
HAL Id: ensl-00802777
https://ens-lyon.hal.science/ensl-00802777v1

Submitted on 20 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed-Point Trigonometric Functions on FPGAs
Florent de Dinechin, Matei Istoan, Guillaume Sergent

To cite this version:
Florent de Dinechin, Matei Istoan, Guillaume Sergent. Fixed-Point Trigonometric Functions on FP-
GAs. Fourth International Symposium on Highly-Efficient Accelerators and Reconfigurable Technolo-
gies, Jun 2013, Edimburgh, United Kingdom. pp.1-6. �ensl-00802777�

https://ens-lyon.hal.science/ensl-00802777v1
https://hal.archives-ouvertes.fr


Fixed-Point Trigonometric Functions on FPGAs

Florent de Dinechin, Matei Istoan, Guillaume Sergent
AriC project, LIP (ENSL-CNRS-INRIA-UCBL), Université de Lyon

46 allée d’Italie, 69364 Lyon Cedex 07, France
{Florent.de.Dinechin, Matei.Istoan, Guillaume.Sergent}@ens-lyon.fr

ABSTRACT
Three approaches for computing sines and cosines on FP-
GAs are studied in this paper, with a focus of high-
throughput pipelined architecture, and state-of-the-art im-
plementation techniques. The first approach is the classical
CORDIC iteration, for which we suggest a reduced itera-
tion technique and fine optimizations in datapath width and
latency. The second is an ad-hoc architecture specifically
designed around trigonometric identities. The third uses
a generic table- and DSP-based polynomial approximator.
These three architectures are implemented and compared in
the FloPoCo framework.

1. INTRODUCTION
Sine and cosine functions are quite pervasive in signal pro-

cessing applications. We are interested here in comparing
the efficiency on FPGA of several approaches that compute
the sine and/or the cosine of a number in fixed point.

Some application only require the sine or the cosine of
a value at some point, but a fused sine-and-cosine imple-
mentation is interesting for several reasons. First, many
applications require both, for instance to implement rota-
tions. Second, many methods compute both anyway. In-
deed, most such methods are derived from the following
identity on complex exponential:

ej(a+b) = eja × ejb

or its real version, which is used in practice:{
sin(a+ z) = sin(a) cos(z) + cos(a) sin(z)
cos(a+ z) = cos(a) cos(z)− sin(a) sin(z)

(1)

These equations are best understood as follows: a rotation
of angle a+ b is obtained as the composition of the rotation
of angle a and the rotation of angle b. This identity can
be applied several times, and the sine and cosine of a given
angle α are eventually obtained by rotating the complex
point 1 by the angle α.

Overview of existing algorithms
The well known CORDIC algorithm, due to Volder [11], is
a classical technique to compute both sine and cosine using
such a decomposition into micro-rotations. These rotations
are chosen in such a way that (1) can be computed only
using additions and shifts. CORDIC has been present in
vendor core generators almost from the start, well studied

on FPGAs [1], and still, FPGA implementations are submit-
ted every year to FPGA conferences, with very little or no
novelty compared to the original article by Volder. However,
many CORDIC variations have been designed over time, see
for instance Muller’s textbook [9] or an excellent review writ-
ten for the 50 years of CORDIC [8]. However, mostly due to
the fact that standard additions are accelerated by fast-carry
logic on FPGAs, the preferred implementation remains the
simplest one. Roughly speaking, to compute w-bit sine and
cosine in a pipeline fashion, it requires 3(w+ g) additions of
size w + g where g = dlog2we+ 1 is a number of guard bits
ensuring last-bit accuracy.

FPGAs were then enhanced with embedded multipliers,
then DSP blocks. These resources can also be used to eval-
uate sine and cosine, using Equation (1) with a coarser de-
composition of an input angle into a sum of two smaller
angles. A good decomposition of α is α = αh + αl where
αh is the number formed from the k leading bits of α, and
αl is formed of the remaining lower bits, so that αl < 2−k.
This enables the use of an acceptable table for sin(αh) and
cos(αh), and a small degree polynomial, typically Taylor, for
sin(αl) and cos(αl). This idea will be exploited in Section 4.
However, other decompositions have been suggested [7, 9].

