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Motivation: Static debugger

?

We will need:

the correctness proof
of the program

the bug report

the implementations
of the external tools

å independent of the
programming language
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Logical formalization

program certi�cation︷ ︸︸ ︷
` (∀x ,Ax)⇒ ∀y ,By

bug report︷ ︸︸ ︷
6|= By0

Experimental Modus Tollens
6|= A x?︸ ︷︷ ︸

bug report for one external tool

A and B ∀/∃-free formulæ containing external predicates

which can be further reduced to

∀x ,Ax ` ⊥
Experimental E�ectiveness

6|= A x?

å We want to exhibit a counter-example ( 6|= A x?)
from a proof of contradiction (∀x ,Ax ` ⊥)
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From a counter-example to a Herbrand tree

In the universal theory U = ∀x ,Ax , Ax is ∀/∃-free
and contains external predicates and functions
 e.g. library functions

We want to abstract on the interpretation
(i.e. a speci�c implementation of the external tools)
 no test to perform anymore

å we need a Herbrand tree = tree of possible interpretations
= BDD of counter-examples
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Herbrand trees through an example

atoms (= atomic formulæ)

Crow n

Black n
White n

a (�nite) inconsistent theory
A1 : ∀n,Crow n =⇒ Black n
A2 : ∀n,¬(Black n∧White n)
A3 : Crow 42
A4 : White 42

contradictions on the leaves

plus counter-examples

White crow example

Crow 42

yes no

Black 42

no

White 42

yes

yes

⊥

no

⊥ ⊥ ⊥
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The proposed solution

Extract Herbrand's theorem with classical realizability

Theorem (Herbrand)

Let U be a universal theory.

If for all interpretations M , M 6|= U, then U has a Herbrand tree.

∀M , (M 6|= U)
Herbrand's thm // ∃t : tree,HTreeU t = true

classical extraction

��
Herbrand tree classical realizer

computation

witness extraction
oo
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Herbrand's Theorem proof

Theorem (Herbrand)

If for all interpretations M , M 6|= U, then U has a Herbrand tree.

Let us �x an enumeration (ai )i∈N of the atoms.
(atoms = atomic formulæ)
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Herbrand's Theorem proof

Theorem (Herbrand)

If for all interpretations M , M 6|= U, then U has a Herbrand tree.

a₀

a₁ a₁

a₂ a₂ a₂ a₂

a₃ a₃ a₃ a₃ a₃ a₃ a₃ a₃

a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄

consider the atom-enumerating complete in�nite tree
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Herbrand's Theorem proof

Theorem (Herbrand)

If for all interpretations M , M 6|= U, then U has a Herbrand tree.

a₀

a₁ a₁

a₂ a₂ a₂ a₂

a₃ a₃ a₃ a₃ a₃ a₃ a₃ a₃

a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄
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Herbrand's Theorem proof

Theorem (Herbrand)

If for all interpretations M , M 6|= U, then U has a Herbrand tree.

a₀

a₁ a₁

a₂ a₂ a₂ a₂

a₃ a₃ a₃⊥ a₃ a₃ a₃ a₃

a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄ a₄

by hypothesis (and compactness), we can cut it at �nite depth
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Herbrand's Theorem proof

Theorem (Herbrand)

If for all interpretations M , M 6|= U, then U has a Herbrand tree.

a₀

a₁ ⊥

a₂⊥

a₃⊥

⊥ ⊥

conclude using K®nig's lemma
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Debugging & logic A Solution Experimentation Conclusion

Formalized proof

Usual proof of Herbrand's theorem
å uses the compactness theorem and K®nig's lemma

Uses reductio ad absurdum.
Builds an in�nite branch in a �potential Herbrand tree�.

1 suppose there is no Herbrand tree

2 show that any partial interpretation consistent with the theory
can be extended into a longer one

3 let u be the union of the increasing sequence built by extension
from the empty path
å it is the in�nite branch

4 show that u contains no contradiction and is a model of U
(by syntactic compactness)
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Coq implementation

�

We need the proof to be classically extractable

Some aspects of the proof:

the proof is parametrized by two abstract data types

the signature
the theory U

2 axioms added to Coq: (in Prop only)

excluded middle: ∀P : Prop, P ∨ ¬P
proof irrelevance: ∀P : Prop,∀p1 p2 : P, p1 = p2

decidable vs. undecidable

extraction requires �nite objects with decidable properties
but the proof uses (at some point) in�nite objects
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The guts of the proof

1 The real statement

∀ atom : Set,
∀ index : Set, ∀U : index→ compound,(
∀val : atom→ Prop,¬(∀i : index, eval val (U i))

)
→ ∃t : tree,HTreeU t = true

2 Boolean equality and order on dependent pairs 〈i , a〉 (a ∈ U i)
(requires the same for atom and index)
å used to prove that the in�nite branch we build is a model
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The structure of the proof

Optioned_Bool

ValuationsiA_ordering

Herbrand

Common

Orders

Definitions
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Extraction

∀M , (M 6|= U)
Herbrand's thm // ∃t : tree,HTreeU t = true

classical extraction

��
Herbrand tree classical realizer

computation

witness extraction
oo
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The syntactic extraction function

source language: CoCω + Peirce's law

target language: λ-calculus + call/cc

CoCω + Peirce
∗−−→ λc

x∗ = x

(λx : T .M)∗ = λx .M∗

for all sorts

(MN)∗ = M∗N∗

for all sorts

(Π_)∗ = any term
s∗ = any term

Pierce∗ = λ_.call/cc

Remarks

types are erased because they have no computational content

all sorts are treated the same way
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Toward CICω: adding inductive

