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Detailed Jarzynski Equality applied to a Logically Irreversible Procedure

A. Bérut, A. Petrosyan, S. Ciliberto
Laboratoire de Physique ENS Lyon (CNRS UMR5672), 46, allée d’Italie F69007 Lyon, France

(Dated: April 28, 2013)

A single bit memory system is made with a brownian particle held by an optical tweezer in a
double-well potential and the work necessary to erase the memory is measured. We show that the
minimum of this work is close to the Landauer’s bound only for very slow erasure procedure. Instead
a detailed Jarzynski equality allows us to retrieve the Landauer’s bound independently on the speed
of this erasure procedure. For the two separated subprocesses, i.e. the transition from state 1 to
state 0 and the transition from state 0 to state 0, the Jarzynski equality does not hold but the
generalized version links the work done on the system to the probability that it returns to its initial
state under the time-reversed procedure.

PACS numbers: 05.40.-a, 05.70.-a, 05.70.Ln, 89.70.Cf

The connection between thermodynamics and infor-
mation is nowadays a widely studied problem [1–5]. The
main questions concern the amount of energy necessary
in order to perform a logical operation in a given time and
how the information entropy is related to the free energy
difference between the initial and final state of this log-
ical operation. In this context the Landauer’s principle
[6] is very important as it states that for any irreversible
logical operation the minimum amount of entropy pro-
duction is −kB ln(2) per bit commuted by the logical op-
eration, with kB the Boltzmann constant. Specifically a
logically irreversible operation is an operation for which
the knowledge of the output does not allow to retrieve
the initial state, examples are logical AND, OR and era-
sure. In a recent paper [8] we have experimentally shown
that indeed the minimum amount of work necessary to
erase a bit is actually associated with this Landauer’s
bound which can be asymptotically reached for adiabatic
transformations. The question that arises naturally is
whether this work corresponds to the free energy differ-
ence between the initial and final state of the system.
To answer to this question it seems natural to use the
Jarzinsky equality [7] which allows one to compute the
free energy difference between two states of a system,
in contact with a heat bath at temperature T . When
such a system is driven from an equilibrium state A to a
state B through any continuous procedure, the Jarzyn-
ski equality links the stochastic work Wst received by the
system during the procedure to the free energy difference
∆F = FB − FA between the two states:〈

e−βWst
〉

= e−β∆F (1)

Where 〈.〉 denotes the ensemble average over all possible
trajectories, and β = 1

kBT
(see eq. 2 for the precise

definition of the work Wst).
In this letter we analyze the question of the applica-

tion of eq. 1 for estimating the ∆F corresponding to
the erasure operation in our experiment, in which a col-
loidal particle confined in a double well potential is used
as a single bit memory. We will show that a detailed

Jarzynski Equality is verified, retrieving the Landauer
limit independently of the work done on the system.

The setup has already been described in a previous
article [8] and we recall here only the main features.

A custom-built vertical optical tweezers is used to re-
alize a two-state system: a silica bead (radius R = 1µm)
is trapped at the focus of a laser beam (wavelength
1024nm) which is rapidly switched (at a rate of 10kHz)
between two positions (separated by 1.45µm) using an
acousto-optic deflector. A disk-shaped cell (18mm in di-
ameter, 1mm in depth) is filled with a solution of beads
dispersed in bidistilled water at low concentration. The
bead used for the experiment is trapped by the laser and
moved into the center of the cell (with gap ∼ 80µm)
to avoid all interactions with other beads. The trapped
bead feels a double-well potential with a central barrier
varying from 2kBT to more than 8kBT depending on the
power of the laser (see figure 1, a and b). The left well
is called “0” and the right well “1”. The position of the
bead is tracked using a fast camera with a resolution of
108nm per pixel, which after treatment gives the position
with a precision greater than 10nm. The trajectories of
the bead are sampled at 502Hz.

The logical operation performed by our experiment is
the erasure procedure. This procedure brings the system
initially in one random state (0 or 1 with same probabil-
ity) in one chosen state (e.g. 0). It is done experimentally
in the following way.

