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Abstract

Epigenomes commonly refer to the sequence of presence/absence of specific epigenetic marks along eukaryotic chromatin.
Complete histone-borne epigenomes have now been described at single-nucleosome resolution from various organisms,
tissues, developmental stages, or diseases, yet their intra-species natural variation has never been investigated. We describe
here that the epigenomic sequence of histone H3 acetylation at Lysine 14 (H3K14ac) differs greatly between two unrelated
strains of the yeast Saccharomyces cerevisiae. Using single-nucleosome chromatin immunoprecipitation and mapping, we
interrogated 58,694 nucleosomes and found that 5,442 of them differed in their level of H3K14 acetylation, at a false
discovery rate (FDR) of 0.0001. These Single Nucleosome Epi-Polymorphisms (SNEPs) were enriched at regulatory sites and
conserved non-coding DNA sequences. Surprisingly, higher acetylation in one strain did not imply higher expression of the
relevant gene. However, SNEPs were enriched in genes of high transcriptional variability and one SNEP was associated with
the strength of gene activation upon stimulation. Our observations suggest a high level of inter-individual epigenomic
variation in natural populations, with essential questions on the origin of this diversity and its relevance to gene x
environment interactions.
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Introduction

Divergence of DNA sequences between individuals has been the

basis of genetics for half a century. More recently, epimutations

were identified where inter-individual differences resided in DNA

methylation patterns rather than in the DNA sequence itself, with

notable consequences on imprinting and phenotypes [1–4]. In

addition to DNA methylation, nucleosome positioning and post-

translational modifications of histone tails have received increasing

interest as they can regulate gene activity and genome dynamics

[5]. A wealth of stimulating research has been conducted on these

modifications, leading to a more and more precise characteriza-

tion of the machineries remodeling them (such as acetyl- or

methyl-transferases), of the pathways regulating these machineries

(such as environmental cues), of the factors recognizing these

modifications (such as bromo- and chromo-domain containing

proteins), and of the consequences of these interactions on cellular

outcomes (such as cellular differentiation or disease) [6]. In

addition, the genomic distributions of these histone marks have

been described in various organisms and cell types [7–11], raising

the hope to understand or predict outcomes of eukaryotic cells

from the sequence of their epigenomes. Many laboratories are

therefore intensively studying if and how information can be coded

by epigenomes [12,13].

Whether epigenomic sequences vary in natural populations has

only been poorly investigated. Recent studies showed a rather

abundant natural epigenetic variation of methylated DNA in

plants, which was shown to correlate to transcriptional differences

and to be additively inherited [3,14]. In addition, cases of allele-

specific histone modifications have been reported [15–17]. But a

detailed comparison of histone-tail epigenomes has been lacking.

Using two unrelated strains of the yeast Saccharomyces cerevisiae as
a model system, we provide here a first estimate of this variability

for one histone post-translational modification at a single-

nucleosome resolution. The number of epi-polymorphisms was

high, with notable enrichment in regions of conserved DNA

sequences and numerous cases where a precise (isolated)

nucleosome was targeted. This variability was not correlated to

differential transcription but to the degree of transcriptional

response to perturbations. Our observations provide a basis for

population epigenomics and raise essential questions on the origin

of this diversity and its contribution to inter-individual variability

in the response to environmental changes.

Results

Genome-wide nucleosome positioning is largely
conserved between two unrelated S. cerevisiae strains
To provide a first estimate of nucleosome-level epigenomic

diversity, we used two unrelated strains of the yeast S. cerevisiae (BY
and RM) as a model system. These strains were previously used to

investigate natural genetic variability within S. cerevisiae for various
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phenotypes such as cellular morphology, sensitivity to drugs, gene

expression or telomere length [18–21]. BY is a commonly used

laboratory strain, it is isogenic to S288c which derives from a clone

isolated from a rotten fig in California. RM (also called RM11-1a)

derives from an isolate collected in a Californian vineyard by

Robert Mortimer [22]. We compared them with respect to

nucleosome positions as well as epigenomic sequence of one

histone tail modification. Nucleosome positions were mapped

using whole-genome 4-bp resolution tiling microarrays [23,24]. Of

the 6,553,600 probes of the microarray, 2,801,885 and 2,570,638

had a single perfect match on BY and RM genome, respectively.

Only signals from these probes were used for analysis, averaging

,34 reliable probes per nucleosome. We aligned the two

assembled genome sequences and used probe positions to fit a

Hidden Markov Model (HMM) for inference of nucleosome

positioning in each strain, as previously described [25] (Figure 1A).

Note that the HMM algorithm was run on BY and RM datasets

independently. Positioning looked similar between the two strains

and was in very good agreement with a previously published atlas

of positions [24]. We systematically aligned nucleosomes between

the two strains (see Methods) and found that positioning was

generally well conserved: The distance between BY and RM

midpoints was smaller than 19 nucleotides in 75% of all

nucleosomes; and the overlap covered at least 78% of BY

nucleosome length in 80% of alignments (Figure S1). Nucleosomal

occupancy was also conserved except at specific regions near

heterochromatin sites (telomeres and rDNA repeat) (Figure S2).

Comparison of SNP densities in linkers versus nucleosomal DNA

was consistent with the results obtained when using the atlas of Lee

et al. [24] (Text S1).

We examined in more details occupancy around transcription

start sites and found the stereotyped nucleosome-depleted regions

flanked by well-positioned nucleosomes (Figure 1B and Figure S3).

The typical nucleosome depletion at transcription end sites [26]

was also observed in both strains (Figure S3). We clustered

promoters according to their nucleosome signature in the BY

strain only, and used the resulting gene order to plot occupancy

data in BY and RM as heatmaps, as well as differential gene

expression known from previous studies (Figure 1B). The similarity

of the occupancy profiles of the two strains contrasted with the

large extent of transcriptional differences (Figure 1B and 1C).

Inter-strain comparison of an epigenomic sequence
reveals abundant nucleosome-level epi-polymorphisms
We then searched for nucleosomes bearing differential levels

of a specific histone post-translational modification. By analogy

to nucleotide polymorphisms, we called these nucleosomes ‘Single

Nucleosome Epi-Polymorphisms’ (SNEP). We chose acetylation

of lysine 14 of histone H3 because it was reported to be largely

distributed over the genome and not restricted to specific regulatory

positions [9,27]. Hereafter, ‘BYac’ and ‘RMac’ SNEP will refer to

nucleosomes where H3K14 is preferentially acetylated in BY and

RM, respectively. To detect such nucleosomes, we used ChIP-CHIP

[7] and we developed a custom algorithm for data analysis. First, only

probes that had a single perfect match on both BY and RM genomes

were retained. This precaution is important as DNA polymorphisms

can greatly affect hybridization intensities. For each pair of aligned

nucleosomes, probes that were not entirely covered by both BY and

RM nucleosomes were also removed and a dedicated analysis of

variance was applied (see Methods). The underlying linear model

integrated both nucleosome mapping and chromatin immuno-

precipitation experiments, which enabled to decouple the call for

SNEPs from strain differences in occupancy intensity.

