max .

  ); (3) ∂ ∂u = ∂ ∂y and ∂ ∂v = ∂ ∂z for y close to [y -, y + ]; (4) α prec = dt+(1-ρz prod -ρv)du in the flow-box coordinates (t, u, v) associated to Σ.

Figure 26 .Lemma 7 . 17 .

 26717 Figure 26. The subdivision u i

Figure 27 .

 27 Figure 27. The Reeb vector field and S B

Figure 29 .

 29 Figure 29. The surfaces S B and S h

Figure 30 .

 30 Figure 30. The surface S h and the Reeb vector field

7. 5 . 3 .Proposition 7 . 31 .

 53731 Perturbed convexification. The contact form α described in Proposition 7.25 is adapted to the boundary but does not give us the desired control on the Reeb flow. Let Σ ± = {(±t max , u, v), u ∈ I u , v ∈ I v } and Φ be the map induced by the Reeb flow of α conv between Σ -and Σ + . Let (f, g) be a convexification pair given in Proposition 7.[START_REF] Hofer | Applications to Polyfold Theory I : The Polyfolds of Gromov-Witten Theory[END_REF]. Upon perturbing α near I t × [u 1 , u 5 ] × I v and we may also assume that (1) Φ *

Construction 7 . 32 .

 732 Apply Proposition 7.25 with ρ 0 ≤ ε h pert and Proposition 7.31. The end of Section 7.5.3 is devoted to the proof of Proposition 7.31. The contact form from Proposition 7.25 is α

m f t1 8 (Figure 31 .

 831 Figure 31. The g-levels

Figure 32 .Lemma 7 . 34 .

 32734 Figure 32. Conditions on f and g

  Their projections on the (t, v)-plane are contained in Γ [v1,v0] (Lemma 7.35). Let Y = 1, -

8. 2 .

 2 Computation of the Conley-Zehnder index. Let a = a i1 . . . a i k be a word such that l(a) < K. Let p a be an intersection point between γ a and S - Z . We denote by T (a) the period of γ a . Let R t be the path of symplectic matrices along γ a associated to the trivialisation described in Section 2.4. Let χ a be the map induced by the Reeb flow between S Z and S a , a surface tangent to ξ(p a ) atp a . Let G a = ϕ B • ψ i k • • • • ϕ B • ψ i1 . By definition of ϕ B and ψ,• dom(G a ) and im(G a ) are rectangles with respectively horizontal and vertical fibres and G a preserves the fibres;• dG a p a , ∂ ∂x ∈ C(H, ν); • dG a p , ∂ ∂x ≥ 1(ηM ) . Lemma 8.3. There exists θ 0 such that for µ, ν and η small enough, R T (a) satisfies the hypothesis of Lemma 8.2.

RandLemma 8 . 4 .Corollary 8 . 5 .

 8485 a,T (a) e 1 ≥ dχ pa (p a ) Re 1 ≥ 3 for η small enough. For all p ∈ dom(G a ), dG a (p) ∂ ∂x , ∂ ∂x is of the sign of k j=1 (-1) μ(ai j ) .Proof. Note that dϕ B (p) ∂ ∂z , ∂ ∂x > 0 for all p ∈ dom(ϕ B ). Therefore, we havedϕ B (p)v, ∂ ∂x > 0 for all v ∈ C p (V, A) such that v, ∂ ∂z > 0. We prove the desired result by induction on k. If k = 1 then dψ a1 (p) ∂ ∂x ∈ C(V, A). If μ(a 1 ) is even, -dψ a1 (p) ∂ ∂x , ∂ ∂z < 0 (see Figure 33) and we obtain dG a1 (p) µ(a 1 ) is odd, we obtain -dψ a1 (p) ∂ ∂x , the result for a = a i1 . . . a i k+1 . Let p ∈ dom(G a ) and v = dG ai 1 ...ai k (p) ∂ ∂x . By induction, v, ∂ ∂x is of the sign of k j=1 (-1) μ(ai j ) . Then, dψ ai k+1 v, ∂ ∂z is of the sign of k+1 j=1 (-1) μ(ai j ) and so is dG ai k+1 v, ∂ ∂x . For µ, ν and η small enough, k j=1 μ(a ij ) = µ(γ a )[2]. Proof. The signs of dG a ∂ ∂x , ∂ ∂x and R T (a) ∂ ∂x , ∂ ∂x coincide and R T (a) is hyperbolic (Lemmas 8.2 and 8.3). Its eigenvalues are positive if k j=1 μ(a ij ) is even and negative if k j=1 μ(a ij ) is odd (Lemma 8.4).