At the beginning the laser power is high (48mW ) so that
the central barrier is more than 8kT and the characteris-
tic jumping time (Kramers Time) is about 3000s, which
is long compared to the time of the experiment, and the
bead is trapped in one well-defined state (0 or 1). The
laser power is first lowered (in a time Tlowering = 1s)
to 15mW so that the barrier is about 2.2kBT and the
jumping time falls to 10s. A viscous drag force linear
in time is induced by displacing the cell with respect to
the laser using a closed-loop 3-axis NanoMax stage. The
force is given by f = −γv where γ = 6πRη (η is the vis-
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FIG. 1: Measurement of the potential in which the silica bead
is confined, with no external force for two different laser pow-
ers (a: 48mW and b: 15mW ), and extrapolation for low
power with two different value of the force (c: 1 × 10−14N
and d: 3 × 10−14N). The potential is computed from the
equilibrium probability density function of the bead’s posi-
tion.

cosity of water) and v the speed of displacement. It tilts
the double-well potential so that the bead ends always
in the same well (e.g. state 0) independently of where it
started. At the end, the force is stopped and the central
barrier is raised again to its maximal value (in a time
Trising = 1s). Between two successive procedures the
system is left to equilibrate for 4 s. The experimental
procedure is sketched in figure 2. A procedure is fully
characterized by its duration τ and the maximum value
of the force applied fmax. Its efficiency is characterized
by the “proportion of success” PS , which is the propor-
tion of trajectories where the bead ends in the chosen
well (e.g. 0), independently of where it started.
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FIG. 2: Schematic representation of the erasure procedure.

The ideal erasure procedure is a logically irreversible
operation because the final state gives no information

about the initial state. For one bit of memory [6], it
corresponds to a change in the entropy of the system
∆S = −kB ln(2). The procedure can arbitrarily be de-
composed in two kinds of sub-procedures: one where the
bead starts in one well and ends in the other (e.g. 1→ 0)
and one where the bead is initially in the same well where
it should be at the end of the procedure (e.g. 0→ 0).

The two accessible quantifies are x(t), which is mea-
sured, and f(t) which is imposed by the displacement
of the cell. The derivatives are estimated using the dis-
cretization ẋ(t + ∆t/2) ≈ [x(t + ∆t) − x(t)]/∆t. Start-
ing from these quantities it is possible to measure the
stochastic work Wst done during the erasure procedure.

For a colloidal particle confined to one spatial dimen-
sion and submitted to a conservative potential V (x, λ),
where λ = λ(t) is a time-dependent external parameter,
one can define the stochastic work received by the system
along a single trajectory [5]:

Wst[x(t′)] =

∫ t′

0

∂V

∂λ
λ̇ dt (2)

Here the potential is V (x, t) = U0(x, I(t)) − x × f(t),
where U0 is due to the optical trapping and I(t) is the
intensity of the laser (see figure 1). If the bead does not
jump from one well to the other during the modulation
of the height of the barrier this part of the procedure
does not contribute to the work received by the bead.
Then the work can be computed only when the external
force is applied (between t = 0 and t = τ). The force
is directly the control parameter, and considering that
f(t = 0) = 0 = f(t = τ), it follows that the stochastic
work is equal to the classical work W :

Wst[x(τ)] =

∫ τ

0

−xḟ dt =

∫ τ

0

fẋdt = W [x(τ)] (3)

The two integrals have been calculated for all the tra-
jectories of all the procedures tested. Amongst all of
them, the maximal difference |Wst−W | observed was of
0.06kBT , which is negligible.

We now analyse the results of our experiments. For
every chosen duration τ , the maximal force fmax was set
to different values (typically between 1 and 6×10−14N).
For each set of parameters (τ, fmax), the procedure was
repeated several hundreds of times to be able to com-
pute statistical values. For each τ , the value of fmax is
optimized in order to be as small as possible and give a
proportion of success PS > 90%.
The trajectories where the information is erased, i.e.
the ones where the bead ends where it was supposed
to be (e.g. in state 0), are selected. The mean of the
work received 〈W 〉→0 and the logarithm of the mean of
its exponential − ln

(〈
e−βW

〉
→0

)
are calculated, where

〈.〉→0 stands for the mean on all the trajectories end-
ing in 0. We call the value − ln