A variant of CORDIC, called “reduced iterations
CORDIC” [10], uses a similar idea. It first rotates the w-bit
input angle using roughly w/2 CORDIC microrotation. The

remaining angle z is then smaller than 2−w/2. Its sine and
cosine can be approximated (with good enough accuracy)
as sin z ≈ z and cos z ≈ 1. In both cases the approximation
error is smaller than 2−w. This ensures that a final rota-
tion of angle z can be computed, using (1), with just two
small multiplications (inputs of size roughly w/2) and two
additions.

The purpose of this article is to survey all these techniques
for the specific context of modern FPGAs with embedded
memories, embedded DSP blocks, and large LUTs.

Specification
In this paper we compute a fixed-point approximation of
sin(πx) and cos(πx), where x is a signed (two’s complement)
number on w bits in [−1, 1). This specification is quite nat-
ural, as it maps the modulo-2π trigonometric periodicity to
the modulo-2 reduction behind the two’s complement rep-
resentation. In other words, using such an implementation,
we can compute sines and cosines of numbers in a wider
fixed-point range, for instance having k integer bits, by sim-
ply dropping these bits: this corresponds to the periodicity
of the sine.



However, the range [−1, 1) is not symmetric in two’s com-
plement fixed-point: −1 is representable, but not 1. On
the input side, this asymmetry is not a problem, it ac-
tually matches well the periodicity of the input. On the
output side, however, there is, classically, a small problem:
we want a fixed-point result on n bits, so if we want to
avoid overflow, the value 1 must be actually represented as
0.11..112 = 1 − 2−w. By symmetry, the output value −1
should be represented as−1+2−w, not as the (representable)
−1.

Therefore, what an w-bit trigonometric operator should
compute is the function (1 − 2−w) sin(πx) or (1 −
2−w) cos(πx). This is not a problem in practice. First, ap-
plications of this operator can always reduce the correspond-
ing systematic error by increasing the precision w. Second,
the sequel will show that for all proposed architectures, the
scaling factor (1− 2−w) can be computed at no cost.

The implementations described in this article all provide
the same numerical quality: all the operators studied in the
following are faithfully rounded (another wording is last-bit
accurate): they return a value whose error with respect to
the true mathematical value is provably smaller than the
weight of the least-significant bit of the result. This ensures
that all the bits of the result are useful. Indeed, any error
larger than that would mean that we output useless bits,
which would waste routing resources [5]. All the synthesis
results correspond to architectures that have been exten-
sively tested against this accuracy specification.

We focus on fixed-point for two reasons. Firstly, with its
output in [−1, 1] and the periodicity property on its input, a
trigonometric function should, in most applications, be con-
sidered a fixed-point object. In other words, we claim that
most applications involving a floating-point sine or cosine
will benefit, when implemented on FPGAs, from a fixed-
point conversion of the datapath around these functions.
Secondly, we have studied in detail elsewhere [6] the over-
head of accurate floating-point implementations of sine and
cosine. Most of the present work is also relevant to such
floating-point implementations.

Finally, we focus on fully pipelined architectures able to
produce one result per cycle. Two of the three techniques
studied here could lead to sequential implementations that
take several cycles to compute one result, but these are out
of scope of the present article.

Outline and contributions
Section 2 will overview the common (and classical) argument
reductions that benefit to the three techniques presented in
this article. Section 3 focuses on CORDIC for FPGAs. Sev-
eral minor contributions (a proper error analysis, a flexible
pipeline, a reduction of some datapath widths, an imple-
mentation of the reduced iteration technique) sum up to a
state-of-the art implementation of unrolled CORDIC. Sec-
tion 4 presents an original rotation architecture targeting
modern FPGAs. It is based on tables (matching embed-
ded RAMs) and multiplications (matching embedded DSP
blocks). The choice of its various parameters is discussed.
Section 5 presents another table- and multiplier-based ar-
chitecture, this time computing only one of sine or cosine.
It uses a generic polynomial evaluation technique. Section 6
compares synthesis results for a range of precisions and a
range of frequency targets.