1 dψ a1 (p)e 1 dψ a1 (p)e 1 Figure 33 . 1 Lemma 8 . 6 .

 11133186 Figure 33. The vector dψ a1 (p)e 1

Figure 34 .

 34 Figure 34. The surface S c and the Reeb chords

( 21 )

 21 θ(t j ) ∈ j-1 l=1 µ(a i l )π -ν(θ 0 ), j-1 l=1 µ(a i l )π + ν(θ 0 ) .

  i l )π + π .We obtain (Lemma 8.6)θ(t j+1 ) ∈ j l=1 µ(a i l )π -ν(θ 0 ), j l=1 µ(a i l )π + ν(θ 0 ) or θ(t j+1 ) ∈ j l=1 µ(a i l )π + π -ν(θ 0 ), j l=1 µ(a i l )π + π + ν(θ 0 ) .By Lemma 8.4, we obtain the equation (21) for i = j. Lemma 8.1 provides us with the desired Conley-Zehnder index.

  3 4 y std , the map induced between S y and S y std for positive times can be decomposed into two maps with domains in S λ • the amount of time spent in Ω by a Reeb orbit is bounded by 2(y std + z max ).

	4 ,1 and S λ 4 ,5 and
	ranges in S λ 2 ,1 and S λ 2 ,5 ;
	• the map induced between S y std and S Z for positive times can be decomposed
	into two maps with domains in S λ 4 ,3 and S λ 4 ,-1 and ranges in S λ 2 ,3 and S λ 2 ,-1 ;

  • S B|u = S B|u max on [0, v 0 ]; • S B contains {0} × [u min , u max ] × {0} and is tangent to Span ∂ ∂u , ∂ ∂t along this curve; • the Reeb vector field is positively transverse to S B for t < 0, negatively transverse for t > 0. These condition are automatically satisfied for u ∈ [u min , u 1 ] and u ∈ [u 5 , u max ]. Let B denote the new bypass. For U small enough, this perturbation is ε prec -small. In what follows, let I v = [-v 0 , v 0 ] and v max = v 0 . 7.5. Convexification. The convexification process consists in adding a "bump" with prescribed contact structure in a neighbourhood of Γ prec . We first describe the new boundary in Section 7.5.1. In Section 7.5.2, we present the contact structure in the convexification and in Section 7.5.3 we modify this model to obtain the desired cone-preserving properties. Recall that we construct the convexification near the connected component Γ 0 contained in π 2 , π × [0, y std ] × [0, z std ]. 7.5.1. Perturbed boundary. We perturb the boundary for y ≤ 3 4 y std . For [y -, 3 4 y std ], the new boundary is the graph of a function. Let H be the set of smooth functions

			t				S B|u			
												S B|u max
												v
								perturbed S B	
		Figure 28. The perturbation of S
		h :	π 2	-	λ 3	,	π 2	+	λ 3	× y -,	3 4	y std → R
	such that										
	(1) h C ∞	1 (in particular h C ∞ < ε prec );
	(2) h = 0 near x = π 2 ± λ 3 and y = 3 4 y std ;	
	(3) h(-x, y) = h(x, y);								
	(4) for y ∈ y -, 2 3 y std , the map h does not depend on y and there exists x h flat such that h is increasing for x < -x h flat , constant on π 2 -x h flat , π flat 2 + x h and decreasing for x > x h flat ; (5) Sh = (x, y, z prod

  Construction 7.22. We apply Lemma 7.21 and choose a map h ∈ H such that v ∆ < max(h) < v max and such that the planes v = v max intersect S h outside the flat part of Sh . Convexification model. We now construct a convexification model for y ∈ y -, 2 5 y std and interpolate with the adapted model for y ∈ 2 5 y std , 2 3 y std . The new boundary is smoothed for y ∈ 2 3 y std , 3 4 y std . Let z > 0 and Φ z0

	Fact 7.23. There exists ε h pert such that for any ε h pert -perturbation of α prec in C 1 -
	norm, the Reeb vector field is transverse to Sh for all x satisfying x h flat ≤ |x-π 2 | ≤ λ 3 .
	7.5.2.

  such that |t| ≥ t 1 or (t, v) on Γ [0,v ∆ ] ; • f (t, u, v) = 1 for all (t, u, v) such that |t| ≥ 2t 1 or (t, v) on Γ [0,v ∆ ] ; • ∂ 2 f ∂v 2 (t, u, v) > Cand ∂f ∂v (t, u, v) > 4ρ for all (t, u, v) such that |t| ≤ t 1 and (t, v) ∈ Γ [v1,v0] ;

