The Static Debugger:
classical realizability applied to debugging

Lionel Rieg

LIP, ENS Lyon

Coq Workshop, August 26" 2011

Lionel Rieg LIP, ENS Lyon

Debugging & logic

@ Debugging & logic

Lionel Rieg LIP, ENS Lyon

Debugging & logic
0000

Motivation: Static debugger

coQ

Lionel Rieg LIP, ENS Lyon

Debugging & logic
0000

Motivation: Static debugger

Lionel Rieg LIP, ENS Lyon

Debugging & logic
0000

Motivation: Static debugger

Lionel Rieg LIP, ENS Lyon

Debugging & logic
0000

Motivation: Static debugger

Lionel Rieg LIP, ENS Lyon

Debugging & logic

0000

Motivation: Static debugger

We will need:

@ the correctness proof
of the program

o the bug report

@ the implementations
of the external tools

= independent of the
programming language

Lionel Rieg LIP, ENS Lyon

Debugging & logic
0e00

Logical formalization

program certification bug report
F (¥x, Ax) = Vy, By H Byo
H A X
~——

bug report for one external tool

Experimental Modus Tollens

A and B V/3-free formulae containing external predicates

Lionel Rieg LIP, ENS Lyon

Debugging & logic
0e00

Logical formalization

program certification bug report
F (¥x, Ax) = Vy, By H Byo
H A X
~——

bug report for one external tool

Experimental Modus Tollens

A and B V/3-free formulae containing external predicates

which can be further reduced to

Vx,AxF L
H A x

Experimental Effectiveness

= \We want to exhibit a counter-example (£ A x7)
from a proof of contradiction (Vx, Ax + 1)

Lionel Rieg LIP, ENS Lyon

Debugging & logic
[e]e] o]

From a counter-example to a Herbrand tree

@ In the universal theory U =Vx,Ax, Ax isV/3-free
and contains external predicates and functions
~+ e.g. library functions

@ We want to abstract on the interpretation

(i.e. a specific implementation of the external tools)
~+ no test to perform anymore

= we need a Herbrand tree = tree of possible interpretations
= BDD of counter-examples

Lionel Rieg LIP, ENS Lyon

Debugging & logic
[eJe]e]]

Herbrand trees through an example

@ atoms (= atomic formula)

White crow example
o Crown

o Blackn

o Whiten Black 42

@ a (finite) inconsistent theory
e A; :Vn,Crown —> Blackn
o Az :Vn,—(Black nAWhite n)
o Az : Crow42
o A; : White4d?2

@ contradictions on the leaves

Lionel Rieg LIP, ENS Lyon

Debugging & logic
[eJe]e]]

Herbrand trees through an example

@ atoms (= atomic formula)

White crow example
o Crown

o Blackn

o Whiten Black 42

@ a (finite) inconsistent theory
e A; :Vn,Crown —> Blackn
o Az :Vn,—(Black nAWhite n)
o Az : Crow42
o A; : White4d?2

‘ A2(42) ‘ ‘ As

@ contradictions on the leaves ‘ A1(42) ‘ ‘ As ‘

plus counter-examples

Lionel Rieg LIP, ENS Lyon

A Solution

© A Solution

Lionel Rieg LIP, ENS Lyon

A Solution

The proposed solution

Extract Herbrand’s theorem with classical realizability

Theorem (Herbrand)

Let U be a universal theory.
If for all interpretations .4, .# F U, then U has a Herbrand tree.

VA, (A U) Herbrand's thn__ 34 . tree, HTree U t = true

classical extraction

computation

Herbrand tree - - classical realizer
witness extraction

Lionel Rieg LIP, ENS Lyon

A Solution
000000

Herbrand’s theorem

VA, (M U) Herbrand'sth . 3t - tree, HTree U t = true

classical extraction

computation

Herbrand tree classical realizer

witness extraction

Lionel Rieg LIP, ENS Lyon

A Solution
(o] lelelele)

Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

Lionel Rieg LIP, ENS Lyon

A Solution
(o] lelelele)

Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

Let us fix an enumeration (a;);en of the atoms.