This method identified 5,442 H3K14ac SNEPs at nominal P-

value ,9.2761026 which corresponded to a False Discovery Rate

[28] (FDR) of 0.0001. This list was used in all further analysis

described here. SNEPs were distributed all over the genome, with

few particular hotspots (Figure 2A). Epigenetic variability was very

high, as these highly significant SNEPs were found in nearly 10%

of nucleosomes interrogated. At the commonly used level of FDR

=0.01, 25.3% of nucleosomes were significant SNEPs, and further

relaxing the detection threshold to FDR =0.2 listed 31,854

SNEPs. We can therefore assume that about 40% of the

chromatin is variable for this epigenetic mark between the two

strains. In most cases, SNEPs were not detected as all-or-none

nucleosomal acetylation, but as a quantitative difference between

the two strains. The degree of inter-strain difference varied

between SNEPs (Figure S4), with most cases displaying a 1.2 to 1.5

fold difference. Intriguingly, the acetylation difference was more

pronounced in BYac SNEP (918 SNEPs at .1.5 fold) than in

RMac SNEPs (274 SNEPs at .1.5 fold).

Genomic distribution of SNEPs
Because some highly polymorphic DNA features are associated

with chromatin silencing, specific cases of histone acetylation epi-

polymorphisms could be expected. One example is the rDNA locus, a

repetitive sequence silenced by the Sir2 histone deacetylase [29],

which is 15.6 Kb longer in RM than in BY. This higher repeat length

could better recruit deacetylase activity and generate BYac SNEP

in the vicinity of the repeat. Consistently, we saw a significant

enrichment of BYac SNEPs in the region directly upstream rDNA

(Figure 2B). Other examples are Ty retrotransposons. They differ

greatly between natural strains, their epigenetic effect on nearby gene

expression has long been observed [30] and their active LTR

promoters are known to recruit the SAGA histone acetyltransferase

[31]. Thus, nucleosomes residing near a Ty element in one strain but

not in the other may harbor acetylation epi-polymorphisms.

Consistently, BYac SNEPs were significantly enriched near BY Ty

insertions (Figure 2B).

If such large position effects were the general source of

H3K14ac epipolymorphisms, one would expect SNEPs to cluster

Author Summary

Nucleosomes are the basic units of chromatin, with part of
the long DNAmolecule wrapped around a multiprotein core,
whichmakes unpacked chromatin often portrayed as a string
of pearls. This string can carry three types of sequences: DNA,
methyl groups on cytosines, and, on every pearl, the
presence-or-absence of histone post-translational modifica-
tions such as acetylation of lysines (nucleosomal epigenome).
These latter sequences can change dynamically, and the
mechanisms involved are heavily studied as they participate
in many physiological processes (pluripotency, disease…).
However, nothing is known about the natural diversity of
nucleosomal epigenomes in natural populations. As a model,
we compared two unrelated yeast strains for their epigen-
ome of one histone modification. We found a high
divergence, which was enriched at regulatory sites and often
carried on specific nucleosomes. Although this nucleosome
modification is usually associated with high transcription,
higher acetylation in one strain did not necessarily imply
higher expression of the corresponding gene. However, one
nucleosomal variation was associated with a stronger gene
activation upon stimulation. These results suggest that
nucleosomal epigenomes largely differ between individuals,
raising essential questions on the origin of these differences
and their contribution to personal responses to environmen-
tal changes (such as clinical treatments).

Single Nucleosome Epi-Polymorphisms

PLoS Genetics | www.plosgenetics.org 2 April 2010 | Volume 6 | Issue 4 | e1000913



together at particular hot spots. We clearly observed local

correlations, as epipolymorphisms were 7 times more frequent

than expected by chance among nucleosomes adjacent to SNEPs,

and this effect could span over 10 nucleosomes upstream and

downstream of a SNEP (Figure 2C). However, the majority (55%)

of SNEPs were limited to a single nucleosome. This is unlikely to

be a detection limitation, as 994 SNEPs had both flanking

nucleosomes still scoring non-polymorphic at P,0.01. Thus, local

correlation seems to be limited and epi-polymorphisms are

frequently distributed on specific nucleosomes.

SNEPs were not uniformly distributed along genes. The

averaged H3K14 acetylation profile of both strains was consistent

with previous descriptions [7,27], with enrichment downstream

transcription start sites and decreased acetylation at the end of

transcribed sequences (Figure 2D). However, strikingly, BYac

SNEPs were abundant upstream TSS and around TES, while

RMac SNEPs marked the second half of transcribed regions.

These patterns were also visible when selecting only SNEPs with

strong effect (.1.4-fold acetylation difference). This could result

from a better recruitment of Rpd3S deacetylase behind elongating

RNA polymerase II [32], as signs of elongation impairments were

previously seen in RM [33]. It is important to note that this

pattern of SNEP distribution reflects an average tendency, and

that several genes present a totally different epigenetic pattern. For

example, the NDE2 gene did not have BYac SNEP in promoter

nor in terminator region, but had RMac SNEPs at the beginning

of its coding region (Figure S5). Finally, RMac SNEPs were

slightly more frequent than BYac SNEPs (58.5% versus 41.5%).

SNEPs are not correlated to differential transcription
levels
Since acetylation of H3K14 is known to be associated with high

transcription levels [7,27,34], its inter-strain variability could simply

reflect inter-strain differences in gene expression. Transcriptional

Figure 1. Nucleosome positioning in two unrelated natural S. cerevisiae strains. (A) Example of raw signals and nucleosome positioning
inference in the region of the PER1 gene. Nucleosomal DNA was purified from each strains in triplicate, amplified linearly and hybridized to whole
genome oligonucleotide Tiling arrays. Data were log-transformed and normalized using the quantile-quantile method and averaged across replicates
to produce the probe-level signal intensities shown on the top panels. A Hidden Markov Model (HMM) similar to the one previously described [25]
was applied to each strain independently to infer nucleosomal positioning (blue rectangles). Faded and plain colors represent ‘delocalized’ and
‘well-positioned’ nucleosomes, respectively, as defined previously [24]. Signal intensities are colored according to the HMM posterior probability to
be within a nucleosome (cumulating delocalized and well-positioned). Nucleosome positions from the published atlas of Lee et al. [24], who used a
strain isogenic to BY, are indicated by green rectangles and are also faded when reported as ‘delocalized’. (B) Genes (rows) were clustered based on
profiles of nucleosome occupancy at their promoter in the BY strain (see Methods). Their order was then used to plot heatmaps of nucleosome
occupancy around transcriptional start site in BY and RM, respectively, as well as expression divergence between the two strains (according to
statistical significance at FDR 5% from the dataset of Brem et al. [20]). Left curves represent mean occupancy profiles of the six main classes of
promoters. (C) Absence of correlation between promoter occupancy and expression divergence. Each dot represents one gene. X-axis: inter-strain
difference in expression measured as log2(RM/BY) from Brem et al. [20]. Y-axis: inter-strain dissimilarity of promoter occupancy profiles. For each
promoter region, the RM/BY dissimilarity was estimated as 1 - R, where R is the Spearman correlation coefficient between the BY and RM occupancy
profiles shown in (B). r: Spearman correlation between the resulting X and Y data.
doi:10.1371/journal.pgen.1000913.g001

Single Nucleosome Epi-Polymorphisms

PLoS Genetics | www.plosgenetics.org 3 April 2010 | Volume 6 | Issue 4 | e1000913