A final contribution is the availability of open-source,

high quality implementations of these operators in FloPoCo.
All the presented operators are available for evaluation in
FloPoCo’s public subversion repository at submission date.
They will be included in future FloPoCo releases.

2. ARGUMENT REDUCTION
The first argument reduction (very classically) considers

the three leading bits of x, which we call s (for sign), q
(for quadrant) and o (for octant). We call the remaining
bits y ∈

[
0, 1

4

)
. We now may use classical trigonometric

identities such as sin(π
2
−x) = cos(x) to reduce the problem

to computing sin(πy′) and cos(πy′) for y′ ∈
[
0, 1

4

)
.

000

001010

011

100

101 110

111

y′ =

{
1
4
− y if o = 1
y otherwise.

sqo Reconstruction

000

{
sin(πx) = sin(πy′)

cos(πx) = cos(πy′)

001

{
sin(πx) = cos(πy′)

cos(πx) = sin(πy′)

010

{
sin(πx) = cos(πy′)

cos(πx) = − sin(πy′)

011

{
sin(πx) = sin(πy′)

cos(πx) = − cos(πy′)

Figure 1: Argument reduction as a function of the
(s, q, o) bits (cases s = 1 not shown)

3. VARIATIONS ON CORDIC
The classical CORDIC iteration for computing sine and

cosine is the following:


c0 = 1

Πn
i=1

√
1+2−i

s0 = 0
z0 = y (the reduced argument)

(2)


di = +1 if zi > 0, otherwise − 1

ci+1 = ci − 2−idisi
si+1 = si + 2−idici
zi+1 = zi − di arctan(2−i)

(3)

Here ci and si converge to the cosine and sine of the input
y [9].

We implemented in FloPoCo a generator of such CORDIC
rotator, in unrolled (fully pipelined) fashion. In this case,
the values of arctan(2−i) are constant inputs to the addi-
tions. Equation (3) works for radian arguments, but adapt-
ing it to our specification is simply a matter of scaling each
constant arctan(2−i), so it entails no cost. Similarly, the
1 − 2−w scaling is merged at no cost in the initial scaling
factor of Equation (2). In this equation, n is the number of
iterations, slightly larger than w – more on this below.

3.1 Error analysis
To ensure last-bit accuracy at the lowest possible cost,

we need to analyze the errors performed by each iteration.
First, the method error entailed by Equation (3) is of the
order of the value of zi when we stop the iteration. Its bound
can be computed numerically, and the iteration count n is
defined as the smallest integer for which this method error
is smaller than 2−w−2.



Then, we have to bound the rounding errors. All the com-
putations are performed on w+ g bits, where g is a number
of guard bits (to be determined now) that will absorb the
accumulation of these errors. Let us call u = 2−w−g the
value of the unit in the last place on this datapath.

On the zi datapath, each iteration adds a constant that
is the correct rounding of the actual arctan(2−i) to the pre-
cision u. This adds an absolute error bounded by u/2 =
2−w−g−1 to the error of the previous iteration, so the accu-
mulated error after i iterations is bounded by i.u/2.

On the ci and si datapath, we may express an error bound
εi (expressed in u) for iteration i by the following recurrence:{

ε0 = 0
εi+1 = (εi + 2−iεi + 1)u

(4)

where the +1 comes from the truncation of the shifted ad-
dend (e.g. 2−idici). Note that this term could be reduced to
1/2 by rounding the shifted addend instead of truncating it.
However this would require adders larger by one bit, even-
tually dividing the overall error by less than two, so saving
at most one iteration. If the CORDIC operator is viewed
as a square of full adders, we would win one bit on one size
of the square and lose it on the other side: there is no net
gain.

