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REEB PERIODIC ORBITS AFTER A BYPASS ATTACHMENT

ANNE VAUGON

ABSTRACT. On a 3-dimensional contact manifold with boundary, a bypass
attachment is an elementary change of the contact structure consisting in the
attachment of a thickened half-disc with a prescribed contact structure along
an arc on the boundary. We give a model bypass attachment in which we
describe the periodic orbits of the Reeb vector field created by the bypass
attachment in terms of Reeb chords of the attachment arc. As an application,
we compute the contact homology of a product neighbourhood of a convex
surface after a bypass attachment, and the contact homology of some contact
structures on solid tori.

1. INTRODUCTION

We describe the effect on Reeb dynamics of an elementary change of the contact
structure on a 3-manifold with boundary known as a bypass attachment. Our
study is based on the explicit construction of a bypass. We encode the dynamics
of the associated Reeb vector field and give a symbolic representation of the new
periodic orbits. As an application, we compute the contact homology of a product
neighbourhood of a convex surface after a bypass attachment, and the contact
homology of some contact structures on solid tori.

Honda [27] introduced bypass attachments to classify contact structures on solid
tori, thickened tori, and lens spaces. Bypasses may be seen as basic building-blocks
of contact structures. In particular, cobordisms are constructed out of bypasses
as contact structures on a thickened surface are obtained from an invariant con-
tact structure and a finite number of bypass attachments and removals (see [26,
Section 11.1]).

Describing new periodic orbits after a bypass attachment is the first step toward
computing the contact homology of the new contact manifold. Introduced in the
vein of Floer homology by Eliashberg, Givental, and Hofer [11] in 2000, contact ho-
mology is an invariant of a contact structure on a closed manifold defined through
a Reeb vector field. Colin, Ghiggini, Honda, and Hutchings [6] generalised it to
an invariant of contact structures on manifolds with boundary called sutured con-
tact homology. The simplest associated complex is the Q-vector space generated
by Reeb periodic orbits and the differential “counts” pseudo-holomorphic cylinders
in the symplectisation of the contact manifold. Gromov [21] introduced pseudo-
holomorphic curves in symplectic geometry in 1985. Hofer [22] generalised them
to symplectisations in 1993. Our theorem is similar to a theorem of Bourgeois,
Ekholm, and Eliashberg [2] describing the new Reeb periodic orbits after a surgery
along a Legendrian sphere A in terms of Reeb chords of A. In addition, the au-
thors deduce exact triangles between contact homology, symplectic homology and
Legendrian contact homology. Finding an analogous triangle would be a natural
extension to this paper.

The computation of contact homology hinges on finding periodic orbits and
solving elliptic partial differential equations and thus is usually out of reach. To
our knowledge, Golovko’s work [19, 20] contains the only explicit computations in
the sutured case. Actual computations are of importance to clarify our intuition
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2 ANNE VAUGON

and understand connections between sutured Heegaard-Floer homology and sutured
embedded contact homology. Sutured embedded contact homology is a variant of
sutured contact homology introduced in [6] in the vein of Hutchings’ work [28].
Taubes [37] proved that it is an invariant of the manifold. In the closed case,
Kutluhan, Lee, and Taubes [30] and, independently, Colin, Ghiggini, and Honda [5]
announced an isomorphism between the two homologies. In addition, computations
can be of use to understand the algebraic structures associated to sutured contact
homology and obtain a comprehensive gluing theorem from the partial theorem
in [6].

Outline. This paper is derived from the PhD thesis of the author [38]. It is
organised as follows. In Section 2, we present our main theorems. In Section 3, we
recall some usual definitions in contact geometry and contact homology that will be
used in the sequel. In Section 4, we apply our main theorem to the simplest manifold
with boundary: the product neighbourhood of a convex surface. In Section 5, we
compute the contact homology of a product neighbourhood of a convex surface
after a bypass attachment, and the contact homology of some contact structures
on solid tori. The proof of our main theorem (Theorem 2.1) is technical. We give a
sketch of proof in Section 6 and a detailed proof in Section 7. Section 8 is devoted
to the proof of Theorem 2.6 which describe the Conley-Zehnder index of the new
Reeb periodic orbits.

2. MAIN RESULTS

2.1. Bypasses. Let us review some basic definitions (see Section 3 for more de-
tails). Let M be a 3-manifold. A 1-form « on M is called a contact form if a A da
is a volume form. A contact structure £ is a plane field locally defined as the kernel
of a contact form. To any contact form «, we associate the vector field, called the
Reeb vector field, such that tp,a = 1 and tg, da = 0. A Reeb chord of an arc vy
is a Reeb arc with endpoints on 7. A curve tangent to & is called Legendrian. In
a contact manifold, “pleasant” surfaces are convexr surfaces (see Section 3.1 for a
precise definition). In a neighbourhood of a convex surface S, the contact structure
is encoded by a smooth multi-curve I', the dividing set, separating S into positive
and negative regions (Giroux [16]). In what follows we specify the dividing set as-
sociated to a convex surface S by the pair (S,T'). Convexity is a natural condition
to impose to the boundary of a contact manifold. To deal with contact forms as
opposed to contact structures, for instance to define sutured contact homology, one
usually refines this condition as follows. A contact form « is adapted to a convex
surface (S,T") if ' is the set of tangency points between R, and S and, along I', the
vector field R, points toward the sub-surface Sy where R, is positively transverse
to S. On a manifold with convex boundary, the dividing set of the boundary is a
suture as defined by Gabai [14].

An attaching arc of the convex boundary (S,T") of (M,¢&) is a Legendrian arc
which intersects the dividing set I' in precisely three points, namely, its two end-
points and one interior point. A bypass attachment along an attachment arc v is
the gluing of a half-disc D with a prescribed continuation of ¢ along 5. We get a
new manifold with boundary by thickening (D, £).

2.2. Main theorem. Let [, = [—3T, 1T]. Let (M, a) be a contact manifold with

convex boundary (S,I') and 7o be an attachment arc on S. We assume that
(C1) there exists a neighbourhood Z of ¢ with coordinates (z,y,z) € I X
[—¥Umax, 0] X Imax where Inax = [—Zmax, Zmax) Such that
e o = sin(z)dy + cos(z)dz;
* 70 = [0,27] x {0} x {0};



REEB PERIODIC ORBITS AFTER A BYPASS ATTACHMENT 3

e Sy=DL, x{l} xIhx=5SNZ
(C2) « is adapted to S\ Sz.
Fix K > 0. Let dx () denote the image of 79 \ ' on S by the Reeb flow for times
smaller than K. Additionally, we assume that
(C3) dk (o) is transverse to 7.
Condition (C3) is generic and ensures that the number of Reeb chord of g with pe-

riod smaller than K is finite. We denote by ay,...ax these chords. Let l(a;, ...a;,) =
T(ai,) + -+ T(a;,) where T'(a;) is the period of the Reeb chord a;.

Theorem 2.1. Under conditions (C1), (C2) and (C3), there exists a contact man-
ifold (M',S’,a’) obtained from (M, S, ) after a bypass attachment along 7o, such
that

e S’ is convex;

e o’ is adapted to S" and arbitrarily close to o in M;

e Reeb periodic orbits of period smaller than K intersecting the bypass cor-
respond bijectively to words a on the letters ay,...,an such that l(a) < K
up to cyclic permutation.

In addition, the periodic orbit v, associated to a = a;, ...a;, intersects Sz in 2k
points denoted by py ,py, ... ,p,;,p;: and is arbitrarily close to the chord a; between
p; and p;r.

Therefore, if the contact form « is non-degenerate on M, the Reeb periodic orbits
of period smaller than K on M’ are exactly the Reeb periodic orbits of M of period
smaller than K and the orbits described in Theorem 2.1. This theorem is proved
in Sections 6 and 7. We will see in the proof that the condition “o’ is adapted to
S’” is crucial to obtain this symbolic representation of the new periodic orbits. The
following proposition ensures that conditions (C1) and (C2) are satisfied for any
contact manifold after an isotopy.

Proposition 2.2. Let (M,€) be a contact manifold with convex boundary (S,T")
and o be an attaching arc. There exists a contact structure &' isotopic to & and a
contact form o of & satisfying conditions (C1) and (C2).

This proposition derives from Giroux theory of convex surfaces (Sections 3 and 4)
and the explicit construction of Proposition 5.1.

2.3. Computations of contact homology. We now apply Theorem 2.1 to com-
pute some sutured contact homologies. The sutured contact homology is an in-
variant associated to a contact structure with boundary (M,£,T") where I is the
dividing set of the boundary. Though commonly accepted, existence and invari-
ance of contact homology remain unproven. In what follows this assumption will
be called Hypothesis H (see Section 3.3.3 for more details).

Let S be a convex surface and I' = [J;_,I'; be a dividing set of S without
contractible components. Let M = S x [—1, 1] be the product neighbourhood of S
with invariant contact structurel.

Proposition 2.3. There exists a contact form a without contractible Reeb periodic
orbits such that the cylindrical sutured contact homology of (M, a,T' x {£1}) is the
Q-vector space generated by n+1 periodic orbits homotopic to Ty, x {0}, k=10,...,n
and by their multiples.

Theorem 2.4. Let vy be an attachment arc in S intersecting three distinct com-
ponents of I'. Let T'g be the component intersecting the interior of vo. We denote
by (M',£") the contact manifold obtained from (M,£) after a bypass attachment

IThe multi-curve I' x {1} is a dividing set of the boundary.
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along vo x {1} and by T’ a dividing set of OM'. Then, under Hypothesis H, the
cylindrical sutured contact homology of (M’ &', T) is the Q-vector space generated
by n periodic orbits homotopic to Ty, x {0}, k =1,...,n and by their multiples.

Thus, a bypass attachment removes I'g and its multiples from the generators of
the sutured contact homology.

Contact structures with longitudinal dividing set on the boundary are charac-
terised by the dividing set of any convex meridian disc [27]. Golovko [20] computed
the contact homology in the case where the dividing set of a meridian discs consists
of segments parallel to the boundary. He also computed contact the homology of
solid tori with non-longitudinal boundary dividing set [19]. We extend his compu-
tations to contact structures such that (see Figure 1)

(C4) the boundary dividing set I" has 2n longitudinal components;
(C5) if (D, T = U, Ts) is the dividing set of a convex meridian disc D there
exists a partition of 9D in two sub-intervals I and Is such that
e 0I is contained in two bigons (called extremal bigons);
o if I = {i,01; C I or OT'; C I3} then any connected component of
D\ (Ui¢] Fi) contains at most one component of I'.

I
NG

extremal bigon ' , extremal bigon

I

FIGURE 1. A chord diagram satisfying condition (C5)

Theorem 2.5. Let & be a contact structure on M = D? x S satisfying condi-
tions (C4) and (C5) above. Under Hypothesis H, the sutured contact homology of
(M, &,T) is the Q-vector space generated by ny curves homotopic to {*} x St, n_
curves homotopic to {x} x (—S') and by their multiples where

ny = x(S+) + #{Fnon-extremal bigons} — #{+ bigons}.

2.4. Two improvements to the main theorem. We now describe the Conley-
Zehnder index u(7a) of the periodic orbit «, from Theorem 2.1. This index gives
the graduation in contact homology and is associated to a trivialisation of the
normal bundle of the orbit. We first construct a “nice” trivialisation extending
trivialisations along the Reeb chords. In the setting of Theorem 2.1, we denote
by a~ and a™ the inward and outward endpoints of a Reeb chord a, by [p, p] the
segment between p and p’ in the chart associated to Z and, if p and p’ are on va,
by [p,p']a the arc of v, between p and p’. For each i = 1,..., N, choose a collar
neighbourhood S; of a; U [aj,aﬂ. We obtain a collar neighbourhood S, of the
periodic orbit v, corresponding to a = a;, ... a;, by gluing together
e collar neighbourhoods of [p;7 , p;;]a U [p; , p:] given by a small perturbation
of S’ij y
e and an immersed disc in the bypass with boundary (J,|
embedded near its boundary.

+

vy

0i, , JaUlps vy,
For all 4, the annulus S; gives a symplectic trivialisation (e, eq) of £ along a;. Let
(R¢)te[0,7(a;)) denote the path of symplectic matrices induced by the differential of
the Reeb flow along a;. For all ¢ € [0,T(a;)], we denote by 6; the angle between
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e; and Ry(e1). Let fi(a;) be the integer such that 07, € (mii(as), 7(f(as) + 1)].
Then fi(a;) depends only on the homology class of S;.

Theorem 2.6. If a = a;, ...a;, s a word such that l(a) < K, then u(ya) =
Z?zl fi(ai;) in the trivialisation Sa.

In addition, our explicit construction of bypasses allows us to control all the new
periodic orbits after a bypass attachment but with less precision. This property is
used in our actual computations of contact homology. Let (M, «) be a contact man-
ifold with convex boundary (S,T") and 7o an attachment arc satisfying conditions
(C1) and (C2). We assume that

(C6) there exists A\g > 0 such that for all ¢ > 0 and for any small enough
perturbation of «, the distance between the dividing set and the endpoints
of the Reeb chords of [0, 27] X {1} X Iayx is either smaller that e or greater
than )\0.

Theorem 2.7. Under conditions (C1), (C2) and (C6), there exists a contact man-
ifold (M',S’,a’) obtained from (M, S, ) after a bypass attachment along ~o, such
that

e S’ is convex;

e o' is adapted to S’ and arbitrarily close to a in M;

o if [T+ N, 27 — Ao] X Lmaz — [Aos ™ — Ao X Lmae 18 the partial function
induced by the Reeb flow in M and ¢ is the map induced by the Reeb flow
in the bypass then every periodic orbit intersecting Sz intersects S, on a
periodic point of p o .

If the hypotheses of Theorem 2.1 and Theorem 2.7 are simultaneously satisfied,
the associated constructions coincide. In addition, the periodic orbit v, associated
toa = a,, ...a;, corresponds to the unique fixed point of pot;, o---opo);, where
1y, is the restriction of ¢ to the connected component of dom(¢) containing a; -

3. CONTACT GEOMETRY

3.1. Contact geometry and convex surfaces. A more detailed presentation can
be found in [15]. Let (M, & = ker(«)) be a contact manifold. A vector field whose
flow preserves ¢ is said to be contact. A fundamental step in the classification
of contact structures in dimension 3 was the definition of tight and overtwisted
contact structures given by Eliashberg [9] in the line of Bennequin’s work [1]. A
contact structure £ is overtwisted if there exists an embedded disc tangent to £ on
its boundary. Otherwise £ is said to be tight.

Eliashberg’s work [9, 10] initiated the study of surfaces in contact manifolds.
The characteristic foliation % of a surface S is the singular 1-dimensional foliation
of S such that

e z is a singular point if £, = T,.5;

o 7, =&, NT,S if x is non-singular.
If w is a volume form on S and ¢ : S — M is the inclusion, .% is defined by the
vector field X satisfying txw = i*«. The characteristic foliation determines the
germ of ¢ near S [16, Proposition 11.1.2].

The development of convexity by Giroux [16] following Eliashberg and Gromov’s
definition [12] represents a major progress in the study of contact geometry. A
surface S is convez if there exists a contact vector field transverse to S. If S has a
boundary, we require it to be Legendrian. Closed convex surfaces are generic [16,
Proposition 11.2.6]. The convexity of a surface is equivalent to the existence of a
dividing set for the characteristic foliation (Giroux, [16, Proposition I1.2.1]). A
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multi-curve I" on S is a dividing set for a singular 1-dimensional foliation .# of S
if there exist two sub-surfaces S+ of S, a vector field Y and a volume form w on S
such that

e 0S5y =T

e div, Y >0o0n Sy and div, Y <0 on S_;

e Y points toward S along I'.

The dividing set I' inherits the orientation of 9S,. All dividing sets of a given
foliation are isotopic. If X is a contact vector field transverse to S, the set of
tangency points between X and £ along S is a dividing set. The dividing set T’
encodes ¢ near S as any foliation divided by I' can be realised as the characteristic
foliation of a perturbed surface. This property is due to Giroux [16, Proposition
I1.3.6] and known as the realisation lemma. In favourable situations, the Reeb
vector field provides us with a dividing set.

Lemma 3.1. Let S be a compact surface in (M, «). If R, is tangent to S along a
smooth curve I' and if, along T', the characteristic foliation of S points toward S,
the sub-surface where Ry, is positively transverse to S, then S is convex and I' is a
dividing set.

Proof. In the definition of dividing set, choose any volume form w of S and Y such
that tyw = i*a where 7 : S — M is the inclusion. [l

3.2. Bypasses. Let S be a closed convex surface without boundary in a contact
manifold. A bypass for S is an embedded half-disc D in M such that

e D is transverse to S;
e D has a Legendrian boundary denoted by v; U~y and D NS = vy;
e the singularities of the characteristic foliation of D are (see Figure 2)
— a negative elliptic singularity in the interior of 7;;
— two positive elliptic singularities at the endpoints of v1;
— positive singularities along 5 alternating between elliptic and hyper-
bolic singularities.

The arc v is called the attaching arc of the bypass.

_|_
2

+ TR

FIGURE 2. The characteristic foliation of a bypass

Proposition 3.2 (Honda [27]). Let D be a bypass for S with attaching arc 7.
There exists an neighbourhood of S U D diffeomorphic to S x [0, 1] such that
o S~ 8 x{e};
e the contact structure is invariant in S X [0,¢€];
o the surfaces S x {0} and S x {1} are convex with dividing sets T' and T”
where I' and TV are identical except in a neighbourhood of v1 on which the
arrangements are shown in Figure 3.

