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Debugging & logic

0000

Motivation: Static debugger

We will need:

@ the correctness proof
of the program

o the bug report

@ the implementations
of the external tools

= independent of the
programming language
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Logical formalization

program certification bug report
F (¥x, Ax) = Vy, By H Byo
H A X
~——

bug report for one external tool

Experimental Modus Tollens

A and B V/3-free formulae containing external predicates
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Debugging & logic
0e00

Logical formalization

program certification bug report
F (¥x, Ax) = Vy, By H Byo
H A X
~——

bug report for one external tool

Experimental Modus Tollens

A and B V/3-free formulae containing external predicates

which can be further reduced to

Vx,AxF L
H A x

Experimental Effectiveness

= \We want to exhibit a counter-example (£ A x7)
from a proof of contradiction (Vx, Ax + 1)
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Debugging & logic
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From a counter-example to a Herbrand tree

@ In the universal theory U =Vx,Ax, Ax isV/3-free
and contains external predicates and functions
~+ e.g. library functions

@ We want to abstract on the interpretation

(i.e. a specific implementation of the external tools)
~+ no test to perform anymore

= we need a Herbrand tree = tree of possible interpretations
= BDD of counter-examples
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Herbrand trees through an example

@ atoms (= atomic formula)

White crow example
o Crown

o Blackn

o Whiten Black 42

@ a (finite) inconsistent theory
e A; :Vn,Crown —> Blackn
o Az :Vn,—(Black nAWhite n)
o Az : Crow42
o A; : White4d?2

@ contradictions on the leaves
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Debugging & logic
[eJe]e] ]

Herbrand trees through an example

@ atoms (= atomic formula)

White crow example
o Crown

o Blackn

o Whiten Black 42

@ a (finite) inconsistent theory
e A; :Vn,Crown —> Blackn
o Az :Vn,—(Black nAWhite n)
o Az : Crow42
o A; : White4d?2

‘ A2(42) ‘ ‘ As

@ contradictions on the leaves ‘ A1(42) ‘ ‘ As ‘

plus counter-examples
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A Solution

The proposed solution

Extract Herbrand’s theorem with classical realizability

Theorem (Herbrand)

Let U be a universal theory.
If for all interpretations .4, .# F U, then U has a Herbrand tree.

VA, (A U) Herbrand's thn__ 34 . tree, HTree U t = true

classical extraction

computation

Herbrand tree - - classical realizer
witness extraction
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Herbrand’s theorem

VA, (M U) Herbrand'sth . 3t - tree, HTree U t = true

classical extraction

computation

Herbrand tree classical realizer

witness extraction
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Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.
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A Solution
(o] lelelele)

Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

Let us fix an enumeration (a;);en of the atoms.

(atoms = atomic formulae)
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Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

/ao\
a1 a1

/\ /\
/| \

as as Qs aa a4 a4

I

consider the atom-enumerating complete infinite tree
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(o] lelelele)

Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

ao\
ai a1

/\ /\
/| \

as as Qs aa a4 a4

/]

I

pick any infinite branch
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Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

N
az az az\
N

as as as as as
aa aa aa

4\34 a aa
by hypothesis (and compactness), we can cut it at finite depth

az

a/aa
/1

3
aa aa aa aa

\

aa a 4 aa aa
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A Solution
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Herbrand's Theorem proof

Theorem (Herbrand)
If for all interpretations M, # - U, then U has a Herbrand tree.

N

\

conclude using Kénig's lemma
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Formalized proof

Usual proof of Herbrand’s theorem
= uses the compactness theorem and Kénig's lemma
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Formalized proof

Usual proof of Herbrand’s theorem
= uses the compactness theorem and Kénig's lemma

Uses reductio ad absurdum.
Builds an infinite branch in a “potential Herbrand tree”.
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A Solution
[e]e] lelele)

Formalized proof

Usual proof of Herbrand’s theorem
= uses the compactness theorem and Kénig's lemma

Uses reductio ad absurdum.
Builds an infinite branch in a “potential Herbrand tree”.

@ suppose there is no Herbrand tree

@ show that any partial interpretation consistent with the theory
can be extended into a longer one

© let u be the union of the increasing sequence built by extension
from the empty path
w it is the infinite branch

Q show that v contains no contradiction and is a model of U
(by syntactic compactness)
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Coq implementation

@ We need the proof to be classically extractable

Some aspects of the proof:
@ the proof is parametrized by two abstract data types

o the signature
o the theory U

@ 2 axioms added to Coq: (in Prop only)
o excluded middle: VP : Prop, PV —P
e proof irrelevance: VP : Prop,Vpip2 : P, p1 = p2

@ decidable vs. undecidable

e extraction requires finite objects with decidable properties
e but the proof uses (at some point) infinite objects
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The guts of the proof

@ The real statement

Vatom : Set,

Vindex : Set,V U : index — compound,

(Vva/ - atom — Prop, —(Vi : index, eval val (U /)) )
— dt : tree, HTree U t = true