One observes that the rounding error bound on ci and
si is always larger than that on zi. Our implementation
therefore computes εn numerically and uses it to determine
the smallest g ensuring εn.2

−w−g < 2−w−2.
The sum of the method error and the rounding error is

thus smaller than 2−w−1. The rounding of cn and sn to
the target precision 2−w entails another error bounded by
2−w−1. Thus, the overall error is strictly smaller than 2−w,
ensuring the faithful rounding property.

3.2 Reducing the zi datapath
Another minor contribution of our implementation is to

compute just right the iteration on z. Indeed, all this compu-
tation is implemented in fixed point, and it can be observed
that each iteration roughly removes one most significant bit
to the angle zi. In other words, zi needs only be computed
on w+g−i bits. This reduces the total area by about 1/6th.

In principle it could also slightly reduces the critical path:
in the early iterations, the critical data dependency of one
iteration to the next one is zi → di → zi+1. If we know
di earlier because zi is shorter, we can start an iteration on
ci+1 and si+1 before the end of the previous one: as soon as
the bits of ci and si that are needed for ci+1 and si+1, we
can launch the computation of ci+1 and si+1, and the carry
propagations of the two additions will execute in parallel. In
the later iterations, as ci and si are being shifted further, the
gain is smaller, which is unfortunate because that is when
di can be computed the fastest. We are currently trying to
express these subtleties in FloPoCo’s pipelining framework
to reduce the latency of the CORDIC implementation.

We observe that current synthesis tools are able to pack
the ci and si lines of Equation (3) as one LUT per bit,
while still using the fast-carry line. The LUT consumption
reported in Table 3 is thus very predictable, close to 2.5(w+
g)2.

3.3 Reduced iterations CORDIC
In this version, the CORDIC iteration is stopped as soon

as the remaining rotation can be computed, with sufficient

accuracy, by {
xi+1 = xi + zyi
yi+1 = yi − zxi (5)

The size of z is slightly more than w/2. We may truncate xi
and yi before the products to the same accuracy, with only
an additional contribution of 2−w−g to the overall error.
Thus, only two multipliers of roughly w/2 × w/2 bits are
needed. In practice, the reduced iteration approach will
consume only two of 18× 18-bit signed multipliers of DSP-
enabled FPGAs for values of w up to 32.

The computation of the initial scaling factor must be mod-
ified accordingly, and other technical details can be found in
the FloPoCo code.

4. A TABLE- AND DSP-BASED PARALLEL
POLYNOMIAL ARCHITECTURE

4.1 Algorithm
Here we further split our octant angle y into its a most sig-

nificant bits t, and its lower bits yred ∈ [0, 2−(2+a)). We use
t to address a table storing sin(πt) and cos(πt). Meanwhile,
the sine and cosine of πyred are evaluated by first computing
z = πyred, then by using the Taylor series of sin z and cos z.

We chose Taylor series over generic polynomial approxi-
mation as in [4], for two reasons. The first is that the sine
series is odd and the cosine series is even, so their evaluation
requires half as many multiplications for a given degree. The
second is that up to terms of degree 4, the coefficients are
powers of two, or powers of two multiplied by 1/3. Powers of
two are for free, and division by 3 is very cheap on FPGAs
[2].

In this implementation we choose a such that 4(a+2)−2 ≥
w + g which implies that z4

24
≤ 1.02× 2−(w+g).

It enables us to neglect terms beyond z3

6
, yielding the

following formulae:

sin z ≈ z − z3

6

cos z ≈ 1− z2

2

Once we have both sin(πt), cos(πt) and sin(πyred),
cos(πyred), we can now use the addition formulae to recover
the values of sin(πyin) and cos(πyin) :

sin(πyin) = sin(πt) cos z + cos(πt) sin z

cos(πyin) = cos(πt) cos z − sin(πt) sin z

Again, this is the rotation equation (1). Actually, cos z is
always very close to 1 so computing sin(πt) cos z (for ex-
ample) is significantly costlier than computing sin(πt) +
sin(πt)(cos z − 1). Therfore, instead of the above addition
formulae we use the following ones:

sin(πyin) = sin(πt)− sin(πt)
z2

2
+ cos(πt) sin z

cos(πyin) = cos(πt)− cos(πt)
z2

2
− sin(πt) sin z

4.2 Implementation details
1
4
− y is computed as ¬y, inducing an error of 2−(w+g).

This avoids one overflow situation and saves a carry propa-
gation.



