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On the heat flux and entropy produced by thermal fluctuations
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We report an experimental and theoretical analysis of the energy exchanged between two con-
ductors kept at different temperature and coupled by the electric thermal noise. Experimentally we
determine, as functions of the temperature difference, the heat flux, the out-of- equilibrium variance
and a conservation law for the fluctuating entropy, which we justify theoretically. The system is
ruled by the same equations as two Brownian particles kept at different temperatures and coupled
by an elastic force. Our results set strong constrains on the energy exchanged between coupled
nano-systems held at different temperatures.

The fluctuations of thermodynamics variables play an important role in understanding the out-of-equilibrium dy-
namics of small systems [1, 2], such as Brownian particles [3–7], molecular motors [8] and other small devices [9]. The
statistical properties of work, heat and entropy, have been analyzed, within the context of the fluctuation theorem [10]
and stochastic thermodynamics [1, 2], in several experiments on systems in contact with a single heat bath and driven
out-of-equilibrium by external forces or fields [3–9]. In contrast, the important case in which the system is driven
out-of-equilibrium by a temperature difference and energy exchange is produced only by the thermal noise has been
analyzed only theoretically on model systems [11–19] but never in an experiment because of the intrinsic difficulties
of dealing with large temperature differences in small systems.

We report here an experimental and theoretical analysis of the statistical properties of the energy exchanged between
two conductors kept at different temperature and coupled by the electric thermal noise, as depicted in fig. 1a. This
system is inspired by the proof developed by Nyquist [20] in order to give a theoretical explanation of the measurements
of Johnson [21] on the thermal noise voltage in conductors. In his proof, assuming thermal equilibrium between the two
conductors, he deduces the Nyquist noise spectral density. At that time, well before Fluctuation Dissipation Theorem
(FDT), this was the second example, after the Einstein relation for Brownian motion, relating the dissipation of a
system to the amplitude of the thermal noise. In this letter we analyze the consequences of removing the Nyquist’s
equilibrium conditions and we study the statistical properties of the energy exchanged between the two conductors
kept at different temperature. This system is probably among the simplest examples where recent ideas of stochastic
thermodynamics can be tested but in spite of its simplicity the explanation of the observations is far from trivial. We
measure experimentally the heat flowing between the two heath baths, and show that the fluctuating entropy exhibits
a conservation law. This system is very general because is ruled by the same equations of two Brownian particles kept
at different temperatures and coupled by an elastic force [13, 19]. Thus it gives more insight into the properties of the
heat flux produced by mechanical coupling, in the famous Feymann ratchet [22–24] widely studied theoretically [13]
but never in an experiment. Therefore our results have implications well beyond the simple system we consider here.

FIG. 1: a) Diagram of the circuit. The resistances R1 and R2 are kept at temperature T1 and T2 = 296K respectively. They
are coupled via the capacitance C. The capacitances C1 and C2 schematize the capacitance of the cables and of the amplifier
inputs. The voltages V1 and V2 are amplified by the two low noise amplifiers A1 and A2 [33]. b) The circuit in a) is equivalent
to two Brownian particles (m1 and m2) moving inside two different heat baths at T1 and T2. The two particles are trapped by
two elastic potentials of stiffness K1 and K2 and coupled by a spring of stiffness K (see text and eqs.3,4) The analogy with the
Feymann ratchet can be made by assuming as done in ref.[13] that the particle m1 has an asymmetric shape and on average
moves faster in one direction than in the other one.

Such a system is sketched in fig.1a). It is constituted by two resistances R1 and R2, which are kept at different
temperature T1 and T2 respectively. These temperatures are controlled by thermal baths and T2 is kept fixed at
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296K whereas T1 can be set at a value between 296K and 88K using liquid nitrogen vapor as a circulating coolant.
In the figure, the two resistances have been drawn with their associated thermal noise generators η1 and η2, whose
power spectral densities are given by the Nyquist formula |η̃m|2 = 4kBRmTm, with m = 1, 2 (see eqs.3,4 and ref.[26]).
The coupling capacitance C controls the electrical power exchanged between the resistances and as a consequence
the energy exchanged between the two baths. No other coupling exists between the two resistances which are inside
two separated screened boxes. The quantities C1 and C2 are the capacitances of the circuits and the cables. Two
extremely low noise amplifiers A1 and A2 [33] measure the voltage V1 and V2 across the resistances R1 and R2

