
HAL Id: ensl-00787242
https://ens-lyon.hal.science/ensl-00787242v1

Preprint submitted on 11 Feb 2013 (v1), last revised 6 May 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functionnalized probes for AFM force spectroscopy:
eigenmodes shape and stiffness calibration through

thermal noise measurements
Justine Laurent, Audrey Steinberger, Ludovic Bellon

To cite this version:
Justine Laurent, Audrey Steinberger, Ludovic Bellon. Functionnalized probes for AFM force spec-
troscopy: eigenmodes shape and stiffness calibration through thermal noise measurements. 2013.
�ensl-00787242v1�

https://ens-lyon.hal.science/ensl-00787242v1
https://hal.archives-ouvertes.fr


Functionnalized probes for AFM force spectroscopy: eigenmodes shape and stiffness

calibration through thermal noise measurements

Justine Laurent, Audrey Steinberger and Ludovic Bellon∗
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The functionalization of an Atomic Force Microscope (AFM) cantilever with a colloidal bead
is a widely used technique as soon as the geometry between the probe and the sample has to be
controlled, in particular in force spectroscopy. But some questions remain: how does a bead glued
at the end of a cantilever influence its mechanical answer? And more important for quantitative
measurements, can we still determine the stiffness of the AFM probe with traditional techniques?

In this article, the influence of a colloidal mass loading on the eigenmodes shape and resonant
frequency is investigated by measuring the thermal noise on rectangular AFM microcantilevers with
and without a bead attached at their extremity. The experiments are performed with a home-made
ultra-sensitive AFM, based on differential interferometry. The focused beam from the interferometer
probes the cantilever at different positions and the spatial shapes of the modes are determined
up to the fifth resonance, without external excitation. The results clearly demonstrate that the
first eigenmode almost doesn’t change by mass loading. However the oscillation behavior of higher
resonances present a marked difference: with a particle glued at its extremity, the nodes of the mode
are displaced towards the free end of the cantilever. These results are compared to an analytical
model taking into account the mass and the inertial moment of the load in an Euler-Bernoulli
framework, where the normalization of the eigenmodes is explicitly worked out in order to allow a
quantitative prediction of the thermal noise amplitude of each mode. A good agreement between
the experimental results and the analytical model is demonstrated, allowing a clean calibration of
the probe stiffness.

I. INTRODUCTION

Atomic Force Microscopy (AFM) is currently used in
a great variety of studies from various disciplines to
measure small forces by measuring the deflection of a
microcantilever [1]. In biophysics for example, it has
been applied to the unfolding of protein [2, 3], prob-
ing the structure of biological membranes [4], monitor-
ing the mechanical response of living cells [5, 6]... In
nanotechnology as well, micro-scale levers find applica-
tions in Micro-Electro-Mechanical Systems (MEMS) and
other nanotechnological devices [7]. In material, surface
or nano sciences in general, AFM probes appear as a
cornerstone for quantitative studies at nanoscale [8].

All those applications exploit the great accuracy in
measuring the cantilever deflection offered by AFM and
converting this measurement in units of force assuming
the cantilever behaves like a spring with known stiffness.
Manufacturers often specify the spring constant of their
cantilevers in a wide range of values, mainly because of
the great uncertainties in the dimensions, particularly
the thickness, resulting from the fabrication process. To
overcome this problem several techniques have been pro-
posed to calibrate the cantilever spring constant [1, 9–12].
The reader is referred to the work of Burnham and co-
workers [13] and the references therein for a comparative
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summary of the different techniques.
One of the first and still most commonly used calibra-

tion method is the so-called thermal calibration method
based on the measurement of the vibration amplitude of
the free end of a cantilever exited by thermal noise [11].
The first peak of the thermal noise spectrum is related
back to the spring constant of the cantilever modeled
as an harmonic oscillator. In a more accurate model,
Butt and Jaschke [14] introduced a correction factor de-
duced from the Euler-Bernoulli description of the flexu-
ral dynamic of a free-clamped beam. In a previous work,
we demonstrated that measuring this thermal noise for
the first resonant modes of the cantilever provides an
excellent benchmark to probe the mechanical response
of the cantilever and compare it to a simple mechanical
model [15].
In this article, we extend this method to the case of

functionalized AFM cantilevers. Indeed, as soon as the
geometry between the probe and the sample must be con-
trolled, it is common to use a colloidal bead fixed at the
free end of the lever. The radius of curvature of the “tip”
is then controlled and stable, and offers a clean sphere-
plane geometry to study interaction at nanometric dis-
tances. These modified probes (whether home made or
now commercially available) are commonly used in force
spectroscopy, in particular for the measurement of the
nanorheology of confined fluids [16, 17] or of the Casimir
interaction [18]. How does this loaded mass influence the
mechanical response of the AFM cantilever? Can the
common techniques (thermal noise calibration in partic-
ular) to determine the stiffness still be used?
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In this work, we measure the thermal noise spectra of
the cantilever deflection on its whole surface and com-
pare the rms amplitudes obtained with and without a
bead loaded at its free extremity. Furthermore, we com-
pare the results to a simple mass model which modifies
only the boundary conditions of the classical rectangular
beam theory [19]. A good agreement between experimen-
tal data and this analytical model will be demonstrated,
showing that thermal noise calibration of the probe stiff-
ness is still perfectly pertinent for such cantilevers.
The paper is organized as follows. Section II describes

the theoretical approach, with a special emphasis on
eigenmodes normalization to allow the prediction of ther-
mal noise amplitude of each mode. Section III details the
experimental results in the light of this model, for two
cantilevers probing various mass ratios between the can-
tilever and the colloidal bead. Eventually, a discussion
and conclusion is given in section IV, with a specific fo-
cus on how our conclusions can be applied to the classic
angular deflection measurement technique.

II. ANALYTICAL DESCRIPTION OF

THERMAL NOISE

A. Flexural eigenmodes of a clamped cantilever

In the Euler-Bernoulli framework to describe the mi-
crometer sized mechanical beam, we assume that the can-
tilever length L is much larger than its widthW , which it-
self is much larger than its thickness T (see figure 1). The
flexural modes of the cantilever are supposed to be only
perpendicular to its length and uniform across its width.
The deformations can thus be described by the deflec-
tion Z(x, t), with t the time, and x the spatial coordinate
along the beam normalized to its length L. The bead is
supposed to be non deformable, and thus described as a
rigid mass mb at the free end of the cantilever. It may
be offset from the neutral axis, and carrying a non negli-
gible inertia: these effects are taken into account with an
inertial moment mbr

2
g , rg being the equivalent gyration

radius computed at the free end of the cantilever. For a
sphere or radius r, rg is then equal to

√

7/5 r. We ne-
glect in our analysis any offset along the cantilever axis,
and any coupling with torsion. Figure 1 sketches the ex-
periment and the applied model. Following [19], we will
include the effect of the bead in the boundary conditions
of the cantilever dynamics.
The equation of motion for the cantilever, once the

variables in time and space separated, can be written

k

3

d4z

dx4
= mcω

2z (1)

with k the static stiffness of the cantilever, mc its mass,
Z(x, t) = z(x)eiωt the deflection, and ω the pulsation.
This equation can be rewritten as

z(4) = α4z (2)

experiment

model

x

x

y

z

z

L
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Z(x, t)

Z(x, t)
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FIG. 1: Schematics of the experiment and analytical model.
The cantilever (length L, widthW , thicknessH) is modeled in
the Euler-Bernoulli framework by its neutral axis subject to a
deflection Z(x, t). The bead glued at its free end is modeled as
a point mass mb located at the extremity. rg is the equivalent
gyration radius of bead and accounts for the inertia in rotation
of the bead at the cantilever end. In the experiment, the
deflection can be measured at any position x and y (along
and transverse to the cantilever axis) with a very low noise
differential interferometer [15, 21, 22], sensing the optical path
difference between the two laser beams represented on the
figure.