	• ∂ 2 g ∂v 2 ≥ 0 and ∂g ∂v < 0 on Γ [0,vc] ;
	• ∂g ∂v (t, v) >	Mg 2 and ∂ 2 f ∂v 2 (t, u, v) ≥ 0 on Γ [0,v0] ;
	• ∂f	

∂v (t, u, v) < 8ρ on Γ [0,v1] ; • ∂f ∂v (t, u, v) > m f for all (t, u, v) such that |t| ≤ t 1 and (t, v) ∈ Γ [v0,vc] ; • ∂g ∂v (t, v) < M g for all (t, u, v) such that |t| ≤ t1 2 and (t, v) ∈ Γ [v0,vc] ;

  ∂f1 ∂v > 2m f near (0, v c ), |f -f 1 | < εand ∂f1 ∂v > ∂f ∂v -ε. We now choose t 1 and v 0 such that ρ > Mg 2 and ∂f ∂v (t, v) > 2m f for all (t, u, v) such that |t| ≤ t 1 and (t, v) ∈ Γ [v0,vc]. We modify g (and change v 0 if necessary) so that g satisfies the desired conditions. To obtain the contact condition we choose g so that ∂g ∂v > 0 implies ∂f ∂v > 0 and max ∂g The projection in the (t, v)-plane of any Reeb orbit which contributes to Φ is contained inΓ [v1,v0] .Proof. The projection in the (t, v)-plane of a Reeb orbit is contained in a g-level.Thus no Reeb orbit contributes to Φ and intersects{0} × [u 1 , u 5 ] × [v c , v h ]. If a Reeb orbit intersects {0} × [u 1 , u 5 ] × [v 0 , v c ] then this orbit crosses the strip |t| ≤ t 1 and is contained in Γ [v0,vc] . In this strip -u 1 )and the u-interval swept out by the orbit is bounded below by min |R u |×8(u 5 -u 1 ) > u 5 -u 1 . The orbit does not contribute to Φ.We now consider a Reeb orbit which intersects {0} × [u 1 , u 5 ] × [-v max , v 1 ] and crosses the strip |t| ≤ 2t 1 . In this strip 1 Mg 8 and |R u | ≤ 2. The return time between -2t 1 and 2t 1 is bounded by 4t1 min(Rt) ≤ 32t1

		m f 2	≤	∂f ∂v	g ≤	∂f ∂v	g -	∂g ∂v	f ≤	5 2	∂f ∂v	,
	|R t | ≤	2Mg m f and |R u | ≥ 2 5 . Therefore, the time spent in the strip is bounded below
	by										
		2t 1 max(R t )	≥	t 1 m f M g = 8(u 5 2 ∂f ∂v ≤ ∂f ∂v g -∂g

∂v 1. Finally we modify f . Lemma 7.35. ∂v f ≤ 10ρ ≤ 4, |R t | ≥

  -u is non-decreasing. In addition, ∂Yu ∂v ≥ C ρ for |t| ≤ t1 2 . Thus, we have ũ(t max ) -u(t max ) ≥ ũ -u +

	and ũ C ρ	min t 1 |t|≤ 2	
	∂v 2	∂g ∂v -∂ 2 g ∂v 2 ∂v ∂g 2	∂f ∂v	≥ -	∂ 2 f ∂v ∂v 2 ∂g	≥ 0

  max ) -u(t max ) ≥ ũ -u + CM g t 1 (ṽ -v) 2ρ 2 .Let γ be a curve in{-t max }×[u 2 , u 3 ]×I v such that |γ (v)| ≤ B (the v-coordinate is the vertical coordinate). Let δ be its image on {t max }×[u 4 , u 5 ]×I v . By symmetry, if it is well-defined, the image of (-t max , γ(v), v) is (t max , δ(v), v).Therefore, we have D ≥ 1 ε B for C big enough. A similar proof shows the symmetric result. Additionally, if w = (1, γ (v)) then w ≤ √ 1 + B 2 and dΦ(p, w) ≥ √ 1 + D 2 . Thus the dilatation condition is satisfied for C big . Finally the return time between {-t max } × [u 2 , u 3 ] × I v and {t max } × [u 4 , u 5 ] × I v is bounded by 2(u 5 -u 1 ) + 2t max . Indeed, for |t| ≥ t 1 , we have |R t | ≤ 1 and the return time is bounded by 2t max . Additionally, for |t| ≤ t 1 , we have |R u | =≥ 8

		Mg(ṽ-v) 2ρ	as	Mg 2 ≤ ∂g ∂v ≤ ρ. Thus we obtain
	(19)	ũ(t Using equation
	(19), we obtain			
	(20)	δ (v) ≥ γ (v) +	CM g 2ρ 2 ≥ -B +	CM g 2ρ 2 = D.