Let (M, &) be a contact manifold with convex boundary S. Let I" be a dividing
set of S and ; be an attaching arc. A bypass attachment along 71 is a contact
manifold (M’,¢") with convex boundary S’ extending (M, £) such that there exists
a neighbourhood S x [0, 1] of S’ satisfying
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) o
i

FIGURE 3. Dividing sets I" and I"

o 5"~ Sx{l}
e S x {0} is convex and is the image of S by the flow of an inward contact
vector field;
e there exists a contact retraction of S x [0, 1] on an arbitrarily small neigh-
bourhood of S x {0} U D where D is a bypass for S x {0} with attaching
arc the image of 73 on S x {0}.
The differences between the dividing sets of S and S” are shown on Figure 3. Honda
[27] constructed an explicit bypass attachment on a convex boundary satisfying
condition (C1) (see Section 7.1).
There exist two degenerate bypass attachments: the trivial one that does not
change the contact structure up to isotopy and the overtwisted one that creates an
overtwisted contact structure (see Figure 4).

Y1 Y1

FIGURE 4. Trivial (left) and overtwisted (right) bypasses

Giroux [17] and Honda [27] independently classified contact structures on solid
tori. Honda’s proof hinges on bypasses. We follow Mathews’ presentation [33]. A
chord diagram is a finite set of disjoint properly embedded arcs in the disc D? up
to isotopy relative to the boundary.

Theorem 3.3 (Giroux [17], Honda [27]). Let F C S be a set with 2n elements
and F be a singular foliation on T? divided by T' = F x S and containing a
meridian leaf which intersects T' in 2n points. Tight contact structures on D? x
S1 with characteristic foliation F on the boundary up to isotopy relative to the
boundary correspond bijectively to chord diagrams of n chords with boundary in F.
In addition, the associated chord diagram is the dividing set of any convexr meridian
disc intersecting I' in 2n points.

By the realisation lemma, we can assume that the characteristic foliation of the
boundary satisfies the hypothesis of Theorem 3.3.

Proposition 3.4 (Honda [27]). Let £ be a contact structure on D* x St such that
the boundary dividing set T' has 2n longitudinal components. Let D' be a convex
meridian disc intersecting T' in 2n points. Fiz an attaching arc v C OD’. Then, the
contact structure &' on D* x S' obtained after a bypass attachment along v has a
boundary dividing set with 2(n—1) longitudinal components. In addition, the chord
diagram associated to &' is obtained from the diagram associated to £ by gluing the
endpoints of the two chords intersecting® v (see Figure 5).

2This operation corresponds to an annihilation in [33].
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_— >
bypass attachment
along g

Fi1GURE 5. Effect of a bypass attachment on solid torus

3.3. Sutured contact homology. We consider the generalisation of contact ho-
mology to manifolds with boundary called sutured contact homology and introduced
by Colin, Ghiggini, Honda and Hutchings [6]. Let (M, & = ker(a)) be a contact
manifold.

3.3.1. Holomorphic cylinders. The differential of contact homology “counts* pseudo-
holomorphic curves in the symplectisation of the contact manifold. One can refer
to [35] for more information. The symplectisation of (M,& = ker(a)) is the non-
compact symplectic manifold (R x M,d(e”«)) where 7 is the R-coordinate. An al-
most complex structure on a even-dimensional manifold M isamap J : TM — TM
preserving the fibres and such that J? = —Id. An almost complex structure .J on
R x M is adapted to « if J is T-invariant, J% = R,, J¢ = ¢ and w(-, J+) is a Rie-
mannian metric. A map u: (My, J1) — (Ma, J2) is pseudo-holomorphic if duo J; =
Jo o du. Here we consider pseudo-holomorphic cylinders u : (R x St,j) — R x M.
The simplest non-constant pseudo-holomorphic maps are trivial cylinders:

RxSl — Rx M
(s,t) > (Ts,y(T1)).

where v is a T-periodic Reeb orbit. Note that there also exist trivial pseudo-
holomorphic maps over any Reeb orbit. For every non-constant map

u: (R xS j) = (Rx M,J)

which is not a trivial cylinder, the points (s, t) such that du = 0 or 6% € im(du(s,t))
are isolated (see [35, Lemma 2.4.1]).

The map u = (a, f) : R x S* — R x M is positively asymptotic to a T-periodic
orbit v at +oo if limg, 100 a(s,t) = +oo and limg o0 f(s,8) = v(=Tt). It is
negatively asymptotic to v at —oo if lims_, o a(s,t) = —oo and lims_, o f(s,t) =
v (+Tt). It is a theorem of Hofer [22, Theorem 31] that holomorphic curves w :
(Rx S, j) — (Rx M, J) with finite Hofer energy are asymptotic to a Reeb periodic
orbit at oo if the contact form « is non-degenerate.

3.3.2. Conley-Zehnder index. The Conley-Zehnder index gives the graduation in
contact homology. Consider (M,{ = ker(a)) a contact manifold, v a T-periodic
Reeb orbit and p € . If ¢, denote the Reeb flow, the map dor(p) : (&,da) —
(&p, da) is a symplectomorpism. A non-degenerate periodic orbit + is called even if
der(p) has two real positive eigenvalues and odd if dgr(p) has two complex con-
jugate or two real negative eigenvalues. In addition, if dpr(p) has real eigenvalues,
the orbit is said hyperbolic. If it has two complex conjugate eigenvalues, the orbit
is called elliptic. Let ,, be the m-th multiple of a simple orbit 7;. Then ~,, is said
to be good if 1 and 7, have the same parity, otherwise -y, is said to be bad.

The Conley-Zehnder index was introduced in [7] for paths of symplectic matrices.
Our short presentation follows [31]. Let Sp(2) denote the set of symplectic matrices
in M2(R). The open set Sp* = {A € Sp(2),det(A — I) # 0} has two connected
components and they are contractible. Any path R : [0,1] — Sp(2) such that
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Ry =1 and R; € Sp*(2) can be extended by a path (R;)¢cp1 2y in Sp* such that

-1 0 2 0
R2W+<O _1)OI'R2W_<O 1/2)

Using polar decomposition, we write R; = S;O; where S; is positive-definite and
O is a rotation of angle 0;. The Conley-Zehnder index of R is pu(R) = @. It is
an integer and does not depend on the choice of an extension of R.

As dpi(p) @ (§p,da) — (&, (p); da) is a symplectomorpism, a trivialisation of £
along v provides us with a path of symplectic matrices. If v is non degenerate, its
Conley-Zehnder index is well defined. It gives a relative (depending on a choice of
trivialisation) grading of Reeb periodic orbits. Its parity matches with the above
definition.

3.3.3. Sutured contact homology. We now assume that (M, &) has a convex bound-
ary (S,T') and that « is a non-degenerate contact equation adapted to the boundary.
We sketch the construction of cylindrical sutured contact homology chain complex
(CY(M,T, ), d) defined in [6]. The chain complex C2'(M,T, ) is the Q-vector
space generated by good Reeb periodic orbits (here we consider simple periodic
orbits and their good multiples). Choose an almost complex structure J adapted
to the symplectisation. To define dv, consider the set M|z](J,7,7') of equivalence
classes (modulo reparametrisation) of solutions of the Cauchy-Riemann equation
with finite energy, positively asymptotic to 7, negatively asymptotic to 7 and in
the relative homotopy class [Z]. The R-translation in R x M induces a R-action
on Mz(J,7,7"). Due to severe transversality issues for multiply-covered curves,
there is no complete proof that Mz)(J,7,7') = Mz (J,, ’y’)/R admits a smooth
structure. We use Hypothesis H to make this assumption.

Hypothesis H. There exists an abstract perturbation of the Cauchy-Riemann
equation such that ﬂ[z}(J,%'y’) is a union of branched labelled manifolds with
corners and rational weights whose dimensions are given by [Z] and the Conley-
Zehnder indices of the asymptotic periodic orbits.

There exists several approaches to the perturbation of moduli spaces due to
Fukaya and Ono [13], Liu and Tian [32], Hofer, Wysocki and Zehnder [23, 25, 24]
or Cieliebak and Oancea in the equivariant contact homology setting [3, 4]. There
also exist partial transversality results due to Dragnev [8].

The differential of a periodic orbit 7y is

Oy = Z My o

— w(Y)

where k(') is the multiplicity of 4/ and n. .+ denote the signed weighted counts
of points in 0-dimensional components of m[z](J,'y,’y' ) for all relative homology
classes [Z]. In particular, the differential of an even (resp. odd) periodic orbit
contains only odd (resp. even) periodic orbits.

Under Hypothesis H, it is reasonable to expect the following: if there exists an
open set U C R x M containing all the images of J-holomorphic curves positively
asymptotic to v, negatively asymptotic to 4/, then U contains the images of all
solutions of perturbed Cauchy-Riemann equations with the same asymptotics for
all small enough abstract perturbations.

Hypothesis H is the key ingredient to prove the existence and invariance of
contact homology. The condition “ac adapted to the boundary” implies that a
family of holomorphic cylinders stays in a compact subset in the interior of M.

Theorem 3.5 (Colin-Ghiggini-Honda-Hutchings). Under Hypothesis H,
(1) 9% =0;
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(2) the associated homology HCY (M, &,T) does not depend on the choice of
the contact form, complex structure and abstract perturbation.

If 92 = 0 for some contact form «, we denote H C’ﬁyl(M ,I,a, J) the associated
homology.

Theorem 3.6 (Golovko [20]). Let & be a contact structure on D? x S* such that
the boundary dividing set has 2n longitudinal components and the dividing set of a
meridian disc has n components parallel to the boundary. Then the sutured cylin-
drical contact homology is the Q-vector space generated by n — 1 orbits homotopic
to {*x} x St and by their multiples.

3.3.4. Positivity of intersection. In dimension 4, two distinct pseudo-holomorphic
curves C' and C’ have a finite number of intersection points and that each of these
points contributes positively to the algebraic intersection number C-C’. This result
is known as positivity of intersection and was introduced by Gromov [21] and Mec-
Duff [34]. In this text we will only consider the simplest form of positivity of inter-
section: let M be a 4-dimensional manifold, C and C’ be two J-pseudo-holomorphic
curves and p € M so that C and C’ intersect transversely at p. Consider v € T,,C
and v’ € T,C’ two non-zero tangent vectors. Then (v, Jv,v’, Jv') is a direct basis
of T,M (J induces a natural orientation on T,M). In the symplectisation of a
contact manifold, positivity of intersection of a pseudo-holomorphic curve with a
trivial holomorphic map results in the following lemma.

Lemma 3.7. Let (M,&) be a contact manifold, a be a contact form and J be an
adapted almost complex structure. Consider U an open subset of C, u = (a, f) :
U— Rx M a J-pseudo holomorphic curve and p € U such that df, is injective
and transverse to R(f(p)). Then, R(f(p)) is positively transverse to df,.

The hypothesis “df), injective and transverse to R(f(p))” is generic. We will use
positivity of intersection in the following situation to carry out explicit computa-
tions of sutured contact homology in Sections 4 and 5. Let (M, ¢ = ker(a)) be a
contact manifold with convex boundary and « be a contact form. We assume there
exist two sets of Reeb chords of dM, denoted by Xy and X_, with non-empty
interior. Let J be an almost complex structure adapted to «.

Lemma 3.8. Letu: (Rx S, j) — (Rx M,J) be a J-holomorphic cylinder asymp-
totic to v+ and y—. Assume that for any Reeb chord ¢ € X1 there exists a path of
properly embedded arcs in M\ (v Uvy—) connecting c and a Reeb chord in int(X+)
with reversed orientation. Then im(u) is disjoint from int(X ) Uint(X_).

Proof. Generically a Reeb chord is transverse to u. Let ¢4 be a Reeb chord in X
transverse to u. There exists c_ in X_ transverse to u and connected to —cy by
a path of properly embedded arcs in M \ (y4+ U~_). By positivity of intersection,
et -u>0. Yet ¢ -u = —c_ -u and c; does not intersect im(u). O

4. THICKENED CONVEX SURFACES

In this section we study the simplest example of contact manifold with boundary.
We compute its sutured contact homology and apply our main theorem. Let S be a
convex surface and I' = | J;"_, I'; be a dividing set of S. Assume I' has no contractible
component. Let M = S x [—1, 1] be the product neighbourhood of S with invariant
contact structure. This contact structure is tight [18, Théoreme 4.5a]. Let v be
an attachment arc. The multi-curve I' x {£1} is a dividing set of the boundary.
Giroux [16, Proposition 2.1] proved that there exists a contact form ag such that

(C7) for alln =1,...,n, there exists a neighbourhood U; of T'; with coordinates

(55,?/72’) S [_xmaxyxmax] X [_17 1] X Sl
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such that

o SNU; =~ [~Tmax; Tmax] X {0} x St;

o I, ~ {0} x {0} x S%;

e oy = f(z)dy+cos(z)dz where f : [—Zmax, Tmax] — R is non-decreasing,

f = %1 near +x,. and f = sin near 0;
(C8) ag = p+ £dy on Sy x [-1,1]\ U where +dfy > 0 and U = {J!_, U;.

The Reeb periodic orbits are exactly the curves I'; x {t} for all ¢ € [-1,1] and
1 =0,...,n (see Figure 6). The contact form is degenerate and is not adapted to

Y
A

| T
l ! /V \\\

FIGURE 6. The vector fields R, and R,, projected on the (z,y)-plane

¥

the boundary. In U;, near x = 0, we perturb «q into
ap = sin(z)dy + (1 + k(2)l(y)) cos(x)dz

where

(C9) k is a cut-off function such that £ = 1 near 0 and k = 0 near £xax;
C10) [ is a C*°-small strictly convex function with minimum 0 at 0.
( y

The associated Reeb vector field is

1 l'(y)k xi/cos(lx)
T o(z,9) p(z,y) sm(x)c(:s(xgz) y) cos(x)

Proposition 4.1. The contact form «,, is non-degenerate, adapted to the boundary.
Its Reeb periodic orbits are the curves T'; x {0} for i =0,...,n. These orbits are
even and hyperbolic.

Proof. In M \ U, the Reeb vector field is R = :I:B%. Thus the Reeb periodic
orbits are contained in U. In addition, if [ is small enough, they are contained
in the neighbourhood where £ = 1. In this neighbourhood, the projection of the
Reeb vector field in the plane (x,y) is collinear to the Hamiltonian vector field
of (z,y) — I(y)cos(z). There are no closed levels so the Reeb periodic orbits
correspond to critical points of the Hamiltonian (see Figure 6). By linearising the
Reeb flow ¢; along T'; x {0} we get

tr (dge(0,0,0),¢) = 2cosh ( tl”(O)) > 2.
Thus the Reeb periodic orbits are even and hyperbolic. O

Proof of Proposition 2.3. Proposition 2.3 is a corollary of Proposition 4.1. Indeed
d=0in CY(M,T x {%1}, ) as all the orbits are even. O

We now apply our main theorem to M. By Proposition 2.2 and [16, Proposi-
tion 2.1] there exists an isotopic the contact structure with a contact form satisfying
conditions (C1) and (C2) and coordinates in a neighbourhood of T'; compatible with
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the coordinates in Z and satisfying conditions (C7) and (C8). We perturb the con-
tact form into

ap = f(z)dy + (1 + k(2)l(y)m(z)) cos(z)dz
where k and [ satisfy conditions (C9) and (C10) and

(C11) m is a smooth cut-off function, m = 0 on [—2Zmax, Zmax] and m = 1 outside
a small neighbourhood of [—zmax, Zmax]-

Let p(z,y,z) =1+ k(z)l(y)m(z). The Reeb vector field is

1 . l/(y)kk(lx)%(z)cos(m)
—Fm ) oyt | P9 F () cost)

R, =

Proposition 4.2. The contact form ay, is non-degenerate, adapted to the boundary.
Its Reeb periodic orbits are the curves T'; x {0} for i =0,...,n. These orbits are
even and hyperbolic.

Proof. As in the proof of Proposition 4.1, for [ small enough, the Reeb periodic
orbits are contained in the neighbourhood where £ = 1. In this neighbourhood,
any Reeb orbit intersecting the set xy < 0 meets the boundary or is equal to I'; x {0}
(see Figure 6). In addition, any Reeb orbit intersecting the set xy > 0 meets the
set xy < 0. Thus the Reeb periodic orbits are the curves I'; x {0}. By linearising
the Reeb flow ¢, along I'; x {0}, we get

tr (de;(0,0,0)e) > tr (dpo(0,0,0)¢) = 2. B

We denote by I'g the connected component of I' which intersects the interior
of ~vg. If g intersects three distinct components of I, then g intersect Uy along
[—Tmax, Tmax] X {1} x {0}. If + intersects only two distinct components of T,
there exists z; € S! such that ~yg intersects Uy along [—Zmax, Tmax] X {1} x {0} and
[0, Tmax| X {1} x {21} (reverse the orientation of S if necessary). If ¢ is a Reeb chord
of 79, we denote by ¢ the union of ¢ and the arc of g joining ¢* and ¢~. Recall
that ¢t and ¢~ are the endpoints of c.

Proposition 4.3. The contact form «y, satisfies condition (C3) for all K > 0. In
addition (see Figure 7),

o if g intersects three distinct components of T', the set of Reeb chords of v
is {cx, k € N*} and [e5] = [To]";

e if vy corresponds to a trivial bypass attachment, the set of Reeb chords of
Yo is {ck, dy, k € N*} where [c5] = [d] = [To]" and the z-coordinates of cr
and dx are respectively 0 and z1;

o if vy corresponds to an overtwisted bypass attachment, the set of Reeb chords
of 7o is {do, cx,dy, k € N*} where ¢ and dy, are as above for k € N*, dy is
contractible and the z-coordinate of da' s 21.