where .(n) is the spatial derivative of order n, and α is
given by the dispersion relation:

α4 =
3mcω

2

k
(3)

The generic solution to this equation is

z(x) = a cos(αx)+b sin(αx)−c cosh(αx)−d sinh(αx) (4)

The boundary conditions in x = 0 corresponds to a
clamped end, implying z(0) = 0 et z(1)(0) = 0, hence
a = c and b = d. Defining R = b/a, the generic solution
4 can thus be written

z(x) = a (cos(αx) − cosh(αx) +R [sin(αx) − sinh(αx)])
(5)

In x = 1, the conditions on the force and torque are
linked to the inertia in translation and rotation of the
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bead [19]:

z(3)(1) = −α4m̃z(1) (6)

z(2)(1) = α4m̃r̃2z(1)(1) (7)

where m̃ = mb/mc is the mass of the beadmb normalized
to that of the cantilevermc , and r̃ = rg/L is the gyration
radius of the bead rg normalized to the cantilever length
L. Expressing those boundary conditions with expression
5 leads to

R =
sinα− sinhα+ αm̃(cosα− coshα)

cosα+ coshα− αm̃(sinα− sinhα)
(8)

= −cosα+ coshα− α3m̃r̃2(sinα+ sinhα)

sinα+ sinhα+ α3m̃r̃2(cosα− coshα)
(9)

The values of α allowing this equality are quantified,
and correspond to the spatial eigenvalues αn(m̃, r̃) of the
resonant modes of the cantilever. They can be numeri-
cally computed. For m̃ = 0 (no bead), the last equation
simplifies to the usual condition 1+cosα coshα = 0, lead-
ing to the common tabulated eigenvalues of a clamped-
free Euler-Bernoulli mechanical beam. The αn(m̃, r̃) val-
ues are reported for the fisrt 5 modes, for 0 ≤ m̃ ≤ 2
and 0 ≤ r̃ ≤ 0.1, in tables IV to VIII in appendix A.
The corresponding shapes of the eigenmodes are plotted
in figure 2.
The length of the cantilever L, used in the normaliza-

tion of x and thus impacting the spatial eigenvalues αn,
is sometimes experimentally ill-defined due to the trian-
gular shape of the cantilever end. The direct comparison
of the experimental values of αn with the theoretical ones
is thus hampered by this incertitude. However, their ra-
tio is exempted from this bias, and can be used to check
analytical predictions. In appendix A, we plot such ra-
tios, useful to extract the values of m̃ and r̃ from the
experimental observations.

B. Orthogonality relations and normalization

The eigenmodes zn(x) are given by equation 5, with a
dependance of the three parameters a, R and α on mode
number n and on m̃ and r̃ (the dependance in m̃ and r̃
will be implicit in our notations):

zn(x) = anζn(x) (10)

= an
(

cos(αnx)− cosh(αnx)

+Rn [sin(αnx)− sinh(αnx)]
)

(11)

However, if we only consider this expression, then the
orthogonality between two modes zn and zm does not
hold: it is easy to show that for n 6= m,

∫ 1

0

zn(x)zm(x)dx = −m̃zn(1)zm(1)− m̃r̃2z(1)n (1)z(1)m (1)

(12)
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FIG. 2: We plot in this figure the 5 first normal modes φn(x)
for various m̃ and r̃. The amplitude of the first mode decreases
and the nodes of the higher order modes get closer to the free
end when m̃ or r̃ increase.

Let us first focus on the case r̃ = 0. We can then define
the normal modes by

φn(x) = zn(x) + zn(1)
√

m̃δ(x− 1) (13)

where δ(x−1) is the Dirac distribution centered in x = 1.
With such definition, it is straightforward to prove the or-
thogonality of the φn basis. Moreover, as φn(x) = zn(x)
for any x ∈ [0, 1[, φn(x) thus obeys the initial differen-
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tial equation 2 and the boundary conditions in the limit
x = 0 and x→ 1. Eventually, the normalization of φn is
easily obtained by imposing

∫ 1

0

φ2n(x)dx = a2n

(
∫ 1

0

ζ2n(x)dx + m̃ζ2n(1)

)

= 1 (14)

where ζn(x) is defined in equation 10. This last equation
thus imposes the values of an to construct the orthonor-
mal basis φn. The result of this process is illustrated in
figure 2 for a few values of m̃.
Let us now give an energetic meaning to the Dirac

term. We first compute the kinetic energy of a mode φn
with amplitude A: Z(x, t) = Aφn(x) cosωnt. The speed
of a mass element mcdx is −Aφn(x)ωn sinωnt, the total
kinetic energy is thus

Ec =

∫ 1

0

1

2
mcdx A

2φ2n(x)ω
2
n sin2 ωnt (15)

=
1

2
mc

(
∫ 1

0

φ2n(x)dx

)

A2ω2
n sin

2 ωnt (16)

=
1

2
mcA

2ω2
n sin

2 ωnt (17)

This is the kinetic energy of an harmonic oscillator of
mass mc, resonant pulsation ωn and amplitude A. No-
tice that the amplitude of this oscillator is different
from the deflection at the free end of the cantilever:
Ac = Aφn(x → 1) = Azn(1) = Aanζn(1). We may
also explicit the integral on φ2n(x) in equation 16 using
equation 14:

Ec =
1

2
mca

2
n

(
∫ 1

0

ζ2n(x)dx + m̃ζ2n(1)

)

A2ω2
n sin

2 ωnt

(18)

=

∫ 1

0

1

2
mcdx A

2z2n(x)ω
2
n sin

2 ωnt

+
1

2
mbA

2
cω

2
n sin

2 ωnt (19)

We easily identify here the sum of two terms: the kinetic
energy of the mode n of the cantilever itself subject to a
sinusoidal motion with an amplitude Ac at its free end,
and the kinetic energy of a point mass mb subject to a
sinusoidal motion with the same amplitude Ac. The addi-
tional Dirac term in φn thus takes into account the bead
motion in the total energy of the equivalent harmonic os-
cillator. The amplitude of the latter is not equal to the
amplitude at the free end of the cantilever (which is also
the case without the added mass since |φn(x = 1)| = 2
for m̃ = 0).
In the case where r̃ 6= 0, no simple Dirac term can be

added to the the eigenmode zn to ensure the orthogonal-
ity of the basis. However, we can extend the energetic
approach to include the kinetic energy due to the ro-
tation of the bead, and ensure the normalization of the
modes. Equation 14 is modified to the following criterium
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FIG. 3: Thermal noise expected for a cantilever of static stiff-
ness k = 0.1N/m at 300K for a few values of m̃ and r̃. The
rms deflection of the first 5 modes is plotted as a function of
the position along the cantilever x. The first mode is weakly
impacted by the bead. When m̃ increases, the amplitude of
the higher order modes vanish close to the free end, and the
thermal energy is reported towards the antinodes, the ampli-
tude of which raises.

to compute the value of an:

a2n

(
∫ 1

0

ζ2n(x)dx + m̃ζ2n(1) + m̃r̃2ζ′2n (1)

)

= 1 (20)

The result of this process is illustrated in figure 2 for a
few values of m̃ and r̃. A similar approach has been used
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by Oguamanam [19] to ensure the orthonormalization of
the normal modes in a more general framework including
the coupling of flexural and torsional modes.

