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Detailed Jarzynski Equality applied on a Logically Irreversible Procedure

A. Bérut, A. Petrosyan, S. Ciliberto
Université de Lyon, Laboratoire de Physique ENS Lyon (CNRS UMR5672),

46, allée d’Italie F69007 Lyon, France
(Dated: February 18, 2013)

A single bit memory system is made with a brownian particle held by an optical tweezer in a
double-well potential. For a memory erasure procedure, which is a logically irreversible operation,
a detailed Jarzynski Equality is verified, retrieving the Landauer limit independently of the work
done on the system. For the two separated subprocesses, i.e. the transition from state 1 to state 0
and the transition from state 0 to state 0, the Jarzynski equality does not hold but the generalized
version links the work done on the system to the probability that the it returns to its initial state
under the time-reversed procedure.

PACS numbers: 05.40.-a, 05.70.-a, 05.70.Ln, 89.70.Cf

The connection between thermodynamics and infor-
mation is nowadays a widely studied problem [1–5]. The
main questions concern the amount of energy necessary
in order to perform a logical operation in a given time
and how the information entropy is related to the free
energy difference between the initial and final state of
this logical operation. In this context the Landauer’s
principle [6] is very important as it states that for any ir-
reversible logical operation the minimum amount of en-
tropy production associated is −kB ln(2) per bit com-
muted by the logical operation, with kB the Boltzmann
constant. Specifically a logically irreversible operation is
an operation for which the knowledge of the output does
not allow to retrieve the initial state, examples are logi-
cal AND, OR and erasure. In a recent paper [8] we have
experimentally shown that indeed the minimum a mount
of work necessary to erase a bit is actually associated
with this Landauer’s bound which can be asymptotically
reached for adiabatic transformations. The question that
arise naturally is whether this work corresponds to the
free energy difference between the initial and final state
of the system. To answer to this question it seems natu-
ral to use the Jarzinsky equality [7] which allows one to
compute the free energy difference between two states of
a system, in contact with a heat bath at temperature T .
When such a system is driven from an equilibrium state
A to a state B through any continuous procedure, the
Jarzynski equality links the stochastic work Wst received
by the system during the procedure to the free energy
difference ∆F = FB − FA between the two states:〈

e−βWst
〉

= e−β∆F (1)

Where 〈.〉 denotes the ensemble average over all possible
trajectories, and β = 1

kBT
(see eq. 2 for the precise

definition of the work Wst).
In this letter we analyze the question of the applica-

tion of eq.1 for estimating the ∆F corresponding to the
erasure operation in our experiment, in which a colloidal
particle confined in a double well potential is used as a
single bit memory. We will show that a detailed Jarzynski

Equality is verified, retrieving the Landauer limit inde-
pendently of the work done on the system.

The setup has already been described in a previous
article [8] and we recall here only the main features.

A custom-built vertical optical tweezers is used to re-
alize a two-state system: a silica bead (radius R = 1µm)
is trapped at the focus of a laser beam (wavelength
1024nm) which is rapidly switched (at a rate of 10kHz)
between two positions (separated by 1.45µm) using an
acousto-optic deflector. A disk-shaped cell (18mm in di-
ameter, 1mm in depth) is filled with a solution of beads
dispersed in bidistilled water at low concentration. The
bead used for the experiment is trapped by the laser and
moved into the center of the cell (with gap ∼ 80µm)
to avoid all interactions with other beads. The trapped
bead feels a double-well potential with a central barrier
varying from 2kBT to more than 8kBT depending on the
power of the laser (see figure 1, a and b). The left well
is called “0” and the right well “1”. The position of the
bead is tracked using a fast camera with a resolution of
108nm per pix el, which after treatment gives the posi-
tion with a precision greater than 10nm. The trajectories
of the bead are sampled at 502Hz.

The logical operation performed by our experiment is
the erasure procedure. This procedure brings the system
initially in one random state (0 or 1 with same probabil-
ity) in one chosen state (e.g. 0). It is done experimentally
in the following way.