Figure 2. Abundance and genomic distribution of Single Nucleosome Epi-Polymorphisms. (A) The fraction of nucleosomes that were
called SNEP at FDR = 0.0001 was computed in every 1Kb-segment along each chromosome. Density ranged from 0 (white) to 100% (red). Grey
denotes regions where nucleosomes could not be aligned. (B) Enrichment of H3K14ac SNEPs upstream Ty insertions and rDNA repeats. The fraction
of BYac SNEPs among all nucleosomes was counted in 10 kb intervals upstream the rDNA region (brown triangles). The 7 fold enrichment of BYac
SNEPs in the first 10 kb was significant (grey area, Chi-square test P= 0.01). Upstream regions of all Ty insertions present in BY and absent from RM
were analyzed similarly (black points), and their fractions of BYac SNEPs were averaged. The 1.3 fold enrichment in the 10 kb interval directly
upstream the insertions was significant (grey area, Chi-square test P= 0.014). (C) Local correlation between H3K14ac SNEPs. Ten nucleosomes were
interrogated upstream and downstream each SNEP (x-axis). For each one, cases where the nucleosome was a SNEP similar to the centered one (either
BYac or RMac) were counted and divided by the total number of nucleosomes interrogated at that position (brown histogram). Control values were
obtained from the same procedure applied after re-assigning SNEPs to random nucleosomes (grey histogram). (D) Density of H3K14 acetylation and
SNEPs relative to gene position. Every gene was divided by segmenting the coding sequence in 10 bins (average bin size of 160 bp) and its upstream
and downstream regions in 100 bp bins. For every gene and every bin, log(acBY/nucBY) was averaged across replicated experiments and across all
probes matching intra-nucleosomal DNA to produce the top green profile. Similarly, averaged log(acRM/nucRM) values generated the top black
profile. Here acBY and acRM refer to H3K14ac ChIP-CHIP experiments on BY and RM samples, respectively, while nucBY and nucRM refer to
nucleosomal mapping experiments on BY and RM samples, respectively. Note that probes matching inter-nucleosome linkers do not contribute to
the profiles, which are therefore corrected for nucleosome abundance. Bottom profiles were obtained by counting the fraction of BYac SNEPs (green)
and RMac SNEPs (black) among all nucleosomes that overlapped at least partially the bin, and averaging these fractions across all genes.
doi:10.1371/journal.pgen.1000913.g002
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variation between BY and RM has been extensively studied in the

same growth conditions as here [20], thus allowing direct

examination of this possibility. We considered three regions at the

beginning, middle and end of genes, and computed in each one the

average log-ratio of H3K14 acetylation between the two strains. In all

three regions this ratio was clearly not correlated to expression

differences (Figure 3A). Consistently, SNEPs acetylated in the strain

with highest gene expression were not over-represented in any of the

three regions (Figure 3B). The two strains therefore have a high

degree of divergence at both transcriptomic and epigenomic levels

but with no apparent connection between the two.

BYac SNEPs are more abundant in conserved regulatory
regions
If not correlated to expression differences, do SNEPs have any

functional implication? If so, one might expect them to target

nucleosomes located at critical positions for gene regulation, such

as nucleosomes containing a transcription factor binding site. In

favor of this, and in accordance with the distribution pattern

described above, we found a striking (3.2-fold) enrichment of BYac

SNEPs in nucleosomes that fully covered a conserved regulatory

site [35] (Figure 3C). BYac SNEPs were also abundant in

conserved non-coding regions regardless of regulatory sites

(Figure 3C). In contrast, RMac SNEPs were poorly present at

these conserved regions (Figure 3C), which is consistent with their

enrichment within protein coding regions (Figure 2D). The

abundance of BYac SNEPs at conserved regulatory sites indicates

that genetic and epigenetic polymorphisms can be complementa-

ry, the latter providing diversity where the former is more

constrained.

SNEPs are enriched in genes with high expression
variability
Are genes with high inter-strain variability in gene expression

the same genes as those having high epigenomic variability?

Although SNEP acetylation was not associated to higher gene

expression, it remained possible that genes with high expression

changes contained more SNEPs than others. We examined this

possibility by ranking genes according to their BY/RM expression

fold-change and by counting their SNEP content (Figure S6A).

This showed that indeed, SNEPs were more frequent in genes

showing high inter-strain transcriptional differences.

Several studies have examined the evolvability of yeast gene

expression levels. For example, when comparing 4 yeast species

across 5 different stressful environments, Tirosh et al. showed that

genes can have very different inter-species expression divergence

[36]. Similarly, Landry et al. showed that S. cerevisiae genes greatly

differ in their divergence of expression across independent

mutation accumulation lineages [37]. To see if SNEP abundance

was correlated with expression evolvability beyond the scope of the

BY and RM strains, we used these datasets to rank genes either by

their expression divergence [36] or by their mutational variance

[37]. This showed an unambiguous association between SNEP

frequency and expression variability (Figure S6B and S6C).

The extent of gene x environment interactions in the control of

gene expression has been thoroughly estimated by Smith et al.

who used the same BY and RM strains as here and compared

their transcriptomes between two different steady-state environ-

ments: growth in glucose and growth in ethanol [38]. Using this

dataset, we examined if SNEP frequency in genes was associated

with the level of genotype x environment interaction in the gene’s

expression level (Figure S7). We found that BYac but not RMac

SNEPs were more frequent in genes with high genotype x

environment interaction, with no correlation between the

direction of the SNEP (which strain is acetylated) and the direction

of the interaction (which strain shows the highest change between

glucose and ethanol growth). SNEP acetylation was therefore not

predictive of the amplitude of expression change between the two

different environments. However, it is important to note that these

two environments were stable and this dataset did not correspond

to the dynamic response to an environmental change.

Expression variability within a given strain background has also

been studied in a broad sense by estimating the extent of variation

across a large compendium of environmental conditions and/or

specific genetic perturbations [36]. This ‘‘transcriptional plasticity’’

varies greatly among genes. For example, housekeeping genes

display very low plasticity as they present stable expression across

many conditions. This plasticity was previously associated with

expression evolvability [36,37] and nucleosome occupancy at

promoter regions [39]. Using the values previously compiled [36],

we found that SNEPs were enriched in genes displaying high

transcriptional plasticity (Figure 4A). This enrichment was also

visible when considering only SNEPs with strong effect (1.4-fold

acetylation difference). Genes with at least one H3K14ac SNEP

had significantly higher plasticity than genes with no SNEP (t-test

P=3.661027 and 1.261026 for BYac and RMac SNEP,

respectively).

Finally, to see if SNEPs were more frequent among nucleosomes

known to be evicted upon an environmental change, we used pre-

vious maps of nucleosome positioning in normal and stress con-

ditions [26] and counted SNEPs among 147 remodeled nucleosomes

and 61,623 unperturbed ones. Although this dataset represents only

one environmental change and the remodeling of relatively few

nucleosomes, a significant 1.7 fold enrichment of SNEPs was seen

among these ‘mobile’ nucleosomes (P=0.01, Chi-square).

One SNEP is associated with differential gene activation
upon stimulation
We reasoned that SNEPs could influence the dynamics of

activation or repression. Intuitively, an acetylated nucleosome may

be more rapidly evicted than a non-acetylated one upon promoter

activation [40].