C. Thermal noise repartition between modes

We compute the thermal noise of each resonant mode
following [14, 20]: let us project the thermal noise driven
deflection on the orthonormal basis φn(x):

Z(x, t) =

∞
∑

n=1

Zn(t)φn(x) (21)

Under the hypothesis of uncoupled modes, we have for
each degree of freedom

1

2
kn〈Z2

n(t)〉 =
1

2
kBT (22)

where kB is Boltzmann’s constant, T the temperature of
the cantilever, and kn the stiffness of the mode defined
by:

kn =
k

3
α4
n = mcω

2
n (23)

The mean quadratic deflection measured in x should thus
be

〈Z2(x, t)〉 =
∞
∑

n=1

〈Zn〉2(t)|φn(x)|2 (24)

=
kBT

k

∞
∑

n=1

3
|φn(x)|2
α4
n

=
kBT

k

∞
∑

n=1

ηn(x, m̃, r̃)

(25)

In figure 3, we plot the expected rms thermal noise at
300K along a cantilever of static stiffness k = 0.1N/m
for the five first eigenmodes, for a few values of m̃ and
r̃. Note that the normalization of the φn basis is a cru-
cial step to apply the energy equipartition theorem in a
quantitative manner to this analysis. Our approach also
allows us to estimate the repartition of energy between
the different modes. For example, if we perform the mea-
surement at the free end of the cantilever (x = 1), the
first mode account for η1(x = 1, m̃ = 0, r̃ = 0) = 97%
of the total thermal fluctuations for m̃ = r̃ = 0, and
η1(x = 1, m̃ = 1, r̃ = 0) = 99.8% for m̃ = 1 and r̃ = 0.
In figure 4, we plot the contribution of each mode to
the mean quadratic deflection measured at its extremity
when m̃ changes (for r̃ = 0) : the larger the mass, the
stronger is the contribution of the first mode.

III. EXPERIMENTAL METHODOLOGY AND

RESULTS

A. Experiment description

Manufacturer specifications of our two sample (A and
B) are given in table I. Both present a “rectangular”
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modes, for which the inertia of the mass implies a node close
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FIG. 5: Pictures from an optical microscope of beads glued
at the apex of cantilevers A and B.

geometry, close to the model used in our analytical ap-
proach. However, the triangular end (see figure 5) de-
parts from the model, and impedes a proper definition of
their length L. We measure the deflection solely driven
by thermal noise over the surface of these two differ-
ent commercial cantilevers, first when they are still bare,
then again after a glass bead has been glued at their free
end. The radius r of the bead is reported in table I for
each sample.

As already mentioned, the uncertainty in the thickness
of the lever is large due to the manufacturing process, re-
sulting in a large uncertainty in the computation of its
mass. The case is even worse for cantilever B, where the
gold coating can change significantly the total mass due
to the high density of gold. In addition, the quantity
of glue cannot be measured precisely from the images of
the cantilever. The geometric calculation of m̃ can thus
only give a rough estimation of the actual value. We
estimate m̃A ≈ 0.1 (range 0.04 − 0.3) for cantilever A,
and m̃B ≈ 1.2 (range 0.5 − 2.6) for cantilever B. The
geometric estimation of r̃ is less hampered by the uncer-
tainty on the cantilever geometry, but still suffers from
the uncontrolled repartition of the glue. We estimate
r̃A = 0.02± 0.01 for cantilever A, and r̃B = 0.06± 0.02
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Cantilever A Cantilever B
Manufacturer BudgetSensors Nano-World
Reference AIO, lever A Arrow-TL8Au
Material Silicon Silicon
Tip height (17± 2) µm tipless
Coating none Ti 5 nm + Au 30 nm
Resonant frequency (15± 5) kHz 6 kHz

(3− 14) kHz
Force constant k 0.2N/m 0.03N/m

(0.04 − 0.7)N/m (0.004 − 0.54)N/m
Length L (500 ± 10) µm (500± 5) µm
Width W (30± 5) µm (100± 5) µm
Thickness T (2.7± 1.0) µm 1.0 µm

(0.5− 2.5) µm
Bead radius r (7.8± 0.2) µm (25.8± 0.5) µm

TABLE I: Manufacturer specifications for cantilevers A and
B. The last line corresponds to the glass bead that we glue at
the free end of the cantilever, as illustrated in figure 5.

for cantilever B. However, as demonstrated in [23], the
tip of the bare cantilever A itself may have a none negli-
gible effect. We can geometrically estimate m̃Atip ≈ 0.04
and r̃Atip ≈ 0.02 for a 17µm tall pyramidal tip.
The measurement is performed with a home made in-

terferometric deflection sensor [15], inspired by the origi-
nal design of Schonenberger [21] with a quadrature phase
detection technique [22]: the interference between the ref-
erence laser beam reflecting on the chip of the cantilever
and the sensing beam on the cantilever gives a direct mea-
surement of the deflection with very high accuracy (see
figure 1). This technique offers a very low intrinsic noise

(down to 10−14m/
√
Hz). It is intrinsically calibrated as

it measures directly the deflection against the wavelength
of the laser beam, contrary to the standard optical lever
technique that actually measures an angular deflection.
At last, the focused beam size resolution is tuned to as
small as 10µm to ensure a good spatial resolution.
We follow the same methodology as described in [15].

At every position x and y on a 5µm×5 µm grid, we mea-
sure the deflection z(x, y, t) produced by the sole thermal
excitation of the cantilever and we evaluate the power
spectrum density (PSD) Sz(x, y, f) on a 20 s signal sam-
pled at 2MHz. For a quantitative characterization of the
shape of the modes, the mean squared amplitude of each
resonance

〈

A2
n(x, y)

〉

is determined as a function of po-
sitions x and y by integrating the PSD in a convenient
frequency interval 2∆f around each resonance frequency
fn:

〈

A2
n(x, y)

〉

=

∫ fn+∆f

fn−∆f

S2
z (x, y, f)df. (26)

This quantity is computed directly from the experimen-
tal spectra, without any fitting process. We take care to
subtract the background noise contribution of the inter-
ferometer, and we also compensate for finite integration
range in frequency [15].

The complete set of results for cantilever A is reported
in figure 6, where the rms amplitude

√

〈A2
n(x, y)〉 is rep-

resented with a color coded scale. The first three vibra-
tion modes can be clearly seen with their respective num-
ber of nodes. A weak component in torsion can be seen
for the third mode with the bead, certainly because it has
not been glued perfectly on the axis. However, in the fol-
lowing, we will neglect this effect and focus on the flexural
modes along the x axis. Therefore, at each position x,
the median

√

〈A2
n(x)〉 along the y axis of

√

〈A2
n(x, y)〉 is

calculated. Due to the higher reflectivity of goald coated
cantilever B, the background noise is lower and we accu-
rately measure the thermal noise up to the fifth resonant
mode for this last sample.

B. Results and discussion

1. Resonant frequency ratios

In a first attempt to estimate the added mass parame-
ters m̃ and r̃, which must be known for proper normaliza-
tion of the normal modes (value of an), let us first focus
on the ratio between the resonant frequency fn of the
successive modes. Indeed, equation 23 translates into:

αn(m̃, r̃)

α1(m̃, r̃)
=

√

fn
f1

(27)

The resonant frequencies of each mode are easily found
by a simple harmonic oscillator fit of each resonant peak
in the thermal noise spectrum. We report in table II
the square root of the frequencies of the first 3 modes of
cantilever A and the first 5 modes of cantilever B, nor-
malized to the frequency of the mode 1. We can then
compare those measurements to the output of the ana-
lytical model (figure 11), and try to estimate the values
of m̃ and r̃ for our samples.
For cantilever A without the bead, the presence of the

tip can be detected on the measured modes, and lead
to the estimation m̃Atip = 0.057± 0.010 and r̃Atip =
0.03± 0.02 (the standard deviations correspond to a
0.2% max distance between the analytical model and
measured frequency ratio on the 3 modes), close to the
values expected from the geometrical analysis. Adding
the bead change those values to m̃A = 0.336± 0.008 and
r̃A = 0.029± 0.005 (same criterium for error bars).
For bare cantilever B, the ratios of frequencies between

modes cannot be explained by our model : the triangular
shape of the end of the cantilever alters the results cor-
responding to a rectangular one. If however we look at
the data for the loaded cantilever, we have a reasonable
agreement for m̃B = 1.18± 0.09 and r̃B = 0.070± 0.006
(the standard deviations correspond to a 2% max dis-
tance between the analytical model and measured fre-
quency ratio on the 5 modes), again in line with the ge-
ometrical analysis.
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FIG. 6: Maps of thermal noise of cantilever A. The rms amplitude of the first 3 flexural modes, with (right) and without (left)
a bead glued at the free cantilever end, are plotted using a color coded amplitude map (color bar at the bottom of the figure).
The resonant frequency and full scale amplitude are given below each map. A weak component in torsion can be clearly seen
for the third mode with the bead, hinting at a slightly off axis gluing of the colloidal particle.