In a trivialisation that does not intersect small translations of the Reeb chord
along 8%, we have [i(cy) =1 and f(dy) = 0.

Corollary 4.4. We assume that g intersects three distinct components of I'. Let
L > 0. There exists a contact manifold (M’, &') obtained from (M, ay)after a bypass
attachment along vy such that for alll < L the set of Reeb periodic orbits homotopic
to [To]' is

- -
(k= (ke b)) € (NS T= Rt km}/{cyclic permutation}.

In addition, u(v.) = m if v, is the orbit associated to k = (k1,...,kmn).
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trivial bypass overtwisted bypass

[ : p L _ x
20
2 \dl 2 \dg 3

27 2m J¢1 21 et
C1
—4 d2 |—4
dy
C2 C2 )
VZ VZ VZ ch

\, image of 9 on Sz
F1GURE 7. Reeb chords

Corollary 4.5. An overtwisted bypass attachment creates a contractible Reeb pe-
riodic orbit.

Proof of Proposition 4.3. For I small enough the Reeb chords are contained in Uy
and more precisely in the neighbourhood where k = 1. Let 2y = sup{z, m([0, z]) =
0}. We lift the S'-coordinate in Uy to R and denote by § = (xg,25) the image of
Yo ON [—Zmax; Tmax] X {1} X R (see Figure 7). There exists Smax < Tmax such that
dom(d) = (—Smax,0). In addition lims_,_, . z5(s) = o0 and lims_,g 25(s) = 2.

Let (x2,, Y., ) denote the image of vy by the Reeb flow in the plane z = z;. For all
z > g and for all small enough n > 0, <& (2, (s+n)—z.(s)) and L (y.(s+n)—y.(s))
are non-negative. It holds that

1

(1) zl(s) > 1 y.(s) = mzo

(renormalise R,, and use condition (C10)). Thus, if (sg,1,0) and (z,1,2) are the
endpoints of the lift of a Reeb chord, we have

1 /

))yz(SO) <0

Z5(s0) = —————
tan(z.(so

and § intersects the segments [—Zmax, Tmax] X {1} X {2k7} exactly for k € N*. In
addition, there is only one intersection point. This point is the endpoint of a Reeb
chord. If the bypass is trivial or overtwisted, let z; denote to the smallest positive
lift of z; € S*. Then ¢ also intersects [0, Zmax] X {1} X {2k7 + 21} if and only if
k € N* and there is exactly one intersection point. This concludes the description
of the Reeb chords when ~, intersects three distinct components of T'.

We now compute fi(a) for some Reeb chord a. In the coordinates (R,eq,e2)
given by the symplectic trivialisation of ¢ along a, let v denote the projection of
d

2y on (e1,e2). Then v # e; and v is positively collinear to es at t = 0. Let R,

denote the symplectic matrix induced by the differential of the Reeb flow on ).
The vector dR; - e; does not cross Ryv as 2’.(s) > 1. Write dR; - e; = r(t)e?®). If
a = cg, then v is positively collinear to —es at t = T'(a). The tangent vector to the
image of vy on £,+ at the endpoint of a is

a’, (s0)
Y%, (50) cos®(zo)
., (80) cos(zo) sin(xo)
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where the endpoints of a are (sg, 1,0) and (z9, 1, z0). Using (1), we get
3
0(T(a)) € (r, 7”) + 212,

Thus 6(T'(ck)) € [7,27] and fi(ex) = 1. If a = di, then v is positively collinear to
ez at t = T'(a). In addition, it holds that

k) = 0. O

Proof of Corollary 4.4. There exists v > 0 such that for any small perturbation of
o, the Reeb chords of [—v, V] X {1} X I yax are arbitrarily close to {0} x {1} X I;pax. We
apply Theorem 2.1 and Proposition 2.7 for A = v and K such that i; +---+i; < L
implies ¥¥_, T'(c;,) < K.

The set of Reeb periodic orbits homotopic to [Tg)! in Corollary 4.4 corresponds
to Reeb periodic orbits with period smaller that K described in Theorem 2.1. It
remains to prove that there are no other Reeb periodic orbits homotopic to [T)’.
If v is such a Reeb periodic orbit then v is associated to a periodic point of ¢ o)
(Proposition 2.7). We decompose 9 into (Uy)ren~ so that, if a is a Reeb chord
that contributes to Wy, then [@] = [[o)¥. For k < L, we have U;, = 1)} (see
Proposition 2.7). Therefore v corresponds to a fixed point of ¢ 0o ¥;, 0-+-0po ¥,
and i1 + - -+ + i, = [ and we obtain T'(v) < K. O

5. APPLICATIONS TO SUTURED CONTACT HOMOLOGY

In this section we apply Theorem 2.1 and Proposition 2.7 to prove Theorem 2.4
and Theorem 2.5. To compute the contact homology of a convex surface after a
bypass attachment and of some contact structures on solid tori, we construct suit-
able contact structures on the associated manifolds. On a thickened convex surface
(Theorem 2.4) we start from the contact form described in Section 4. Theorem 2.5
gives the contact homology of a contact structure & on D? x S* such that

(C4) the boundary dividing set I" has 2n longitudinal components;
(C5) for a convex meridian disc dividing set (D,T' = [J;_,T;) there exists a
partition of 9D in two sub-intervals I; and Is such that
— 01 is contained in two bigons (called extremal bigons);
—if I = {i,0T; C I or 9T; C Iy} then D\ (UigEI FZ-) contains at most
one component of T'.

All these contact structures are obtained from the contact structure (D? x S*, ¢ /)
with parallel dividing set on convex meridian discs after a finite number of bypass at-
tachments. In Section 5.1 we compute the sutured contact homology of (D?x S*, & )
and apply Theorem 2.1 and Proposition 2.7 to obtain the Reeb periodic orbits af-
ter a finite number of bypass attachments. To compute the contact homology (and
prove Theorem 2.5), it remains to control the differential. By Corollary 4.4, a
bypass attachment creates many homotopic periodic orbits. This complicates the
direct study of the differential. We get round this difficulty in Section 5.2 by prov-
ing that all the holomorphic cylinders are contained in a standard neighbourhood.
We deduce the differential in this neighbourhood by use of computations of contact
homology in simple situations on a solid torus.

5.1. Contact forms on solid tori. For n € N* and 0 <n < 7, let

Dy ={(z,y),r € [-m +n—h(y),nm —n+h(y)],y € [-1,1]}
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where h : [-1,1] — R is a strictly concave function with maximum h(0) < 7,
vertical and zero at +1 (see Figure 8). On M, , = D, , x S', we consider the
contact form

a = f(x)dy + cos(x)dz + g(z, y)dx

where
e fis 2m-periodic, f = (—1)**! in a neighbourhood of [kﬂ' + I kT + %’r] and
f=sinnear km, k=—-1,...,n;
e g does not depend on y for y > %;
e g =0 for y < 0 and outside a neighbourhood of z = —%” where f = —1;
o the leaves of the characteristic foliation of OM,, ,, are closed.

Then (My,,,, ker(a)) satisfies property (C4) and a dividing set I' of the boundary
is given by the curves + = —7 +n —h(0), v = kv + 5,k = 0,...,n — 1 and
z = nm —n+ h(0). Let D be a disc in M, , transverse to £ with Legendrian
boundary. As % is a contact vector field, D is convex. A dividing set is given by
condition a% € ¢ and is thus composed of the curves v = kr+ 5,k = —1,...,n—1.
Therefore (M, ker(c)) is diffeomorphic to (D? x S*,¢/) (Theorem 3.3).

Proposition 5.1. There exists a contact form o, on M, , without contractible
Reeb periodic orbits such that (M, ,,ker(cy,)) is diffeomorphic to (D* x S, &) and
the sutured contact homology of (My, y,ap,T'y) is the Q-vector space generated by
Ny = [”771] curves homotopic to {*} X St n_=n—-1-— ny curves homotopic to

{*} x (=SY) and by their multiples.
Proof. As in Section 4, we perturb « into

ayp = sin(z)dy + (1 + k(z)l(y)) cos(x)dz
in a neighbourhood of x = km,k = 0,...n — 1 such that x — k(x — k) satisfies
condition (C9) and [ satisfies condition (C10). By Proposition 4.1, the contact
form o, is non-degenerate, adapted to the boundary. Its Reeb periodic orbits are

the curves {k7} x {0} S* for k = 0,...,n—1. These orbits are even and hyperbolic.
Therefore 9 = 0. U

Let £ be a contact structure on M = D? x S! satisfying conditions (C4) and (C5)
for some ng € N*. There exist n, m > 0, a family of integers {k; } and {¢,} € {—1,1}
for j =1,...,m such that

° ]_Skj §n—2andkj+1—kj 23,
e (M,¢) is diffeomorphic to the contact manifold obtained from (M, ,,, ker(a))
after bypass attachments along the arcs

5 = (kg = ), Oy + 1] x {25} x { 2222

n

for j =1,...,m (see Figure 8).

il kom Y1 Y2

¥

() 1 ()

FIGURE 8. Attaching arcs v;

Let 6 = {km} x {0} x S'. We describe a contact structure on M, , adapted to the
bypass attachments along the curves ~;.
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Proposition 5.2. Let L > 0 and 0 < T4 K 1. There exists an arbitrarily small
perturbation oy of a in M, ,, such that

e 7, satisfies conditions (C1) and (C3) for all K > 0 and for allj =1,...,m;
e «y is adapted to S\ |J Sz,;

o a, = a outside Uy = [~Tpaz + kT, Tmax + k] x [=1,1] x St for k =
0,....,n—1;
o the Reeb periodic orbits are the curves § for k=0,...,n — 1, these orbits

are even and hyperbolic;

k.
e the set of Reeb chords of v; is {c;;,1 € N*} and [c;] = [{*} x Sl](fl) "

Proof of Proposition 5.2. In Uy, consider the contact form
ap = f(x)dy + (1 + k(2)l(y)m(z)) cos(x)dz

such that z — k(x — km) satisfies condition (C9), [ satisfies condition (C10) and
m =0in Z =|JZ; and m = 1 outside a neighbourhood of Z. By Propositions 4.2
and 4.3, we obtain the desired conditions. O

Let or = {k;,k; even} and o_ = {k;, k; odd}. As in Corollary 4.4 we apply
Theorem 2.1 and Proposition 2.7 to deduce the Reeb periodic orbits after the bypass

Proposition 5.3. Fiz L > 0. Let (M',a') be the contact manifold obtained from
(My, ), o) after bypass attachments along the arcs (7v;)j=1,...m for K large enough.

e For all1 <1 < L, the Reeb periodic orbits homotopic to [Sl]l are the
curves (%k for 1 < 2k < n —1 and the periodic orbits v, associated to
a=¢; .. Cyy Withiy+---+ip=1land k; € 0.

o Forall —L <1 < —1, the Reeb periodic orbits homotopic to [Sl]l are the
curves 512k+1 for 1 <2k +1 < n—1 and the periodic orbits v, associated
toa=c; j...Cy 5 withig +---+ip=—l and k; € o_.

We denote by B; the bypass attached to the attaching arc ;.

5.2. Holomorphic cylinders. It remains to control the holomorphic cylinders in
the symplectisation of the contact manifold (M’ a') given in Proposition 5.3. Let
Eé be the Q-vector space generated by the periodic orbit d;, and by the periodic
orbits obtained after the bypass attachment along v; homotopic to [S 1]l. Let El+
and E! be the Q-vector spaces generated by the periodic orbits (5l2k for 2k ¢ o
and 5l2k 41 for 2k +1 ¢ 0. The complex of contact homology is written

)y = @ Elo Bl il >0,

kj€oy
cFlara)= @ EloE it <o,
kjco_
Let Ig = [k;jm — %“, kjm+ %’T] Consider 7, such that
SZj = [_-Tmax + k‘jﬂ',ﬂ?max + kjﬂ'} X {1} X Iﬁlax.

Lemma 5.4. For any adapted almost complex structure on the symplectisation of
(M, o)

b a\E’it = O;'
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e forallj=1,...,m, we have a(E;) C Eg and any holomorphic cylinder with
finite energy and asymptotics in E; is contained in U; U B; (see Figure 9)
where

UjZUk].,1UUijUkj+1U<Ig X [—1,1] x I7 )

max

24

) ° + . ) J( ° /}\ )
Uo Ui U, Us Uy Us
Lﬁ u2

FIGURE 9. Neighbourhoods U;

Proof. Let

U= J U, u | (I x[-1,1] x I},,,) UB;

j=1l..n JjEo+

W = ([-m+n,nm —n] x [-1,1] x S*) \U.

The connected components of U are the sets U; for | € o1 U (oL — 1)U (o4 + 1)
and U; for j =1,...,m. In W, all Reeb orbits are Reeb chords joining the planes
y=1and y = —1. Let v be a Reeb periodic orbit (see Proposition 5.3). If vy = 65»
let U, = Uj. If «y is derived from the bypass attachment along ~;, let

Uy, =U; U (I} x {—¢;} x I1,,) UB;.

In both cases v C U,. Let v4 and y_ be two homotopic Reeb periodic orbits and
X =W\ (U,YJr U Uﬂ,_). As v and y— are homotopic and kj+1 — k; > 3, for any
Reeb chord ¢ in X there exists a path of properly embedded arcs in X connecting
¢ and a Reeb chord in int(X) with reversed orientation. Thus, by positivity of
intersection (Proposition 3.8), all holomorphic cylinders are contained in U. O

Let (M,& = ker(a)) be the contact structure obtained from (My,,,as) after
a bypass attachment along v; = [0,27] x {1} x {r} (Theorem 2.1). Let I' an
adapted dividing set of the boundary. The dividing set of a convex meridian disc
contains exactly three connected components which are parallel to the boundary
(Proposition 3.4). By Golovko’s result (Theorem 3.6), the contact homology of
(M, «,T') is generated by two periodic orbits homotopic to S and by their multiples.
We now compare this result with our construction and obtain useful properties of
Opi. There are two periodic orbits of R, homotopic to St (Proposition 5.3). If

[ > 0, we have C,[ksl}l(M/,a’) = E' and 8Ez+ = 0 (Lemma 5.4). If [ < 0, we have
CLSI]I(M’,Q’) = E!. Thus ker(0p:) /im(dp: ) = 0. Let U denote the set U; given
by Lemma 5.4.

Proof of Theorem 2.5. Let &€ be a contact structure on M = D? x S! satisfying
conditions (C4) and (C5). We choose the contact form given by Proposition 5.2.
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The neighbourhoods ¢, described in Lemma 5.4 are contactomorphic to &. Thus
ker(0g)/im(9g:) = 0. Therefore HC[Sl]ﬂ(M, ,0) = EY for I > 0. As

dim(EL) 4+ #{o+} + #{+ extremal bigon} = x(S+) + #{0+},

we obtain the desired dimension. O

We now turn to the case of a thickened convex surface. Let S be a convex
surface and I' = (J;_, T; be a dividing set of S without contractible components.
Let 79 be an attachment arc in S intersecting three distinct components of I'. Let
M = Sx[—1,1] be the product neighbourhood of S and & be the associated invariant
contact structure. Choose a contact form a; of £ given in Section 4. We denote
by (M’,¢’) the contact manifold obtained from (M, ¢) after a bypass attachment
along vp x {1} and by I"” a dividing set of 9M’. Fix K > 0 and apply Theorem 2.1
to obtain a contact form o of £'. Let B denote the attached bypass. The proof of
the following lemma is similar to the proof of Lemma 5.4.

Lemma 5.5. For any adapted almost complex structure, the J-holomorphic curves
in the symplectisation of (M', o) are contained in (see Figure 10)

U=JUiU I x [-1,1] X Inaz) UB.
=0

In addition, U is contactomorphic to U.

F1GURE 10. The neighbourhood U projected on S

Proof of Theorem 2.4. Theorem 2.4 is a corollary of Lemma 5.5. The proof is
similar to the proof of Theorem 2.5. O

6. SKETCH OF PROOF OF THE BYPASS ATTACHMENT THEOREM

We now sketch the proof of our main theorem (Theorem 2.1). A complete proof
is given in Section 7. Fix K > 0. Let (M,& = ker(a)) be a contact manifold
with convex boundary (S5,I") and o be an attaching arc satisfying condition (C1),
(C2) and (C3). To describe the Reeb periodic orbits after a bypass attachment,
we study the maps ¢p and vy, induced on Sz by the Reeb flow in the bypass and
in M. Their domains and ranges consist of rectangles and these maps contract or
expand the associated fibres. The maximal invariant set of the composite function
is hyperbolic and this function is similar to a “generalised horseshoe” (see [29, 36]).
The Reeb periodic orbits correspond to the periodic points and are given by the
symbolic dynamics.