(atoms = atomic formulae)

Lionel Rieg LIP, ENS Lyon

A Solution
(o] lelelele)

Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

/ao\
a1 a1

/\ /\
/| \

as as Qs aa a4 a4

I

consider the atom-enumerating complete infinite tree

Lionel Rieg LIP, ENS Lyon

A Solution
(o] lelelele)

Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

ao\
ai a1

/\ /\
/| \

as as Qs aa a4 a4

/]

I

pick any infinite branch

Lionel Rieg LIP, ENS Lyon

A Solution
(o] lelelele)

Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

N
az az az\
N

as as as as as
aa aa aa

4\34 a aa
by hypothesis (and compactness), we can cut it at finite depth

az

a/aa
/1

3
aa aa aa aa

\

aa a 4 aa aa

Lionel Rieg LIP, ENS Lyon

A Solution
(o] lelelele)

Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

N

\

conclude using Kénig's lemma

Lionel Rieg LIP, ENS Lyon

A Solution
[e]e] lelele)

Formalized proof

Usual proof of Herbrand’s theorem
= uses the compactness theorem and Kénig's lemma

Lionel Rieg LIP, ENS Lyon

A Solution
[e]e] lelele)

Formalized proof

Usual proof of Herbrand’s theorem
= uses the compactness theorem and Kénig's lemma

Uses reductio ad absurdum.
Builds an infinite branch in a “potential Herbrand tree”.

Lionel Rieg LIP, ENS Lyon

A Solution
[e]e] lelele)

Formalized proof

Usual proof of Herbrand’s theorem
= uses the compactness theorem and Kénig's lemma

Uses reductio ad absurdum.
Builds an infinite branch in a “potential Herbrand tree”.

@ suppose there is no Herbrand tree

@ show that any partial interpretation consistent with the theory
can be extended into a longer one

© let u be the union of the increasing sequence built by extension
from the empty path
w it is the infinite branch

Q show that v contains no contradiction and is a model of U
(by syntactic compactness)

Lionel Rieg LIP, ENS Lyon

A Solution
[e]e]e] lele)

Coq implementation

@ We need the proof to be classically extractable

Some aspects of the proof:
@ the proof is parametrized by two abstract data types

o the signature
o the theory U

@ 2 axioms added to Coq: (in Prop only)
o excluded middle: VP : Prop, PV —P
e proof irrelevance: VP : Prop,Vpip2 : P, p1 = p2

@ decidable vs. undecidable

e extraction requires finite objects with decidable properties
e but the proof uses (at some point) infinite objects

Lionel Rieg LIP, ENS Lyon

A Solution
[e]e]e]e] o)

The guts of the proof

@ The real statement

Vatom : Set,

Vindex : Set,V U : index — compound,

(Vva/ - atom — Prop, —(Vi : index, eval val (U /)))
— dt : tree, HTree U t = true

@ Boolean equality and order on dependent pairs (i,a) (a € UJ)
(requires the same for atom and index)
= ysed to prove that the infinite branch we build is a model

Lionel Rieg LIP, ENS Lyon

A Solution
00000e

The structure of the proof

Optioned_Bool

Corserng S~ avarions >

Lionel Rieg LIP, ENS Lyon

A Solution
@0000

Extraction

VA, (A EU) Herbrand'sth . 3t - tree, HTree U t = true

classical extraction

computation

Herbrand tree classical realizer

witness extraction

Lionel Rieg LIP, ENS Lyon

A Solution
(o] Telele]

The syntactic extraction function

@ source language: CoC,, + Peirce’s law

o target language: A-calculus + call/cc

CoC,, + Peirce = Ae

*

X = X
(Ax: T.M)* = Ax.M*
(MN)* = M*N*
(n_)* = any term
s* = any term
Pierce™ = A .call/cc