At the beginning the laser power is high (48mW ) so that
the central barrier is more than 8kT and the characteris-
tic jumping time (Kramers Time) is about 3000s, which
is long compared to the time of the experiment, and the
bead is trapped in one well-defined state (0 or 1). The
laser power is first lowered (in a time Tlowering = 1s) to
15mW so that the barrier is about 2.2kBT and the jump-
ing time falls to 10s. A viscous drag force linear in time
is induced by displacing the cell with respect to the laser
using a closed-loop 3-axis NanoMax stage. The force is
given by f = −γv where γ = 6πRη (η is the viscosity
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FIG. 1: Measurement of the potential in which the silica bead
is confined, with no external force for two different laser pow-
ers (a: 48mW and b: 15mW ), and extrapolation for low
power with two different value of the force (c: 1 × 10−14N
and d: 3 × 10−14N). The potential is computed from the
equilibrium probability density function of the bead’s posi-
tion.

of water) and v the speed of displacement. It tilts the
double-well potential so that the bead ends always in the
same well (e.g. state 0 if the force pushes the bead to the
left) independently of where it started. At the end, the
force is stopped and the central barrier is raised again
to its maximal value (in a time Trising = 1s). Between
two successive procedures the system is equilibrating for
4 s. The experimental procedure is sketched figure 2. A
procedure is fully characterized by its duration τ and the
maximal value of the force applied fmax. It’s efficiency
is characterized by the “proportion of success” which is
the proportion of trajectories where the bead ends in the
chosen well (e.g. 0), independently of where it started.
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FIG. 2: Schematic representation of the erasure procedure.

The ideal erasure procedure is a logically irreversible
operation because the final state gives no information

about the initial state. For one bit of memory [6], it
corresponds to a change in the entropy of the system
∆S = −kB ln(2). The procedure can arbitrarily be de-
composed in two kinds of sub-procedures: one where the
bead starts in one well and ends in the other (e.g. 1→ 0)
and one where the bead is initially in the well where
it should be at the end of the erasure procedure (e.g.
0→ 0).

The two accessible quantifies are x(t), which is mea-
sured, and f(t) which is imposed by the displacement
of the cell. The derivatives are estimated using the dis-
cretization ẋ(t + ∆t/2) ≈ [x(t + ∆t) − x(t)]/∆t. Start-
ing from these quantities it is possible to measure the
stochastic work Wst done during the erasure procedure.

For a colloidal particle confined to one spatial dimen-
sion and submitted to a conservative potential V (x, λ),
where λ = λ(t) is a time-dependent external parameter,
one can define the stochastic work received by the system
along a single trajectory [5]:

Wst[x(t′)] =

∫ t′

0

∂V

∂λ
λ̇ dt (2)

Here the potential is V (x, t) = U0(x, I(t)) − x × f(t),
where U0 is due to the optical trapping and I(t) is the
intensity of the laser (see figure 1). If the bead does not
jump from one well to the other during the modulation
of the height of the barrier this part of the procedure
does not contribute to the work received by the bead.
Then the work can be computed only when the external
force is applied (between t = 0 and t = τ). This force
is directly the control parameter, and considering that
f(t = 0) = 0 = f(t = τ), it follows that the stochastic
work is equal to the classical work W :

Wst[x(τ)] =

∫ τ

0

−xḟ dt =

∫ τ

0

fẋdt = W [x(τ)] (3)

The two integrals have been calculated for all the tra-
jectories of all the procedures tested. Amongst all of
them, the maximal difference |Wst−W | observed, was of
0.06kBT , which is negligible.

We now analyse the results of our experiments. For
every chosen duration τ , the maximal force fmax was set
to different values (typically between 1 and 6×10−14N).
For each set of parameters (τ, fmax), the procedure was
repeated several hundreds of times to be able to com-
pute statistical values. For each τ , the value of fmax is
optimized in order to be as small as possible and give a
proportion of success > 90%.