In Section 6.1 we present our notations. We describe the Reeb dynamics in M
in Section 6.2 and in the bypass in Section 6.3. In Section 6.4, we prove that these
dynamic properties indeed give the symbolic description of Reeb periodic orbits.
Finally, in Section 6.5, we sketch the construction of a hyperbolic bypass: a bypass
with Reeb dynamics described in Section 6.3.
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6.1. Notations. We say that a (partial) function ¢ : X — Y is decomposed into
(¢i)ier if dom(yp;) is a union of connected components of dom(yp), (dom(p;))ier is
a partition of dom(y) and ¥; = Q|dom(e,)-

In coordinates (z,y, ), let Sy, denote the plane y = yo, X=¥0 = XN{(z,y,2),y <
Yo}, X2 = XN {(x,y,2),y > yo} and XWov1] = X<v1q X>% Forall 0 < A < 5
we consider the following subsets of Sz (see Figure 11)

4
k k+1
RA: ( U |:27T+/\’(2)7T_A:|> XImaxa

k=-1

2
A A
Q)\ = <U |:]€7T - 5,]4177‘1‘ 2:|> X ImaX7
k=0
s m 3T 37
X = ([0, Z] X [_Zmaxvo)) U (|:47 4:| X Imax) U <|:4aﬂ-:| X (Oyzmax:|> )
5T 5T Tm e
= (2] cmeon (5.2 ) ([ ¢ 050])
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FIGURE 11. The subsets Ry, @, X and Y

and Se i = [%ﬂ — ¢, %” + E] X Imax- A rectangle is a closed set diffeomorphic to
[0,1] x [0, 1]. This set inherits horizontal and vertical fibres from [0, 1] x [0, 1].

In (R2,(-,-)), let D be a straight line and v > 0. The v-cone centred at D is the
set

C<D7V) = {U) € R2a |<w,v)| < I/|<U),’LL>|}

where u is tangent to D and (u, v) is an orthonormal basis. We denote by H and V
the horizontal and vertical axes. Let U and V be two open setsin R? and f : U — V
be a diffeomorphism. The image of a cone field C on U is the cone field f.C on V'
defined by (f.C), = dfj-1(p) (Cf—l(p)). If C and C’ are two cones fields on U we
write C C ' if C, C C), for all p € U. If z = 7(z) is a smooth curve in R?, let

Coz(7,€) = C(7'(2),€) and Co 2 (v+,€) = C(7/(2)F, €).

6.2. Reeb dynamics in M. We now study the Reeb dynamics is the manifold M
with boundary. To attach an adapted bypass we will perturb the contact form «.
We want to control the map ), induced by the Reeb flow in M for times smaller
than K and for the contact form a and perturbations of &. The Reeb chords of Sz
that contribute to 1y, for the contact form a are close to the Reeb chords of ~q.
Nevertheless, as I' N Z is contained in Reeb orbits, this decomposition is not stable
by perturbation and some Reeb chords may appear near the dividing set.
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Let A > 0, the pair (Sz, \) is said to be K-hyperbolic if 15; can be decomposed
into (v);_ .y and (see Figure 12):

(1) dom(¢p) C Qx and im(vhg) C Qx;
(2) if z € [kr — 3, km + 3] and (z, 2) € dom(tp) then
o (QZJO)I(Ia Z) € []{;71— - %a km + %]a
o (Yo).(x,2) < zif k is odd;
o (¢0):(x,2) > z if k is even;
(3) forall j € [1,N], dom(%;) and im(¢;) are rectangles in Ry with horizontal
fibres and the v; reverse the fibres.

Note that one can have dom(t¢g) = ) or N = 0. Let pu, v and 7 be real positive

Y;

Yo
R,\/_/]H R)\
_a ' 4
’ %A M, H;

FicUure 12. A K-hyperbolic surface

Yo

\

v}
|3

numbers. A K-hyperbolic surface is dominated by w = (u,v,7) if for j=1,...,N
there exist segments Dy ; C dom(%;) and Dy ; C im(¢,;) with boundary on z =
+2max such that (see Figure 12):

(1) the tangents of the vertical fibres of dom(¢;) and im(v;) are respectively
in C(D; ;,v) and C(Ds ;,v);
(2) (¢4),C(H,v) C C(Dy, ) and (wj_l)*C(H, v) C C(D1j, 1);
(3) the return time of v; is contained in (T'(a;) — 7,T(a;) + 7).
Let € > 0. A K-hyperbolic (w-dominated) surface (S, ) is e-stable if for all e-
perturbation of « preserving vy, (S, A) remains K-hyperbolic (and w-dominated).

Proposition 6.1. Let 7 > 0 and p > 0. There exists a contact form arbitrarily
close to a, Zmaz small and some real positive numbers v, X and € such that

o « satisfies conditions (C1), (C2) and (C3);
e (Sz,\) is K-hyperbolic (u, v, T)-dominated and e-stable.

Proof. After a small perturbation of «, we can assume that the images of v \ T’
on Sz by the Reeb flow and the opposite of the Reeb flow for times smaller that
K are transverse to ~y. The intersection points correspond to the endpoints of
the Reeb chords a1, ...,an. For zyax small enough, the domain and range of ¥y,
are contained in a small neighbourhood of the endpoints of the Reeb chords. We
choose dom(¢yg) = ). Let D; ; and D5 ; be the tangent to the image of 7o \ I' on
Sz at the endpoints of the Reeb chords ay,...,an (see Figure 13). We obtain the
vertical fibres of dom(vys) and im(tpr) as the inverse images and images of the
horizontal segments in im(¢5s) and dom(tas). For small enough perturbations of «,
the structure of ¢y, is preserved outside Qx. In Qx X [—Ymax, 0], the component
|R.| is close to 1 and v satisfies the desired conditions. O
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FIGURE 13. The segments D ; and the rectangle structure of im(t);)

6.3. Reeb dynamics in the bypass. We now describe the desired dynamics in
the bypass in terms of horizontal rectangles. A hyperbolic bypass in Z is a triple
(B,ap,\) where (B, ap) is a contact manifold in Z and X is a real positive number
such that
(1) BSY = Z=Y and ap is adapted to the boundary in Z=°;
(2) the map ¢p induced on Sz by the Reeb flow in B can be decomposed into
maps ¢ and ¢ such that
e dom(ypg) C Qx and im(pg) C Qa;
e dom(ypy) C X and im(p;) CY;
o if v € [k — 3, kr + 3] and (z,2) € dom(ipg) then
— (p0)a(z, 2) € [km — 3, km + 3];
— (p0)z(x, 2) < z if k is odd;
— (¢0)2(z, z) > z if k is even;
(3) the restriction of ;1 to Ry can be decomposed into (¢; ;); je{o,1} (see Figure
14) where dom(ip; ;) and im(y; ;) are rectangle as large as Ry with vertical
fibres and the ¢; ; reverse the fibres.

i Ry R
$0,1
e\ -
$1,0 -
R)\ L RA A

z \
©1,1

FIGURE 14. The rectangles dom(y; ;) and im(¢p; ;)

As in the previous section we want to control the return time and obtain some
cone-preservation properties. A hyperbolic bypass (B, ag, A) is dominated by wp =
(V’ 7_’ A7 7}) if

(1) (i), C(V,A) C C(H,v) and (g, ), C(V,A) C C(H,v);

(2) [ldgi,;(p,v)]| > ;o] for all p € dom(p;,;) and v € Cp(V, A);

(3) ||d<p;j1(p, v)|| > %||v|| for all p € im(yp; ;) and v € C,(V, A);

(4) the return time in Ry is bounded by 87.
The following theorem is the main ingredient in the proof of Theorem 2.1.
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Theorem 6.2. Fiz K > 0. Let (M, & = ker(a)) be a contact manifold with convex
boundary (S,T) and vo be an attaching arc satisfying conditions (C1), (C2) and
(C3). For all real positive numbers v, 7, A, n, € and \ and for zmas small enough
there exists a hyperbolic bypass (Vg,ap,\) obtained from (V,{g) after a bypass
attachment along o, dominated by (v, 7, A,n) and such that ap is e-close to a.

If (Sz, ) is K-hyperbolic, e-stable and (u, v, 7)-dominated, we call the bypass
attachment described in Theorem 6.2 a K-hyperbolic bypass attachment.

6.4. Reeb periodic orbits after a bypass attachment. Before turning to the
proof of Theorem 6.2, we prove that Theorem 6.2 and Proposition 6.1 imply The-
orem 2.1 and Proposition 2.7. We prove this result in two steps:

(1) we obtain a symbolic representation of the Reeb flow in restriction to Rjy;
(2) we prove that all new Reeb periodic orbits intersect Ry.

Fix K > 0. Let (M,{ = ker(a)) be a contact manifold with convex boundary
(S,T) and 79 be an attaching arc satisfying conditions (C1), (C2) and (C3). We
assume K # [(a) for all words a on the letters aq,...,an. Thus, there exists ex
such that |K — [(a)| > ek for all words a. Let Iy be such that I(a;) > Iy for all
i =1,...,N. There exists ¢ such that these estimations remain satisfied for all 2¢-
perturbations of a.. Without loss of generality lp < 1 and ¥ < 1. Let 7 < é—OKEK.
We apply Proposition 6.1 to obtain a K-hyperbolic surface, (p, v, 7)-dominated and
e-stable. Without loss of generality € < e, v < p and C(D; j, 1) NC(H, u) = {0}
for i = 1,2 and j = 1,...,N. Choose A > 0 such that C(D;;,u) C C(V,A)
and C(V,A)NC(H,u) = {0} for i = 1,2 and j = 1,..., N and for all contact
forms e-close to o. Choose M > 0 such that ||dy;|| < M and ||d77/1j_1|| < M for
j=1,...,N and for all e-perturbations of a. Let n < ﬁ Apply Theorem 6.2, to
obtain a hyperbolic bypass (Mg, ap,A) dominated by (v, 7, A,n) and such that ap
is e-close to a.

To obtain a symbolic representation of the new Reeb periodic orbits, we apply
a fixed point theorem in hyperbolic situations. The following proposition derives
from [36, Theorem 3.2].

Proposition 6.3. Let R and R’ be two rectangles in [0,1] x [0,1] such that the
vertical boundaries of R are contained in {0,1} %[0, 1] and the horizontal boundaries
of R' are contained in [0,1] x {0,1}. Let F : R — R’ be a diffeomorphism such
that, for some A >0, v >0 and a > 2

o F.C(V,A) CC(V,A) and F7'C(H,v) C C(H,v);

o ||dF~Y(p,v)|| > allv|| for allp € R' and v € C,(H,v);

o ||[dF(p,v)|| > allv|| for allp € R and v € C,(V, A).

Then F has a unique fixed point.

Proposition 6.4. Let a = a;, ...a;, and Fy =;, o pp...¢; o@p in restriction
to Ryx. The map Fy has a unique fized point. The period T(va) of the associated
Reeb periodic orbit va satisfies T'(va) € [l(a) — 9kT,l(a) + 9k7].

Proof. By induction on k, the map F, can be decomposed into F§ and F} such
that (see Figure 15) :

e im(F?) are rectangles as high as Ry with horizontal fibres;

e dom(F?) are rectangles with vertical fibres contained in two different com-
ponents of Ry and as large as the associated component;

o Fo,C(V,A) C C(D2yy,p) and Fy' C(H,v) C C(H,v);

o ||dE Y (p,v)|| > WH@H for all p € im(Fy) and v € Cp(H, v);

o ||dFa(p,v)| > WH’U” for all p € dom(F,) and v € Cp(V, A).



REEB PERIODIC ORBITS AFTER A BYPASS ATTACHMENT 23

Fy

] im(¢q,,)
1 dom(pp|g,)

Ey

FI1GURE 15. The maps F§ and F}

To obtain a unique fixed point, we apply Proposition 6.3 to the component of Fj
such that dom(F?) Nim(F?) # (). The estimates on the period of the associated
Reeb periodic orbit derives from the estimates on the return time. O

We now turn to the second step of the proof.

Proposition 6.5. Let v be a Reeb periodic orbit intersecting Sz in p, and such
that T(y) < K. Then p, ¢ Q.

Proof. We control the Reeb orbits intersecting Q) and prove that they are not
periodic. Let X = [lm — %Jm—i— %] and pg = qo € im(vyy). As long as these

expressions are well-defined, let pg; 1 = wM_l(pgl), P2 = ©B Y(P2rt1), Qi1 =
v (p2r) and gory2 = Yar(ga1). Write pp = (27,y) and ¢ = (27, y;). There exists
k such that g € Xj. The following implications hold.
If k is odd and zg > 0, then x; € X} and z9; < 29141 < 221+2-
If k is even and zp < 0, then z; € X, and 2z9; > 29141 > 2o42-
If k is even and zg > 0, then z; € Xy and 25, < 25, < 255
If k is odd and 2o < 0, then 27 € X}, and 25 > 25, | > 25 5.
We give a detailed proof in the case k odd and zy > 0. The proof of the other
cases is similar. We prove the result by induction. If x9; € Xy, 29; > 0 and pojy1
is well-defined then po; = ¥pr(poi41) and pyy € Uj im(t;). As py € Qn, we have
par € im(tg). Therefore, pa; = ¥o(pai+1) and poyy1 € dom(vg). Thus, we obtain
Tojr1 € Xy and z9p41 > 291, If 29141 € X, 22141 > 0 and pojyo is well-defined,
then pojr1 = @B (parse) and por1 € Y Uim(pg). As k is odd, we obtain 29,41 > 0
and pyy1 € @y and therefore pyy1 € im(ywp). Thus, we have pyr1 = ©o(parie)
and poy 42 € dom(pg). Consequently, xo;12 € Xp and 29112 > 29141

Let v be a Reeb periodic orbits intersecting Sz in p, € @ and such that
T(y) < K. If p, € S_, then pp(py) € S+ NQx. Thus, without loss of generality,
we can assume p, € S;. Therefore p, € dom(pp) Nim(¢y) and z, € Xj. If k is
odd and z, > 0, then p; is well defined for all [ € N, z; in increasing and ~y is not
periodic. This leads to a contradiction. The proof of the other cases is similar. [

Proof of Theorem 2.1. Let a = a;, ...a;, be a word such that I(a) < K. By
definition of Iy, we have k < % Thus T'(7a) € [l(a) — £, 1(a) + =] and T'(ya) <
K (Proposition 6.4).

Conversely, let v be a Reeb periodic orbit intersecting Sz and such that T'(y) <
K. Let p1,...,pr denote its successive intersection points with Sy and ¢p,...,qx
its successive intersection points with S_. By Proposition 6.5, for all j = 1...k
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there exists 4; such that ¢; € dom(¢;;) and pj1 = ¥4,(q;). Let a = a;, ... a;,.
Then pg is the fixed point of F,. Then l(a) < K + 9kt (Proposition 6.4). Thus
k < EEOET and k < 2K Therefore I(a) < K + ek and I(a) < K. O

Proof of Proposition 2.7. There exists € such that for any e-perturbation of «, the
map s can be decomposed into 1y and ), such that 1y has properties similar
to those described in the definition of K-hyperbolic surface, dom(z);) C Ry, and
im(¢1) C Ry,. Apply Theorem 6.2 for A = Ay and any v, 7, A and n. As in
Proposition 6.5, if v is a Reeb periodic orbits intersecting Sz in p,, then p,, ¢ Q.
Thus any Reeb periodic orbit intersects S_ at a periodic point of ¢p o 1. O

6.5. Hyperbolic bypasses. We now give an overview of the proof of Theorem
6.2. It is the main and last step in the proofs of Theorem 2.1 and Proposition 2.7.
The complete proof is technical and is the subject of Section 7.

Honda’s construction (see Sections 3.2 and 7.1) provides us with a bypass at-
tachment (M’, o') along the attaching arc 7o but ' is not adapted to the boundary.
This attachment, if properly performed, does not create any Reeb periodic orbit.
Indeed, near Sz, the Reeb vector field is tangent to the planes z = cst and its
slope is tan(z). Thus, all Reeb orbits intersecting Sz outside a neighbourhood of

r=7Forz= 37" go out of the bypass (see Figure 16). Therefore the domain and
Y
K
z

FIGURE 16. A non-convex bypass attachment

range of the map induced on Sz by the Reeb flow in the bypass are contained in

neighbourhoods of x = £ and = = 37” By definition of a K-hyperbolic surface,

2
there is no new Reeb periodic orbit.

To obtain a contact form adapted to the boundary, we use the convezxification
process described in [6]. It consists in gluing a small “bump” with prescribed contact

form along the non-adapted part of the dividing set (see Figure 17). Inside this

Y
A

| N
2 ]
Z/

F1GURE 17. The convexification bump

bump the Reeb vector field is nearly tangent to the dividing set. The restriction
of op to Ry is now non-empty. The path of the associated Reeb chords is the
following



REEB PERIODIC ORBITS AFTER A BYPASS ATTACHMENT 25

7

convexification

1 ’ =

(7, y)-coordinates convexification

F1GURE 18. Reeb chords of Ry

e they enter the convexification bump and follow the dividing set (see Fig-
ure 18 left);

e then, they reach the area in M’ where the Reeb vector field is nearly tangent
to the dividing set I'p x {0} and travel along I'p x {0} (see Figure 18 centre);

e finally, they go out of the bypass in a similar way and intersect Ry again
(see Figure 18 right).

To understand the Reeb dynamics and obtain cone-preserving properties, we de-
scribe the image of vertical curves on intermediate surfaces (see Figure 19). A

FIGURE 19. Images of vertical curves in the bypass

vertical curve is stretched into the convexification bump, then transported (and
slightly stretched) in the upper part of the bypass. After a last visit to the con-
vexification area, the curve becomes nearly horizontal. The effect on the level of
rectangles is shown on Figure 20.

We now translate these intuitive pictures into more explicit conditions on the
Reeb flow in the bypass. Section 7 is devoted to the construction of a bypass
satisfying these conditions. Let (M, & = ker(a)) be a contact manifold with convex
boundary (S,T") and ~y be an attaching arc satisfying conditions (C1), (C2) and
(C3). We divide the bypass into two regions, the region y < ysq where the contact
form is standard and the convexification bump is added and the region y > ysiq
where the contact structure corresponds to a thickened half overtwisted disc. We
use the notations from Section 7.1. Fix real positive numbers K, v, 7, A, 7, ¢
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FI1GURE 20. Rectangles on intermediate surfaces

and A < §. Let (B,ap) be a bypass such that the boundary Sp is convex, ap is
adapted to Sp, ap is arbitrarily close to a and the Reeb flow satisfies the following
properties.