(〈
e−βW

〉
→0

)
the ef-

fective free energy difference ∆Feff . The error bars
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on this value are estimated by computing the mean on
the data set with 10% of the points randomly excluded,
and taking the maximal difference in the mean value
observed by repeating this operation 1000 times. The
results are shown in figure 3. The mean work 〈W 〉→0

decreases when the duration of the procedure increases.
For the optimized values of the force, it follows a law
〈W (τ)〉→0 = kBT ln(2) + B/τ where B is a constant,
which is the behavior for the theoretical optimal proce-
dure [9]. A least mean square fit gives B = 8.45 kBT.s.
The effective free energy difference ∆Feff is always close
to the Landauer limit kBT ln(2), independently of the
value of the maximal force or the procedure duration.
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FIG. 3: Mean of the work (∗) and effective free energy differ-
ence (×) for different procedures. The over-forced procedures
(red) have a proportion of success PS ∼ 95%, the optimized
procedures (black) have PS > 91%, the under-forced proce-
dures have PS > 83% (except the last point, that has PS ≈
75%). The fit (blue line) is: 〈W (τ)〉→0 = kBT ln(2) + B/τ
with B a constant.

The mean of the exponential can be computed on the
sub-procedures by sorting trajectories in function of the
initial position of the bead. Specifically :

〈
e−βW

〉
→0

=
M10 +M00

2
(4)

where :

M10 =
〈
e−βW

〉
1→0

and M00 =
〈
e−βW

〉
0→0

(5)

The values M10 and M00 are plotted in fig. 4. The sum
M10 +M00 is always close to 1, which corresponds to the
fact that ∆Feff is close to kBT ln(2), but M00 decreases
with τ whereas M10 increases consequently.

These results can be understood in the following way:
Since the memory erasure procedure is made in a cyclic
way and ∆S = −kB ln(2) it is natural to await ∆F =
kBT ln(2). But the ∆F that appears in the Jarsyn-
ski equality is the difference between the free energy
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FIG. 4: Mean of the exponential of the work, for the sub-
procedures 1 → 0 (blue) and 0 → 0 (red). For readability
questions, only one value is shown for each τ : it corresponds
to the procedure with the highest proportion of success PS .

of the system in the initial state (which is at equilib-
rium) and the equilibrium state corresponding to the fi-
nal value of the control parameter: F (λ(τ)) − F (λ(0)).
Since the height of the barrier is always finite there is
no change in the equilibrium free energy of the system
between the beginning and the end of the procedure.
Then ∆F = 0, which implies

〈
e−βWst

〉
= 1. Neverthe-

less Vaikuntanathan and Jarzysnki [10] have shown that
when there is a difference between the actual state of the
system (described by the phase-space density ρt), and
the equilibrium state (described by ρeqt ), the Jarzynski
equality should be modified:〈

e−βWst(t)
〉

(x,t)
=
ρeq(x, λ(t))

ρ(x, t)
e−β∆F (t) (6)

Where 〈.〉(x,t) is the mean on all the trajectories that pass
through x at t.
In our procedure, the selection of the trajectories where
the information is actually erased, corresponds to fix x
to the chosen final well (e.g. state 0) at the time t = τ .
It follows that ρ(0, τ) is directly PS , the proportion of
success of the procedure, and ρeq(0, λ(τ)) = 1/2. Then:〈

e−βW (τ)
〉
→0

=
1/2

PS
(7)

Similarly for the trajectories that end the procedure in
the wrong well (e.g. state 1) we have:〈

e−βW (τ)
〉
→1

=
1/2

1− PS
(8)

Taking into account the Jensen’s inequality, i.e. 〈e−x〉 ≥
e−〈x〉, we find that equations 7 and 8 imply:

〈W 〉→0 ≥ kBT [ln(2) + ln(PS)]
〈W 〉→1 ≥ kBT [ln(2) + ln(1− PS)]

(9)
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Notice that the mean work dissipated to realize the pro-
cedure is simply:

〈W 〉 = PS × 〈W 〉→0 + (1− PS)× 〈W 〉→1 (10)

where 〈.〉 is the mean on all trajectories. Then using the
previous inequalities it follows:

〈W 〉 ≥ kBT [ln(2) + PS ln(PS) + (1− PS) ln(1− PS)]
(11)

which is indeed the generalization of the Landauer’s limit
for PS < 1. In the ideal case where PS = 1, all the
trajectories end in state 0 at time τ , and finally:〈

e−βW
〉

=
〈
e−βW

〉
→0

= 1/2. (12)

Since this result remains approximatively verified for pro-
portions of success close enough to 100%, it explains why
in the experiment we find ∆Feff ≈ kBT ln(2).