@ Boolean equality and order on dependent pairs (i,a) (a € UJ)
(requires the same for atom and index)
= ysed to prove that the infinite branch we build is a model
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The structure of the proof

Optioned_Bool

Corserng S~ avarions >
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A Solution
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Extraction

VA, (A EU) Herbrand'sth . 3t - tree, HTree U t = true

classical extraction

computation

Herbrand tree classical realizer

witness extraction
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A Solution
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The syntactic extraction function

@ source language: CoC,, + Peirce’s law

o target language: A-calculus + call/cc

CoC,, + Peirce = Ae

*

X = X
(Ax: T.M)* = Ax.M*
(MN)* = M*N*
(n_)* = any term
s* = any term
Pierce™ = A .call/cc
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A Solution
(o] Telele]

The syntactic extraction function

@ source language: CoC,, + Peirce’s law

o target language: A-calculus + call/cc

CoC,, + Peirce = Ae

*

X = X
(Ax: T.M)* = Ax.M* for all sorts
(MN)* = M*N* for all sorts
(n_)* = any term
s* = any term
Pierce™ = A .call/cc

@ types are erased because they have no computational content

@ all sorts are treated the same way
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Toward CIC,,: adding inductive

Inductive data structure are encoded by elimination
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A Solution
(e]e] Tele]

Toward CIC,,: adding inductive

Inductive data structure are encoded by elimination

e in Coq

Inductive foo p; p> :=
| C1:foop1 p2
| C2a:foopy p2
| C3 by by bz : foo p1 p2

@ in \c (Jivaro syntax)
Define G; = ApiAp el Aedes e

Define G = Ap1Apr  Aa et e e a
DefineC3: )\,Dl)\pg )\bl)\bz)\bg; )\61)\62)\63 63b1b2b3

w matching is the identity!
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Correctness of the extraction: realizability model for PA2

Classical realizability is a “negative interpretation” of formulae
but keeps intuitionistic typing rules

w formulee are interpreted by sets of stacks (“falsity values”)
w realizers are defined by orthogonality to those stacks
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Correctness of the extraction: realizability model for PA2

Classical realizability is a “negative interpretation” of formulae
but keeps intuitionistic typing rules

w formulee are interpreted by sets of stacks (“falsity values”)
w realizers are defined by orthogonality to those stacks

M.x Ik VZ,Z=Z
call/cc - VAVB,((A= B) = A) = A

w intuition: realizers of L trigger backtracks
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Correctness of the extraction: realizability model for PA2

Classical realizability is a “negative interpretation” of formulae
but keeps intuitionistic typing rules

w formulee are interpreted by sets of stacks (“falsity values”)
w realizers are defined by orthogonality to those stacks

M.x Ik VZ,Z=Z
call/cc - VAVB,((A= B) = A) = A

w intuition: realizers of L trigger backtracks

Theorem (Adequacy)

Every formula provable in PA2 has a universal realizer.
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What happens beyond PA27

Different realizability models:

e PA2 [Krivine, 2010]
o ZF [Krivine, 2001]
o CoC, + some inductive types [Miquel, 2007]
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A Solution
0000e

What happens beyond PA27

Different realizability models:

e PA2 [Krivine, 2010]

o ZF [Krivine, 2001]

o CoC, + some inductive types [Miquel, 2007]
@PAQ # CoC,

Hopefully, the 2" order fragments of their realizability models are
isomorphic
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A Solution

Witness extraction

VA, (A EU) Herbrand'sth___ 3t - tree, HTree U t = true

classical extraction

computation

Herbrand tree classical realizer

witness extraction
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Computation framework: Krivine's machine for A -calculus

o terms: t=x | A\x.t | tt
@ stacks: m=¢ | t-m (t closed)
@ processes: tx T (t closed)

@ evaluation relation > :

Grab  Ax.t x u-m > tlu/x] * 7
Push tu - txu-m
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A Solution
(o] T}

Computation framework: Krivine's machine for \.-calculus

o terms: t=x | Ax.t | tt | call/cc | kr | ...
@ stacks: m=¢ | t-m (t closed)
@ processes: tx T (t closed)

@ evaluation relation > :

Grab AX.t

*u-m = tlu/x] x 7w
Push tu x 7 - txu-m
Save callfcc x t-m = t x kg-m
Restore kre x t- > txm
Do — Do
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A Solution

Witness extraction

When we have a realizer of a decidable ¥X; formula

t - 3x:T,f(x)=0
=VZ,(Vx,T(x) > f(x)=0—>2Z) > Z

it eventually evaluates into a pair (w,j) where
@ w is a witness (a realizer of x : T)

@ j is the justification of w (a realizer of f(w) = 0)
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A Solution

Witness extraction

When we have a realizer of a decidable ¥X; formula

t Ik 3x:T,f(x)=0
=VZ,(Vx,T(x) > f(x)=0—>2Z) > Z

it eventually evaluates into a pair (w,j) where
@ w is a witness (a realizer of x : T)

@ j is the justification of w (a realizer of f(w) = 0)

But j (and w) can backtrack!