Reeb dynamics restricted to Ry. (To reduce the number of compositions we consider
the map induced by the Reeb flow between Sz and Sg.)

(B1) There exist real positive numbers 01, eg and Ag, two graphs in z denoted
0o and 07 and a decomposition (g, 1) of the map induced between Sz
and Sy for positive time such that

e dom(y;) are rectangles with vertical fibres and basis [§ + A, 7 — ] and
[+ A, 2% — A (see Figure 20);
e im(p;) are rectangles in an eg-neighbourhood of §; with horizontal

fibres and basis Iprq (see Figure 20);

; preserves the fibres (see Figure 19);

(93), C(V, A) C C(ds,er) and (o7 '), C(67, Ar) C C(H,v);

lde; (p,v)ll > 5 llv]| for all p € im(p;) and v € Cy(;", Ar);

[|[dep;(p,v)| > ﬁ”v” for all p € dom(¢;) and v € Cp(V, A);

— the return time is bounded by 4.

(B2) The map induced between Si and Sz for positive times can be decomposed
into ¢f, and ¢} and there exist two graphs §° and ' satisfying similar
properties.

(B3) C(d;,er) C C(5jJ‘,AR), C(6',er) C C(d5-, ARr) and & and & intersect trans-
versely in one point if de1(8,6;) < er and de1(8',67) < eg.

Reeb dynamics in BZYst,

(B4) The domain of the map induced by the Reeb flow on S, is contained in
s A w 3w A 37w

(2 — 2,2 + 3] X Iywoa and its range in [3F — 3,35 4+ 2] x Iy0q.
Reeb dynamics in BO:Ysl,
(B5) There is no return map on S, .
(B6) The return map on Sz can be decomposed into 6y, 1 and 62 such that
e dom(fy) C S%’Qk and im(6y) C S ok
o (0).(z,2) < z if k is odd;
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o (0).(z,2) > z if k is even.
The Reeb chords which contribute to 6; do not intersect a neighbourhood
of Systd .

(B7) The map induced between Sz and S, ,, for positive times can be decom-
posed into two maps with domains in X and X + 27 and ranges in 5’%71
and S FE

(B8) The map induced between S,,, and Sz for positive times can be decom-
posed into two maps with domains in 5%73 and S%,_l and ranges in Y and
Y — 2.

Proposition 6.6. The bypass (B, ap, ) is hyperbolic and (v, T, A,n)-dominated.

Proof. The map pp can be decomposed into ¢y and ¢; where the Reeb chords
which contribute to ¢g do not intersect S, and the Reeb chords which contribute
to 1 intersect Sy, ,. The properties of g derive from condition (B6). By condition
(B5), ¢1 is the the composite of the maps described in conditions (B7), (B4) and
(B8). Thus dom(y;) C X and im(p1) C Y. By conditions (B4) and (B5), the
restriction of ¢ to Ry is the composite of the maps described in conditions (B1)
and (B2). Conditions (B1) and (B3) ensures that the composite map is a map
between rectangles. The hyperbolic properties derive from conditions (B1), (B2)
and (B3). O

7. HYPERBOLIC BYPASSES

In this section we construct a bypass satisfying conditions (B1) to (B8) and thus
end the proofs of Theorem 2.1 and Proposition 2.7. Fix some positive numbers
A< g, Ystd, T and Zprod < Zmax. In what follows, we have zpa < 1.

The construction of a hyperbolic bypass is technical. We start from an explicit
contact form on a bypass inspired from Honda [27] (Section 7.1). In Section 7.2,
we present some preliminary lemmas ensuring a precise control of the Reeb flow.
Section 7.3 presents a preparatory perturbation of the contact structure in the
bypass called a pre-convex bypass. This pre-convex bypass determines the curves
§; and 87 (condition (B1)). The actual construction begins in Section 7.4 with the
description of adapted coordinates. In Section 7.5, we present the convexification
contact form in the coordinates described in Section 7.4. In Section 7.6 we prove
that our construction satisfies the desired conditions.

7.1. Explicit constructions of bypasses. In this section we present an explicit
construction of a bypass attachment. This construction is due to Honda [27] and is
the first step of our explicit construction in the proof of Theorem 2.1. We construct a
contact structure on the product of a smoothed half overtwisted disc and smoothen
the product.

Let (M,a) be a contact manifold with convex boundary (S,I') and vy be an
attachment arc satisfying condition (Cl). In coordinates (x,y) € I x Ry, let
Uy =[5, %] x [y, 400) and 71 = I, x {0}. Consider closed set A diffeomorphic
to a square (see Figure 21) such that A = I, x [0, yo] outside Uy and

DA =71 U ({—?’I} y [0,y0]> U ({T} « [07y0}> U,

Choose a 1-form 3 on A such that
(1) there exists yg > 2ystq such that § = sin(z)dy in A\ Usy,,, and 3 is a
positive multiple of sin(z)dy for y < ygs;
(2) in Uy, N A the singularities of 3 are
e a half-elliptic negative singularity in (m, yg);
e two half-hyperbolic singularities in (0,yg) and (27, yg);
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e two positive elliptic singularities on 0.A for z = 0 and x = 2m;
e positive singularities on AN Uy,;
(3) there exists a smooth proper multi-curve T'y dividing A into two sub-
surfaces A4 such that £df8 > 0 on Ay, A is oriented as I' 4 and fr, > 0;
(4) if T'p is the component of I'4 joining (g,O) and (37”, 0), there exist coor-
dinates (r,0) € [37” — &, 37” -I-E] X [0, Omax] = U near T'p such that T'p ~
{32} x [0, 6imax] and B = sin(r)dé.

FIGURE 21. A smoothed half overtwisted disc

Remark 7.1. One can assume that ’fFD ﬂ‘ < 7 by replacing 8 by (1 —b(z)c(y))S
where b and ¢ are suitable cut-off functions.

We now follow [16] to construct an invariant contact structure on A4 x R. Let
a=f+ f(z,y)dz where
o f(z,y) = cos(z) for y < 3yqq or v ¢ [- %, T¢];
e in U, the function f depends only on r and is decreasing, in addition
f(r,0) = cos(r) near r = 37,
o inUy,, \U, f==£1if £dp > 0;
e elsewhere f(-,y) has the same variations as cos and
— if y > 2ysq, the function f does not depend on y and interpolates
between cos and 1

— if y < 2ysta, the function f interpolates between cos and f(-, 2ystq)-

We now smooth A x Ii0q to glue it on Sz. There are three types of corners: the
convex corners ve X {£zprod}, the concave corners 1 X {£zpr0a} and the corners

associated to x = —?jf and x = 1}7”. We smooth the convex corners using a function

lsup : Ib X Iprod — Rj_

independent of z for x ¢ [—%, 1%”] and such that lg,p (-, 2) is strictly concave with
maximum v (z) at z = 0 (see Figure 22). Similarly we smooth the concave corners

using an even function

linf : [_Zmaxv _Zprod} U [Zprodv Zmax} — [07 ysmooth]

decreasing and strictly convex on [2zprod, Z0] and zero on [zg, Zmax]. In addition, we
assume Ysmooth < Ystd < inf(lgyp) and im(lsyp) N (U X Ipod) = 0. To smooth the

A7 AY A/ — B
ls
P I 1L Ysmhooth
0 I Y N N
Zprod T Zprod T Zprod TE

FIGURE 22. Bypass smoothing
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remaining corners, we first perturb the previous smoothing for z < 0 and z close
to —F so that the perturbed boundary is the graph of a function

e i
he [ E —eam e] % (0,0) 5 (2 0)

such that %Z > 0 on dom(h) and %Z(a:,y) >n > 0forall |z — F| < 5. There exists
€ < €4 such that cotan (—g — 5) < 1. We smooth the boundary of the bypass for
T € [—% —& -5 %] so that the new boundary is the graph of

™ ™ S
k : |:_§ — &, _5 - 5] X [_ZmaX7Zmax] — [anO]

and
e k=0 for x close to —5 —¢;
° 0§%<%forallz<0;
o ZE <0 forall z > 0.
We smooth the boundary for z close to 57“ with a similar construction and denote

by B the smoothed product. Let M’ = M UB. Then M’ is a smooth manifold with
boundary S’.

Proposition 7.2. After an arbitrarily small perturbation of the contact form near
v2 X {0}, the boundary S’ is convex. A dividing set, denoted by T smootn, 1S given by
the tangency points between the Reeb vector field and S’ (see Figure 23).

| |
Ry R_ Ry \ \
I
Zprod R \ R,
J !

Zmax

\

FIGURE 23. The dividing set I'smooth

Remark 7.3. The dividing set I'smooth is disjoint from the graphs of A and k.
Indeed, the Reeb vector field is tangent to the graphs of h or k if and only if
g—’;(x,y) = cotan(z) or %(z, z) = tan(zx).

Proof. By use of the implicit function theorem, the set of tangency points between
the Reeb vector field and S’ is a smooth curve I'. In addition the characteristic
foliation of S’ is positively transverse to I' except along Uy N (2 x {0}). In a
neighbourhood of Uy N (72 x {0}), we consider the contact form «+e(x, y)dz where
€ is a non-positive, small and smooth function that does not depend on y in a
neighbourhood of {—%, 3%} x {yo}. This perturbation does not change I' and the
characteristic foliation of S’ is now positively transverse to I everywhere. We apply
Lemma 3.1 to obtain the convexity of S’. (]

Proposition 7.4 (Honda [27]). M’ is obtained from M after a bypass attachment
along 1.

The dividing set is pictured on Figure 23. Figure 24 shows the associated Reeb
vector field. In particular, « is not adapted to S’.
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FIGURE 24. The Reeb vector field along oot

7.2. Preliminary lemmas. This section can be skipped on first reading. We
present bounds on zp.x and on the perturbations of the contact form ensuring a
precise control of the Reeb flow. Let Q = I; X [0, ystd] X Imax and a = sin(x)dy +
cos(z)dz.

Lemma 7.5. For small enough perturbations of «, the x-coordinate of any Reeb
orbit in § covers an interval of length at most %.

Proof. The z-coordinate of R,, is zero and the amount of time spent in €2 by a Reeb
orbit is uniformly bounded. (]

Lemma 7.6. For z,,,; small enough and for any small enough perturbation of o
e condition (B6) is satisfied;
o forall) <y < %ystd, the map induced between S, and S,,,, for positive
times can be decomposed into two maps with domains in S%,l and 5%75 and
ranges in Sy 1 and Sy 5;
e the map mduced between Sy.. and Sz for positive times can be decomposed
into two maps with domains in 5%73 and S%_l and ranges in S%,P’ and

Sa _q;
3,
o the amount of time spent in Q by a Reeb orbit is bounded by 2(Ysta + Zmaz)-

Proof. For zpax small enough, the domain and range of the map from S, to Sy, are
contained in S P and S A5 forall 0 <y <3 $Ystd- Similarly, the domam and range
of the map from Sy, to S are contained in Sa 3 and Sa ;. Thus the conditions
on the map between Sy and 9, are satisfied for any small perturbatlon of a.

We now prove condition (B6) and the return time condition. For any small
perturbation of «

e |Ry| > 5 outside (Sg,o USa, US%A) % [0, ystal;

e |R.| > 3 into (S%A,OUS%QUS%A) x [0, Ystal;
e the hypotheses of Lemma 7.5 are satisfied.

Nl= N

Thus any Reeb orbit intersecting Sz outside Sx ,USa US4 4 is not a Reeb chord
of Sz (Lemma 7.5). Any Reeb chord of Sy stays in 5%7% for some k. Along any

Reeb orbit, |R,| > % or |R.| > 1 (Lemma 7.5) and we obtain the desired bound on
the amount of time spent in (2.

Finally, the period of any Reeb chord of Sz is bounded by 2z,,x. Thus, for small
enough perturbations, the y-coordinate covers an interval of length at most 2z,
and 2zmax < Ystd 10T Zmax small enough. Thus the Reeb chords which contribute
to 65 do not intersect a neighbourhood of S, , and condition (B6) is satisfied. [

std

Remark 7.7. If the contact form is not perturbed near z = km there is no Reeb

chord on Sz or Sy,,. More precisely, let y € [0,ysta) and o’ be a small perturbation
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of o such that o/ = « in (S%,O USz U S%A) X [y, Ysta]- Then there is no Reeb
chord of Sy, contained in Iy X [y, Ysta] X Imax.

We smooth the corners of €2 as described in Section 7.1. The dividing set is given
by the smooth curve Typooth (see Proposition 7.2). We still denote by Tgmootn its
restriction to (2. The convexification process will take place in a neighbourhood of
Tsmootnh and will radically change the contact form. To control the new Reeb orbits,
we first control the Reeb chord of a neighbourhood of T'syooth-

Lemma 7.8. There exists an arbitrarily small neighbourhood Vspmooth 0f T smooth
such that, for any small perturbation of a, the Reeb chords joining two distinct
connected components of Vspmootn are contained in S%’Qk X [0, ysea]- In addition, the
orientation of these Reeb chords is given by the sign of the z-component of R,.

Proof. There exists ¢ < % such that for any small perturbation of «, any Reeb

orbit intersecting Se 2x+1 X [0, Ysta] X [Zprod — €5 Zmax) remains in S¢ ap41 X [0, Ysta] ¥
[Z‘“g’d , zmax} for K = —1,...,2. In addition, we ask that the z-coordinate of any
Reeb orbit in €2 covers an interval of length at most 5.

Choose some neighbourhood Vimeoth 0f I'smooth With radius smaller that 5. Any
connected component of Vymootn 1S contained in

|:k2ﬂ- - %, @ + ;:| X [O7ystd] X Imax

for k= —1,...,5. Consider the connected component contained in
€
2
Any Reeb chord connecting this component to another is contained in S; 9,1 x
[0, Ysta] Or in S o1 X [0, Ysta]. By definition of €, there is no Reeb orbit in S 91

[07 ystd}' O

Lemma 7.9. Let (A,B) be a bypass foliation. For zmy.. small enough, for any
smoothing as described in Section 7.1 and for any small perturbation o of a such
that o/ = o in (S%U USz o U S%A) X [Ystd, 2Ystd) the condition (B4) is satisfied. In
addition, the return time is bounded by 6,,45.

™ 9
[lﬂ' — 5 — 5,171"1‘ ] X [anstd] X Imax.

Proof. For y € [ystda %yscd], we have o = sin(x)dy + cos(z)dz. Thus the domain
and range of the return map can be made as close to x = kn as desired for zmax
small enough. In addition, the only R,-chord is I'p x {0} and the return time is
bounded by €ax- O

7.3. Pre-convex bypasses. Let (B,«a) be a bypass as defined in Section 7.1. In
what follows we will always assume the the smoothing map l,¢ is invariant by
mirror symmetry along the plane z — 2,04 —y = 0 for 2 > zp04. We assume
Ysmooth < ySTtd Recall that the Reeb vector field is tangent to the dividing set
Tsmooth of OB = S’ when S’ is vertical and points toward S’ in the concave part of
S’ (Proposition 7.2). To apply the convexification process we first “eliminate” the
tangency points between R, and I'smootnh by perturbing a to obtain a pre-convex
bypass. We use the symmetries of the bypass to extend local constructions. In

partioular, f (2,5, € [2, 2] x [0, ya] X [Fwot, food 4 3], It
37
(2) O'(iE,y,Z) = <—I+ 772 - Zpr0d7y+zprod>

be the rotation of angle m with axis = 2%, y = z—zpr0q. For (z,y,2) € [-2F, Z] x
[Ovystd] X [07 Zmax}, let

(3) T(.’lﬁ,y, Z) = (—x,y, —Z)
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be the rotation of angle 7 with axis # = z = 0. Let I'] = I'a X {2prod}, 1 =
T'a X {—2proa} and Fij =I',u FX. We use similar notations for I'p.

A pre-convexr perturbation (ksup,kinf) of a bypass (B,«) is composed of two
smooth maps B — R such that (see Figure 25):

e there exist a neighbourhood V of the restriction of (I‘i) toy > %4 and a
neighbourhood V_ of the restriction of (I'%) to y < %4 such that kg, = 1
outside V. and ki, = 1 outside V_;

8’;% > (0 near FX and 8’;% < 0 near I'};

ksup does not depend on x near I'y \ I'p and on r near I'p;

kint(z,y,2) = (1= fine(y)pz) near I, N{(z,y,2),z € [Z, 25|} where p > 0,
Jint 1 [0,¥Ysta] = Ry, finr = 0 near 0 and for y > %54, fi,r is increasing on
(0,9, ], fint = L on [y, ,y}] and is decreasing on [y}, ¥34];

ksup is T-invariant and “m-periodic” for y € [0, ysta] and kins is 7-invariant
and “m-periodic”.

FIGURE 25. The neighbourhoods V; and V_

In what follows, we assume y;,“ < ng"d, Y, > Ysmooth, and that the radius of V_

is smaller than 5. Let klup = ksup 0 0. We extend k,, in a neighbourhood of B to

obtain a m-periodic, 7-invariant function. We define &, ; similarly. Let

prec = (Ksupking) sin(x)dy + (ki king) cos(z)dz.

For kgyp and king close to 1, aprec is a contact form. Let n(kgyp) and n(kine) be the
radius of the neighbourhoods of Ff where kg,p and kinr do not depends on x or r.