respectively. All the relevant quantities considered in this paper can be derived by the measurements of V1 and V2,
as discussed below. In the following we will take C = 100pF,C1 = 680pF,C2 = 420pF and R1 = R2 = 10MΩ,
if not differently stated. When T1 = T2 the system is in equilibrium and exhibits no net energy flux between the
two reservoirs. This is indeed the condition imposed by Nyquist to prove his formula, and we use it to check all the
values of the circuit parameters. Applying the Fluctuation-Dissipation-Theorem (FDT) to the circuit, one finds the
Nyquist’s expression for the variance of V1 and V2 at equilibrium, which reads σ2

m,eq(Tm) = kBTm(C + C ′m)/X with
X = C2 C1 +C (C1 +C2), m′ = 2 if m = 1 and m′ = 1 if m = 2. For example one can check that at T1 = T2 = 296 K,
using the above mentioned values of the capacitances and resistances, the predicted equilibrium standard deviations
of V1 and V2 are 2.33µV and 8.16µV respectively. These are indeed the measured values with an accuracy better than
1%, see ref. [26] for further details on the system calibration.

FIG. 2: The joint probability log10 P (V1, V2) measured at T1 = 296K equilibrium (a) and out of equilibrium T1 = 88K(b). The
color scale is indicated on the colorbar on the right side.

The important quantity to consider here is the joint probability P (V1, V2), which is plotted in fig. 2a) at T1 = T2
and at fig. 2b) at T1 = 88K. The fact that the axis of the ellipses defining the contours lines of P (V1, V2) are inclined
with respect to the x and y axis indicates that there is a certain correlation between V1 and V2. This correlation,
produced by the electric coupling, plays a major role in determining the mean heat flux between the two reservoirs, as
we discuss below. The interesting new features occur of course when T1 6= T2. The questions that we address for such
a system are: What are the heat flux and the entropy production rate ? How the variance of V1 an V2 are modified
because of the heat flux ? What is the role of correlation between V1 and V2? We will see that these questions are
quite relevant and have no obvious answers because of the statistical nature of the energy transfer.

We consider the electric power dissipated in the resistance Rm with m = 1, 2 which reads Q̇m = Vm im where im is
the current flowing in the resistance m. The integral of the power over a time τ is the total energy Qm, dissipated
by the resistance in this time interval, i.e. Qm,τ =

∫ t+τ
t

im Vm dt. All the voltages Vm and currents im can be

measured: indeed we have im = iC − iCm
where iC = C d(V2−V1)

dt is the current flowing in the capacitance C, and

iCm
= Cm

dVm

dt is the current flowing in Cm. Thus rearranging the terms one finds that Qm,τ = Wm,τ −∆Um,τ where

W1,τ =
∫ t+τ
t

C V1
dV2

dt dt, W2,τ =
∫ t+τ
t

CV2
dV1

dt dt and ∆Um,τ = (Cm+C)
2 (Vm(t + τ)2 − Vm(t)2) is the potential energy

change of the circuit m in the time τ . Notice that Wm are the terms responsible for the energy exchange since they
couple the fluctuations of the two circuits. The quantities W1,τ and W2,τ can be identified as the work performed by
the circuit 2 on 1 and vice-versa [25, 27, 30], respectively. Thus, the quantity Q1,τ (Q2,τ ) can be interpreted as the
heat flowing from the reservoir 2 to the reservoir 1 (from 1 to 2), in the time interval τ , as an effect of the temperature
difference. As the two variables Vm are fluctuating voltages all the other quantities also fluctuate. In fig. 3a) we show
the probability density function P (Q1,τ ), at various temperatures: we see that Q1,τ is a strongly fluctuating quantity,
whose P (Q1,τ ) has long exponential tails.

Notice that although for T1 < T2 the mean value of Q1,τ is positive, instantaneous negative fluctuations can
occur, i.e., sometimes the heat flux is reversed. The mean values of the dissipated heats are expected to be linear
functions of the temperature difference ∆T = T2 − T1, i.e. 〈Q1,τ 〉 = Aτ ∆T , where A is a parameter dependent
quantity, that can be obtained explicitly from eqs. 3 and 4 below. This relation is confirmed by our experimental
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FIG. 3: a) The probability P (Q1,τ ) measured at T1 = 296K (blue line) equilibrium and T1 = 88K (magenta line) out of
equilibrium. Notice that the peak of the P (Q1,τ ) is centered at zero at equilibrium and shifted towards a positive value out of
equilibrium. The amount of the shift is very small and is ∼ kB(T2 − T1). b) The measured mean value of 〈Q1,τ 〉 is a linear
function of (T2 − T1). The red points correspond to measurements performed with the values of the capacitance C1, C2, C
given in the text and τ = 0.2s. The other symbols and colors pertain to different values of these capacitance and other τ :
(black ◦) τ = 0.4s, C = 1000pF , (green /) τ = 0.1s, C = 100pF , (magenta +) τ = 0.5s, C = 100pF . The values of 〈Q1,τ 〉
have been rescaled by the parameter dependent theoretical prefactor A, which allows the comparison of different experimental
configurations. The continuous blue line with slope 1 is the theoretical prediction of eq. 7. In the inset the values of < Q̇1 >
(at C = 1000pF ) directly measured using P (Q1) (blue square) are compared with those (red circles) obtained from the equality