2. Resonant frequency shifts - a naive attempt

Another way to determine the m̃ and r̃ parameters is to
analyse the resonant frequency shifts due to the loading,
in an approach similar to the Cleveland method [24]. In
a naive attempt, we suppose that the process of gluing
a bead to the cantilever free-end should have a limited
effect on its stiffness and proper mass, thus we can relate
the frequencies with (fw

n ) and without (fwo
n ) the mass

to the spatial eigenvalues with (αn(m̃, r̃)) and without
(αn(0, 0)) through equation 23:

αn(m̃, r̃)

αn(0, 0)
=

√

fw
n

fwo
n

(28)

The resonant frequencies of each mode are easily found by
a simple harmonic oscillator fit of each resonant peak of
the thermal noise spectrum. We can then compare those
measurements to the output of the analytical model, and
try to estimate the values of m̃ and r̃ for our samples.
As shown in figure 10, the first mode is almost indepen-

dent on the value of r̃, and should thus reliably be used
to measure m̃. This measurement is equivalent to the
method of the added mass proposed by Cleveland [24].
We find with this protocol m̃ = 0.210± 0.005 for can-
tilever A, and m̃ = 1.065± 0.010 for cantilever B.
This estimation of m̃ is hardly compatible with the

expectation of the higher order modes for cantilever A,
which would rather be m̃ = 0.10± 0.01 (mode 2) or
m̃ = 0.055± 0.010 (mode 3), even considering the effect
of r̃. As for cantilever B, the estimation could be com-
patible with higher order modes, but for both cantilever
the value of m̃ is clearly underestimated with respect to
the previous measurement through the frequency ratios

between successive modes of the loaded cantilever.

3. Resonant frequency shifts - refined analysis t

Two naive hypotheses are responsible for the short-
comings of the previous analysis of the frequency shifts
upon loading: it first relies on the assumption that the
effective length of the loaded cantilever is unchanged. It
then assumes that the behavior of the cantilever without
the load is that an ideal bare rectangular cantilever
Let us first consider the effect of a possible modification

of the effective length L of the cantilever upon gluing
a bead close to its free end. Indeed, this process may
rigidify the end portion of the cantilever, thus shortening
its effective length by the rigid part. Alternatively, the
inertia of a large mass not fixed exactly at the free end,
by bringing the nodes of the higher order modes closer
to the position of the bead than to the free end, can also
lead to a shortening of the effective length of the loaded
cantilever. In order to evidence the dependence of the
eigenvalue αn in the cantilever’s length L, equation 3
can be expressed as:

α4
n =

3µL4ω2
n

EI
(29)

where E is the cantilever’s Young modulus, I its second
moment of inertia, and µ its mass per unit length. As E,
I and µ do not depend on the cantilever’s length nor on
the gluing of a bead, equation 28 should in fact writes

αw
n

αwo
n

=
Lw

Lwo

√

fw
n

fwo
n

(30)
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Bare cantilever A: m̃Atip = 0.057, r̃Atip = 0.03 B: m̃Btip = 0, r̃Btip = 0
Mode number n 1 2 3 1 2 3 4 5
fwo

n (Hz) 14 956 95 017 267 530 7195 42 975 117 220 224 500 363 370
√

fwo

n /fwo

1 1.000 2.521 4.229 1.000 2.444 4.036 5.586 7.107
αn(m̃tip, r̃tip)/α1(m̃tip, r̃tip) 1.000 2.521 4.236 1.000 2.503 4.189 5.864 7.539

disagreement 0.0% -0.0% -0.1% 0.0% -2.4% -3.6% -4.7% -5.7%

Loaded cantilever A: m̃A = 0.35, r̃A = 0.03 B: m̃B = 1.18, r̃B = 0.06
Mode number n 1 2 3 1 2 3 4 5
fw

n (Hz) 10 974 83 050 246 380 3101 29 319 79 023 152 400 270 980
√

fw

n /fw

1 1.000 2.751 4.738 1.000 3.075 5.048 7.010 9.348
αn(m̃, r̃)/α1(m̃, r̃) 1.000 2.762 4.762 1.000 3.195 5.190 7.040 9.347

disagreement 0.0% -0.4% -0.5% 0.0% -3.8% -2.7% -0.4% 0.0%

Frequency shift upon loading cantilever A cantilever B
Mode number n 1 2 3 1 2 3 4 5

(Lw/Lwo)
√

fw

n /fwo

n 0.839 0.916 0.940 0.643 0.809 0.805 0.807 0.846
αn(m̃, r̃)/αn(m̃tip, r̃tip) 0.844 0.924 0.948 0.642 0.820 0.796 0.771 0.796

disagreement -0.5% -0.9% -0.8% 0.2% -1.2% 1.1% 4.7% 6.3%

TABLE II: Frequency ratio between modes and frequency shift upon gluing of the bead. The square root of these ratios should
be equal to the ratio of the corresponding spatial eigenvalues αn(m̃, r̃) (with a correcting factor Lw/Lwo for the frequency shift,
that we suppose equal to 0.98 here). Using estimated values of m̃ and r̃ for each measurement set (bare and loaded cantilevers
A and B), we get a good overall agreement for every mode, especially for sample A. The models reaches its limitation for the
higher modes of cantilever B, whose triangular shaped end is not taken into account.

where the superscript w (respectively wo) designates a
quantity with (respectively without) the load. Assuming
αwo
n is known, the parameters m̃ and r̃ for the loaded

cantilever can be deduced by comparing the αw
n values

obtained from equation 30 to the tabulated values given
in appendix A [25]. Let us stress that if the resonant
frequencies are measured with a very good accuracy, the
effective length ratio is not known a priori. A small error
in the effective length ratio leads only to the same rela-
tive error on the value of αw

n . But since αn(m̃, r̃) varies
only slowly with m̃ (see appendix A), it can result in a
much larger error on m̃ and thus on the normalization of
the normalmodes (parameter an). In the following, we
estimate that the gluing of a bead reduces the effective
length of cantilevers A and B by 10µm, resulting in a
2% shortening. We thus use this 2% correction in table
II to compare the relative frequency shifts to the spacial
eigenvalues ratios.

When analysing the frequency ratios with and without
a bead, it is also very important to use the right αwo

n

value for the cantilever without the bead. We have seen
with the naive approach that ignoring this initial load-
ing for cantilever A leads to inconsistent values between
modes, underestimating the true loading. However, if
αn(m̃Atip, r̃Atip) (with m̃Atip = 0.057 and r̃Atip = 0.03
as determined in the first section) is used as the un-
loaded reference value instead of αn(0, 0), one obtains
m̃A = 0.37± 0.04 and r̃A = 0.031± 0.018 with the first
three modes, in much better agreement with the previous
estimation.