w a yred, z, cosAsinZ, sinAsinZ z2/2 z3/6
16 4 16 11 6
24 6 22 15 8
32 8 28 19 10
40 10 34 23 12
48 12 40 27 14

Table 1: Internal precisions needed by the architec-
ture of Figure 2. The z2/2 column also defines the
size of the two left multipliers on the figure. The yred

column defines the size of the two rightmost multi-
pliers.

The corresponding architecture is depicted on Figure 2.
Before each multiplication, we truncate the two inputs to
the precision of the result: this is illustrated by the small

boxes labelled T . We also use truncated multipliers, and

z2/2 is computed using a squarer. Table 1 shows the in-
ternal precisions used on this figure for various value of the
input/output precision w.

s q o A Yred

T T

T

T T

T

T

T

Z3/6Z2/2

Sin/Cos table

SinPiX CosPiX

Swap/negate

SinZ

CosPiA
SinPiA

SinACosZ CosACosZ
SinASinZ CosASinZ

×π

xor

Z

Figure 2: A DSP- and table-based architecture

As we need very few bits of z3/6, this value can be simply
tabulated for small sizes of z3/6 (currently up to 10 bits).
Otherwise, we designed an ad-hoc architecture that com-
putes z − z3/6 (the dashed box of Figure 2) inside a single
bit heap [3]. Only a few bits need to be divided by 3, using
a variation of [2]. An example of bit heap thus obtained is
shown on Figure 3.

4.3 Error analysis
We again have a fixed-point architecture which loses up to

15 ulps to rounding/truncation errors: one half-ulp for each

table, one ulp for each truncation T and for each truncated
multiplier or squarer, and one ulp for the initial computation
of 1/4− y by xoring. Therefore, the value of g that enables
last-bit accuracy is 4 – it no longer depends on w. The data

Figure 3: The bit heap computing z−z3/6 for a 40-bit
sine/cosine operator.

in Table 1 includes these guard bits.

5. ARCHITECTURE USING A GENERIC
POLYNOMIAL EVALUATOR

The last option we have explored is a wrapper of the
generic polynomial evaluator presented in [4] in the range
reduction of Section 2.

In addition to the argument x, this operator inputs a bit
sincos that determines if the sine or the cosine should be
computed. Here x is only reduced to one quadrant: y′ ∈
[0, 1/2). The polynomial evaluator computes sin(πy′) for
y′ ∈ [0, 1/2). The proper output is reconstructed out of
sin(πy′) and the bits s, q and sincos.

6. RESULTS AND DISCUSSION
In Table 3, SinAndCos denotes the combined sine/cosine

operator presented in Section 4, SinOrCos is the single-
output operator of Section 5 for which d is the degree of the
polynomial approximation. All the results are for Virtex-
5(5vfx100tff1738-3), very comparable results can be ob-
tained for other Xilinx or Altera targets. We can obtain var-
ious frequency/latency trade-offs by varying the -frequency
option to FloPoCo.

The CORDIC results match those reported for the corre-
sponding Xilinx logicore operator [12] in parallel mode. The
reduced iteration approach is very attractive, halving the it-
eration count at the cost of two DSP blocks only for up to
32 bits.