Proposition 7.10. Fiz n > 0. Let (B,«) be a bypass. There exist real positive
numbers €;ny and €5yp such that for any pre-convex perturbation (keup, king) satisfy-
ing N(ksup) > 1, N(ksup) =1, |ksup — 1| < €sup and ||king — 1|| < €4np the following
holds
o S’ is convex with dividing set T p,e., the set of tangency points between Ry yrec
and S’;
® Rypec points toward Sy for y > %44 and toward S_ fory < .

Note that eins > 0 and egyp > 0 depend on the smoothing of A X Ipr0d-

Proof. The tangency condition is open. By Proposition 7.2 and Lemma 3.1 the
first condition is satisfied for small enough perturbations of «.

The Reeb vector field R, is transverse to I'smootn for o # %” as the tangents to
Tsmooth have a non-vanishing z-component. Thus, for small enough perturbations,
the transversality still holds for }a: — %ﬂ >n.

We study the case y < ¥3¢. We prove transversality for |x - g’ < n and extend
the result by symmetry. The Reeb vector field is

1 —%(y, z) sin(z)

(4) Ry=—7"—— sin(x)
kint(y, 2) cos(x)
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and the tangency condition between R, and S’ is
kinf(yv Z) COS(iE) - L{nf(y) sin(m) =0

where Liys = I.¢ (see Section 7.1). Thus a parametrisation of I'prec is given by

mf

y = ((:?5)1 <knf(Ly/“fL(2@))> ,y7Linf(y)> = (2(y),y,2(y))-

The tangency condition between R, ., and I'prec implies

)+ 2y, 2(y)) =0

Yet Zknt (y, z(y)) < 0 and 2/(y) has the sign of —L!/;
close to 1 and R, is not tangent to I'prec.

(y). Thus z'(y) < 0 for kins

We now study the case y > #3¢. The tangency condition between R, and S’
i ksup (y, 2) cos(z) — L, (y) sin(z) = 0.
The tangency condition between R, .. and I'prec implies
2 )+ T () = 0.
Yet 2 5“" e (y, z(y)) > 0 and 2’(y) has the sign of L7, (y). O

The convexification process takes place near I'yec. We carefully choose (B, a)
and a pre-convex perturbation to control the image of the dividing set by the Reeb
flow. For s € [0, §], let

0( ) (S Ov_zprod)
71(5) = (71— S, 0 Zprod)
2(5) = (4 7.0, ~zpma)
= (21 — 5,0, Zprod) -
We denote by py and pg the images on Sz and S by the Reeb flow.

A quadruple (B, o, ksup, kint) is a pre-convex bypass if (B, «) is a bypass as defined
in Section 7.1, (ksup, kint) is & pre-convex perturbation and there exist positive real
numbers er, Ag and ez (e is arbitrarily small), four z-graphs in Sg denoted by
8o, 61, 6° and &' and product neighbourhoods

3
(5) Vo, =V x [07 4ystd:| x V,

of the restriction of (Fj) to y € [0, 2£4] with [V,| = Ag < A such that

(1) there is no Reeb chord between Vi, and Sy, ,;

(2) if T'p is the restriction of I'pec for z € [% + ’\75 T — —] then UFB a‘ <T
and de1(pz(U'p), 1) < £

(3) 4, is increasing and 4° decreausing7 the graphs intersect the segment r = 37”;

(4) C(6i,er) NC(H,er) = {0} and C(6%,er) C C(6, Ar) and §' satisfies sym-
metric conditions;

(5) if de1(8,8;) < er and de1(8',67) < eg then § and ¢ intersect transversely
in one point ;

(6) if  is a curve in Sz such that dei(7,7;) < ez or dei(7,7%) < £z then either

der(pr(7),0i) < er or der(pr(7),9°) < eg;
(7) the return time between Sz and Sg is bounded by 7.

Proposition 7.11. Let (M, & = ker(a)) be a contact manifold with convex boundary
(S,T') and vy be an attaching arc satisfying condition (C1), (C2) and (C3). Let
(A, B) be a bypass foliation (see Section 7.1). For zma. small enough, there exists
a pre-convex bypass (B, o, ksyp, kinf) with keyp and kinp arbitrarily close to 1.
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The rest of this section is devoted to the proof of Proposition 7.11. Let n < %.
Choose lgyp and kgyp such that n(kgyp) > 7 and ||ksup — 1| < Esup-

Lemma 7.12. If kg is close to 1 and zyq, small enough, then pr(vi) and pr(v*)
satisfy condition (3).

Proof. For zyax small, the Reeb chords of « that contribute to the map between
Sz and Sg are contained in the neighbourhood where « = sin(r)dé 4 cos(r)dz and
ksup does not depend on r. In coordinates (r, 6, z), the image of ¥' on Sy is

S —> <27r —s,0, —C?S(S)H + zpr0d> .
sin(s)

For zp,ax small enough, this curve in a decreasing graph in z and contains (37“, 0, Zprod)-
Consider the perturbation oy, of « associated to kgup. As

Ak .
1 — 522 (y, 2) sin(z)
Ry=+—7—— sin(x) ,
ksup (Y, 2) cos(x)
we have 8’;% =0 for y < ¥4 and 81;% > 0 for z > %54 near I'},. Therefore,
the curve pr(y!) intersects the segment r = 37” The proof is similar in the other

cases. O

Let pr(vi) = 0; and pr(y*) = §*. The curves §; and ¢/ intersect transversely in
exactly one point and there exist eg, Ag and ez satisfying conditions (4) and (5) for
any small perturbation of agup. Additionally, all R, -orbits intersecting {5} x
[0, 2ysta] X {zproa} go out of the bypass. Then, there exists Vi, such that the
Reeb vector field of all small perturbation of ag,p, satisfies condition (1). We now
carefully choose l;,¢. A parametrisation of I'g is

5+, m— 2] — R?

z (@i () ™ (tan(2)) ), (1) ™ (tan(a)))

thus pz(T'p) is parametrised by

T — (:c, 0, ( i’nf)fl(tan(x)) — cotan(z) X ling ((l{nf)fl(tan(x))))

and its derivative is

T — (1,0,.21(:5) X ling ((li’nf)l(tan(x)))> .

S

Thus, the second half of condition (2) is satisfied for ;¢ small. In addition, we have

o= L4 o e
ro Jpap sin®(e) () (tan())
(( ! )_1(y)) > C for all

inf

Fix C > 0 and ¢ > 0 we chose l;,¢ such that lins < ¢ and 1/

inf

e )\B /\B
Yy € [tan (2 + 2> ,tan <7r— 2)} .

For C big enough and ¢ small enough, condition (2) is satisfied. Additionally, such
a function exists: it is the anti-derivative of a function f : (0,1] — (—o00,0] such
that

e f is increasing and ‘fol f‘ =g
e forall k € N, f(®)(1) = 0 and lim, o |f*)(2)]
e f'((f)y)) > C for all y € [tan (% + 22) ,t

an (- 2]
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Finally, we choose k¢ small enough. Condition 7 derives from Lemmas 7.6 and 7.9
and Remark 7.1. This concludes the proof of Proposition 7.11.

7.4. Convexification coordinates. In the two following sections, we describe the
actual construction of an hyperbolic bypass.

Construction 7.13. There exists a pre-convex bypass (B, &, ksup, kint) adapted to
7 and A (Proposition 7.11). For technical reasons, we also consider a second pre-
convex bypass (B, @, ksup, kint) extending B and such that, dco(08’, B) > 0 for all
|z] < Zprod + Ysta and 0 < y < ysq. We denote by p’, and p', the projections in B'.
Without loss of generality ez < v and pz(dom(prp,) C dom(pf g, ).

We are now in position to apply the convexification process described in [6].
Recall that S’ is the boundary of M’ = M U B, kint = 1 — pz on [y, ,y,f],

L2
Ysmooth < yp < yp < gystd;

and the upper boundary of Vr, is contained in y = %ystd. Choose

y, <y~ <y <yl
Our first step is to obtain nice coordinates near I'pyec N BS¥sta - We construct these
coordinates near the connected component I'g contained in [g, 7r] X [0, Ysta] X [0, zsta]
and extend them using the symmetries of B.

Fact 7.14. There exists €prec such that for all €pre.-perturbation of S', the contact
form ouprec s adapted to the new boundary for y > %ystd.

Proposition 7.15. There exists a surface 3 with coordinates (u,v) € [Umin, Umagz] X
[—Vmazs Vmaz] such that
(1) X is transverse to R, XN S" =1T'g and the intersection is transverse;
(2) o(is(u,v)) = is(Umaz + Umin — u,v) where ix, : X — R3 is the inclusion
and o is defined by equation (2);
3) & = a% and 2 = 2 fory close to [y~,y*];
(4) aprec = dt+(1—pzproa—pv)du in the flow-box coordinates (t,u,v) associated
to X.

We denote by ys; the coordinate such that (g, yg) = 5 (Umax, 0).

(5]
Proof. Choose a surface ¥ satisfying conditions (1), (2) and (3) and such that
15 aprec = g(u,v)dv and g(u,0) = 1 — pzproa. Then g(u,v) = 1 — pzproa — pv for
y close to [y, ,y;] and aprec = g(u,v)du 4 dt. Moser’s trick provides us with a
diffeomorphism ¢; such that ¢; = Id along I'prec and for y close to [y=,yT], 1
preserves ¥ and ¢faprec = dt + (1 — pzproa — pv)du as the two Reeb vector fields
coincide. In addition ¢y 0 0 =0 0 1. Thus @15, has the desired properties. O

Let uzc and u® be the u-coordinates associated to the intersection points between
Ip and S+ or Sy+. Let ¢ = (¢s,9y,4:) be the diffeomorphism associated to the
P

change of coordinates. Let S = 1 ~1(S’). Without loss of generality ¢ : U — V
and?®

(6) U= It X Iu X IU = [_tmaxa tmax} X [uminaumax] X [_Umaxa Uma,x]y
A A 3

(7) VC ( |:72r - gaﬂ + 8:| X |:07 4ystd:| X Imax) N ‘/smooth N Bla

(8) o = (1 — pz) sin(z)dy + cos(x)dz on ¢ (I; x [u™,ut] x 1)

3See Lemma 7.8 for the definition of Vsmooth -
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Fact 7.16. For all (t,u,v) € I; x [u™,u™] x I, it holds that
0(1/)(157% ”U)) = "/}( — 1, Umaz + Umin — U, U)»
(0 u ’U) ( yYS — Umaz + Uy Zprod + ’U) s
Y(t,u,v) = (¢, 0,0) + (0, ys — Umaz + ©,0),
)= (ﬂ'—wx(t u,v), 21, (0, u,v) — ¢y(t,u,v),¢z(t,u,v)).

We rewrite our objects and conditions in coordinates (¢, u,v). We subdivide
[Umin, Umax] 100 Umin < w1 < ug < ug < ug < U5 < Umax (see Figure 26) such that

(—t,u,v

(9) q/}(It X [u57umax] X Iv) C VFA
(10) [;T 5+ 2} C bl X [ua, tmax] % 1),
(11) |:72r + %aﬂ' 34>\:| C 1/11(11‘ [u27u3] X 111)7
(12) |:7T - ;vﬂ-:l C wa:(lt X [umirnul] X Iv)-

Y

// / mm Cc [5-35+3)
Y = Ystd

] VFA

Uu
/
Ry

N

FIGURE 26. The subdivision u;

Lemma 7.17. Without loss of generality we may assume that (see Figure 29)
(1) Sg is a smooth surface contained in I x I, x [0, Vinas] and
(a) its restriction to the plane uw = cst is a smooth curve composed of
two graphs containing (0,0), one positive and increasing and the other
negative and decreasing on (0, Vpmazl;
(b) Sg is u-invariant and invariant by the mirror symmetry along the
plane t =0 for u € [u™,u™];
(2) there is no Reeb chord of OV outside V;
(3) C’lZJ = ||¢(t,u,v) - w(()?u’O)HOO + ” dd)(tvu’ U) - d¢(0,u, O)HOO < 1:

Proof. Sg is a smooth surface containing {0} X [tmin, Umax] X {0}, tangent to
Span (a , m) along this curve and transverse to % = Ra,,., elsewhere. In ad-
dition, % is positively transverse to Sg for ¢ < 0 and negatively transverse for
t > 0 (see Figure 27).

To prove condition (2), we first note that there is no Reeb chord of I'ec in
B<ivsta, Indeed, in the set where qpree = sin(z)dy + cos(z)dz, we have R, = 0 and
T'prec intersects the planes o = cst in one point. By symmetry, it remains to prove
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FiGURE 27. The Reeb vector field and S

the result for z close to § and 2z > 0. In this set, we have R, > 0, R, > 0. The
projection of I'prec on the plane (y, ) is decreasing and there is no Reeb chord of
T prec in B<¥prec,

If there exists a sequence ('yn)n eN® of Reeb chords of 8V,, where the radius of V,,

is smaller that %, then the endpoints of +y,, converge to I'prec. In addition, the period
of these chords is bounded (Lemma 7.6) and bounded below by ¢y« (associated to
the maximal ¢-coordinate in Vy). Thus +,, converges to a Reeb chord of I'yyec. This
leads to a contradiction and condition 2 is proved. O

Lemma 7.18. Without loss of generality we may assume that there exist real pos-
itive numbers eg and B such that for all ts, € Iy, the maps p_ and @4 induced by
the Reeb flow between & = {(t,u,v),t = tx} and Sz and between 3 and Sg satisfy:
(1) C(H,e5) NC(V, B) = {0};
(2) (). (ColH.25)) C Cy_(y(H.v) and (¢7). (C_ (Vi A)) € Co(V, B) for
all p € [ug,uz] x I;
(3) (90+)* (CP(H7 EB)) - Cso+(p) (5175R) and (‘pjrl)* (Cap+(p)(5f_7AR)) - Cp(v7 B)
for all p € [ug, us] x I;
(4) o4 ([ug,us] x I,) C{(z,2), |z = 61(2)| <er};
(5) the return time between Sy and ¥ is bounded by T and by 27 between Sg
and X.

Let L be a bound of ||dp.|| and ||dg+ || where |- || is defined in the coordinates
(x,y,2) in Sk and Sz and in the coordinates (t,u,v) in X.

Proof. Let Ty, = T'prec N (It X [ug,u3] X I,). Then I', C I'p and all the Reeb
chords between I'g and Sz have an endpoint in I',,. There exists eg > 0 such that
if de1 (v, T'w) < ep then dei(pz(7),pz(T'y)) < 5. Thus the fist half of condition (2)
derive from conditions (2) and (6) in the definition of pre-convex bypasses for U
small enough. As pz(dom(prp,) C dom(py g, ), condition (4) and the first part
of condition (3) derive from conditions (2) and (6) in the definition of pre-convex
bypasses. As (¢~1). (C(V, A)) NC(H,ep) = () there exists B satisfying the second
part of condition (2). The proof of the second part of condition (3) is similar. O

We now perturb S’ to obtain a w-invariant surface.

Construction 7.19. We perturb S’ (see Figure 28) so that there exists vy €
(0, Umax) satisfying
® SBju = SBlupa. 00 [0,v0];
e Sp contains {0} X [Umin, Umax] X {0} and is tangent to Span (8%7 %) along
this curve;
e the Reeb vector field is positively transverse to Sg for ¢t < 0, negatively
transverse for ¢ > 0.
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¢ SB|u b

w
SBlunlax

v

perturbed Sp
FIGURE 28. The perturbation of S’

These condition are automatically satisfied for u € [umin,u1] and u € [us, Umax]-
Let B denote the new bypass. For U small enough, this perturbation is eprec-small.
In what follows, let I, = [—vg, vo] and vpax = vo.

7.5. Convexification. The convexification process consists in adding a “bump”
with prescribed contact structure in a neighbourhood of I',rec. We first describe the
new boundary in Section 7.5.1. In Section 7.5.2, we present the contact structure in
the convexification and in Section 7.5.3 we modify this model to obtain the desired
cone-preserving properties. Recall that we construct the convexification near the

connected component I'g contained in [g,ﬂ'] X [0, ysta] X [0, 2zstd]-

7.5.1. Perturbed boundary. We perturb the boundary for iy < %ystd. For [y, %ystd],
the new boundary is the graph of a function. Let H be the set of smooth functions
T AT A 3
h:l-—=, -4+ = T, =Ysta| = R
|:2 372+3:|><|:y 74ytd:|
such that

(1) ||hllc < 1 (in particular ||hljce < €prec);

(2) hzOnearmz%i% andy:%ystd;

(4) for y € [yf, %ystd], the map h does not depend on y and there exists zf
such that h is increasing for z < —zf . constant on [g —ah 7+ xﬁat]
and decreasing for x > x’f}at;

(5) Sh = {(z,¥, 2proa + h(z)),x € [5 — %, 3+ %] ,y € [y~,yT]} is contained
in V.

Let S, = ¢! (S’h) We denote by vy, the maximum of h and zproa + v by 2i.
The minimum of S, on the v-axis corresponds to ¢ = 0 and v = vy, (see Figure
29). In addition H # 0. Let vy = sup{max(h),h € H} then vy > 0 and for all
0 < v < vy there exists h € H such that v, = v. Given vj, there exists h € H with
xf . arbitrarily small.