The behavior of the tipless cantilever B also deviates
from the one of a bare rectangular cantilever because
of its triangular end. However, since the frequency ra-

tios between the modes of the unloaded cantilever B do
not yield any consistent set of m̃ and r̃ values (see fig-
ure 11), we choose to take m̃Btip = r̃Btip = 0 for the
bare cantilever B. We thus compare the square root of
the frequency ratio (corrected by the length ratio) with
the αn(m̃, r̃)/αn(0, 0) ratio displayed on figure 10 for the
five first modes of cantilever B. As shown in figure 10,
the first mode is almost independent on the value of r̃,
and can thus be used to measure m̃ alone; we obtain
m̃B = 1.17± 0.04 for mode 1. The higher order modes
are compatible with the estimation of m̃B = 1.17 and
can be used to guess the value of r̃B . Using figure 10,
we measure r̃B = 0.068 (mode 2), r̃B = 0.057 (mode 3),
r̃B = 0.046 (mode 4), r̃B = 0.030 (mode 5). The disper-
sion of results is quite large for r̃B, and points to the lim-
itations of the model with respect to the actual cantilever
shape. A simultaneous least square minimization of the
distance between the analytical model and measured fre-
quency shifts on the 5 modes leads to : m̃B = 1.19± 0.13
and r̃B = 0.051± 0.006 (standard deviation correspond-
ing to a 3.5% max distance).
As a summary, we have two ways to estimate the

normalized added mass and equivalent gyration radius
from the measurement of the resonant frequencies of the
loaded and unloaded cantilever: the frequency ratio be-
tween modes in one measurement, and the frequency
shifts due to the addition of the bead. Provided the
initial tip and effective length shortening are taken into
account, both methods agree reasonably, though the dis-
pertion on r̃ is quite large. In the following we will retain
the values :

• Unloaded cantilever A: m̃Atip = 0.057, r̃Atip =
0.03.
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FIG. 7: Amplitude of thermal noise for the first 3 flexural
modes along the cantilever A with and without a sphere (in
red and blue respectively). The markers represent the data
while the lines exhibit the fits : independent fits of each mode
in plain line, and simultaneous fit of all modes in dashed line.
The agreement is excellent for the bare and the loaded can-
tilever.

• Loaded cantilever A: m̃A = 0.35, r̃A = 0.03.

• Unloaded cantilever B: m̃Btip = 0, r̃Btip = 0.

• Loaded cantilever B: m̃B = 1.18, r̃B = 0.06.

Eventually, using those estimations of m̃ and r̃, we can
compute the values of the eigenvalues αn(m̃, r̃) from the
model, and compare them with the frequency shifts due
to the bead. As one can read in table II, the agreement
is quite good, with an overall agreement better than 1%
for cantilever A, and 3% for cantilever B (except for the
highest order modes of cantilever B, where the limitations
of the model appear more severely).

4. Spatial modes shapes

Figures 7 and 8 display the rms amplitude
√

〈A2
n(x)〉 of

the first 3 resonant modes of cantilever A and the first 5
modes of cantilever B respectively, with (red circles) and
without the bead (blue crosses) loading their end. It is
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FIG. 8: Amplitude of thermal noise for the first 5 flexural
modes along the cantilever B with and without a sphere (in
red and blue respectively). The markers represent the data
while the lines exhibit the fits : independent fits of each mode
in plain line, and simultaneous fit of all modes in dashed line.
The agreement is very good for the bare and the loaded can-
tilever.

worth mentioning that the maximum of the last mode is
only a few pm high, demonstrating the high resolution of
our instrument. The behavior of the experimental data
is clearly in line with the model illustrated in figure 3:
the effect of the bead is almost negligible on the first
longitudinal mode, and the nodes of higher order modes
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are shifted towards the free end of the cantilever.
In a first step to fit the data, we use independent fits

for all modes. The fitting function is equivalent to equa-
tion 5. This generic function should be suitable for any
cantilever clamped at its origin, whatever boundary con-
ditions are applied at its other end. Note that x is now
not normalized to the length L of the cantilever. We
therefore use the following fitting function for

〈

A2
n(x)

〉

:

ψ2(x, ā,R̄,
ᾱ

L̄
, x̄0) =

ā2
(

cos

(

ᾱ
x− x̄0
L̄

)

− cosh

(

ᾱ
x− x̄0
L̄

)

+R̄

[

sin

(

ᾱ
x− x̄0

L̄

)

− sinh

(

ᾱ
x− x̄0

L̄

)])2

(31)

with ā, R̄, ᾱ/L̄ and x̄0 the 4 fitting parameters. As can
be seen in figures 7 and 8, the result of this procedure is
excellent, the model closely matching the experimental
data.
The interesting output of the fit is the spatial eigen-

value ᾱn/L̄ of each mode, however since L̄ is not known
precisely, only relatives values of ᾱn can be compared to
the theory. We choose to normalize the values of ᾱn to
the third mode: the presence of 2 nodes and the “high”
amplitude constrain the fit to provide trustable values
for ᾱ3. The result of this procedure is displayed in tables
III. The agreement with the theoretical ratios is good
for higher order modes, within a few percent. Mode 1
stands apart with a higher deviation: since no nodes are
present, the fit is poorly constrained and the value of ᾱ1

is not trustable.

5. Stiffness determination

If the generic independent fits are interesting to com-
pare the eigenvalues and the shape of the eigenmodes
with the theory, it is not possible to compare the ampli-
tude of the modes to the expectation from thermal noise
excitation. Indeed, the normalization of the mode de-
pends on the boundary conditions (kinetic energy of the
bead), and cannot be guessed a priori. To go further, we
therefore perform a simultaneous fit of all modes, impos-
ing the values of αn [15]. The fitting function for

〈

A2
n(x)

〉

are now

ϕ2
n(x, k̄, L̄, x̄0) =

3

α4
n(m̃, r̃)

kBT

k̄
φ2n

(

x− x̄0
L̄

, m̃, r̃

)

(32)

where φn(x, m̃, r̃) are the normal mode defined and nor-
malized in section II B (we write here explicitly the de-
pendence in m̃ and r̃ to underline that those φn depend
on the presence of the bead). The fitting parameters are
k̄, L̄ and x̄0, the values of m̃ and r̃ are set to the estima-
tion of section III B 3.
We shall thus perform a single simultaneous fit of all

modes with those 3 free parameters on each cantilever,

bare or loaded with a bead. We tried several weighting
of the modes to compensate the decreasing amplitude of
higher order modes driven by thermal noise: the function
ǫj to minimize during the fit is defined as

ǫj(k̄, L̄, x̄0) =
∑

n

αj
n

∫ L

0

dx
∣

∣

〈

A2
n(x)

〉

− ϕ2
n(x, k̄, L̄, x̄0)

∣

∣

2

(33)
where j is a weighting parameter: j = 0 corresponds to
natural weighting (mode 1 dominant), and increasing j
weights more and more the higher order modes (“flat”
weights for j = 8). We estimate the best fitting parame-
ters k̄, L̄ and x̄0 for j = 0 to 12, to test the robustness of
the simultaneous fitting procedure. The dashed lines in
figures 7 and 8 represent the result of this fitting process.
Though not as perfect as independent fits, the results are
in good agreement for all modes of each cantilever, with
and without the bead.
For the bare cantilever A, the best fit values are k̄ =

(0.321± 0.008)N/m and L̄ = (497± 1)µm. The uncer-
tainties correspond to the standard deviation in the full
range of weighting parameter j, their low values demon-
strating the robustness of the fit. For the loaded can-
tilever A, the best fit values are k̄ = (0.339± 0.010)N/m
and L̄ = (485± 7)µm. The stiffness of the cantilever
experiences a small increase (6%) after the gluing of the
bead. This is not surprising since the glue increases the
rigidity of the end of the cantilever, shortening its effec-
tive length by about 10µm according to the fit. This 2%
decrease in length translates into a 6% rise of the stiffness
(k scales as 1/L3), in agreement with our estimation.
For the bare cantilever B, the best fit values are

k̄ = (0.151± 0.002)N/m and L̄ = (463± 4)µm. Again,
the dispersion of estimated parameters is very low, hint-
ing at the robustness of the model and fitting proce-
dure. The value of L̄ is quite small with respect to
the manufacturer specifications, however this effective
length takes into account the triangular end of the can-
tilever. For the loaded cantilever B the best fit values are
k̄ = (0.169± 0.010)N/m and L̄ = (448± 5)µm. Again,
this 12% increase of the static spring constant goes in
the expected direction, and is coherent with a reduction
of the effective length of the cantilever by 15µm (which
should translate into a 10% increase in k).