To understand the evolution of M10 and M00, we need
to consider the subprocedures 1 → 0 and 0 → 0 sepa-
rately. In this case the Jarzynski equality does not hold
because the initial conditions are not correctly tested
(selecting trajectories by their initial condition intro-
duces a bias in the initial equilibrium distribution). But
Kawai and coworkers [11] have shown that for a parti-
tion of the phase-space into non-overlapping subsets χj
(j = 1, ...,K) there is a detailed Jarzynski Equality :

〈
e−βW

〉
j

=
ρ̃j
ρj

〈
e−βW

〉
=
ρ̃j
ρj
e−β∆Feff (13)

with:

ρj =

∫
χj

ρ(ta) dxdp and ρ̃j =

∫
χ̃j

ρ̃(ta) dxdp (14)

where ρ(ta) and ρ̃(ta) are the phase-space densities of
the system measured at the same intermediate but oth-
erwise arbitrary point in time, in the forward and back-
ward protocol, respectively. Here, there are only two
subsets j = {00, 10}, defined by the position where the
bead starts. By taking ta = 0 the starting point of the
procedure, we have ρ00 = 1/2 = ρ10, and ρ̃00 (resp.
ρ̃10) identifies with the probability P̃00 (resp. P̃01) that
the system returns into its initial state, i.e. state 0
(resp. state 1), under the time-reversed procedure. Since
e−β∆Feff = 1/2 it follows from eq. 13 and the definition
in eq. 5 that:

M10 = P̃01 and M00 = P̃00 (15)

This result is similar to the one reported in ref. [12, 13]
for procedures with feedback. It should be noticed that
here P̃01 + P̃00 = 1. It is reasonable to think that for
time-reversed procedures (that always start in state 0)
the probability of returning to state 1 is small for fast pro-
cedures and increases by increasing the duration τ , which

explains qualitatively the behavior of M00 and M10 ob-
served experimentally. To be more quantitative one has
to measure P̃01 and P̃00, but the time-reversed procedure
cannot be realized experimentally, because it starts with
a very fast rising of the force, which cannot be reached
in our experiment.

Thus, in order to verify eq. 15, we performed a nu-
merical simulation, where it is possible to realize the cor-
responding time-reversed procedure and to compute P̃01

and P̃00. Our experimental system can be described by
the over-damped Langevin equation:

γẋ = −∂V
∂x

+ ξ (16)

where ξ is a gaussian white noise with zero mean and
correlation 〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′).

Simple numerical simulations were made by integrat-
ing this equation with Euler method, for a set of proce-
dures as close as possible to the experimental ones. Some
results are showed in the following table:

τ (s) fmax (10−14N) M10 P̃01 M00 P̃00 success (%)

5 3.77 0.19 0.19 0.84 0.81 97

10 2.83 0.30 0.30 0.73 0.70 96.5

20 1.89 0.45 0.41 0.63 0.59 94

30 1.89 0.45 0.44 0.60 0.56 94.5

The agreement between M10 (resp. M00) and P̃01

(resp. P̃00) is quantitative, and we also retrieve the fact
that M10 +M00 is always close to 1 for any set of parame-
ters with reasonnable success rate, as in the experiments.
It was also verified that for proportions of success
< 100%, if one takes all the trajectories, and not only
the ones where the bead ends in the state 0, the classical
Jarzynski equality is verified:

〈
e−βWst

〉
= 1 (for these

specific simulations, Tlowering and Trising were taken
equal to 0.1s to avoid problems when the bead jumps dur-
ing this phase of the procedure). This result means that
the small fraction of trajectories (sometimes< 1%) where
the bead ends the erasure procedure where it shouldn’t
is enough to retrieve the fact that ∆F = 0.

As a conclusion, it has been experimentally shown
that for a memory erasure procedure of a one bit sys-
tem, which is a logically irreversible operation, a detailed
Jarzynski equality allows us to retrieve the Landauer’s
bound for the work done on the system independently
on the speed in which the memory erasure procedure is
performed. Furthermore we show that the division of
the procedure into two sub-procedures is useful in or-
der to link the work done on the system to the proba-
bility that the memory returns to its initial state under
the time-reversed procedure. These results are important
because they clarify the use of the Jarzinsky equality in
irreversible operations.
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