Sh

Si

FIGURE 29. The surfaces S and S,
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Lemma 7.20. The surface Sy, is u-invariant and its restriction to the plan u = cst
is a smooth curve composed of two symmetric graphs containing (vy,0), one positive
and increasing and the other negative and decreasing on (Vp, Vmag];

Proof. For h small enough, the tangency points between the Reeb vector field and
S, are the segment { } ~,yt] x {z,}. In addition, 2 5; is positively transverse
to Sy, for t < 0 and negatlvely transverse for ¢ > 0. The proof is similar to the
proof of Lemma 7.17. The symmetry derives from Fact 7.16. O

We extend the surface S}, by translation in the coordinates (¢,u,v) and still de-
note by S}, the extension. The surface S}, also extends o (Sh) as S}, is parametrised
by (£l(v),u,v) and o((£l(v), u,v) = Y(FI(v), Umax + Umin — ¥, V). The following
lemma is a powerful tool to study the Reeb chords in B<¥td (conditions (B6), (B7)
and (B8)). We will use its corollary (Corollary 7.37) in Section 7.6.

v/

Tazs Ux, O and va such that

Lemma 7.21. There exist positive numbers t' .

® t{rnu,z < tmaw; vA < UmaJB < VUmaz and oA < Uy,
o Py (I{ X [tmin,ur] X 1)) C [2 + 2,7T+)\] where I = [t 0 thas) and
[, = [ ) v;nax};

max’

. ¢y( ) < y(p') and Pu(p') — a(p) < {5 for all p = (t,u,v) and p' =
(', v, v") in I] X [ux, Umag] X I, such that t' —t > A and v’ > u;
o the planes t = £A intersect Sg for v < va.

Proof. Without loss of generality, there exists n such that % < kint <1 < 2 and

n?—sin (5 + A) < g5. We start with ¢/, = tmax and vmax = Umax and progressively
reduce them. There exists uy such that for ¢/ . and v} . small enough

/ / A
o (I} x fuxs ] < 1) € [ =05 4]

A
Yy (I} X [Umin, up] X 1) C {;T + 2,71‘—1—/\} .

Let M = H 8(;1:}, + H % + || Oing HOO Choose A such that, upon reducing ¢/ ..
and v},
o t’ =4A <

max 96M 5

A )
® Vpyax < Min (37, 7807 V1)
e the planes t = +A intersect Sz for v < v/

max-*
For all (t,u,v) € [0,/ ..] X [tx, Umax] X I!, we have?

) Ymax

t
Py (0,1, v) + 5 sin (g + )\) <y (t,u,v) < Yy (0, u,v) + nt,

ol oY
ZZ) (O U, 0) mwx 67}y - < Q/Jy(o u U) < d’y(o U, O) rnax (%y -
Thus v, (p') — 1y (p) > £ > 0. Similarly, it holds that
awz / 8kinf
— —_— <
’(/J (O u O) Inax 8’1} 2tmax az - — wl’(tﬂu>v)7
3%: akinf
x t 9 < x g Wy ! a_ Qt/ P
¢(7UU)_¢(OUO)+UmaX v Oo+ max Oz .
and () = Va(P) < 20fnax || 52 ||_ + hnax | %525 |- O

4See equation(4) for the explicit form of the Reeb vector field.
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Construction 7.22. We apply Lemma 7.21 and choose a map h € H such that
va < max(h) < vmax and such that the planes v = vy, intersect Sy outside the
flat part of Sj,.

X

Fact 7.23. There exists Egm such that f0~7“ any sgm—perturbation of Qprec in C-
norm, the Reeb vector field is transverse to Sy, for all x satisfying xJ}‘Llat <le—3 < %

7.5.2. Convexification model. We now construct a convexification model for y €
[y_, %ystd} and interpolate with the adapted model for y € [%ystd, %ystd]. The new
boundary is smoothed for y € [%ystd, %ystd}. Let z > 0 and

d..(2) = exp(—ﬁ), it z > 2,
o.,(2) = 0, otherwise.

For y € [y, ,y}] and near Ty,
Oprec = kint(2) sin(z)dy + cos(z)dz
and kint(z) =1 — pz. Let keonv(2) = kine(2) + a®,,(2) and
(13) Qconv = Keony(2) sin(z)dy + cos(z)dz
where a > 0.
Fact 7.24. The contact form o cony s adapted to S‘h fory € [y_, %ystd}.

In the coordinates (t,u,v), the associated contact form is not a convexification
model in the sense of [6]. We use a weakened version of convexification. Let J, be
such that [u1,us] C J,, C I,,. Two functions f and g from I, x J,, x I, to R% form

a convezification pair if

(1) f=1and g(t,u,v) =1 — pzproa — pv near S’ and for v > v},

(2) f and g do not depend on u for u € [uy, us);

(3) % >0 and % > 0 near (0,vp);

(4) in a neighbourhood of [u1,us], in the planes u = cst, the vector field X, =

(—%, %) is negatively transverse to Sy for ¢ > 0, positively transverse for

t < 0 and points toward the half-space t < 0 for ¢ = 0 (see Figure 30).

Sh

Sn

Ficure 30. The surface S;, and the Reeb vector field

Proposition 7.25. For p and Cy small enough, there exists €., > 0 such that for
any small py and any zp, — €., < 20 < 23, there exists a contact form o and a pair
of convexification (f,g) with J, = [Umaz + Umin — Uy, uy] satisfying

(1) Ry, >0, R is positively transverse to Sy, for t < 0, negatively transverse for

t > 0 and points toward the half-space t < 0 fort = 0;

(2) o*a = —q;

(3) @ = aprec for v >0, and v < va;

(4) a= f(t,u,v)dt + g(t,u,v)du on Iy X Jy X I;



REEB PERIODIC ORBITS AFTER A BYPASS ATTACHMENT 41

(5) ¢~ Y0 = eony and Kt ono(2n) = po in a neighbourhood of {5} x [y+, %ystd] X

{prd}'

By definition ||kconv|/ct < po. The end of Section 7.5.2 is devoted to the proof
of Proposition 7.25. Before extending ccony for all u, we study some properties of
Qeonv in the (¢, u, v)-coordinates.

Fact 7.26. For all (t,u,v) € I; X [u™,u™] X I,, we have

R, ((t,u,v)) 0 8% (t,u,v)
dy(t,u,v) = [ R,((t,u,0)) 1 “”’y (t,u,v) |,
R(ltu) 0 95 (tu0)
R.(%,u,v) 0 0
dyp(0,u,v) = | Ry(5,u,v) 1 0
R.(5,u,v) 0 1
Fact 7.27. For all (t,u,v) € I; X [u™,u™] X I,, we have

¢*ap'f’60(t7 u, U) =dt + kodu and { an( Z;

sin(v,) = ko
Fing(1- =0

sin(t,) ot + cos(v,)
where ko(v) = king(V + Zprod)-
Fact 7.28. For all (t,u,v) € I; X [u™,u"| x I,, we have

V* Qeony = Msinwchos?(wz) dt + keono(15) sin(ih, )du+
k'mf(wz)

( com062) 5i0(12) T cos(i) “’Z) T,

% o kconv(wz) . .92 kconv(wz)
w Qeony = ((k’lnf‘(’(/)z) 1) S (’l/fm) + 1) dt + 7klnf(’[/)z) kod’u+

<(kconv('l/)z) - k'mf(wz)) Sln(i/}x) wy)

In coordinates (t,u,v), Qcony = f1(t,v)dt + g1(t,v)du + hi(t,v)dv where f1 ¢1
and h; do not depend on u. Note that fi(—t,v) = f1(t,v), g1(—t,v) = g1(¢,v) and
hi(—=t,v) = —hy(t,v) (Fact 7.16). Fix u~ < uj < v} < ut and p : [u),u)] = R
such that p = 0 near uj, and p = 1 near u}. Let

a = fi(t,v)dt + g1(t,v)du + p(u)hq (¢, v)do.

Lemma 7.29. For p and Cy small and for zy close to zp, o is a contact form,
% >0 and % > 0 near (0,vp);

Proof. The differential of « is

do = Py ndt + 9% 4 5 du +a—dmdu+ph1dmdv+paidmdv
ov ov ot ot
The contact condition is
8f1 691 891 6h1
e h dt 'h 0.
90T f1+ T +p'hifi — P>

Without loss of generahty we may assume that the ranges of fi, g1 and h; are in
[%, 2]. In what follows, the bounds associated to the notation O are uniform for all
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convexification models. By definition, it holds that

kconv(2) — king(2) = A®, (2) = (2 — zo)2A<I>;0(z),

B (1) -1 = (s — 20242, (:)000),

kconv)/ / 1 p(Z — ZO)2
(2) = A, (2) + :
< kint 0 kinf<z) (kinf(z))Z
Thus, we obtain

filt,v) = 14+ A®L () (%2 — 20)°0(1),
0
AL A, () (14 0p) + O(Cy) + (Y — 20)0(1))
Therefore for p, Cy, 2z, — 2o small enough, we have %ivl > 0 and %(O,vh) > 0.
Similarly, we obtain

g1(t,v) =1+ 0(p) + (2 = 20)°0(1) + O(Cy),

% = —p+ AP, () (1+ (1= — 20)*0(1) + O(p) + O(Cy)) ,
%(m) = AP, ($.)0(Cy),

ha(t,v) = ADL (12)(1: — 20)*0(1),

O (1,) = AL () (= — 20)°0(1) + O(CY)
and the contact condition is
(14) p+ AP, (1) (O(p) + (= — 20)?0(1) + O(Cy)) > 0.
Yet A®’, (2) < 2p as klyn, (2n) = po < p. Thus the contact condition is satisfied for
p, Cy and zp, — 2o small enough. O

Lemma 7.30. For p, pg, Cy, zn — 20 small, R, > 0 and R is positively transverse
to Sy, for t < 0, negatively for t > 0 and points toward the half-plane t < 0 for
t=0.

Proof. The component R, is positively collinear to

af oh

Ty P = AL (2) (1+0(p) + O(Cy) + (1 — 20)°0(1))..
Thus R, > 0. By u-invariance, we study the transversality properties in the planes
u = cst. The Reeb vector field is positively collinear to

991 /
=S+ (wWh
Y= < % g
ot
in the coordinates (¢,v). The tangency condition for ¢ = 0 is automatically satisfied
as h1(0,v) = 0. On the non flat part of h, the transversality conditions are satisfied

for pg < 526“ as ||kconv — kintl|cr < po (Fact 7.23). We now prove the result in the
flat part of h. The transversality condition is

991 | 991
15 —— hi—li—>0
( ) En +p (’LL) 1 + ot
for t # 0 where [ and I parametrise Sp,. Let pg = sop. Then A®’, (¢.) = (1+s0)p.
For p =1, Y satisfies the desired transversality conditions (Fact 7.24). For p’ =0

the transversality condition is

(16) —so0p + p(1 + sp)a(t,u,v) >0
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where a does not depend on sg. There exists Smax such that (16) is satisfied for
50 € (0, Smax]. Thus a > l-iﬁ For zg close to zy,

6 max
P (W) (s — 20)? sin(ww)% < m

The general transversality condition is

0
(17) a(t,u,v) +p' (u) (P, — 20)> sin(wz)% + s(a(t,u,v) — 1) > 0.
For s < ®=2x we obtain a(t,u,v) + s(a(t, u,v) —1) > Sy and (17) is satisfied.

O

Proof of Proposition 7.25. We choose p, pg, Cy, 25, — 20 small enough to apply
Lemma 7.29 and Lemma 7.30. We extend « to U by o = fidt + g1du for v € J,,
and —o*a for U € [Umin, Umin + Umax — uT]. It remains to prove that a = apyec for
v >0’ and v <wva. The set where

max
(fl(t; v),gl(t,v)) 7é (L 1- PZprod — pv)

is contained between the surface S, associated to the equation z = zp and Sj,.
The surface S, has properties similar to Sj. In particular, its v-coordinates are
greater than zo — Zprod. AS 2) — Zproa > va (Construction 7.22) 2y — Zprod > va for
zp, — 2o small enough. Additionally, S, intersects Sj, in its non-flat part. Yet for
zn — 2o small enough the intersection points are arbitrarily close to the endpoints of
the flat part and the v-coordinates of the intersection points are smaller than v/
(Construction 7.22). O
7.5.3. Perturbed convezification. The contact form « described in Proposition 7.25
is adapted to the boundary but does not give us the desired control on the Reeb
flow. Let X1 = {(*tmax,u,v),u € I,,v € I,} and ® be the map induced by the
Reeb flow of acony between ¥ and 3.

Proposition 7.31. Let (f,g) be a convexification pair given in Proposition 7.25.
Upon perturbing o near It X [uy,us] X I, and we may also assume that
(1) @, (Co(V,B)) C Cap)(H,ep) and @' (Co()(V,B)) C Cp(H,ep) for all
pE [UQ,U;),] x I, N ¢_1([U4,u5] X Iv);
(2) [[d@(p, )|l > LZllv] and [|d@~(@(p), w)| > L5 ]w| for all p € [uz,us] x
I, N @~ ([ug, us] x I,,) and v € Cp(V, B);
(3) the return time in [ua,us] X I, is bounded by T.

Construction 7.32. Apply Proposition 7.25 with pg < ggert and Proposition 7.31.

The end of Section 7.5.3 is devoted to the proof of Proposition 7.31. The contact
form from Proposition 7.25 is o = f(t, u,v)dt + g(¢, u, v)du. Thus

1 881)
- - S
(18) Ro=gr a5 | 3
ov ov g9
ot
We progressively modify f and g so that the difference between the u-coordinates
of two Reeb orbits which contribute to & widens when the Reeb orbits cross the

convexification area.

Remark 7.33. If (f1,¢1) and (f1, g2) are two convexification pairs satisfying con-
ditions (1), (3) and (4) of Proposition 7.25 on I; x J, x I, then there exists a
convexification pair (f,g) satisfying the same conditions such that g = g1 outside
a neighbourhood of I; X [u1, us]x I, and g = g2 in a neighbourhood of I} x [uy, us] X I,.
There exists a analogous statement to interpolate between f-coordinates in a con-
vexification pair if f; = fy near Sj,.
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If (f,g) is a convexification pair given in Proposition 7.25, without loss of gen-
erality, we have 1 < f < % Let T',, denote the g-level intersecting (0,v) in a plane
u = cst for u € [uy,us] and I', ) be the set between I', and 'y if v < v'. Let

my > 102472= and M, = U for ¢4 > 0. Without loss of generality p < 3

8(us—u1)

FiGURrE 31. The g-levels

of
9 <8 9g| - M
ov P %>Tg
of
o 6—2”>mf O % <Mg
°f of
[ | W>Cand%>4p 0O g=1—pzproa —pv
O f=1

FiGure 32. Conditions on f and g

Lemma 7.34. Let C > 0. We may assume that there exist t1 > 0, v, vg and vy
such that va < v1 < vy < v < vy, and for all u € [uy,us] (see Figure 32)

1 9, .

3<9<1land a%‘ép,

e g(—t,v) = g(t,v) and f(—t,v) = f(t,v);

e (0,v.) is a saddle for g and the g-level intersecting {0} X [ve,vy] do not
intersect ¥4 or X_ (see Figure 31);

o g(t,u,v) = 1 — pzproa — pv for all (t,u,v) such that |t| > t1 or (¢t,v) on
ORNE

o f(t,u,v) =1 for all (t,u,v) such that |t| > 2t; or (t,v) on ' ,);

) % >0 and % <0 onTg.,;

o) M, 22

52 (t,v)| > 5% and Tq}’;(t,u,v) >0 on Tjg,u);
of

® 9

(tvuvv) < 8p on F[O,vl];
. %(t,u,v) >my for all (t,u,v) such that |t| <ty and (t,v) € Ty 0,5
2( ,v)’ < My for all (t,u,v) such that |t| < % and (t,v) € Dyy,0,15

99
9
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o %(t,u, v) > C and %(t,u,v) > 4p for all (t,u,v) such that |t| < t; and
(tvv) € F[Ul,vo]?'

Proof. We extensively use Remark 7.33 to modify f and g. We first modify f
and choose v, so that % > 2my in a neighbourhood of {0} x [uq,us] x {v.}. To
achieve this condition, we modify f near (0,v,) in a neighbourhood that does not
intersect Sy, and such that af > O The only non-trivial condition on the perturbed
f is the contact condition af qg— 8'0 gf>0. There exists € > 0 such that for any f;
with |f — fi| < e and 88’;1 > gf g, then %fl f1 > 0. We choose f; such that

% > 2my near (0,v.), |f — fi] < e and afl > %—E
We now choose t; and vy such that p > 22 and ‘ )‘ > 2my for all (t,u,v)
such that |t| <t and (t,v) € 'y, We modlfy g (and change vo if necessary) so
that g satisﬁes the desired conditions. To obtain the contact condition we choose

g so that >0 implies 3 af > 0 and max ( ) < 1. Finally we modify f. O

Lemma 7.35. The projection in the (t,v)-plane of any Reeb orbit which contributes
to @ is contained in L'y, -

Proof. The projection in the (¢,v)-plane of a Reeb orbit is contained in a g-level.
Thus no Reeb orbit contributes to ® and intersects {0} x [u1,us5] X [ve, vp].