We noticed one SNEP where association with a differential

dynamic response could be tested experimentally. A nucleosome

contained a binding site for transcription factor Hsf1 (Heat Shock

Factor 1) in the promoter region of the AHA1 gene, which codes

for a co-chaperone of Hsp90 known to be activated upon heat-

shock [41]. This nucleosome had similar positioning in BY and

RM but was acetylated at H3K14 in BY only (Figure 4B), while

the DNA sequence of Hsf1-binding site was fully conserved

between the two strains. Notably, other nucleosomes of the region

were acetylated in both strains. We exposed BY and RM cells to

heat shock and monitored AHA1 mRNA by real-time quantitative

RT-PCR (Figure 4C). Gene induction was unambiguously more

pronounced in BY than RM. This marked difference was not

observed when quantifying mRNA from three other HSP genes

(SSA3, FES1 and CPR6) lacking SNEP (Figure S8). This example

illustrates how one SNEP can be associated with gene activation

differences upon an environmental change.

Discussion

We observed that nucleosome positioning at promoter regions

was similar between two unrelated strains of S. cerevisiae. Because

these strains have a large extent of transcriptional differences, this

argues that differences in nucleosome occupancy profiles are not a

major source of intra-species variation in gene expression.

Single Nucleosome Epi-Polymorphisms
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Figure 3. SNEPs are not associated with transcriptional differences but are enriched at conserved regulatory sites. (A) Display from
microarray data directly. Density plots representing the distribution of genes with respect to H3K14 acetylation differences (y-axis) and gene
expression differences (x-axis). For every gene, three regions were considered as indicated above the panels. For each region, H3K14ac inter-strain
difference was estimated as log(acBY/nucBY)2log(acRM/nucRM) (as defined in legend of Figure 2D), averaged across replicated experiments and
across all probes interrogating nucleosomal DNA of the region. Gene expression inter-strain differences are represented by their t-statistic computed
from data of Brem et al. [20]. r, Pearson correlation coefficient. A similar picture was obtained when using fold change of expression instead of t-
statistics (Figure S10). (B) Display from SNEP locations. For every gene, the fraction of H3K14ac SNEPs correlated to expression was defined as the
number of SNEPs acetylated in the strain with highest expression, divided by the total number of nucleosomes in the region. Curves represent the

Single Nucleosome Epi-Polymorphisms
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In contrast, the epigenomic profile of H3K14ac was highly

variable and this variability targeted specific nucleosomes. The

presence/absence of a modification at a particular nucleosome in

a given cell is, by definition, a discrete state. However, we observed

quantitative acetylation differences that were often subtle (1.2 to

1.5 fold). This is likely due to high cell-to-cell heterogeneity and

high dynamics of the acetylated state: all states from billions of cells

were averaged in our samples, and no dynamical information was

acquired over time. It is therefore important to interpret SNEPs as

differences in the overall acetylation level across a cell population

and not as a uniform epigenotype shared by all cells of the sample.

Natural epigenetic variation was previously reported at the level

of methylated DNA (meDNA), particularly in plants [3,14]. In this

case also, differences were not necessarily discrete but often

continuous. Important properties of SNEPs distinguish them from

meDNA epi-polymorphisms. Methylated epi-alleles were predic-

tive of lower gene expression [14] but SNEPs with reduced

acetylation were not. In addition, no evidence was reported on a

possible role of meDNA variation on the dynamics of gene

activation.

Since histone-tail modifications are known to be highly

reversible and dynamic, the basis and the origin of SNEPs remain

to be further investigated. We observed that the two strains had

different overall patterns of acetylation along genes, with a

preferential acetylation near TSS and TES in the BY strain, while

the RM strain had enriched acetylation in the second half of

transcribed regions. This pattern difference accounted for many

SNEPs and may result from trans-acting factors that act

differentially in the two strains. However, 1806 SNEPs could not

be attributed to this general inter-strain difference. Focusing on

these SNEPs only, we looked again at their genomic distribution,

their potential correlation to expression divergence and enrich-

ment in genes with high plasticity (Figure S9). All conclusions

made in our study were retrieved for this subset of SNEPs. Thus,

the differential pattern of acetylation does not explain the general

SNEP properties. Nucleosomal epi-polymorphisms may offer an

Figure 4. SNEP correlation with transcriptional plasticity. (A) SNEP density is correlated to transcriptional plasticity genome-wide. 4,232 genes
were ranked according to their plasticity values from Tirosh et al. [36] on the x-axis. BYac and RMac SNEP frequencies were counted among
nucleosomes located in each gene (coding region plus and minus 250 bp), and averaged in 500-genes sliding windows (y-axis). (B) Scheme of
nucleosome organization in the regulatory region of the AHA1 gene. Rectangles represent nucleosomes, colored according to the mean log(ac/nuc)
value across all probes of the nucleosome. SNEP detection (-log10(P-value)) is indicated above each nucleosome, with significance cutoff indicated as
a dashed line. A highly significant SNEP covers the DNA binding site for HSF1 transcription factor (blue spot). Arrow, transcription start site. Brown
box, beginning of coding sequence. (C) Differences in kinetics of AHA1 mRNA expression during heat-shock. Four independent experiments were
performed. In each case, cultures of exponentially growing BY (red) and RM (black) cells were shifted from 30uC to 37uC, and cells were collected at
indicated times after the transition. AHA1 mRNA was quantified by quantitative real-time PCR with reverse-transcription relative to ACT1 mRNA (a
gene known to be stable after heat shock). Bars: +/2 standard deviations.
doi:10.1371/journal.pgen.1000913.g004

density distribution of genes according to this measure, from actual data (colored) and data where indexes of expression ratios were permuted
(black). Colored curves are not significantly shifted to the right (as compared to black curves), ruling out association between SNEP and gene
expression differences. (C) BYac but not RMac SNEPs are more abundant at conserved regulatory sites. Nucleosomes were divided in three categories:
nucleosomes that covered entirely a conserved regulatory site from the list of MacIsaac et al. [35], nucleosomes that did not contain such sites but
were located in highly conserved non-coding sequences (see Methods), and nucleosomes excluded from the first two categories. The fraction of
SNEPs within each category is presented. Error bars, 95% C.I. The 3.2 and 2.6 fold enrichment at regulatory sites and other conserved regions,
respectively, were highly significant (P,2.2610216).
doi:10.1371/journal.pgen.1000913.g003
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alternative to irreversible nucleotide mutations. How BYac SNEPs

accumulated at regulatory regions of conserved DNA is unclear.

As mentioned above, it may occurred with the fixation of a trans-

acting variation. Alternatively, accumulation may have occurred

as a drift during laboratory culture conditions where fitness

selection poorly applied. Future experiments examining a third

wild strain will help determine if one of the two patterns is more

‘common’, if the stronger effect (acetylation fold-change) of BYac

SNEP is peculiar, and if the abundance of SNEPs is similar in

various pairwise comparisons of strains.

What is the origin of this epigenomic variability? E. Richards

proposed a classification of epigenotypes based on their depen-

dency on DNA variation [4], where the obligatory, pure and facilitated

qualifications relate to genetic controls that are full, absent or

incomplete, respectively. Following this terminology, obligatory

SNEPs may result from genetic factors acting in cis or in trans.

Known cis-regulations are exemplified by position effects of

transposable elements, rDNA repeats or telomeric sequences.

Trans-acting genotypes may reside in histone acetyl-transferase or

de-acetylase machineries, or in upstream regulatory factors. Such

obligatory SNEPs could have been fixed together with their genetic

determinants. In contrast, if some SNEPs are pure (independent of

genotype) they likely result from their direct selection. As SNEPs

seem to relate to the dynamics rather than the steady-state levels of

gene expression, this selection may act through the ability to

respond to environmental changes (the Baldwin effect). Also,

interactions between epigenotypes and genotypes are expected

since histone acetylation can modulate the buffering of cryptic

genetic variations [42,43].