< Q̇1 >= (σ2
1 − σ2

1,eq)/R1, as discussed in the text.

results, as shown in fig. 3b. Furthermore, the mean values of the dissipated heat satisfy the equality 〈Q2〉 = −〈Q1〉,
corresponding to an energy conservation principle: the power extracted from the bath 2 is dissipated into the bath 1
because of the electric coupling. This mean flow produces a change of the variances σ2

m(Tm) of Vm with respect to the
equilibrium value σ2

m,eq(Tm), that is the equilibrium value measured when the two baths are at the same temperature

Tm. Specifically we find σ2
m(Tm) = σ2

m,eq(Tm)+ < Q̇m > Rm which is an extension to two temperatures of the
Harada-Sasa relation [34] (see also ref.[26] for a theoretical proof of this experimental result). This result is shown

in the inset of fig. 3b) where the values of
〈
Q̇m

〉
directly estimated from the experimental data (using the steady

state P (Qm)) are compared with those obtained from the difference of the variances of V1 measured in equilibrium
and out-of-equilibrium. The values are comparable within error bars and show that the out-of-equilibrium variances
are modified only by the heat flux. It is now important to analyze the entropy produced by the total system, circuit
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FIG. 4: a) The probability P (∆Sr) (dashed lines) and P (∆Stot) (continuous lines) measured at T1 = 296K (blue line) which
corresponds to equilibrium and T1 = 88K (green lines) out of equilibrium. Notice that both distributions are centered at
zero at equilibrium and shifted towards positive value in the out-of-equilibrium. b) 〈exp(−∆Stot)〉 as a function of T1 at two
different τ = 0.5s and τ = 0.1s. c) Symmetry function Sym(∆Stot) = log[P(∆Stot)/P(−∆Stot)] as a function of ∆Stot. The
black straight line of slope 1 corresponds to the theoretical prediction.

plus heat reservoirs. We consider first the entropy ∆Sr,τ due to the heat exchanged with the reservoirs, which reads
∆Sr,τ = Q1,τ/T1 + Q2,τ/T2. This entropy is a fluctuating quantity as both Q1 and Q2 fluctuate, and its average
in a time τ is 〈∆Sr,τ 〉 = 〈Qr,τ 〉 (1/T1 − 1/T2) = Aτ(T2 − T1)2/(T2 T1). However the reservoir entropy ∆Sr,τ is
not the only component of the total entropy production: one has to take into account the entropy variation of the
system, due to its dynamical evolution. Indeed, the state variables Vm also fluctuate as an effect of the thermal
noise, and thus, if one measures their values at regular time interval, one obtains a “trajectory” in the phase space
(V1(t), V2(t)). Thus, following Seifert [28], who developed this concept for a single heat bath, one can introduce a
trajectory entropy for the evolving system Ss(t) = −kB logP (V1(t), V2(t)), which extends to non-equilibrium systems
the standard Gibbs entropy concept. Therefore, when evaluating the total entropy production, one has to take into
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account the contribution over the time interval τ of

∆Ss,τ = −kB log

[
P (V1(t+ τ), V2(t+ τ))

P (V1(t), V2(t))

]
. (1)

It is worth noting that the system we consider is in a non-equilibrium steady state, with a constant external driving
∆T . Therefore the probability distribution P (V1, V2) (as shown in fig. 2b)) does not depend explicitly on the time, and
∆Ss,τ is non vanishing whenever the final point of the trajectory is different from the initial one: (V1(t+τ), V2(t+τ)) 6=
(V1(t), V2(t)). Thus the total entropy change reads ∆Stot,τ = ∆Sr,τ + ∆Ss,τ , where we omit the explicit dependence
on t, as the system is in a steady-state as discussed above. This entropy has several interesting features. The first
one is that 〈∆Ss,τ 〉 = 0, and as a consequence 〈∆Stot〉 = 〈∆Sr〉 which grows with increasing ∆T . The second and
most interesting result is that independently of ∆T and of τ , the following equality always holds:

〈exp(−∆Stot/kB)〉 = 1, (2)

for which we find both experimental evidence, as discussed in the following, and provide a theoretical proof in
ref. [26]. Equation (2) represents an extension to two temperature sources of the result obtained for a system in
a single heat bath driven out-of-equilibrium by a time dependent mechanical force [6, 28] and our results provide
the first experimental verification of the expression in a system driven by a temperature difference. Eq. (2) implies
that 〈∆Stot〉 ≥ 0, as prescribed by the second law. From symmetry considerations, it follows immediately that, at
equilibrium (T1 = T2), the probability distribution of ∆Stot is symmetric: Peq(∆Stot) = Peq(−∆Stot). Thus Eq. (2)
implies that the probability density function of ∆Stot is a Dirac δ function when T1 = T2, i.e. the quantity ∆Stot
is rigorously zero in equilibrium, both in average and fluctuations, and so its mean value and variance provide a
measure of the entropy production. The measured probabilities P (∆Sr) and P (∆Stot) are shown in fig. 4a). We see
that P (∆Sr) and P (∆Stot) are quite different and that the latter is close to a Gaussian and reduces to a Dirac δ
function in equilibrium, i.e. T1 = T2 = 296K (notice that, in fig.4a, the small broadening of the equilibrium P (∆Stot)
is just due to unavoidable experimental noise and discretization of the experimental probability density functions).
The experimental measurements satisfy eq. (2) as it is shown in fig. 4b). It is worth to note that eq. (2) implies
that P (∆Stot) should satisfy a fluctuation theorem of the form log[P (∆Stot)/P (−∆Stot)] = ∆Stot/kB , ∀τ,∆T , as
discussed extensively in reference [1, 29]. We clearly see in fig.4c) that this relation holds for different values of the
temperature gradient. Thus this experiment clearly establishes a relationship between the mean and the variance of
the entropy production rate in a system driven out-of-equilibrium by the temperature difference between two thermal
baths coupled by electrical noise. Because of the formal analogy with Brownian motion the results also apply to
mechanical coupling as discussed in the following.

We will now give a theoretical interpretation of the experimental observations. This will allow us to show the
analogy of our system with two interacting Brownian particles coupled to two different temperatures, see fig. 1-b).
Let qm (m = 1, 2) be the charges that have flowed through the resistances Rm, so the instantaneous current flowing
through them is im = q̇m. A circuit analysis shows that the equations for the charges are:

R1q̇1 = −q1
C2

X
+ (q2 − q1)

C

X
+ η1 (3)

R2q̇2 = −q2
C1

X
+ (q1 − q2)

C

X
+ η2 (4)

where ηm is the usual white noise: 〈ηi(t)ηj(t′)〉 = 2δijkBTiRjδ(t − t′). The relationships between the measured
voltages and the charges are:

q1 = (V1 − V2)C + V1 C1 (5)

q2 = (V1 − V2)C − V2 C2 (6)

Eqs. 3 and 4 are the same of those for the two coupled Brownian particles sketched in fig.1b) by considering qm the
displacement of the particle m, im its velocity, Km = 1/Cm the stiffness of the spring m, K = 1/C the coupling
spring and Rm the viscosity. With this analogy we see that our definition of the heat flow Qm corresponds exactly to
the work performed by the viscous forces and by the bath on the particle m, and it is consistent with the stochastic
thermodynamics definition [1, 25, 30–32]. Thus our theoretical analysis and the experimental results apply
to both interacting mechanical and electrical systems coupled to baths at different temperatures. Starting from
eqs. (3)-(4), we can prove (see ref. [26]) that eq.2 is an exact result and that the average dissipated heat rate is

〈
Q̇1

〉
= A (T2 − T1) =

C2∆T

XY
, (7)
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with Y = [(C1 + C)R1 + (C2 + C)R2] and A = C2/(X Y ) is the parameter used to rescale the data in fig. 3b).
To conclude we have studied experimentally the statistical properties of the energy exchanged between two heat

baths at different temperature which are coupled by electric thermal noise. We have measured the heat flux, the
entropy production rate and we have shown the existence of a conservation law for entropy which imposes the
existence of a fluctuation theorem which is not asymptotic in time. Our results, which are theoretically proved, are
very general since the electric system considered here is ruled by the same equations as for two Brownian particles,
held at different temperatures and mechanically coupled. Therefore these results set precise constraints on the energy
exchanged between coupled nano and micro-systems held at different temperatures. We finally mention that for the
quantity Wi an asymptotic fluctuation theorem can be proved both experimentally and theoretically, and this will be
the subject of a paper in preparation.
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I. EXPERIMENTAL DETAILS

A. Experimental set up

The electric systems and amplifiers are inside a Faraday cage and mounted on a floating optical table to reduce mechanical
and acoustical noise. The resistance R1, which is cooled by liquid Nitrogen vapors, changes of less than 0.1% in the whole
temperature range. Its temperature is measured by a PT1000 which is inside the same shield of R1. The signal V1 and V2 are
amplified by two custom designed JFET amplifiers [1] with an input current of 1pA and a noise of 0.7nV