If a Reeb orbit intersects {0} x [u1,us] X [vo, v.] then this orbit crosses the strip
|t| <t; and is contained in I',, ,.). In this strip

my _0f _0f 9 <d 5107 |

2 = avg_ 81}9 o o

IR < 2Y2 and |R,| > 2. Therefore, the time spent in the strip is bounded below
by

2t1 tlmf
= 8(us —u
max(Ry) — M, (us =)
and the u-interval swept out by the orbit is bounded below by min |R,, | x8(us—uq) >
us — uq. The orbit does not contribute to ®.
We now consider a Reeb orbit which intersects {O} X [u1, us] X [~Vmax, v1] and
crosses the strip || < 2¢;. In this strip 5 ‘W‘ < - @f <10p <4, |Ry| > Yo

and |R,| < 2. The return time between —2¢; and 2t1 is bounded by mlitht) < ?}\2;1
64t1

and the u-interval swept out by the orbit is bounded by %+ < uy — ugz. The orbit
does not contribute to ® as R, = 0 for [¢t| > 2¢;. 0

Proof of Proposition 7.31. We prove that Proposition 7.31 is satisfied for C big
enough. We first study the difference between the u-coordinates of two Reeb orbits
which contribute to ®. Let (—tmax,u,v) and (—tmax, @, 0) be the endpoints of
two Reeb chord which contribute to ®. Without loss of generality © > v. Their
projections on the (t,v)-plane are contained in I',, ,,) (Lemma 7.35). Let

of 9y

_ _Ov _ ot
Y = ' g’ g
ov ov

be a renormalisation of the Reeb vector field and ¢ — ( = tmax + ¢, u(t), v(t))
and t — (= tmax + t,@(t), 9(t)) be the Y-orbits with endpoints (—tmax, u,v) and
(—tmax, @, 0). Then

oY, 8%f o 8%g Of 9?2

u v2 Qv Ov2 Ov > _ Ov? >0
- @ -
ov

I~
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and @ — u is non-decreasing. In addition, % > % for [t| < 4. Thus, we have
_ _ c o
u(tmax) - u(tmax) >u—u+ — mHtl (U(t) — 'U(t))
Pltl<3

Our orbits are contained in g-levels, therefore it holds that

- . g - . dg
_ I < g(— —a(— < _ et
(o(t) — v(t)) mm( 5 > < g(—tmax, V) — g(—tmax, 0) < (0(t) v(t))max< 9 )
and 9(t) — v(t) > Mgg;v) as Ma < 991 < p. Thus we obtain
(19) Wtmae) — U(tmae) > i — 1 + 7CM-‘71;1 & —v)
p

Let v be a curve in {—tmax } X [ug, us] x I, such that |4/(v)| < B (the v-coordinate
is the vertical coordinate). Let ¢ be its image on {tmax | X [ug, us] X I,,. By symmetry,
if it is well-defined, the image of (—tmax, ¥(v),v) iS (tmax,d(v),v). Using equation
(19), we obtain
CM,

22

M, _
202
Therefore, we have D > é for C' big enough. A similar proof shows the symmetric
result. Additionally, if w = (1,7/(v)) then ||w| < v1+ B? and ||d®(p,w)| >
V1 + D2, Thus the dilatation condition is satisfied for C' big .

Finally the return time between {—tmax } X [ug, us] X I, and {tmax} X [ua, us] X I,
is bounded by 2(us — u1) + 2tmax- Indeed, for |t| > ¢1, we have |R;| < 1 and the
return time is bounded by 2¢y,.x. Additionally, for |¢| < ¢1, we have |R,| => %
and the return time is bounded by %(Ug, — uy) as the u-interval is bounded by

(20) §'(v) =4 (v) + >—-B+ D.

us —uy. As us —up < |f F,\Da| < 7 by definition of pre-convex bypass, we obtain
the desired condition on the return time. O

7.5.4. Convezification smoothing. In this section we interpolate between ony and
Qprec for Yy > %ystd-

Construction 7.36. For y € [%ystd,ystd], let & = aprec + al(y) P, (2) sin(z)dy
where [ is non increasing, [ = 1 in [%ystd, %ystd] and [ =0 for y > %ystd. We extend
this construction to the other non-convex areas by symmetry.

The 1-form « is a contact form as al(y)®.,(2) sin(z) is Cl-close to 0. Let Beony
be the convexified bypass and acony the associated contact structure. We call C =
Bconv\[;’ the convezification area and we denote by P the set where ctcony 7 Qprec. In
coordinates (z,y, z), the connected component of P containing I'y is the set z > zg.
In coordinates (t,u,v), it is contained between Sp and Sj, and its v-coordinates are
in (va,vl,.,) (Proposition 7.25).

Corollary 7.37 (Corollary of Lemma 7.21). Let v be a Reeb orbit intersecting P.
If v enters C in pin = (Tin, Yin, Zin) Such that x;, € [g — %, 5+ %] and zy > 0
then the exiting point pout = (T outs Yout, Zout) SALISfies Tour € [g — %, 5+ %] and

Yout > Yin-

Proof. If v intersects the set y > %ystd, we obtain the desired result as R, > 0 and
h is defined for z € [g — %, 5+ %] We now assume that - is contained in the set
y < %ystd. As «y intersects P, we have tout — tin > A, and pin, Pout € I} X I, X I
(Lemma 7.21 and Construction 7.22). In addition ueut —uin > 0 as R, > 0. Lemma

7.21 gives the desired result. O

By symmetry, there exist analogous statements near any endpoint of Fgr%jfd.
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7.6. Conditions (B1l) to (B8). We now prove that our construction satisfies
conditions (B1) to (B8) and is adapted to the boundary.

The contact form is adapted to the boundary. By the definition of pre-convex
bypass, the contact form is adapted to the boundary outside C. The contact form
is adapted for y > %ystd as Oconv = Qprec and ||hljce < €l (Lemma 7.14).
For y < %ystd and z < %ystd + Zprod, Lemma 7.25 gives the desired result. For
y € [%ystd, %ystd} and zf . < |z — 5|, we apply Lemma 7.23. Finally, for y €
[%ystd, %ystd} and |z — §| < x’éat, we have h = h(0) and R, is positively collinear
to

(Kint(2)ksup (2) + al(y) Dz, (2)) cos(z).
Thus
o R, =0forz=73;
o R, >0 forz < F;
o R, <0forz>7%.

The tangency points between S, and R, are the segment 2 = 5. Along this
segment and for y < %ystd, R, is positively collinear to fine(y)p — a<I>’Z0 (z1,) and

fint(W)p — a®’, (21) < p— a®’, (2n) < 0.

For y > %ystd, R, is positively collinear to

7k;up(zh) - Cg(y)q);(, (Zh) <0.

By symmetry we obtain the desired result in the other convexified areas.

Condition (B6). Let v be a Reeb chord of Sz in BSYs. If v does not meet P,
condition (B6) is given by Lemma 7.6. We now assume that v intersects P. Let pg,
and p3 ., denote the endpoints of v and pi, and poy; the first entering and exiting
point of C. We assume that pj, is in the connected component of C containing I'y.
The proof of the other cases is similar.

If v does not intersect P after poyt, then v is contained in [ﬂ' — %,ﬂ' + %] X
[0, Ysta] X Tmax after pour (Lemma 7.8 and Equation (7)). Thus we have x5, €
[77 — %,77 + %] (Lemma 7.5). Then z;, € [77 — %,77 + %] and zj, > zout (Corollary
7.37). Therefore zfl > Zin > Zout > zfut as R, < 0. We obtain :clsn S [7r — %,w + %]
(Lemma 7.5).

If v intersects P after pous, then v meets the connected component associated
to [m, 3] x [0, ysta) X [—2sta, 0] (Lemma 7.8). Let pf, and p,, denote the second
entering and exiting point. Between poys and pf,, v is contained [T&' - %, T+ %] X
[0, Ysta] X Imax (Lemma 7.8). Thus we have z;, € [7r — %,71’ + %] and 2, > Zout
(Corollary 7.37). Therefore z, € [ — 4,7+ 3] (Lemma 7.5). As 7 does not
intersect P before p;y, and R, < 0, we obtain zf’; > Zin > Zout > 2. In addition

out*
Thy € [T — 3,7+ 3] and 2, > 2, (Corollary 7.37). As v does not meet P after
phye (Lemma 7.8) and R, < 0, we obtain zi > zin > Zout > 2ly > 204 > 25y and
x5y € [ — 5,7+ 3] (Lemma 7.5).

Condition (B7). Let v be a Reeb orbit in BSYst4 with endpoints ps and pS,, in
Sz and S§,,,,. If v does not meet P we obtain the desired result by Lemma 7.6. We
now assume that v meets P. The image of P on Sz is contained in X U X + 2.
Thus p € X + 2krn for k € {0,1}. In addition, there exists &’ € {0,1} such
that p> . € [% — % +2k'm, § + % + 2k:’7r] X Imax (Lemma 7.6). It remains to prove
that k& = k’. If v meets P once, then the z-coordinate of the exiting point is in
[2km — %, (2k+ 1)m + %] as P C V and thus k = k¥’ (Lemma 7.5). If v meets P
twice, then the first exiting point has a z-coordinate in [2km — %, 2k + D)7 + %}

Thus the z-coordinate of the second entering point is in [2k7r - %, 2k + 1)m+ %]
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(Lemma 7.5) and the z-coordinate of the second exiting point is contained in
[2kT — 2, (2k + 1)m + 3] (Corollary 7.37). Thus k = k’. The proof of condition
(B8) is similar.

Condition (B5). By Remark 7.7, if v is a Reeb chord of S, in BS¥d then

conv
~ intersects S%ysm' Let po and pfut denote the endpoints of v. By Lemma 7.6,

ah € [3F — 5 +2kn, 3+ 3 +2kn| and a5, € [ -5 +2km, T+ 5 +2k7]. In
addition v intersects P (Lemma 7.5). Yet v intersects only one connected compo-
nent of P (Lemma 7.8). This leads to a contradiction.

Condition (B4). This condition is a consequence from Lemma 7.9.

Conditions (B1), (B2) and (B3). These conditions derive from Lemma 7.17
and Lemma 7.31. Indeed, by Lemma 7.6, all the Reeb chords which contribute to
the map between Ry and Sg intersect P and thus ¥, and X_. In addition, the
intersection points with ¥_ are in [ug, us] x I, (Equation (11)) and the intersection
points with X in [ug, us] x I, (Equations (9) and (10) and Lemma 7.6). Let ¢ be
a curve in [g + AT — )\] X Imax with tangents in C(V, A). Then the tangents of
the image of ¢ in ¥_ are in C(V, B) (Lemma 7.17) and the tangents of the image
of § in ¥y are in C(H,ep) (Lemma 7.31). Thus the image of § on Sg is eg close
to 01. Similarly, the tangent of the image of an horizontal segment in Sg are in
C(H,v) (Lemma 7.17). Condition (B3) is a consequence of the definition of pre-
convex bypasses. We obtain the rectangle structures on dom(p;) and im(y;) by
considering the images of vertical curves in Sz and the inverse images of horizontal
curves in Si. These curves are transverse (definition of pre-convex bypasses).

8. CONLEY-ZEHNDER INDEX

In this section we prove Theorem 2.6: we compute the Conley-Zehnder index p
of the periodic orbit v, described in Theorem 2.1.

8.1. Two technical lemmas.

Lemma 8.1. Let (R;)ic(o,1] be a path of symplectic matrices in R? such that Ry =
Id and Ry € Sp*. Let Rey = r(t)e’™®. If a(l) € [2kr + F,2km + 3T] and
w(R) is odd, then then p(R) = 2k 4+ 1. Similarly if u(R) is even and a(l) €
[2k7r — 5, 2kT + g], then u (Ry) = 2k.

Proof. We extend Ry, o and r; to t € [1,2] (see Section 3.3.2). Let 6; denote the
rotation angle associated to the polar decomposition R; = S;O;. Without loss of
generality 0y = 0. As Sy is positive-definite, 0; — § < oy < 6; + 5. Additionally,
if there exists ¢ € [1,2] such that 6; = 0[2n] then R, € Sp™(2). Similarly if
0; = 7[27] then we have R; € Sp™(2). Therefore if u(R) is odd, 6; # 0[27] for all
t €[1,2]. Thus b — 7 < 03 < 01 + 7 and ag — 37" < 0y < ap + 37“ Therefore
02 € ((2k — )7, (2k 4+ 3)7). The proof of the other case is similar. O

Lemma 8.2. Let 6y > 0. There exists v(0y) > 0 such that if R € Sp(2) and

e Rej € C(eq,tan(v(6p)));
hd HRelH Z 37'
o there exists f € C(ea,tan(bp)) such that Rf € C(ea,tan(bp));

then R is R-diagonalizable and its eigenvalues are of the sign of (e1, Rey).

Proof. We prove that [tr(R)| > 2. Without loss of generality, (e1, f) is a direct
basis. The matrix associated to the change of basis from (e1,e2) to (e, f) is

= (o)
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where 0 € [g — 00,5 + 90]. In the basis (eg, e3), the matrix of R is
_ 1 sin(f@ — 61) posin(d — 6s)
P 1 P = H1 \ 1 \
R sin(6) < w1 sin(6q) pa sin(fs)

where 6, € [—v(6p),v(6p)], 02 € [% —bto, 5 —|—00} and |p1| > 3. As pyps > 0, we
obtain tr(R) > 2 for v(6p) small enough. O

8.2. Computation of the Conley-Zehnder index. Let a = a;, ...a;, be a
word such that [(a) < K. Let p, be an intersection point between v, and S .
We denote by T'(a) the period of v,. Let R; be the path of symplectic matrices
along v, associated to the trivialisation described in Section 2.4. Let xa be the
map induced by the Reeb flow between Sz and S,, a surface tangent to £(pa) at
Da. Let Ga = pp o, ---o@p o1, . By definition of pp and ¢,

e dom(G,) and im(G,) are rectangles with respectively horizontal and verti-

cal fibres and G, preserves the fibres;
e dGa (pa, 2) € C(H, z/)

e ||dGa (pa, az)H = (nM)'

Lemma 8.3. There exists 0y such that for u, v and n small enough, Ry ) satisfies
the hypothesis of Lemma 8.2.

Proof. Note that dxa(pa)% = 4e;. We choose 6y such that xa, (C(V,A)) C
C(ea,tan(fp)). For p small enough, we have xa, (C(H, u)) C C(er, tan(v(6g)). Let
I be such that ||dxp, (pa)|l < and [|dxp. (pa)~*|| <. Then

90y 1
fox|| = InM
and ||Rey|| > 3 for n small enough. O
Lemma 8.4. For allp € dom(Ga,), (dGa(p )au 8£> is of the sign of]_[] (=1 1)Alas;)

-1
1
dG

|Rar@erl > depa<pa>1

Proof. Note that <dch (p)%7 8%> > 0 for all p € dom(ppg). Therefore, we have

<d<pB(p)v, ;;> >0

for all v € C,(V, A) such that (v, %> > 0.
We prove the desired result by induction on k. If k = 1 then diq, (p) 2 € C(V, A).
If fiay) is even, (—di, (p) 2, 2) < 0 (see Figure 33) and we obtain

<dGa1( )88 88 > > 0.

Similarly, if p(a;) is odd, we obtain (—dig, (p), 2 ) > 0 and

<dGa1 (p)ﬁ%s’ 8(1> <0.
We now prove the result for a = a;, ...a;,_,. Let p € dom(Ga) and v =
dGo,, ...as, (p)Z. By induction, (v, 2) is of the sign of H (=1 1)a3)  Then,
<d¢aLH1 v, az> is of the sign of HkH( 1)A@45) and so is <dGaik+1 v, %>. O

Corollary 8.5. For u, v and n small enough, 25:1 fia;) = p(va)[2].
Proof. The signs of <dGa Ba> dx> and <RT(a) B> dax> coincide and Ry () is hyper-

bolic (Lemmas 8.2 and 8.3). Its eigenvalues are positive if Z§:1 fi(a;;) is even and
negative if Z?Zl fi(as;) is odd (Lemma 8.4). O
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u(a;) even w(a;) odd

dwal (p)el

FIGURE 33. The vector diyq, (p)e1

Lemma 8.6. There exists a collar neighbourhood S, of va in the trivialisation
class given in Section 2.4 such that if Ry is the associated path of symplectic matrices
along va and Rt% = 7(t)e?® then 0(t) # O[] when Ya(t) is in the bypass and
t>0.

Proof. Let ¢ be a Reeb chord in the bypass contained in 7, with endpoints c;
and c_ on Sz. We construct a strip S, along ¢ such that no Reeb chord with one
endpoint on the vertical segment containing ¢, and close to ¢y intersects S.. We
then glue together the half of S, and the collar associated to the Reeb chords to
obtain S,,. We choose S, such that

1) between Sz and the convexification, S, is tangent to 2;
) g e

(2) in the convexification area, S, is tangent to %;

(3) is the upper part of the bypass, S. is tangent 8—87".

We smooth the resulting surface. Figure 34 shows ¢ and a Reeb chord with one
endpoint on the vertical segment contained c; (dotted curve). In this figure S, is

transverse to the projection.
Y Y
4 ? z
]

FIGURE 34. The surface S. and the Reeb chords

O

Proof of Theorem 2.6. We consider the trivialisation from Lemma 8.6. Without
loss of generality 6(0) = 0. Let 0 =t; <] < --- <t <t} = T'(a) be the times
associated to the intersection points between «y, and Sz (7a(0) is the fixed point of
Ga).

We prove by induction that for all j =1,...,k

(21) 0(t;) € KZ ﬂ(%)”) —v(bo), (Z M(%)W) + 1/(6’0)] :

=1 =1
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As 0(0) = 0, the condition (21) is satisfied for j = 1. We now suppose that the
equation (21) stands for i € 1...j — 1. By definition of u(a,),

G(t;)e Z/L(aiz)’ﬁ ) Zu(aiz)ﬂ +7
=1

=1
We obtain (Lemma 8.6)

j i
0(tj1) € || D plas)m | —v(B0), | D plai)w | +v(6o)
=1 =1
i j
or  0(tj41) € pulai)m | +m —v(bo), p(ai)m | +m + v ()
=1 =1

By Lemma 8.4, we obtain the equation (21) for i = j. Lemma 8.1 provides us with
the desired Conley-Zehnder index. O
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