A first question one may ask is: on an FPGA without
DSP blocks, do the multiplicative approaches makes sense?
A partial answer is obtained by comparing in Table 2 a com-
binatorial CORDIC, and a LUT-based combinatorial ver-
sion of the operator of Figure 2, where the tables and the
multipliers are implemented using LUTs only. These two
implementations are functionally equivalent (same inputs,
same outputs, same accuracy). For the soft multipliers, we
use the FloPoCo implementation of truncated soft multipli-
ers in order to benefit from truncation. We observe that
the two approaches consume comparable resources. How-
ever, the multiplier-based approach drastically reduces the
latency. We conclude that there is little point in using un-
rolled CORDIC in this context. However, CORDIC is still
relevant in its iterative implementation (there is no iterative
version of the operator of Figure 2).

The DSP-based approaches are increasingly relevant as



precision increases. Their frequency doesn’t match yet that
of the CORDIC operators. This is not due to an intrinsic
limitation of the algorithms used, but to the more complex
pipeline construction. The current FloPoCo framework is
not very good at exploiting the internal registers of DSP
blocks. This is being worked upon. All the DSP-based op-
erators should be able to reach 400 MHz on Virtex-5, albeit
at the cost of a longer latency and more registers.

When comparing SinAndCos and SinOrCos, one should
remember that it takes two instances of the second to em-
ulate the first. SinAndCos is therefore more efficient than
SinOrCos, although not by a very large margin.

7. CONCLUSION AND PERSPECTIVES
This article is a survey of sine and cosine evaluation on

modern FPGAs with DSPs and embedded memories. It
evaluates two relevant variations on the classical CORDIC,
and two DSP-based techniques. This work is probably the
state of the art, although we still expect performance im-
provements. At any rate it exposes a lot of trade-offs be-
tween performance (frequency and latency) and resource
consumption (logic, DSP, memories).

Short-term future work includes more tuning. Floating-
point versions of the trigonometric functions should also be
provided, using similar techniques [6].

The technique presented here will scale well to double pre-
cision. However, the ROM size will then becomes a problem.
An obvious solution is to decompose the input further and
compose more rotations, at the cost of more multiplications.
An alternative approach is to address the table with fewer
bits, but allow larger degree polynomials for sin z and cos z,
which also costs more multiplications. Which solution wins
is not obvious.

As such questions illustrate, there are more fundamental
questions behind the search for efficient architectures on to-
day’s FPGAs: How many bits does one need to flip and move
in order to compute a sine faithful to w bits, and at what
hardware cost? Asking this question properly requires to
model the compared costs of FPGA logic, embedded mem-
ories, DSP blocks, etc. Then, such a question is essentially
answered by exhibiting and comparing architectures, as we
have done in this article.

Table 2: Synthesis results on Virtex-5 for logic-only
implementations.

Approach latency area

CORDIC 16 bits 30.3 ns 1034 LUTs
SinAndCos 16 bits 15.0 ns 1211 LUTs
CORDIC 24 bits 44.6 ns 2079 LUTs

SinAndCos 24 bits 17.0 ns 2183 LUTs
CORDIC 24 bits 62.1 ns 3513 LUTs

SinAndCos 24 bits 19.4 ns 3539 LUTs

8. REFERENCES
[1] R. Andraka. A survey of CORDIC algorithms for

FPGA based computers. In Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field
programmable gate arrays, pages 191–200. ACM, 1998.

[2] F. de Dinechin and L.-S. Didier. Table-based division
by small integer constants. In Applied Reconfigurable
Computing, pages 53–63, Hong Kong, Mar. 2012.

[3] F. De Dinechin, M. Istoan, G. Sergent, K. Illyes,
B. Popa, and N. Brunie. Arithmetic around the bit
heap. Technical report, Oct. 2012.

[4] F. de Dinechin, M. Joldes, and B. Pasca. Automatic
generation of polynomial-based hardware architectures
for function evaluation. In Application-specific
Systems, Architectures and Processors. IEEE, 2010.

[5] F. de Dinechin and B. Pasca. Designing custom
arithmetic data paths with FloPoCo. IEEE Design &
Test of Computers, 28(4):18–27, July 2011.

[6] J. Detrey and F. de Dinechin. Floating-point
trigonometric functions for FPGAs. In
Field-Programmable Logic and Applications, pages
29–34. IEEE, 2007.