√
Hz at frequencies

larger than 1Hz and increases at 8nV
√
Hz at 0.1Hz. The resistances R1 and R2 have been used as input resistances of the

amplifiers. The two signals V1 and V2 are amplified 104 times and the amplifier outputs are filtered (at 4KHz to avoid aliasing)
and acquired at 8KHz by 24 bits-ADC. We used different sets of C1, C2 and C. The values of C1 and C2 are essentially set by
the input capacitance of the amplifiers and by the cable length 680pF < C1 < 780pF and 400pF < C2 < 500pF . Instead C
has been changed from 100pF to 1000pF . The system has always been calibrated in equilibrium at T1 = T2 = 296K using the
FDT and estimating the spectrum using the values of the capacitances, see next sections.

B. Noise spectrum of the amplifiers

The noise spectrum of the amplifiers A1 and A2 (Fig.1 of the main text), measured with a short circuit at the inputs, is plotted
in fig.S.1a) and compared with the spectrum Sp1 of V1 at T1 = 88K. We see that the useful signal is several order of magnitude
larger than the amplifiers noise.
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FIG. S.1: a) The power spectra Sp1 of V1 measured at T1 = 88K (blue line) ( C = 100pF,C1 = 680pF,C2 = 430pF ) is compared to the
spectrum of the amplifier noise. b) The equilibrium spectra Sp1( red line) and Sp2 (green line) measured at T1 = T2 = 296K are compared
with prediction of eqs.S.1 and S.2 in order to check the values of the capacitances (C1, C2).
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C. Check of the calibration

The equilibrium spectra of V1 and V2 at T1 = T2 used for calibration of the capacitances are:

S1(ω) =
4kBT1R1[1 + ω2(C2R1R2 +R2

2(C2 + C)2)]

(1− ω2X R1R2)2 + ω2Y 2
(S.1)

S2(ω) =
4kBT2R2[1 + ω2(C2R1R2 +R2

1(C1 + C)2)]

(1− ω2X R1R2)2 + ω2Y 2
(S.2)

where Y = [(C1 + C)R1 + (C2 + C)R2] and X = C2 C1 + C (C1 + C2). This spectra can be easily obtained by applying
FDT to the circuit of fig.1 in the main text.

The two computed spectra are compared to the measured ones in fig. S.1a). This comparison allows us to check the values
of the capacitances C1 and C2 which depend on the cable length. We see that the agreement between the prediction and the
measured power spectra is excellent and the global error on calibration is of the order of 1%. This corresponds exactly to the
case discussed by Nyquist in which the two resistances at the same temperature are exchanging energy via an electric circuit (C
in our case).

D. The power spectra of V1 and V2 out-of-equilibrium

When T1 6= T2 the power spectra of V1 and V2 are:

S1(ω) =
4kBT1R1[1 + ω2(C2R1R2 +R2

2(C2 + C)2)]

(1− ω2X R1R2)2 + ω2Y 2
+

4kB(T2 − T1)ω2 C2R2
1R2

(1− ω2X R1R2)2 + ω2Y 2
(S.3)

S2(ω) =
4kBT2R2[1 + ω2(C2R1R2 +R2

1(C1 + C)2)]

(1− ω2X R1R2)2 + ω2Y 2
+

4kB(T1 − T2)ω2 C2R2
2R1

(1− ω2X R1R2)2 + ω2Y 2
(S.4)

These equations have been obtained by Fourier transforming eqs. S.7,S.8, solving for Ṽ1(ω) and Ṽ2(ω) and computing the
modula. The integral of eqs. S.3 and S.4 gives the variances eq. S.24 directly computed from the distributions.
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FIG. S.2: a) The power spectra Sp1 of V1 and Sp2 of V2 measured at T1 = 120K and T2 = 296K ( C = 100pF,C1 = 680pF,C2 = 430pF )
are compared with the prediction of eq.S.3 and S.4 (dashed lines) b) The corresponding Probability Density Function P (V1) of V1 (green line)
and P (V2) of V2 (blue line) measured at T1 = 120K and T2 = 296K. Dotted lines are the out-of-equilibrium PDF, whose variance is
estimated from the measure of the heat flux (see fig.3 in the main text) and eq.S.24 in the following section. The continuous red line is the
equilibrium P (V2) at T1 = 296K and the black continuous line corresponds to the equilibrium P (V1) at T2 = 120K.