Lionel Rieg LIP, ENS Lyon

A Solution
(o] Telele]

The syntactic extraction function

@ source language: CoC,, + Peirce’s law

o target language: A-calculus + call/cc

CoC,, + Peirce = Ae

*

X = X
(Ax: T.M)* = Ax.M* for all sorts
(MN)* = M*N* for all sorts
(n_)* = any term
s* = any term
Pierce™ = A .call/cc

@ types are erased because they have no computational content

@ all sorts are treated the same way

Lionel Rieg LIP, ENS Lyon

A Solution
(e]e] Tele]

Toward CIC,,: adding inductive

Inductive data structure are encoded by elimination

Lionel Rieg LIP, ENS Lyon

A Solution
(e]e] Tele]

Toward CIC,,: adding inductive

Inductive data structure are encoded by elimination

e in Coq

Inductive foo p; p> :=
| C1:foop1 p2
| C2a:foopy p2
| C3 by by bz : foo p1 p2

@ in \c (Jivaro syntax)
Define G; = ApiAp el Aedes e

Define G = Ap1Apr Aa et e e a
DefineC3:)\,Dl)\pg)\bl)\bz)\bg;)\61)\62)\63 63b1b2b3

w matching is the identity!

Lionel Rieg LIP, ENS Lyon

A Solution
(e]e]e] o]

Correctness of the extraction: realizability model for PA2

Classical realizability is a “negative interpretation” of formulae
but keeps intuitionistic typing rules

w formulee are interpreted by sets of stacks (“falsity values”)
w realizers are defined by orthogonality to those stacks

Lionel Rieg LIP, ENS Lyon

A Solution
(e]e]e] o]

Correctness of the extraction: realizability model for PA2

Classical realizability is a “negative interpretation” of formulae
but keeps intuitionistic typing rules

w formulee are interpreted by sets of stacks (“falsity values”)
w realizers are defined by orthogonality to those stacks

M.x Ik VZ,Z=Z
call/cc - VAVB,((A= B) = A) = A

w intuition: realizers of L trigger backtracks

Lionel Rieg LIP, ENS Lyon

A Solution
(e]e]e] o]

Correctness of the extraction: realizability model for PA2

Classical realizability is a “negative interpretation” of formulae
but keeps intuitionistic typing rules

w formulee are interpreted by sets of stacks (“falsity values”)
w realizers are defined by orthogonality to those stacks

M.x Ik VZ,Z=Z
call/cc - VAVB,((A= B) = A) = A

w intuition: realizers of L trigger backtracks

Theorem (Adequacy)

Every formula provable in PA2 has a universal realizer.

Lionel Rieg LIP, ENS Lyon

A Solution
0000e

What happens beyond PA27

Different realizability models:

e PA2 [Krivine, 2010]
o ZF [Krivine, 2001]
o CoC, + some inductive types [Miquel, 2007]

Lionel Rieg LIP, ENS Lyon

A Solution
0000e

What happens beyond PA27

Different realizability models:

e PA2 [Krivine, 2010]

o ZF [Krivine, 2001]

o CoC, + some inductive types [Miquel, 2007]
@PAQ # CoC,

Hopefully, the 2" order fragments of their realizability models are
isomorphic

Lionel Rieg LIP, ENS Lyon

A Solution

Witness extraction

VA, (A EU) Herbrand'sth___ 3t - tree, HTree U t = true

classical extraction

computation

Herbrand tree classical realizer

witness extraction

Lionel Rieg LIP, ENS Lyon

A Solution
(o] T}

Computation framework: Krivine's machine for A -calculus

o terms: t=x | A\x.t | tt
@ stacks: m=¢ | t-m (t closed)
@ processes: tx T (t closed)

@ evaluation relation > :