The mean of the work received 〈W 〉 and the logarithm
of the mean of its exponential ∆Feff = − ln(

〈
e−βW

〉
)

were calculated on the trajectories where the information
is erased (i.e. the ones where the bead ends where it was
supposed to be). For the mean of the exponential, the
error bars are estimated by computing the mean on the
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data set with 10% of the points randomly excluded, and
taking the maximal difference in the mean value observed
by repeating this operation 1000 times. The results are
shown figure 3. The mean work 〈W 〉 decreases when the
duration of the procedure increases. For the optimized
values of the force, it follows a law 〈W (τ)〉 = kBT ln(2)+
B/τ where B is a constant, which is the behavior for the
theoretical optimal procedure [9]. A least mean square fit
gives B = 8.45 kBT.s. The effective free energy difference
∆Feff is always close to the Landauer limit kBT ln(2),
independently of the value of the maximal force or the
procedure duration.
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FIG. 3: Mean of the work (∗) and effective free energy dif-
ference (×) for different procedures. The over-forced pro-
cedures (red) have a proportion of success ∼ 95%, the opti-
mised procedures (black) have a proportion of success > 91%,
the under-forced procedures have a proportion of success
> 83% (except the last point, that has a proportion of success
≈ 75%). The fit (blue line) is: 〈W (τ)〉 = kBT ln(2) + B/τ
with B a constant.

The mean of the exponential can be computed on
the sub-procedures by sorting trajectories in function of
the initial position of the bead. Specifically

〈
e−βW

〉
=

(M10 + M00)/2, where M10 =
〈
e−βW

〉
1→0

and M00 =〈
e−βW

〉
0→0

. The values M10 and M00 are plotted fig-
ure 4. The sum M10 + M00 is always close to 1, which
corresponds to the fact that ∆Feff is close to kBT ln(2),
but M00 decreases with τ whereas M10 increases conse-
quently.

These results can be understood in the following way:
Since the memory erasure procedure is made in a cyclic
way and ∆S = −kB ln(2) it is natural to await ∆F =
kBT ln(2). But the ∆F that appears in the Jarsynski
equality is the difference between the free energy of the
system in the initial state (which is at equilibrium) and
the equilibrium state corresponding to the final value of
the control parameter: F (λ(τ)) − F (λ(0)). Since the
height of the barrier is always finite there is no change
in the equilibrium free energy of the system between the
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FIG. 4: Mean of the exponential of the work, for the sub-
procedures 1 → 0 (blue) and 0 → 0 (red). For readability
questions, only one value is shown for each τ : it corresponds
to the procedure with the highest proportion of success.

beginning and the end of the procedure. Then ∆F = 0,
which implies

〈
e−βWst

〉
= 1. Nevertheless Jarzynski and

co-workers [10] have shown that when there is a differ-
ence between the actual state of the system (described
by the phase-space density ρt), and the equilibrium state
(described by ρeqt ), the Jarzynski equality should be mod-
ified: 〈

e−βWst(t)
〉

(x,t)
=
ρeq(x, λ(t))

ρ(x, t)
e−β∆F (t) (4)

Where 〈.〉(x,t) is an average over all the trajectories that
pass through x at t.
Here, selecting the trajectories where the information is
actually erased means taking x corresponding to the final
well (e.g. state 0) and t = τ . It follows that ρ(0, τ) is
directly the proportion of success of the procedure, which
is made close to 1, and ρeq(0, λ(τ)) = 1/2. Then:〈

e−βWst(τ)
〉

(0,τ)
≈ 1

2
(5)

In the ideal case where the proportion of success goes to
100%, all the trajectories end in state 0 at time τ and
finally: 〈

e−βWst
〉

= 1/2 = e−β∆Feff (6)