E. Measure of the equilibrium variance of V1 as a function of T1

This measure is necessary to estimate < Q1 > starting from the measurement of the variances as explained in fig.4 of the
main text. We first measure σ2

m,eq(T1) at T1 = T2 = 296K. Indeed in equilibrium the variance must be proportional to
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T1 = T2, i.e. σ2
m,eq(T1) = αmT1, and from the equilibrium measurements at T1 = T2 one gets the proportionality constant

αm = σ2
m,eq(T1)/T1. Thus when T1 < T2 one can estimate the values of the equilibrium variances σ2

m,eq(T1) = αm T1. As
explained in the main text < Q̇1 >= (σ2

1(T1) − σ2
m,eq(T1))/R1. In fig. S.2b) we compare the measured PDF of V1 and V2

with the equilibrium and the out-of-equilibrium distributions as computed by using the theoretical predictions eq.S.24 for the
variance.

II. DYNAMICAL EQUATIONS FOR Vm AND Qm.

We want to describe, with a set of coupled Langevin equations, the dynamical evolution of both the electric and thermo-
dynamic variables for the circuit in fig. 1 of the main text. For this purpose we write the Langevin equations governing the
dynamical evolutions for the voltages across the circuit:

(C1 + C)V̇1 = CV̇2 +
1

R1
(η1 − V1) (S.5)

(C2 + C)V̇2 = CV̇1 +
1

R2
(η2 − V2) (S.6)

where we have substituted eqs. (5)-(6) into eqs. (3)-(4) in the main text. We rearrange these equations in a standard form, and
obtain

V̇1 = f1(V1, V2) + σ11η1 + σ12η2 = f1(V1, V2) + ξ1 (S.7)

V̇2 = f2(V1, V2) + σ21η1 + σ22η2 = f2(V1, V2) + ξ2 (S.8)

where the “forces” acting on the circuits read

f1(V1, V2) = α1V1 + α2V2 = −C2R2V1 + C(R2V1 +R1V2)

[C2C + C1(C2 + C)]R1R2
, (S.9)

f2(V1, V2) = γ1V1 + γ2V2 = −C1R1V2 + C(R2V1 +R1V2)

[C2C + C1(C2 + C)]R1R2
, (S.10)

the coefficients σij read

σ11 =
C2 + C

XR1

R2σ12 = R1σ21 =
C

X

σ22 =
C1 + C

XR2
,

and the noises ξi introduced in eqs. (S.7)-(S.8) are now correlated
〈
ξiξ
′
j

〉
= 2θijδ(t− t′), where

θ11 =
T1(C2 + C)2

R1(C2C + C1(C2 + C))2
+

T2C
2

R2(C2C + C1(C2 + C))2
, (S.11)

θ12 =
T1(C(C2 + C))

R1(C2C + C1(C2 + C))2
+

T2(C(C1 + C))

R2(C2C + C1(C2 + C))2
, (S.12)

θ22 =
T1C

2

R1(C2C + C1(C2 + C))2
+

T2(C1 + C)2

R2(C2C + C1(C2 + C))2
, (S.13)

and θ12 = θ21. We now notice that the rate of the dissipated heat in circuit m reads

Q̇m = Vmim =
Vm
Rm

(Vm − ηm) = Vm

[
(Cm + C)V̇m − CV̇m′

]
, (S.14)

where m′ = 2 if m = 1, and m′ = 1 if m = 2. The rightmost equality in eq. (S.14) follows immediately from eqs. (S.5)-(S.6).
So one has a formalism where both the voltages and the dissipated heats are described as stochastic processes, driven by the
thermal noises ηm.
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III. PROBABILITY DISTRIBUTION FUNCTION FOR THE VOLTAGES

We now study the joint probability distribution function (PDF) P (V1, V2, t), that the system at time t has a voltage drop
V1 across the resistor R1 and a voltage drop V2 across the resistor R2. As the time evolution of V1 and V2 is described by
the Langevin equations (S.7)-(S.8), it can be proved that the time evolution of P (V1, V2, t) is governed by the Fokker-Planck
equation [2]

∂tP (V1, V2, Q1, t) = L0P (V1, V2, t) = − ∂

∂V1
(f1P )− ∂

∂V2
(f2P ) + θ11

∂2

∂V 2
1

P + θ22
∂2

∂V 2
2

P

+2θ12
∂2

∂V1∂V2
P (S.15)

We are interested in the long time steady state solution of eq. (S.15), which is time independent P (V1, V2, t → ∞) =
Pss(V1, V2). As the deterministic forces in eqs. (S.7)-(S.8) are linear in the variables V1 and V2, such a steady state solution
reads

Pss(V1, V2) =
2πe−(aV 2

1 +bV1V2+cV 2
2 )

√
−b2 + 4ca

(S.16)

where the coefficients

a =
X {C1T2Y + C[CR2T1 + T2(C1R1 + CR1 + C2R2)]}

2 [Y 2T1T2 + C2R1R2(T1 − T2)2]
,

b = −XC[(C2 + C)R2T1 + (C1 + C)R1T2]