The multi-curve Γ × {±1} is a dividing set of the boundary.

This operation corresponds to an annihilation in[START_REF] Mathews | Chords diagrams, contact-topological quantum field theory, and contact categories[END_REF].

See Lemma 7.8 for the definition of V smooth .
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and the return time is bounded by 11 8 (u 5 -u 1 ) as the u-interval is bounded by u 5 -u 1 . As u 5 -u 1 ≤ Γ λ D α < τ by definition of pre-convex bypass, we obtain the desired condition on the return time. 7.5.4. Convexification smoothing. In this section we interpolate between α conv and α prec for y ≥ 2 5 y std . Construction 7.36. For y ∈ 2 5 y std , y std , let α = α prec + al(y)Φ z0 (z) sin(x)dy where l is non increasing, l = 1 in 2 5 y std , 1 2 y std and l = 0 for y ≥ 2 3 y std . We extend this construction to the other non-convex areas by symmetry.

The 1-form α is a contact form as al(y)Φ z0 (z) sin(x) is C 1 -close to 0. Let B conv be the convexified bypass and α conv the associated contact structure. We call C = B conv \ B the convexification area and we denote by P the set where α conv = α prec . In coordinates (x, y, z), the connected component of P containing Γ 0 is the set z ≥ z 0 . In coordinates (t, u, v), it is contained between S B and S h and its v-coordinates are in (v ∆ , v max ) (Proposition 7.25). Lemma 7.21). Let γ be a Reeb orbit intersecting P.

Corollary 7.37 (Corollary of

Proof. If γ intersects the set y ≥ 2 5 y std , we obtain the desired result as R y > 0 and h is defined for x ∈ π 2 -λ 3 , π 2 + λ 3 . We now assume that γ is contained in the set y ≤ 

The tangency points between Sh and R αconv are the segment x = π 2 . Along this segment and for y ≤ 1 2 y std , R x is positively collinear to f inf (y)ρ -aΦ z0 (z h ) and

By symmetry we obtain the desired result in the other convexified areas. 

In addition γ intersects P (Lemma 7.5). Yet γ intersects only one connected component of P (Lemma 7.8). This leads to a contradiction.

Condition (B4). This condition is a consequence from Lemma 7.9. Conditions (B1), (B2) and (B3). These conditions derive from Lemma 7.17 and Lemma 7.31. Indeed, by Lemma 7.6, all the Reeb chords which contribute to the map between R λ and S R intersect P and thus Σ + and Σ -. In addition, the intersection points with Σ -are in [u 2 , u 3 ] × I v (Equation ( 11)) and the intersection points with Σ + in [u 4 , u 5 ] × I v (Equations ( 9) and ( 10) and Lemma 7.6). Let δ be a curve in π 2 + λ, π -λ × I max with tangents in C(V, A). Then the tangents of the image of δ in Σ -are in C(V, B) (Lemma 7.17) and the tangents of the image of δ in Σ + are in C(H, ε B ) (Lemma 7.31). Thus the image of δ on S R is ε R close to δ 1 . Similarly, the tangent of the image of an horizontal segment in S R are in C(H, ν) (Lemma 7.17). Condition (B3) is a consequence of the definition of preconvex bypasses. We obtain the rectangle structures on dom(ϕ i ) and im(ϕ i ) by considering the images of vertical curves in S Z and the inverse images of horizontal curves in S R . These curves are transverse (definition of pre-convex bypasses).

Conley-Zehnder index

In this section we prove Theorem 2.6: we compute the Conley-Zehnder index µ of the periodic orbit γ a described in Theorem 2.1. [START_REF] Bennequin | Entrelacement et équations de Pfaff[END_REF][START_REF] Bourgeois | Effect of Legendrian Surgery[END_REF]. Thus θ 1 -π < θ 2 < θ 1 + π and α 1 -3π 2 < θ 2 < α 1 + 3π 2 . Therefore θ 2 ∈ ((2k -1)π, (2k + 3)π). The proof of the other case is similar.