Considering the subprocedures 1 → 0 and 0 → 0 sep-
arately, the Jarzynski equality does not hold because
the initial conditions are not correctly tested (selecting
trajectories by their initial condition introduce a bias
in the initial equilibrium distribution). But Van den
Broeck and coworkers [11] have shown that for a par-
tition of the phase-space into non-overlapping subsets χj
(j = 1, ...,K) there is a detailed Jarzynski Equality:〈

e−βW
〉
j

=
ρ̃j
ρj
e−β∆F (7)
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With:

ρj =

∫
χj

ρ(ta) dxdp and ρ̃j =

∫
χ̃j

ρ̃(ta) dxdp (8)

Where ρ(ta) and ρ̃(ta) are the phase-space densities of the
system measured at the same intermediate but otherwise
arbitrary point in time, in the forward and backward
protocol, respectively. Here, the two subsets are χ10 and
χ00, defined by the state where the particle is at the
beginning of the procedure. By taking ta = 0 the starting
point of the procedure, ρj = 1/2 and ρ̃j identifies with
the probability that the systems returns into its initial
state for the time-reversed procedure. Since e−β∆Feff =
1/2, it follows that:〈

e−βW
〉

1→0
= P̃01 (9)〈

e−βW
〉

0→0
= P̃00 (10)

Where P̃01 (resp. P̃00) is the probability that the particle
ends the time-reversed procedure (which always starts in
the state 0) in the state 1 (resp. in the state 0). This re-
sult is similar to the one reported by Ueda and coworkers
[12, 13] for procedures with feedback. It should be no-
ticed that here P̃01 + P̃00 = 1. And it is reasonable to
think that for time-reversed procedure the probability of
returning to state 1 is lower when the duration of the
procedure is lower, which explains qualitatively the be-
havior observed experimentally. Unfortunately the time-
reversed procedure cannot be realized experimentally, be-
cause it starts with a very fast rising of the force, which
cannot be reached in our experiment.

Therefore in order to analyze this problem we per-
formed a numerical simulation. Our experimental system
can be described by the over-damped Langevin equation:

γẋ = −∂V
∂x

+ ξ (11)

where ξ is a gaussian white noise with zero mean and
correlation 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′).

Simple numerical simulations were made by integrating
this equation with Euler method, for a procedure as close
as possible to the experimental one. For such a numeri-
cal procedure, it is possible to realize the corresponding
time-reversed procedure and so to verify that for the sub-
procedures the mean of the exponential of the work gives
the probability to return in the initial state under the
time-reversed procedure. Some results are showed in the
following table:

τ (s) fmax (10−14N) M10 P̃01 M00 P̃00 success (%)

5 3.77 0.16 0.16 0.84 0.84 96

10 2.83 0.30 0.28 0.73 0.72 94

20 1.89 0.41 0.43 0.60 0.57 90

30 1.89 0.42 0.44 0.57 0.56 93

The agreement is quantitative. It was also verified that
for proportions of success < 100%, if one takes all the tra-
jectories, and not only the ones where the bead ends in
the state 0, the classical Jarzynski equality is verified:〈
e−βWst

〉
= 1 (for these specific simulations, Tlowering

and Trising were taken equal to 0.1s to avoid problems
when the bead jumps during this phase of the procedure).
This result means that the small fraction of trajectories
(sometimes < 1%) where the bead ends the erasure pro-
cedure where it shouldn’t is enough to retrieve the fact
that ∆F = 0.

As a conclusion, it has been experimentally shown
that for a memory erasure procedure of a one bit sys-
tem, which is a logically irreversible operation, a detailed
Jarzynski Equality is verified, retrieving the Landauer
limit independently of the work done on the system. Fur-
thermore the arbitrary division of the procedure into two
sub-procedures allows us to link the work done on the sys-
tem to the probability that it returns to its initial state
under the time-reversed procedure.

We thank David Lacoste, Krzysztof Gawedzki, Luca
Peliti and Christian Van den Broeck for very useful and
interesting discussions.
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