IV. CONCLUSION

Our work demonstrates that even a glued bead as large
as 10% of the length of a soft cantilever (k ∼ 0.1N/m)
modifies only slightly its first flexural mode and its static
stiffness. A simultaneous fit of the thermal modes lead
to a small decrease in the effective length and a small in-
crease in the effective static stiffness of a cantilever upon
gluing the bead. However, since these variations respect
the 1/L3 scaling of k, the stiffness at the geometrical free
end of the cantilever appears to be the same with and
without a bead loading. Thus, the classic method to de-
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Bare cantilever A: m̃Atip = 0.056, r̃Atip = 0.03 B: m̃Btip = 0, r̃Btip = 0
Mode number n 1 2 1 2 4 5
Measurement: ᾱn/ᾱ3 0.278 0.599 0.277 0.602 1.389 1.760
Theory: αn(m̃tip, r̃tip)/α3(m̃tip, r̃tip) 0.236 0.595 0.239 0.598 1.400 1.800

disagreement -18% -0.7% -15% -0.7% 0.8% 2.2%

Loaded cantilever A: m̃A = 0.35, r̃A = 0.03 B: m̃B = 1.18, r̃B = 0.06
Mode number n 1 2 1 2 4 5
Measurement: ᾱn/ᾱ3 0.251 0.580 0.191 0.561 1.389 1.865
Theory: αn(m̃, r̃)/α3(m̃, r̃) 0.210 0.580 0.193 0.616 1.356 1.801

disagreement -19% 0.0% -1.1% 8.8% -2.7% -3.5%

TABLE III: Eigenvalues normalized to the third mode for both cantilevers, bare and loaded with the bead: we compare the
output of generic fits with equation 31 and the values expected from the model. The agreement is quite good for every modes
but the first one, where the fit is not sufficiently constrained to converge to accurate estimations.

termine the spring constant by measuring the thermal
spectrum of the fisrt flexural mode at the free end of the
cantilever can still be used even if the microlever is func-
tionalized. In fact, we have shown that the mode 1 based
thermal calibration gets even closer to the static stiffness
when the size of the bead increases, since the first mode
gathers a higher fraction of the thermal energy at the free
end. We have also shown that the mass model consider-
ing the load as a modification of the boundary conditions
at the free end of a beam is a good approximation and
fit well all our results. On the way, we have introduced
a proper normalization method of the resonant modes,
an unavoidable step to compute the thermal noise am-
plitude of each mode. Once the stiffness of the colloidal
probe determined through the classic thermal noise cal-
ibration, one will make sure to take into account other
corrections due to the tip geometry, as demonstrated in
reference [26].

One of the main difficulties in testing the models is to
estimate correctly the mass and gyration radius of the
glued bead. We have seen that it can be important to
consider the initial loading due to the AFM tip and the
effective length shortening in order to get consistent re-
sults: an error of 30% on m̃ could have been made by
only considering the frequency shift due to the bead, if
one refers to a tipless cantilever. The ratio between reso-
nant frequencies of a cantilever offers an interesting way
to estimate the load properties (without any prior knowl-
edge on the cantilever, like its unloaded properties), by
comparison to tabulated values of αn(m̃, r̃). We provide
a set of such values in appendix A, for the first 5 modes,
0 ≤ m̃ ≤ 2 and 0 ≤ r̃ ≤ 0.1

As a final remark, let us study how our findings ap-
ply to the common AFM detection scheme. Indeed, our
differential interferometer allows us to measure the ac-
tual deflection in any point of the cantilever, whereas
most AFM use an optical angular deflection measure-
ment. The latter technique needs to be calibrated to
infer from the 4 quadrants photodiode output the true
deflection of the probe. This step is usually done by a
rigid contact between the probe and a hard surface, the
calibrated displacement of the sample providing a bench-
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FIG. 9: Multiplicative correction factor to apply to the ther-
mal noise measurement of the first resonant mode with an an-
gular deflection measurement technique to compute the can-
tilever stiffness: the higher the added mass, the smaller the
correction.

mark to measure the sensitivity (in nm/V). This sensi-
tivity is thus valid for a static deformation only, and a
mode dependent correction factor must be applied to es-
timate the actual deflection of a resonant mode [1]. This
multiplicative factor is 0.817 when one wants to use the
thermal noise measurement of mode 1 to calibrate the
spring constant of a classic cantilever. In the current
framework, we can easily compute how this correction
factor depends on the normalized bead mass m̃ by com-
paring the slope of the first eigenmode to that of a static
deflection with the same deflection at its free end. We
plot the result in figure 9 (computed with r̃ = 0): the
correction rapidly vanishes as m̃ increases. Indeed, we
have seen that the effect of the added mass is to decrease
the eigenvalue α1 (see figure 10), thus equation 2 tends to

z
(4)
1 = 0 when m̃ increases. This last equation is that de-
scribing the static deflection, thus the first normal mode
tends to the static deflection when m̃ increases. The ef-
fect of the added mass is thus twice in the good direction
for the angular measurement: both the sensitivity of the
sensor tends to be more accurate (figure 9), and the first
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mode gathers most of the thermal noise at the cantilever
free end (figure 4). More generally, an accurate coeffi-
cient can be extracted from our analysis for any m̃, and
applied to the thermal noise calibration of AFM colloidal
probes in any commercial devices [27].
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Appendix A: Spatial eigenvalues αn(m̃, r̃)

In this appendix, we plot in figure 10 the spatial eigen-
values αn(m̃, r̃) numerically computed for modes 1 to 5

as a function of m̃ and r̃, normalized to their value at
m̃ = r̃ = 0. The curve for α1 is very close to the pre-
diction given in the Cleveland method [24], linking the
frequency shift to the added mass. This figure can be
used to estimate m̃ and r̃ from the value of the frequency
shift of various modes, if the initial situation corresponds
to a rectangular tipless cantilever and the potential effec-
tive length decrease after gluing the particle is known.

In figure 11, we plot the same computed eigenvalues
αn(m̃, r̃), but normalized to the value of the first mode
for the same added mass α1(m̃, r̃). When one has no prior
knowledge of the unloaded resonant frequencies, the ratio
of the resonant frequencies between modes can be used
to estimate m̃ and r̃.

Finally, tables IV to VIII report numerical values of
αn(m̃, r̃), for the first 5 modes, 0 ≤ m̃ ≤ 2 and 0 ≤ r̃ ≤
0.1.
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FIG. 10: Spatial eigenvalues αn(m̃, r̃) numerically computed
for modes 1 to 5 as a function of m̃ and r̃, normalized to their
value at m̃ = 0. The values of these ratios for cantilevers A
and B, estimated by the frequency shift due to the addition
of the bead and supposing an effective length decrease of 2%,
are plotted as a labelled horizontal line. Mode 1 is almost
independent in the value of r̃, and can thus be used to estimate
m̃. This curve is very close to the prediction given in the
Cleveland method [24].
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Mode 1: α1(m̃, r̃)
r̃