Acetylation of Lysine 14 of histone H3 at the beginning of

protein-coding sequences has unambiguously been associated to

high transcriptional activity in several studies [7,27,34]. It is

therefore surprising that a preferential acetylation in one strain is

not accompanied by a higher gene expression. This illustrates the

complexity by which the various layers of inter-strain molecular

differences are connected. Previous studies showed that DNA

polymorphisms act on transcripts abundance in a complex manner

[20], with a large extent of gene x environment effects [38] and

that this genetic control was largely distinct from the control of

protein levels [44]. Our results show that chromatin histone-borne

modifications provide yet another layer of diversity, with non-

trivial connections to genotypes and transcripts levels. SNEP

identification and characterization provide a basis for population

epigenetics of histone-borne modifications, and future quantitative

epigenetics studies such as previously suggested [45,46] will define

the nature of these dependencies, and their relevance to the

control of complex traits.

The abundance of SNEPs in highly-responsive genes and our

observation that one SNEP correlated with the dynamics of gene

activation upon stimulation suggest a contribution to gene x

environment interactions. This is in full agreement with a previous

report describing the contribution of H3K27me3 at the FLC locus

of Arabidopsis to natural variation in cold-induced acceleration of

flowering [17]. Except in such rare cases, gene-by-environment

interactions have only been studied in the context of DNA

variation. Integrating epigenotyping of histone marks in these

investigations will likely better explain how individuals differ in

their response to environmental changes.

In particular, attempts to predict and optimize the response to

specific treatments is at the heart of personalized medicine. Chemical

inhibitors of histone deacetylase are used in anti-cancer therapies

and seem promising to fight other diseases [47], and ChIP-SEQ

technologies [9] will soon provide clinicians with epigenotyping

possibilities. Our results suggest that histone modification profiles of

human individuals may greatly differ, with likely consequences on

treatment outcome.

Methods

Nucleosomal DNA extraction and ChIP–CHIP
Yeast strains used were BY4716 (MATalpha, laboratory [48])

and RM11-1a (MATa, derived from wild isolate [20]). We

processed six BY and six RM independent cultures for H3K14ac

ChIP, plus three BY and three RM independent cultures for

nucleosome mapping, totalling 18 microarray hybridizations. Cells

were grown to exponential phase in synthetic medium with 2%

glucose (SDall) as in Brem et al. [20]. We followed the protocol of

Liu et al. [7] for both nucleosomal DNA isolation and ChIP, except

that incubation time with micrococcal nuclease (Worthington

Biochemical) prior to immunopurification was increased to

30 min at 37uC to obtain mononucleosomes. ChIP was performed

using 3 ml of anti-H3K14Ac polyclonal antibody (Upstate, 07–353).

For H3K14ac, efficiency was controlled by quantifying acetylation

at the MAT locus by real-time quantitative PCR. This locus, as

opposed to the silenced HML and HMR loci, is acetylated [49] and

since BY and RM have opposite signs, we expect ChIP to be

enriched for HMLalpha1 sequence in the case of BY and HMRa1

sequence in the case of RM (Figure S11). Real-time quantitative

PCR was performed on a LightCycler 1.5 (Roche) using FastStart

DNA Master Plus SYBR GREEN I kit (Roche). Primer pairs were

59- AAATGTCTTGTCTTCTCTGCTC-39 and 59-ACTGTT-

GCGCGAAGTAGT-39 for HMLalpha1 and 59-AAGAGCCC-

AAAGGGAAAATC-39 and 59-AGGCTTTGCTTTCTTCTA-39

for HMRa1. ChIP and non-immunoprecipitated DNA fragments

were linearly amplified using T-7 based in-vitro transcription as

described previously [7] with few modifications. Briefly, the reaction

mixture of 28.5 ml contained 18 ml template DNA, 5.2 ml 5x TdT

buffer (Roche), 0.68 mM CoCl2 (Roche), 4.2 mM dTTP, 0.36 mM

ddCTP, and 40 U terminal transferase (NEB). It was incubated at

37uC for 20 minutes and then stopped by adding 5 ml of 0.5 M

EDTA (pH 8.0). Products were purified using Qiagen MinElute

reaction cleanup kit and eluted in 20 ml nuclease free water, then

concentrated to a 8 ml volume by Speed Vacuum centrifugation.

The following were added: 0.6 ml of 25 mM T7- A18B primer, 1 ml

of NEB buffer (2) and 0.4 ml of 5 mM dNTPs and the following

thermal cycles were applied; 94uC for 2 min, decreasing to 35uC

at -1uC/sec, hold down at 35uC for 2 min and decreasing to 25uC

at -0.5uC/sec. Immediately after, 0.4 ml of Klenow enzyme (NEB)

were added to the samples which were incubated at 37uC for

90 min. The reaction was halted by adding 5 ml of 0.5 M EDTA

(pH 8.0). Products were purified using Qiagen MinElute reaction

cleanup kit and eluted in 20 ml nuclease free water. The eluted

samples were concentrated to a final volume of 5 ml. The IVT

reaction mixture contained 5 ml nuclease free water, 2 ml 10X

reaction buffer and 2 ml enzyme mix of MEGAshortscriptH T7 kit

(Ambion), 6 ml Labeling NTP mix from Affymetrix, and 5 ml T-7

tailed DNA and incubated at 37uC for 16 hrs. Amplified RNAs

were purified using RNeasy Mini kit (Qiagen) and eluted in 50 ml of

nuclease free water. RNAs ($15 mg) were hybridized to GeneChip

S. cerevisiae Tiling Array from Affymetrix [23] following manufac-

turer protocol.

Heat shock
An isolated colony was picked to inoculate 4 ml SDall medium

and incubated at 30uC with 220 rpm shaking for 12 to 16 h. This

culture was used as a starter to inoculate 2 ml SDall medium at 0.1

OD600, which was grown for 6 hrs at 30uC with shaking. 1.5 ml of

culture were then transferred to a microcentrifuge tube, incubated

Single Nucleosome Epi-Polymorphisms

PLoS Genetics | www.plosgenetics.org 8 April 2010 | Volume 6 | Issue 4 | e1000913