~> w is not necessarily a correct witness

~> we need to evaluate the proof

w it explains why we keep proof information during extraction

We use t (M (Aw Ap. j (stop w)))
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Experimentation
0000

General usage

apply Herbrand’s theorem to the inconsistency proof

@ extract the resulting theorem with kextraction

© realize extra axioms used

o excluded middle: A_AgAh. call/cc(Af. h(Ax. f(g x)))
e proof irrelevance: A A A Ax.ox

@ optimize realizers to speed up execution
~~ especially for code extracted from proofs (in Prop)

@ evaluate and retrieve actual trees with the wrapper
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Experimentation
0000

General usage

@ TODO: tactics to convert the inconsistency proof and
automate the creation of the required data types

apply Herbrand’s theorem to the inconsistency proof

@ extract the resulting theorem with kextraction

© realize extra axioms used

o excluded middle: A_AgAh. call/cc(Af. h(Ax. f(g x)))
e proof irrelevance: A A A Axox

@ optimize realizers to speed up execution
~~ especially for code extracted from proofs (in Prop)

O evaluate and retrieve actual trees with the wrapper

= certified program but slow
= depends on the quality of the proof of Herbrand’s theorem
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Experimentation
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(Old) Experimentation results: why we need optimization

Example ‘ Textract (S.) ‘ Toptim (s.)
1 (k = 10) 0.20 0.10
1 (k = 50) 1.92 0.29
1 (k = 100) 6.70 0.54
1 (k = 500) 163.66 2.51
1 (k =1000) 646.63 5.03
2 (k = 42) 430 1.10
2 (k = 1337) 2832.41 29.90
1 = Vn,Pn—>P(Sn)APOAN-Pk

= White Crow theory
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Experimentation
00e00

Realizer optimization

Semantic optimization

Change the data type representation during extraction
gé?it changes the realizability model and the adequacy lemma
e.g. primitive integers

@ space savings: unary integers ~» binary integers

@ time savings: unary functions ~~ native operations
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Experimentation
00e00

Realizer optimization

Semantic optimization

Change the data type representation during extraction
@it changes the realizability model and the adequacy lemma

e.g. primitive integers

@ space savings: unary integers ~» binary integers

@ time savings: unary functions ~~ native operations

Code optimization (mostly for Prop)

Replace extracted realizers by more efficient ones

currently only for obvious cases:
e.g. chains of arithmetical equalities ~» A\x.x
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Experimentation

Example: commutativity of 4,4t (extracted realizer)

Coq.Init.Datatypes.nat_rect =
\P\£f\£0 .fix_1_1 (\F\n Coq.Init.Datatypes.natfcase n £ (\n £0 n (F n)))
Coq.Init.Datatypes.nat_ind =
\P Coq.Init.Datatypes.nat_rect P
Coq.Init.Peano.plus_n_0 =
\n
Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Logic.refl_equal .type (nat 0))
(\n\IHn
Coq.Init.Logic.f_equal
.type .type Coq.Init.Datatypes.S n (Coq.Init.Peano.plus n (nat 0))
IHn) n
Coq.Init.Peano.plus_n_Sm =
\n\m
Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Logic.refl_equal .type (Coq.Init.Datatypes.S m))
(\n\IHn
Coq.Init.Logic.f_equal
.type .type Coq.Init.Datatypes.S
(Coq.Init.Datatypes.S (Coq.Init.Peano.plus n m))
(Coq.Init.Peano.plus n (Coq.Init.Datatypes.S m)) IHn) n
Coq.Arith.Plus.plus_comm =
\n\m
Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Peano.plus_n_0 m)
(\y\H
Coq.Init.Logic.eq_ind
.type (Coq.Init.Datatypes.S (Coq.Init.Peano.plus m y)) .type
(Coq.Init.Logic.f_equal
.type .type Coq.Init.Datatypes.S (Coq.Init.Peano.plus y m)
(Coq.Init.Peano.plus m y) H)
(Coq.Init.Peano.plus m (Coq.Init.Datatypes.S y))

Lione
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Experimentation
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Example: commutativity of +pat (optimized realizer)

Coq.Arith.Plus.plus_comm =
\n\m\z z
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Conclusion

Conclusion & Perspectives

o first real use of classical realizability & extraction
o certified algorithm to extract Herbrand trees

o strong links between inconsistency proof and extracted tree
~ improvement over Herbrand's proof

@ we still do not understand how the program computes

@ improve performances to face real-life examples

@ optimization theory for classical realizability

Lionel Rieg LIP, ENS Lyon



Conclusion

Conclusion & Perspectives

o first real use of classical realizability & extraction
o certified algorithm to extract Herbrand trees

o strong links between inconsistency proof and extracted tree
~ improvement over Herbrand's proof

@ we still do not understand how the program computes

@ improve performances to face real-life examples

@ optimization theory for classical realizability

Thank you
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