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.00 1.8751 1.8751 1.8751 1.8751 1.8751 1.8751 1.8751 1.8751 1.8751 1.8751 1.8751
0.10 1.7227 1.7227 1.7226 1.7225 1.7223 1.7221 1.7218 1.7215 1.7211 1.7207 1.7203
0.20 1.6164 1.6164 1.6162 1.6161 1.6158 1.6155 1.6151 1.6146 1.6140 1.6134 1.6127
0.30 1.5361 1.5361 1.5360 1.5357 1.5354 1.5350 1.5345 1.5340 1.5333 1.5325 1.5317
0.40 1.4724 1.4724 1.4722 1.4720 1.4716 1.4712 1.4707 1.4700 1.4693 1.4685 1.4676
0.50 1.4200 1.4199 1.4198 1.4195 1.4191 1.4187 1.4181 1.4175 1.4167 1.4158 1.4149
0.60 1.3757 1.3756 1.3755 1.3752 1.3748 1.3744 1.3738 1.3731 1.3723 1.3714 1.3704
0.70 1.3375 1.3374 1.3373 1.3370 1.3366 1.3362 1.3356 1.3349 1.3341 1.3332 1.3321
0.80 1.3041 1.3040 1.3039 1.3036 1.3032 1.3027 1.3021 1.3014 1.3006 1.2997 1.2987
0.90 1.2745 1.2744 1.2742 1.2740 1.2736 1.2731 1.2725 1.2718 1.2710 1.2700 1.2690

m̃ 1.00 1.2479 1.2479 1.2477 1.2474 1.2470 1.2465 1.2459 1.2452 1.2444 1.2435 1.2424
1.10 1.2239 1.2239 1.2237 1.2234 1.2230 1.2225 1.2219 1.2212 1.2204 1.2195 1.2184
1.20 1.2021 1.2020 1.2018 1.2016 1.2012 1.2007 1.2001 1.1994 1.1986 1.1976 1.1966
1.30 1.1820 1.1820 1.1818 1.1815 1.1812 1.1807 1.1801 1.1794 1.1785 1.1776 1.1766
1.40 1.1636 1.1635 1.1633 1.1631 1.1627 1.1622 1.1616 1.1609 1.1601 1.1591 1.1581
1.50 1.1464 1.1464 1.1462 1.1460 1.1456 1.1451 1.1445 1.1438 1.1430 1.1421 1.1410
1.60 1.1305 1.1305 1.1303 1.1300 1.1297 1.1292 1.1286 1.1279 1.1271 1.1261 1.1251
1.70 1.1156 1.1156 1.1154 1.1152 1.1148 1.1143 1.1137 1.1130 1.1122 1.1113 1.1103
1.80 1.1017 1.1016 1.1015 1.1012 1.1008 1.1003 1.0998 1.0991 1.0983 1.0974 1.0963
1.90 1.0886 1.0885 1.0884 1.0881 1.0877 1.0872 1.0866 1.0860 1.0852 1.0843 1.0833
2.00 1.0762 1.0761 1.0760 1.0757 1.0753 1.0749 1.0743 1.0736 1.0728 1.0719 1.0709

TABLE IV: α1(m̃, r̃): table of eigenvalues of mode 1 for 0 ≤ m̃ ≤ 2 and 0 ≤ r̃ ≤ 0.1 .

Mode 2: α2(m̃, r̃)
r̃

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.00 4.6941 4.6941 4.6941 4.6941 4.6941 4.6941 4.6941 4.6941 4.6941 4.6941 4.6941
0.10 4.3995 4.3987 4.3964 4.3925 4.3871 4.3801 4.3715 4.3614 4.3497 4.3363 4.3215
0.20 4.2671 4.2658 4.2620 4.2556 4.2467 4.2352 4.2211 4.2044 4.1852 4.1635 4.1393
0.30 4.1923 4.1906 4.1856 4.1772 4.1653 4.1501 4.1315 4.1095 4.0842 4.0557 4.0241
0.40 4.1444 4.1424 4.1362 4.1259 4.1114 4.0928 4.0701 4.0433 4.0125 3.9779 3.9398
0.50 4.1111 4.1087 4.1015 4.0894 4.0724 4.0506 4.0239 3.9925 3.9565 3.9163 3.8722
0.60 4.0867 4.0839 4.0756 4.0618 4.0424 4.0174 3.9869 3.9511 3.9102 3.8646 3.8150
0.70 4.0679 4.0648 4.0555 4.0400 4.0182 3.9901 3.9559 3.9157 3.8701 3.8194 3.7647
0.80 4.0531 4.0497 4.0393 4.0221 3.9980 3.9669 3.9290 3.8846 3.8343 3.7788 3.7192
0.90 4.0411 4.0373 4.0260 4.0071 3.9806 3.9465 3.9049 3.8564 3.8016 3.7416 3.6775

m̃ 1.00 4.0311 4.0271 4.0148 3.9942 3.9653 3.9282 3.8831 3.8305 3.7714 3.7070 3.6386
1.10 4.0228 4.0184 4.0051 3.9829 3.9517 3.9116 3.8629 3.8064 3.7431 3.6745 3.6022
1.20 4.0157 4.0109 3.9967 3.9728 3.9393 3.8962 3.8440 3.7836 3.7162 3.6437 3.5677
1.30 4.0096 4.0045 3.9892 3.9637 3.9278 3.8818 3.8262 3.7619 3.6907 3.6144 3.5350
1.40 4.0042 3.9988 3.9826 3.9554 3.9172 3.8683 3.8092 3.7412 3.6662 3.5863 3.5038
1.50 3.9995 3.9938 3.9766 3.9477 3.9073 3.8554 3.7929 3.7213 3.6427 3.5594 3.4740
1.60 3.9954 3.9893 3.9711 3.9406 3.8978 3.8430 3.7772 3.7021 3.6200 3.5335 3.4454
1.70 3.9916 3.9853 3.9661 3.9340 3.8889 3.8312 3.7620 3.6834 3.5980 3.5086 3.4179
1.80 3.9883 3.9816 3.9615 3.9277 3.8803 3.8197 3.7473 3.6653 3.5767 3.4845 3.3915
1.90 3.9853 3.9783 3.9572 3.9217 3.8720 3.8086 3.7330 3.6477 3.5560 3.4611 3.3660
2.00 3.9826 3.9752 3.9531 3.9161 3.8640 3.7978 3.7190 3.6306 3.5359 3.4385 3.3414

TABLE V: α2(m̃, r̃): table of eigenvalues of mode 2 for 0 ≤ m̃ ≤ 2 and 0 ≤ r̃ ≤ 0.1 .
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Mode 3: α3(m̃, r̃)
r̃

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.00 7.8548 7.8548 7.8548 7.8548 7.8548 7.8548 7.8548 7.8548 7.8548 7.8548 7.8548
0.10 7.4511 7.4477 7.4374 7.4201 7.3956 7.3635 7.3237 7.2759 7.2202 7.1568 7.0866
0.20 7.3184 7.3127 7.2956 7.2666 7.2252 7.1708 7.1032 7.0230 6.9315 6.8310 6.7248
0.30 7.2537 7.2460 7.2228 7.1833 7.1265 7.0518 6.9595 6.8518 6.7324 6.6066 6.4796
0.40 7.2155 7.2059 7.1769 7.1271 7.0553 6.9609 6.8456 6.7139 6.5727 6.4296 6.2910
0.50 7.1903 7.1789 7.1441 7.0842 6.9974 6.8837 6.7469 6.5946 6.4368 6.2826 6.1383
0.60 7.1725 7.1593 7.1187 7.0485 6.9468 6.8144 6.6577 6.4882 6.3183 6.1575 6.0114
0.70 7.1593 7.1442 7.0979 7.0174 6.9007 6.7501 6.5756 6.3921 6.2137 6.0496 5.9040
0.80 7.1490 7.1321 7.0800 6.9892 6.8575 6.6895 6.4991 6.3045 6.1206 5.9555 5.8121
0.90 7.1408 7.1221 7.0642 6.9630 6.8164 6.6319 6.4276 6.2245 6.0373 5.8728 5.7325

m̃ 1.00 7.1341 7.1136 7.0499 6.9381 6.7769 6.5769 6.3606 6.1510 5.9623 5.7997 5.6630
1.10 7.1286 7.1063 7.0367 6.9143 6.7387 6.5242 6.2977 6.0835 5.8945 5.7345 5.6019
1.20 7.1239 7.0998 7.0243 6.8913 6.7015 6.4737 6.2386 6.0212 5.8331 5.6762 5.5477
1.30 7.1199 7.0940 7.0126 6.8689 6.6653 6.4251 6.1830 5.9637 5.7772 5.6237 5.4994
1.40 7.1164 7.0887 7.0013 6.8470 6.6299 6.3786 6.1307 5.9105 5.7262 5.5763 5.4562
1.50 7.1134 7.0838 6.9905 6.8255 6.5954 6.3339 6.0814 5.8612 5.6794 5.5333 5.4172
1.60 7.1108 7.0793 6.9800 6.8043 6.5616 6.2910 6.0349 5.8153 5.6364 5.4941 5.3820
1.70 7.1084 7.0751 6.9697 6.7834 6.5286 6.2498 5.9910 5.7726 5.5968 5.4583 5.3500
1.80 7.1063 7.0712 6.9597 6.7627 6.4964 6.2103 5.9496 5.7328 5.5602 5.4255 5.3208
1.90 7.1044 7.0675 6.9499 6.7423 6.4649 6.1723 5.9104 5.6955 5.5263 5.3953 5.2941
2.00 7.1027 7.0639 6.9402 6.7221 6.4341 6.1359 5.8734 5.6607 5.4949 5.3674 5.2696