at 30uC in a water bath for 10 min, and incubated at 37uC for the

times indicated on Figure 4. Cells were immediately harvested by

centrifugation, re-suspended in 700 ml of TES buffer (10 mM Tris-

HCl (pH 7.4), 10 mM EDTA and 0.5% SDS), snap frozen in

liquid nitrogen and stored at 280uC. The experiment was

conducted on BY and RM simultaneously, and repeated four

times at different days. Total RNA was extracted using the

following procedure: 700 ml of room temperature phenol was

added to the cell extract, mixed well by vortexing and incubated at

65uC for 20 minutes. Extract was then snap frozen in liquid

nitrogen for 1 min, thawed at room temperature, centrifuged at

13000 rpm for 5 min and the upper aqueous phase was

transferred to a fresh microcentrifuge tube. Once again, 700 ml

of room temperature phenol was added, mixed well and

centrifuged at 13000 rpm for 5 min. The upper aqueous phase

was transferred to a fresh tube, 700 ml of chloroform was added,

mixed well and centrifuged at 13000 rpm for 5 min, the upper

aqueous phase was purified using RNeasy mini kit (Qiagen) and

eluted in 50 ml nuclease free water. RNA was precipitated by

adding 50 ml of 3 M NaAc, and 1.25 ml of ice-cold ethyl alcohol

to the purified samples followed by incubation at 220uC for

30 min. RNA was pelleted by centrifugation at 13000 rpm for

5 min, washed once with ice-cold 70% ethyl alcohol at 13000 rpm

for 5 min and re-suspended in 50 ml of nuclease water. RNA

concentration was quantified based on spectral absorbance using a

NanoDrop ND-1000 Spectrophotometer. Reverse transcription

and real time quantitative PCR were performed on a Stratagene

MX3000P real-time PCR system using the Superscript III

Platinum SYBR Green One-Step qRT-PCR kit from Invitrogen

following manufacturer’s protocol. Primers were 59-GTCT

GTTTCGTCCATTGAAGG-39 and 59- GTCCTTAGAGTCC

ACGTGTCC-39 for AHA1, 59-ATGGATTCTGAGGTTGCT

GC- 39 and 59-TGGGAAGACAGCACGAGGAG-39 for ACT1,

59-GATGCAAAGAGATTAGAAACAGCG -39 and 59-GCCTT

CCAACTCCTTTTGTCTA -39 for SSA3, 59-GATGAAGAA

CTACGTGCTGCTG-39 and 59-GCTTCGCAGACCATTGT

CG-39 for FES1 and 59-CATTCCTTCTATCCATGGCC-39

and 59-GCTTCCCGTCCAAATGAG-39 for CPR6. Amplification

efficiencies and relative quantification of AHA1/ACT1, SSA3/

ACT1, FES1/ACT1 and CPR6/ACT1 ratios were calculated as

described by Pfaffl [50].

Genome alignment
Genome sequences of S288c (isogenic to BY) and RM were

downloaded in December 2007 from NCBI (ftp://ftp.ncbi.nih.

gov/genomes/Saccharomyces_cerevisiae) and the Broad Institute

(http://www.broad.mit.edu/annotation/genome/saccharomyces_

cerevisiae/Home.html), respectively. The RMgenome 8X assembly

originates from whole genome shotgun and consists of 17 high-

quality supercontigs (hqSC hence after) totalizing 11.7 Mb. The17

hqSC of RMwere aligned on the 16 nuclear chromosome sequences

of BY by using the nucmer algorithm implemented in MUMmer

version 3.0 [51] with options –maxgap= 1000 –mincluster = 50

considering BY chromosomes as the references and RM hqSCs as

the queries. The output of nucmer was then filtered and formatted

using the delta-filter and show-coords programs of the MUMmer

package. At this stage, the output of our alignment pipeline consisted

on a list of clusters of perfect matches between regions of BY

chromosomes and RM hqSCs. We implemented an automatic rule

to relate RM hqSCs to BY chromosomes by maximizing the

coverage and alignment quality chromosome by chromosome. We

then dynamically resolved overlapping clusters of perfect matches in

order to get the longest aligned fragments of RM hqSCs along each

BY chromosome. Visual inspections were also used in a few cases in

order to define optimal boundaries of alignments. Detailed results of

this genome alignment process as well as the hybrid shell/perl script

used to do the genome alignment are available upon request.

Sequence polymorphisms
Polymorphisms between BY and RM were detected by base

substitution in the final alignment. Since base calling information

were not available for RM sequences, we assumed that quality

was reasonable and uniform along the RM genome sequence.

From the 54,039 polymorphisms found, a few targeted repeated

sequences (in both genomes as annotated by RepeatMasker (open-

3.1.9, Smit, AFA, Hubley, R & Green, P. RepeatMaskerOpen-3.0.

1996–2004 http://www.repeatmasker.org) and were thus exclud-

ed, leading to a final core set of 52,280 polymorphisms consisting

in 47,011 SNPs (90%), 2,448 insertions (4.5%) and 2,821 deletions

(5.5%). These 2,448 insertions corresponded to 238,087 bp that

were absent in RM while the 2,821 deletions corresponded to

80,349 bp absent in BY. This discrepancy between BY and RM

insertions is mainly due to the heterogeneous content of Ty

elements between both genomes (see below).

Gene prediction and comparison
BY gene annotations were extracted from chromosomal features

defined at NCBI website (ftp://genome-ftp.stanford.edu/pub/yeast/

chromosomal_feature/saccharomyces_cerevisiae.gff). For RM, pre-

dicted gene set was downloaded from the Broad Institute website

(http://www.broad.mit.edu/annotation/genome/saccharomyces_

cerevisiae/Downloads.html). which were obtained using a combi-

nation of mapped ORFs from SGD predictions (http://www.

yeastgenome.org), Glimmer [52] and GeneMark [53]. More details

on this automated gene prediction pipeline are posted at http://

www.broad.mit.edu/annotation/genome/saccharomyces_cerevisiae/

GeneFinding.html#prediction. This original annotation file consisted

of 5695 gene loci. 83 were dubious and discarded, as their annotated

coding sequence did not code for a protein. 80 other predictions were

also discarded because they fell in unaligned regions and could not be

mapped to BY. Orthologs were identified using Blastp from WUBlast

version 2.0 (Gish, W. (1996–2004) http://blast.wustl.edu) by aligning

protein sequences of the 5532 remaining RM genes against the protein

sequences of 6608 BY genes, and selecting reciprocal matches that

fulfilled all following criteria: i) E-value ,1.e-5, ii) percentage of

identity.40% and iii) match length.75% of both protein sequences.

This way, 5200 RM genes were called orthologs of BY genes, and 328

genes were RM-specific.

Transcript boundaries
Transcript boundaries for BY genes were obtained from the

complete published set of experimentally detected transcripts [23,54]

available at http://www.ebi.ac.uk/huber-srv/actinomycinD. Only

transcript segments overlapping .50% of a non-dubious annotated

coding region on the 59 end were retained. This resulted in 4,714

verified transcription segments. We then mapped the BY transcript

boundaries of ortholog genes on the RM genome, leading to 4,612

transcription segments on RM.

Ty elements
We extracted the DNA sequences of the 50 active Ty elements

annotated in the BY genome (as defined in the NCBI

chromosomal features, leading to 31 Ty1, 13 Ty2, 2 Ty3, 3 Ty4

and 1 Ty5) and blasted them onto the 17 RM supercontigs. We

found 10 matches on RM with 10 Ty2 elements (percentage of

identity .90% and match length .95%). No match was found

with any other Ty elements even after relaxing these criteria,
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indicating that Ty elements populating the RM genome are Ty2

only. Of these 10 Ty2 elements found in RM, 3 were located at the

same place in BY, 6 were located elsewhere in RM (leading to

6 deletions (insertions) in BY (RM)) and 1 replaced a Ty1 element

of BY.

Other annotations and data used
Conserved Regulatory Sites (CRS) [35] were downloaded from (http://

fraenkel.mit.edu/improved_map/p001_c3.gff). Conserved Non-Coding

Sites were obtained from the UCSC website (http://genome.ucsc.

edu/), using data from table phastConsElements for track MostCon-

served, and were then defined as the intersection between conserved

regions and non-coding regions. Gene expression values of Brem

et al. [20] were downloaded from NCBI GEO site (http://www.

ncbi.nlm.nih.gov/sites/entrez?db=gds, dataset GSE1990). Regions

where nucleosome(s) were remodeled upon heat-shock were ex-

tracted from whole-genome nucleosome maps of Shivaswamy et al.