[Y 2T1T2 + C2R1R2(T1 − T2)2]
,

c =
X {C2T1Y + C[CR1T2 + T1(C1R1 + CR2 + C2R2)]}

2 [Y 2T1T2 + C2R1R2(T1 − T2)2]
,

can be obtained by replacing eq. (S.16) into eq. (S.15), and by imposing the steady state condition ∂tP = 0. We are furthermore
interested in the unconstrained steady state probabilities P1,ss(V1), and P2,ss(V2), which are obtained as follows

P1,ss(V1) =

∫
dV2Pss(V1, V2) =

e
− V 2

1
2σ21√

2πσ2
1

(S.17)

P2,ss(V2) =

∫
dV1Pss(V1, V2) =

e
− V 2

2
2σ22√

2πσ2
2

(S.18)

where the variances read

σ2
1 =

T1(C + C2)Y + (T2 − T1)C2R1

XY
(S.19)

σ2
2 =

T2(C + C1)Y − (T2 − T1)C2R2

XY
(S.20)

IV. PROBABILITY DISTRIBUTION FOR THE DISSIPATED HEAT AND AVERAGE RATE

We start by noticing that the heat injected from the bath 1 is then dissipated in the bath 2 (and vice-versa), and so we expect the
probability distribution of Q1 and Q2 to be symmetric. Thus in the following, we will only study the probability distribution of
Q1. We now proceed by introducing the joint probability distribution function of the variables V1, V2, and Q1, Φ(V1, V2, Q1, t)
As each of these three variables evolves according to a Langevin equation, the time evolution of their PDF is described by the
Fokker-Planck equation [3, 4]

∂tΦ(V1, V2, Q1, t) = − ∂

∂V1
(f1Φ)− ∂

∂V2
(f2Φ) + θ11

∂2

∂V 2
1

Φ + θ22
∂2

∂V 2
2

Φ + 2θ12
∂2

∂V1∂V2
Φ

− ∂

∂Q1

{
r11

[
∂

∂V1
(V1Φ) +

(
V1

∂

∂V1
Φ

)]
+ 2r12

∂

∂V2
(V1Φ) +

V 2
1

R1
Φ

}

+V 2
1 r22

∂2

∂Q2
1

Φ (S.21)
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with

r11 = k1θ11 + k2θ12,

r12 = k1θ12 + k2θ22,

r22 = k2
1θ11 + k2

2θ22 + 2k1k2θ12,

(S.22)

and k1 = (C1 + C), k2 = −C. It is worth noting that the first part of the right hand side of eq. (S.21) is identical to the rhs of
eq. (S.15).

We proceed by proving eq. (7) in the main text, expressing the dissipated heat rate as a function of the system parameters. We
have

∂t 〈Q1〉t = ∂t

∫
dV1dV2dQ1 Q1Φ(V1, V2, Q1, t) =

∫
dV1dV2dQ1 Q1∂tΦ(V1, V2, Q, t) = −r11 +

1

R1

〈
V 2

1

〉

=
C2∆T

XY
, (S.23)

where we have replaced the time derivative ∂tΦ(V1, V2, Q, t) with the rhs of eq. (S.21) and used the equality
〈
V 2

1

〉
= σ2

1 , with
σ1 as given by eq. (S.19). This equation corresponds to the one given in the main text.

We can now obtain the expressions for the variance of V1 and V2, as introduced in the main text. Using eq.(S.23) we can
express eq. (S.19) and eq. (S.20) in the following way:

σ2
m = σ2

m,eq+ < Q̇m > Rm (S.24)

where σ2
m,eq = Tm(C+Cm′ )

X is the equilibrium value of σ2
m at < Q̇m >= 0.

V. CONSERVATION LAW

We now turn our attention to eq. (2), in the main text, and provide a formal proof for it. In order to do this, we derive a
relation between the reservoir entropy change ∆Sr,τ and the system dynamics. For simplicity, in the following we divide the
time into small intervals ∆t: let us assume that the system (the circuit in our case) is in the state V = (V1, V2) at time t, and
let’s denote by V′ = (V1 + ∆V1, V2 + ∆V2) its state at time t+ ∆t. Let PF (V → V′|V, t) be the probability that the system
undergoes a transition from V to V′ provided that its state at time t is V, and let PR(V′ → V|V′, t+ ∆t) be the probability of
the time-reverse transition. We have

PF (V→ V′|V, t) =

∫
dη1dη2 δ(∆V1 −∆t · (f1(V1, V2) + σ11η1 + σ12η2))