TABLE VI: α3(m̃, r̃): table of eigenvalues of mode 3 for 0 ≤ m̃ ≤ 2 and 0 ≤ r̃ ≤ 0.1 .

Mode 4: α4(m̃, r̃)
r̃

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.00 10.9955 10.9955 10.9955 10.9955 10.9955 10.9955 10.9955 10.9955 10.9955 10.9955 10.9955
0.10 10.5218 10.5127 10.4849 10.4372 10.3676 10.2745 10.1581 10.0210 9.8698 9.7129 9.5591
0.20 10.4016 10.3862 10.3387 10.2555 10.1325 9.9701 9.7771 9.5714 9.3720 9.1921 9.0377
0.30 10.3480 10.3269 10.2607 10.1427 9.9681 9.7450 9.5000 9.2643 9.0586 8.8894 8.7547
0.40 10.3178 10.2910 10.2061 10.0527 9.8278 9.5550 9.2796 9.0376 8.8423 8.6913 8.5764
0.50 10.2984 10.2660 10.1620 9.9726 9.7003 9.3899 9.1010 8.8654 8.6860 8.5530 8.4547
0.60 10.2850 10.2469 10.1235 9.8976 9.5823 9.2460 8.9550 8.7317 8.5690 8.4519 8.3669
0.70 10.2751 10.2313 10.0882 9.8257 9.4728 9.1205 8.8348 8.6260 8.4788 8.3751 8.3008
0.80 10.2675 10.2181 10.0547 9.7563 9.3715 9.0111 8.7349 8.5409 8.4077 8.3152 8.2494
0.90 10.2615 10.2064 10.0225 9.6889 9.2779 8.9156 8.6511 8.4714 8.3503 8.2672 8.2083

m̃ 1.00 10.2566 10.1958 9.9911 9.6236 9.1919 8.8321 8.5803 8.4138 8.3033 8.2280 8.1749
1.10 10.2526 10.1860 9.9602 9.5603 9.1128 8.7587 8.5199 8.3654 8.2641 8.1954 8.1471
1.20 10.2492 10.1768 9.9297 9.4992 9.0403 8.6941 8.4680 8.3243 8.2309 8.1679 8.1237
1.30 10.2463 10.1681 9.8994 9.4403 8.9738 8.6369 8.4229 8.2890 8.2026 8.1444 8.1037
1.40 10.2438 10.1597 9.8694 9.3837 8.9128 8.5861 8.3836 8.2585 8.1781 8.1242 8.0864
1.50 10.2417 10.1516 9.8396 9.3293 8.8568 8.5408 8.3490 8.2317 8.1568 8.1065 8.0713
1.60 10.2398 10.1438 9.8099 9.2773 8.8054 8.5002 8.3184 8.2082 8.1380 8.0910 8.0580
1.70 10.2381 10.1361 9.7804 9.2275 8.7580 8.4636 8.2912 8.1874 8.1214 8.0772 8.0463
1.80 10.2366 10.1286 9.7511 9.1799 8.7145 8.4307 8.2668 8.1687 8.1066 8.0650 8.0358
1.90 10.2352 10.1212 9.7220 9.1345 8.6743 8.4008 8.2449 8.1521 8.0933 8.0540 8.0264
2.00 10.2340 10.1139 9.6931 9.0913 8.6371 8.3737 8.2251 8.1370 8.0813 8.0440 8.0179

TABLE VII: α4(m̃, r̃): table of eigenvalues of mode 4 for 0 ≤ m̃ ≤ 2 and 0 ≤ r̃ ≤ 0.1 .
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Mode 5: α5(m̃, r̃)
r̃

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.00 14.1372 14.1372 14.1372 14.1372 14.1372 14.1372 14.1372 14.1372 14.1372 14.1372 14.1372
0.10 13.6142 13.5953 13.5364 13.4314 13.2743 13.0670 12.8284 12.5890 12.3745 12.1966 12.0553
0.20 13.5067 13.4742 13.3700 13.1781 12.8973 12.5727 12.2730 12.0358 11.8619 11.7373 11.6475
0.30 13.4615 13.4160 13.2659 12.9859 12.6053 12.2337 11.9480 11.7515 11.6196 11.5296 11.4665
0.40 13.4367 13.3782 13.1803 12.8138 12.3660 11.9938 11.7428 11.5833 11.4805 11.4116 11.3637
0.50 13.4210 13.3494 13.1019 12.6552 12.1717 11.8212 11.6053 11.4741 11.3911 11.3359 11.2975
0.60 13.4102 13.3253 13.0267 12.5097 12.0149 11.6941 11.5082 11.3981 11.3291 11.2833 11.2514
0.70 13.4023 13.3040 12.9532 12.3778 11.8882 11.5980 11.4367 11.3425 11.2837 11.2447 11.2175
0.80 13.3963 13.2843 12.8808 12.2594 11.7854 11.5236 11.3821 11.3002 11.2491 11.2151 11.1914
0.90 13.3916 13.2658 12.8096 12.1539 11.7012 11.4646 11.3392 11.2669 11.2218 11.1918 11.1709

m̃ 1.00 13.3878 13.2479 12.7398 12.0603 11.6314 11.4169 11.3047 11.2401 11.1998 11.1730 11.1542
1.10 13.3846 13.2305 12.6715 11.9774 11.5730 11.3777 11.2764 11.2181 11.1817 11.1574 11.1404
1.20 13.3820 13.2134 12.6051 11.9040 11.5237 11.3449 11.2527 11.1997 11.1665 11.1444 11.1288
1.30 13.3797 13.1966 12.5408 11.8390 11.4816 11.3172 11.2327 11.1841 11.1536 11.1333 11.1190
1.40 13.3778 13.1798 12.4788 11.7811 11.4454 11.2934 11.2155 11.1707 11.1425 11.1237 11.1104
1.50 13.3761 13.1632 12.4193 11.7296 11.4139 11.2728 11.2007 11.1590 11.1329 11.1154 11.1030
1.60 13.3746 13.1465 12.3622 11.6836 11.3863 11.2549 11.1876 11.1489 11.1244 11.1081 11.0965
1.70 13.3733 13.1299 12.3078 11.6424 11.3620 11.2391 11.1762 11.1398 11.1170 11.1016 11.0907
1.80 13.3721 13.1132 12.2558 11.6052 11.3404 11.2251 11.1660 11.1318 11.1103 11.0958 11.0856
1.90 13.3711 13.0966 12.2065 11.5718 11.3212 11.2125 11.1569 11.1247 11.1043 11.0906 11.0810
2.00 13.3701 13.0798 12.1596 11.5414 11.3039 11.2013 11.1487 11.1182 11.0989 11.0860 11.0768

TABLE VIII: α5(m̃, r̃): table of eigenvalues of mode 5 for 0 ≤ m̃ ≤ 2 and 0 ≤ r̃ ≤ 0.1 .