[26] filtered for nucleosomes of normalized score ,0.2. They were

defined as chunks of at least 145 consecutive nucleotides (average size

of a nucleosome) covered by a nucleosome in only one condition

(unstressed or heat-shock). Using our BY atlas of nucleosome

positions (see below), 147 nucleosomes (,0.2%) were then said to be

remodeled if they lied entirely within a remodeled region.

Microarray analysis
The 25 bp array probes were mapped on BY and RM genomes

using MUMmer. For each strain, we kept only probes that had

unique perfect match on the genome (2,801,885 probes for BY

and 2,570,638 probes for RM, overlap: 2,491,913 probes). For

nucleosome mapping (see below) we used only the 3 array

replicates per strain. Since informative probe sets differed between

the two strains, normalization was done separately for each strain

and a log2 transformation of probe signals was applied before

normalization [55]. For SNEP identification (see below), only the

subset of RM probes that can be mapped within 63 bp of the

corresponding probe in BY was kept to insure that at every

positions the same probe is used between the two strains. In

addition, since any DNA polymorphism would bias hybridization

efficiency, we discarded probes containing at least one BY/RM

polymorphism, keeping a final core set of 2,356,676 probes. Then

the full dataset (18 arrays) was log2-transformed and quantile-

normalized all together using only this set of probes with dual

perfect match.

Nucleosome mapping
We positioned nucleosomes in each strain separately using only

the 3 dedicated replicates per strain. We then implemented a

custom version of the Hidden Markov Model devised by Yuan et

al. [25]. Our HMM implementation was similar to the one used

by Lee et al. [24], except than we did not train the HMM on

specific regions but used sliding windows as in Yuan et al. in order

to remove unpredictable trends in the hybridization signal. Thus,

independent run of the HMM were successively applied in

window of 1 kb (i.e. ,250 probes) all along the genome. The

model parameters and posteriors of all windows containing a fixed

probe were then averaged and used for a global computation of

both state probabilities and most-likely states (among well-

positioned nucleosome, fuzzy nucleosome and linker). As we used

only probes with unique and perfect matches and that regions with

high SNP density between BY and RM can lead locally to low

probe coverage in RM, we also allowed the HMM to deal with

missing data. State probabilities and most-likely states of ‘‘missing

probes’’ were computed in the same way than for observed probes,

taking advantage of neighboring observed information.

Nucleosome alignment
The most-likely nucleosome occupancy profiles of the two

strains (as obtained from the Viterbi algorithm on each

chromosome) were aligned according to the genome alignments.

The BY genome was the reference and the positions of RM

nucleosomes on this reference were obtained from the coordinates

of RM nucleosomal sequence fragments on the BY genome. Once

RM nucleosomes were ‘‘mapped’’ on BY, we used a dynamic

algorithm to align RM and BY nucleosomes. The algorithm works

chromosome-by-chromosome as follows:

1) Assumption: two nucleosomes are said to be ‘‘unambiguously

aligned’’ if the distance between their midpoints is lower than

half of their average size.

2) Initiation: find all unambiguously aligned nucleosomes along

the chromosome.

3) Recursion: between two consecutive unambiguously aligned

nucleosomes:

i) if there is no unaligned nucleosome in the interval, then

go to the next unambiguously aligned nucleosome.

ii) else:

a) Align nucleosomes by minimizing physical distance

between aligned pairs.

b) The remaining nucleosome(s) are considered as

insertion(s) (if they are BY nucleosomes) or dele-

tion(s) (if they are RM nucleosomes).

c) Go to the next unambiguously aligned nucleosome.

More stringent assumptions can be used to define ‘‘unambig-

uously aligned’’ nucleosomes without significant changes on the

final results (data not shown). This strategy aligned 64,294

nucleosomes between the two strains, i.e. ,95% of RM

nucleosomes. Finally, in order to evaluate locally the quality of

our alignment, for each pair of aligned nucleosomes we computed

their likelihood as L(aligned) = Bn.Rn where Bn and Rn are the

probabilities that the corresponding probes belong to a nucleo-

some in BY and RM, respectively. Similarly, we computed the

likelihood for insertion and deletion of a nucleosome (with respect

to BY) as L(insertion) = Bn*Rl and L(deletion) = Bl*Rn where Bl

and Rl are the probabilities that the corresponding probes belong

to a linker in BY and RM, respectively. Within each strain, the

probability of each state (nucleosome or linker) was derived from

probe-level posterior probabilities (as estimated by our HMM, and

merging fuzzy and well-positioned nucleosome states into a single

class) averaged over probes covering the target region.

Promoter clustering
To generate Figure 1B and 1C, we first divided the +/2300 bp

region around the TSS of each transcript into 60 bins of equal size

(10 bp). We then computed the average nucleosome occupancy in

each bin by averaging the posterior probabilities to be a

nucleosome (output by our HMM and summing posteriors from

well-positioned and fuzzy nucleosomal states) of the probes within

the bin. We then applied K-means clustering (with kmeans function

implemented in the base package of R) using the Euclidean

distance metric and 25 repetitions for each number of cluster

tested (1,=K,=10). Visual inspection together with standard

clustering validity measures (e.g. ratio of variance within clusters

and variance between clusters) were used to choose the optimal

number of clusters (K= 6).
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SNEP identification
To screen for SNEPs, we considered only pairs of aligned

nucleosomes sharing at least 15 microarray probes, which was the

case of 97% of aligned pairs. Following previous linear models

validated for transcripts quantification [56], we applied to each

pair the following analysis of variance (ANOVA):

yijkl~ u z ai z bj z ck z dij z eijkl

where yijkl is the log2 normalized hybridization intensity of probe k

in replicate l for strain i (BY or RM) in experiment type j
(nucleosome positioning or ChIP-ChIP), u is the global mean of

the signal, ai is the strain effect (BY or RM), bj is the experiment

type effect (nucleosome positioning or ChIP-Chip), ck is the probe

effect, dij is the interaction term between strain and experiment

type and eijkl is the residual. We reasoned that if a nucleosome

carries the modification then the corresponding DNA is present in

both ChIP and nucleosomal positioning samples and signal

expectancies should not differ between experiment types (bj=0).

However, if a nucleosome carries the modification in only one

strain, then a significant interaction should be seen between

experiment type and strain (dij ? 0) (Figure S12). We therefore

used an F-statistic to test (H0: dij=0 vs. HA:dij ?0) and derived

nucleosome-level P-values. A striking enrichment of low P-values

was observed (Figure S13). We applied the false discovery rate

(FDR) control procedure [28] to compute a genome-wide cutoff

from our sorted vector of 58,694 P-values.

Data accession numbers
EMBL ArrayExpress accession number E-MEXP-1777. Pro-

cessed data files and the C source code of NucleoMiner (for Unix-

based platforms) are available on our web site http://www.ens-lyon.

fr/LBMC/gisv/snep/

Supporting Information

Figure S1 Nucleosome alignment conservation. For 63,706

pairs of BY/RM aligned nucleosomes, we computed the distance

between the two midpoints (black histogram and axis), as well as

the fraction of the BY nucleosome that overlapped the RM

nucleosome (red histogram and axis).