[7] S. Gal. Computing elementary functions: A new
approach for achieving high accuracy and good
performance. In Accurate Scientific Computations,
LNCS 235, pages 1–16. Springer Verlag, 1986.

[8] P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and
K. Maharatna. 50 years of cordic: Algorithms,
architectures, and applications. IEEE Transactions on
Circuits and Systems I : Regular papers,
56(9):1893–1907, Sept. 2009.

[9] J.-M. Muller. Elementary Functions, Algorithms and
Implementation. Birkhäuser, 2nd edition, 2006.

[10] D. Timmermann, H. Hahn, and B. Hostika. Modified
CORDIC algorithm with reduced iterations.
Electronics Letters, 25(15):950–951, 1989.

[11] J. Volder. The CORDIC trigonometric computing
technique. IRE Trans. Electronic Computing,
EC-8:330–334, Sept.

[12] Xilinx Corporation. CORDIC v4.0 (DSD249), 2009.



Table 3: Comparison of the three techniques on Virtex-5.
Approach latency frequency Reg. + LUTs BRAM DSP

precision = 16 bits
CORDIC 18 478 969 + 1131 0 0
CORDIC 14 277 776 + 1086 0 0
CORDIC 7 194 418 + 1099 0 0
CORDIC 3 97 262 + 1221 0 0

Red. CORDIC 13 368 625 + 719 0 2
Red. CORDIC 4 238 106 + 713 0 2

SinAndCos 4 298 107 + 297 0 5
SinAndCos 3 114 168 + 650 0 2

SinOrCos (d=2) 9 251 136 + 183 1 2

precision = 24 bits
CORDIC 28 439.9 1996 + 2144 0 0
CORDIC 23 251.0 1721 + 2114 0 0
CORDIC 12 180.5 919 + 2146 0 0
CORDIC 5 103.8 442 + 2089 0 0

Red. CORDIC 20 273.4 1401 + 1446 0 4
Red. CORDIC 11 222.6 674 + 1438 0 4
Red. CORDIC 5 222.6 224 + 1470 0 2

SinAndCos 5 262 197 + 441 3 7
SinAndCos 3 179 193 + 472 1 7

SinOrCos (d=2) 9 251 202 + 279 2 2
SinOrCos (d=2) 7 180 178 + 278 2 2

precision = 32 bits
CORDIC 37 403.5 3495 + 3591 0 0
CORDIC 32 230.0 3120 + 3559 0 0
CORDIC 16 162.4 1532 + 3509 0 0
CORDIC 7 86.6 698 + 3508 0 0

Red. CORDIC 24 256.8 2160 + 2234 0 4
Red. CORDIC 15 217.1 1149 + 2295 0 4
Red. CORDIC 7 112.1 618 + 2225 0 4

SinAndCos 10 253 535 + 789 3 9
SinAndCos 4 110 311 + 996 1 9

SinOrCos (d=3) 14 251 444 + 536 4 5
SinOrCos (d=3) 9 146 306 + 534 4 5

precision = 40 bits
CORDIC 45 375 5070 + 5289 0 0
CORDIC 25 149 2948 + 5245 0 0

Red. CORDIC 37 252 3695 + 3768 0 8
Red. CORDIC 22 211 2438 + 3476 0 8
Red. CORDIC 9 123 931 + 3339 0 8

SinAndCos (bit heap) 11 266 895 + 1644 3 12
SinAndCos (table z3/6) 8 232 500 + 949 4 12
SinAndCos (bit heap) 4 154 612 + 2826 0 12

SinAndCos (table z3/6) 4 156 395 + 2268 2 12
SinOrCos (d=3) 15 251 628 +725 4 8
SinOrCos (d=3) 9 132 376 +675 4 8

precision = 48 bits
SinAndCos (bit heap) 13 232 1322 + 2369 12 17
SinAndCos (bit heap) 6 132 972 + 2133 12 17

SinOrCos 15 250 734 + 879 17 10
SinOrCos 9 124 431 + 823 17 10