Grab Ax.t x u-m > tlu/x] * 7
Push tu - txu-m

Lionel Rieg LIP, ENS Lyon

A Solution
(o] T}

Computation framework: Krivine's machine for \.-calculus

o terms: t=x | Ax.t | tt | call/cc | kr | ...
@ stacks: m=¢ | t-m (t closed)
@ processes: tx T (t closed)

@ evaluation relation > :

Grab AX.t

*u-m = tlu/x] x 7w
Push tu x 7 - txu-m
Save callfcc x t-m = t x kg-m
Restore kre x t- > txm
Do — Do

Lionel Rieg LIP, ENS Lyon

A Solution

Witness extraction

When we have a realizer of a decidable ¥X; formula

t - 3x:T,f(x)=0
=VZ,(Vx,T(x) > f(x)=0—>2Z) > Z

it eventually evaluates into a pair (w,j) where
@ w is a witness (a realizer of x : T)

@ j is the justification of w (a realizer of f(w) = 0)

Lionel Rieg LIP, ENS Lyon

A Solution

Witness extraction

When we have a realizer of a decidable ¥X; formula

t - 3x:T,f(x)=0
=VZ,(Vx,T(x) > f(x)=0—>2Z) > Z

it eventually evaluates into a pair (w,j) where
@ w is a witness (a realizer of x : T)

@ j is the justification of w (a realizer of f(w) = 0)

But j (and w) can backtrack!

Lionel Rieg LIP, ENS Lyon

A Solution

Witness extraction

When we have a realizer of a decidable ¥X; formula

t Ik 3x:T,f(x)=0
=VZ,(Vx,T(x) > f(x)=0—>2Z) > Z

it eventually evaluates into a pair (w,j) where
@ w is a witness (a realizer of x : T)

@ j is the justification of w (a realizer of f(w) = 0)

But j (and w) can backtrack!

~> w is not necessarily a correct witness

~> we need to evaluate the proof

w it explains why we keep proof information during extraction

We use t (M (Aw Ap. j (stop w)))

Lionel Rieg LIP, ENS Lyon

Experimentation

© Experimentation

Lionel Rieg LIP, ENS Lyon

Experimentation
0000

General usage

apply Herbrand’s theorem to the inconsistency proof

@ extract the resulting theorem with kextraction

© realize extra axioms used

o excluded middle: A_AgAh. call/cc(Af. h(Ax. f(g x)))
e proof irrelevance: A A A Ax.ox

@ optimize realizers to speed up execution
~~ especially for code extracted from proofs (in Prop)

@ evaluate and retrieve actual trees with the wrapper

Lionel Rieg LIP, ENS Lyon

Experimentation
0000

General usage

@ TODO: tactics to convert the inconsistency proof and
automate the creation of the required data types

apply Herbrand’s theorem to the inconsistency proof

@ extract the resulting theorem with kextraction

© realize extra axioms used

o excluded middle: A_AgAh. call/cc(Af. h(Ax. f(g x)))
e proof irrelevance: A A A Axox

@ optimize realizers to speed up execution
~~ especially for code extracted from proofs (in Prop)

O evaluate and retrieve actual trees with the wrapper

Lionel Rieg LIP, ENS Lyon

Experimentation
0000

General usage

@ TODO: tactics to convert the inconsistency proof and
automate the creation of the required data types

apply Herbrand’s theorem to the inconsistency proof

@ extract the resulting theorem with kextraction

© realize extra axioms used

o excluded middle: A_AgAh. call/cc(Af. h(Ax. f(g x)))
e proof irrelevance: A A A Axox

@ optimize realizers to speed up execution
~~ especially for code extracted from proofs (in Prop)

O evaluate and retrieve actual trees with the wrapper

= certified program but slow
= depends on the quality of the proof of Herbrand’s theorem