×δ(∆V2 −∆t · (f2(V1, V2) + σ21η1 + σ22η2))p1(η1)p2(η2), (S.25)

where δ(x) is the Dirac delta function. Given that the noises are Gaussian distributed, their probability distributions read

pm(ηm) = exp

[
− η2

m∆t

4RmkBT

]√
∆t

4πRmkBTm
(S.26)

and expressing the Dirac delta in Fourier space δ(x) = 1/(2π)
∫

dq exp(iqx), eq. (S.25) becomes

PF (V→ V′|V, t) =
1

(2π)2

∫
dq1dq2 exp [ı(q1∆V1 + q2∆V2)]

∫ ∏

m

dηm e
∆t

[
ıqm(fm+σm1η1+σm2η2)− η2m

4RmkBT

]

(S.27)

= exp

{
− ∆t

4kBT1T2

[
C2

1R1T2(V̇1 − f1)2 + C2
2R2T1(V̇2 − f2)2

+2C(V̇1 − f1 − V̇2 + f2)(C1R1T2(V̇1 − f1)− C2R2T1(V̇2 − f2))

+C2(R2T1 +R1T2)(V̇1 − f1 − V̇2 + f2)2
]} X

4πkB∆t

√
R1R2

T1T2
; (S.28)
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where we have taken ∆Vm/∆t ' V̇m, and exploited the fact that all the integrals in eq. (S.27) are Gaussian integrals. Similarly,
for the reverse transition we obtain

PR(V′ → V|V′, t+ ∆t) =

∫
dη1dη2 δ(∆V1 + ∆t(f1(V ′1 , V

′
2) + σ11η1 + σ12η2))

×δ(∆V2 + ∆t(f2(V ′1 , V
′
2) + σ21η1 + σ22η2))p1(η1)p2(η2) (S.29)

= exp

{
− ∆t

4kBT1T2

[
C2

1R1T2(V̇1 + f1)2 + C2
2R2T1(V̇2 + f2)2

+2C(V̇1 + f1 − V̇2 − f2)(C1R1T2(V̇1 + f1)− C2R2T1(V̇2 + f2))

+C2(R2T1 +R1T2)(V̇1 + f1 − V̇2 − f2)2
]} X

4πkB∆t

√
R1R2

T1T2
. (S.30)

We now consider the ratio between the probability of the forward and backward trajectories, and by substituting the explicit
definitions of f1(V1, V2) and f2(V1, V2), as given by eqs. (S.9)-(S.10), into eqs. (S.28) and (S.30), we finally obtain

log
PF (V→ V′|V, t)

PR(V′ → V|V′, t+ ∆t)
= −∆t

(
V1

(C1 + C)V̇1 − CV̇2

kBT1
+ V2

(C2 + C)V̇2 − CV̇1

kBT2

)
= ∆t

(
Q̇1

kBT1
+

Q̇2

kBT2

)
,

(S.31)
where we have exploited eq. (S.14) in order to obtain the rightmost equality. Thus, by taking a trajectory V → V′ over an
arbitrary time interval [t, t+ τ ], and by integrating the right hand side of eq. (S.31) over such time interval, we finally obtain

kB log
PF (V→ V′|V, t)

PR(V′ → V|V′, t+ τ)
=

(
Q1

T1
+
Q2

T2

)
= ∆Sr,τ (S.32)

We now note that the system is in an out-of-equilibrium steady state characterized by a PDF Pss(V1, V2), and so, along any
trajectory connecting two points in the phase space V and V′ the following equality holds

exp [∆Stot/kB ] = exp
[
(∆Sr,τ + ∆Ss,τ)/kB

]

=
PF (V→ V′|V, t)Pss(V)

PR(V′ → V|V′, t+ τ)Pss(V′)
, (S.33)

where we have exploited eq. (S.32), and the definition of ∆Ss,τ in eq. (1) in the main text. Thus we finally obtain

PF (V→ V′|V, t)Pss(V) exp [−∆Stot/kB ] = PR(V′ → V|V′, t+ τ)Pss(V
′) (S.34)

and summing up both sides over all the possible trajectories connecting any two points V, V′ in the phase space, and exploiting
the normalization condition of the backward probability, namely

∑

V′,V

PR(V′ → V|V′, t+ τ)Pss(V
′) = 1, (S.35)

one obtains eq. (2). It is worth noting that the explicit knowledge of Pss(V) is not required, in order to prove eq. (2).
Finally, we note that, from a general perspective, eqs. (S.7)-(S.8) correspond to the Langevin equations of a stochastic system,

whose variables V1 and V2 interact through non-conservative forces, and where the white noise is correlated. Therefore our proof
of eq. (S.35), and thus of eq. (2) in the main text, holds in general for systems with such characteristics.
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