Found at: doi:10.1371/journal.pgen.1000913.s001 (0.22 MB AI)

Figure S2 The fraction of nucleosomal DNA was computed in

2.5-Kb sliding windows across the genome, excluding windows

containing insertions or deletions of 5 bp or more. (A) Histogram of

the distribution of BY - RM occupancy differences among all

windows. Most differences are small, and few extremes are detected.

(B) Genomic location of windows with extreme values (first and last

1/1000 quantile, red = greater than 0.82, blue = lower than -0.85).

Found at: doi:10.1371/journal.pgen.1000913.s002 (0.35 MB AI)

Figure S3 Global nucleosomal occupancy at TSS and TES.

Neighborhood regions of TSS (left panels) and TES (right panels)

were divided in 10 bp bins. Probes were assigned to bins according to

the position of their midpoint. For all probes, the HMM posterior

probabilities to be in a nucleosomal state (delocalized or well-

positioned) were summed. For every bin, this cumulated probability

was averaged across all probes of the bin. Profiles shown are average

profiles across all genes for BY (upper panels) and RM (lower panels).

Note that coordinates of transcripts were determined in the BY strain

background [23] and may slightly differ in RM. This is likely to

explain the fact that depletions at TSS and TES, as well as oscillations

downstream TSS appear less pronounced in RM than in BY.

Found at: doi:10.1371/journal.pgen.1000913.s003 (0.29 MB AI)

Figure S4 The degree of acetylation differences in SNEPs is

shown by their cumulative distribution of ‘foldchange’ values,

which correspond to (acBY/nucBY)/(acRM/nucRM) for BYac

SNEPs and its inverse for RMac SNEPs. Most SNEPs show

folchanges between 1.2 and 1.5, and BYac SNEPs are associated

with higher acetylation differences than RMac SNEPs.

Found at: doi:10.1371/journal.pgen.1000913.s004 (0.20 MB AI)

Figure S5 Scheme of nucleosome organization in the region of

the NDE2 gene. Rectangles represent nucleosomes, colored

according to the mean log(ac/nuc) value across all probes of the

nucleosome. SNEP detection (-log10(P-value)) is indicated above

each nucleosome, with significance cutoff indicated as a dashed

line. Brown boxes, coding sequences.

Found at: doi:10.1371/journal.pgen.1000913.s005 (0.27 MB AI)

Figure S6 For all panels, BYac and RMac SNEP frequencies

were counted among nucleosomes located in each gene (coding

region plus and minus 250 bp), and averaged in 500-genes sliding

windows (y-axis). Genes were sorted (x-axis) either by their BY/

RM foldchange in expression, which showed SNEP enrichments

at both extremities (A), or by their Expression Divergence (Tirosh

et al. [36]) (B), or by their mutational variance (Vm values of

Landry et al. [37]) (C), which showed SNEP enrichment at high

values.

Found at: doi:10.1371/journal.pgen.1000913.s006 (0.42 MB AI)

Figure S7 For every gene, we considered the P-value (signifi-

cance) of the genotype x interaction term of the ANOVA model of

Smith & Kruglyak 2008 [38]. We then ranked all genes according

to sg * P, where sg is the sign of the interaction term. These ranks

are reported on the x-axis. SNEP frequency (y-axis) was computed

in sliding windows as in Figure S6.

Found at: doi:10.1371/journal.pgen.1000913.s007 (0.29 MB AI)

Figure S8 Kinetics of mRNA expression during heat-shock for

three genes lacking SNEPs. Three genes (SSA3, FES1, and CPR6)

were selected based on the following criteria: known to be induced

upon heat-shock (from the data of Gasch et al. 2000 Mol. Biol.

Cell. 11: 4241–4257), possess an HSF1 binding site in the

promoter with no BY/RM polymorphism in it, do not have

H3K14ac SNEP, do not have a marked BY/RM difference in

expression in non-induced cultures. RNA levels of these three

genes were measured by real-time quantitative RT-PCR on the

same samples as for AHA1 on Figure 4. Bars: 6 standard

deviations.

Found at: doi:10.1371/journal.pgen.1000913.s008 (0.25 MB AI)

Figure S9 Properties of SNEPs disagreeing with the patterns of

Figure 2D. To distinguish SNEPs that support the general patterns

of Figure 2D (BYac SNEP around TSS and TES and RMac

SNEPs within transcribed region), three regions were defined. R1:

from 2500 bp to TSS, R2: from TSS to TES and R3: from TES

to +400 bp. We then flagged all BYac SNEP falling in R1 and R3,

and all RMac SNEPs falling in R2. For nucleosomes that did not

fall entirely in the region, we flagged them if .75% of their length

overlapped the region. 1,806 SNEPs remained unflagged and were

used to re-draw the main figures of the article. Please see the main

figures of the article (that reflect all SNEPs) for legends.

Found at: doi:10.1371/journal.pgen.1000913.s009 (1.91 MB AI)

Figure S10 Absence of correlation between H3K14 acetylation

differences and amplitudes of gene expression differences. The

display is similar as in Figure 3A, except that expression fold

changes are presented in the x-axis instead of statistical

significance of expression differences.

Found at: doi:10.1371/journal.pgen.1000913.s010 (1.47 MB AI)
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Figure S11 Internal controls provided by the MAT locus. (A)

Scheme of the MAT, HML and HMR loci. Nucleosomes are

acetylated at the MAT locus but not at the two silenced HML and

HMR loci [49]. Strains of type alpha, such as BY, have a single

copy of the a1 sequence located at HMR and two copies of the

alpha1 sequence: one at HML and the other at MAT. Strains of

type a (such as RM) differ only at the MAT locus containing a1

instead of alpha1. Thus, H3K14 acetylated chromatin fractions are

expected to be enriched in alpha1 DNA for BY and a1 DNA for

RM. (B) Dosage of alpha1 and a1 sequences in ChIP fractions by

real-time quantitative PCR (absolute quantification) as explained

in methods. (C) Abundance of alpha1 and a1 sequences in the two

strains was compared from raw intensity values of 23 and 22

microarray probes, respectively, interrogating the same fragments

as those amplified in (B). Ordinate values correspond to log(acBY/

nucBY) - log(acRM/nucRM) for each probe, where acX and nucX
represent mean intensities across replicates of ChIP and mapping

experiments, respectively, performed on strain X.

Found at: doi:10.1371/journal.pgen.1000913.s011 (0.29 MB AI)

Figure S12 SNEP detection. The data from four nucleosomes is

presented. nuc, nucleosome mapping experiments. H3K14ac, ChIP
experiments. Normalized hybridization intensities yijkl (see Meth-

ods) were corrected for probe effect by subtracting the mean signal

probe value ck. Each box summarizes about 100 and 200 data

points for nuc and H3K14ac categories, respectively. Acetylated

nucleosomes are expected to produce H3K14ac and nuc signals of

similar intensities.

Found at: doi:10.1371/journal.pgen.1000913.s012 (0.26 MB AI)

Figure S13 Histogram of SNEP P-values across all nucleosomes

interrogated by the ANOVA model described in the Methods.

Found at: doi:10.1371/journal.pgen.1000913.s013 (0.25 MB AI)

Text S1 Densities of BY/RM SNPs in nucleosomal versus linker

DNA.

Found at: doi:10.1371/journal.pgen.1000913.s014 (0.05 MB PDF)
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