Lionel Rieg LIP, ENS Lyon

Experimentation
0e000

(Old) Experimentation results: why we need optimization

Example ‘ Textract (S.) ‘ Toptim (s.)
1 (k = 10) 0.20 0.10
1 (k = 50) 1.92 0.29
1 (k = 100) 6.70 0.54
1 (k = 500) 163.66 2.51
1 (k =1000) 646.63 5.03
2 (k = 42) 430 1.10
2 (k = 1337) 2832.41 29.90
1 = Vn,Pn—>P(Sn)APOAN-Pk

= White Crow theory

Lionel Rieg LIP, ENS Lyon

Experimentation
00e00

Realizer optimization

Semantic optimization

Change the data type representation during extraction
gé?it changes the realizability model and the adequacy lemma
e.g. primitive integers

@ space savings: unary integers ~» binary integers

@ time savings: unary functions ~~ native operations

Lionel Rieg LIP, ENS Lyon

Experimentation
00e00

Realizer optimization

Semantic optimization

Change the data type representation during extraction
@it changes the realizability model and the adequacy lemma

e.g. primitive integers

@ space savings: unary integers ~» binary integers

@ time savings: unary functions ~~ native operations

Code optimization (mostly for Prop)

Replace extracted realizers by more efficient ones

currently only for obvious cases:
e.g. chains of arithmetical equalities ~» A\x.x

Lionel Rieg LIP, ENS Lyon

Experimentation

Example: commutativity of 4,4t (extracted realizer)

Coq.Init.Datatypes.nat_rect =
\P\£f\£0 .fix_1_1 (\F\n Coq.Init.Datatypes.natfcase n £ (\n £0 n (F n)))
Coq.Init.Datatypes.nat_ind =
\P Coq.Init.Datatypes.nat_rect P
Coq.Init.Peano.plus_n_0 =
\n
Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Logic.refl_equal .type (nat 0))
(\n\IHn
Coq.Init.Logic.f_equal
.type .type Coq.Init.Datatypes.S n (Coq.Init.Peano.plus n (nat 0))
IHn) n
Coq.Init.Peano.plus_n_Sm =
\n\m
Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Logic.refl_equal .type (Coq.Init.Datatypes.S m))
(\n\IHn
Coq.Init.Logic.f_equal
.type .type Coq.Init.Datatypes.S
(Coq.Init.Datatypes.S (Coq.Init.Peano.plus n m))
(Coq.Init.Peano.plus n (Coq.Init.Datatypes.S m)) IHn) n
Coq.Arith.Plus.plus_comm =
\n\m
Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Peano.plus_n_0 m)
(\y\H
Coq.Init.Logic.eq_ind
.type (Coq.Init.Datatypes.S (Coq.Init.Peano.plus m y)) .type
(Coq.Init.Logic.f_equal
.type .type Coq.Init.Datatypes.S (Coq.Init.Peano.plus y m)
(Coq.Init.Peano.plus m y) H)
(Coq.Init.Peano.plus m (Coq.Init.Datatypes.S y))

Lione

LIP, ENS Lyon

Experimentation
0000e

Example: commutativity of +pat (optimized realizer)

Coq.Arith.Plus.plus_comm =
\n\m\z z

Lionel Rieg LIP, ENS Lyon

Conclusion

Conclusion & Perspectives

o first real use of classical realizability & extraction
o certified algorithm to extract Herbrand trees

o strong links between inconsistency proof and extracted tree
~ improvement over Herbrand's proof

@ we still do not understand how the program computes

@ improve performances to face real-life examples

@ optimization theory for classical realizability

Lionel Rieg LIP, ENS Lyon

Conclusion

Conclusion & Perspectives

o first real use of classical realizability & extraction
o certified algorithm to extract Herbrand trees

o strong links between inconsistency proof and extracted tree
~ improvement over Herbrand's proof

@ we still do not understand how the program computes

@ improve performances to face real-life examples

@ optimization theory for classical realizability

Thank you

Lionel Rieg LIP, ENS Lyon

	Debugging & logic
	

	A Solution
	
	
	

	Experimentation
	

	Conclusion