Inductive data structure are encoded by elimination

in Coq

Inductive foo p1 p2 :=

| C1 : foo p1 p2
| C2 a : foo p1 p2
| C3 b1 b2 b3 : foo p1 p2

in λc (Jivaro syntax)

De�neC1 = λp1λp2 λe1λe2λe3 e1
De�neC2 = λp1λp2 λa λe1λe2λe3 e2 a

De�neC3 = λp1λp2 λb1λb2λb3 λe1λe2λe3 e3 b1b2b3

å matching is the identity!
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Correctness of the extraction: realizability model for PA2

Classical realizability is a �negative interpretation� of formulæ
but keeps intuitionistic typing rules

å formulæ are interpreted by sets of stacks (�falsity values�)
å realizers are de�ned by orthogonality to those stacks

Examples

λx . x � ∀Z ,Z ⇒ Z

call/cc � ∀A∀B, ((A⇒ B)⇒ A)⇒ A

å intuition: realizers of ⊥ trigger backtracks

Theorem (Adequacy)

Every formula provable in PA2 has a universal realizer.
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What happens beyond PA2?

Di�erent realizability models:

PA2 [Krivine, 2010]

ZF [Krivine, 2001]

CoCω + some inductive types [Miquel, 2007]

�

PA2 6= CoCω

Hopefully, the 2nd order fragments of their realizability models are
isomorphic

Lionel Rieg LIP, ENS Lyon
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Witness extraction

∀M , (M 6|= U)
Herbrand's thm // ∃t : tree,HTreeU t = true

classical extraction

��
Herbrand tree classical realizer

computation

witness extraction
oo
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Computation framework: Krivine's machine for λ

c

-calculus

terms: t = x | λx .t | t t

| call/cc | kπ | . . .

stacks: π = ε | t · π (t closed)

processes: t ? π (t closed)

evaluation relation � :

Grab λx . t ? u · π � t[u/x ] ? π
Push t u ? π � t ? u · π

Save call/cc ? t · π � t ? kπ · π
Restore kπ ? t · π′ � t ? π

...
... ?

... �
... ?

...

Lionel Rieg LIP, ENS Lyon
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Witness extraction

When we have a realizer of a decidable Σ1 formula

t � ∃x : T , f (x) = 0
≡ ∀Z , (∀x ,T (x)→ f (x)= 0→ Z)→ Z

it eventually evaluates into a pair 〈w , j〉 where
w is a witness (a realizer of x : T )

j is the justi�cation of w (a realizer of f (w) = 0)

But j (and w) can backtrack!
 w is not necessarily a correct witness
 we need to evaluate the proof
å it explains why we keep proof information during extraction

We use t (MT (λw λp. j (stopw)))

Lionel Rieg LIP, ENS Lyon
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General usage

0 TODO: tactics to convert the inconsistency proof and
automate the creation of the required data types

1 apply Herbrand's theorem to the inconsistency proof

2 extract the resulting theorem with kextraction

3 realize extra axioms used

excluded middle: λ_λgλh. call/cc(λf . h (λx . f (g x)))
proof irrelevance: λ_λ_λ_λx . x

4 optimize realizers to speed up execution
 especially for code extracted from proofs (in Prop)

5 evaluate and retrieve actual trees with the wrapper

å certi�ed program but slow
å depends on the quality of the proof of Herbrand's theorem
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(Old) Experimentation results: why we need optimization

Example Textract (s.) Toptim (s.)

1 (k = 10) 0.20 0.10
1 (k = 50) 1.92 0.29
1 (k = 100) 6.70 0.54
1 (k = 500) 163.66 2.51
1 (k = 1000) 646.63 5.03

2 (k = 42) 4.30 1.10
2 (k = 1337) 2832.41 29.90

1 = ∀n,P n→ P (S n) ∧ P 0 ∧ ¬P k

2 = White Crow theory

Lionel Rieg LIP, ENS Lyon
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Realizer optimization

Semantic optimization

Change the data type representation during extraction
�

it changes the realizability model and the adequacy lemma

e.g. primitive integers

space savings: unary integers  binary integers

time savings: unary functions  native operations

Code optimization (mostly for Prop)

Replace extracted realizers by more e�cient ones

currently only for obvious cases:
e.g. chains of arithmetical equalities  λx .x
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Example: commutativity of +nat (extracted realizer)
Coq.Init.Datatypes.nat_rect =

\P\f\f0 .fix_1_1 (\F\n Coq.Init.Datatypes.nat%case n f (\n f0 n (F n)))
Coq.Init.Datatypes.nat_ind =

\P Coq.Init.Datatypes.nat_rect P
Coq.Init.Peano.plus_n_O =

\n
Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Logic.refl_equal .type (nat 0))
(\n\IHn

Coq.Init.Logic.f_equal
.type .type Coq.Init.Datatypes.S n (Coq.Init.Peano.plus n (nat 0))
IHn) n

Coq.Init.Peano.plus_n_Sm =
\n\m

Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Logic.refl_equal .type (Coq.Init.Datatypes.S m))
(\n\IHn

Coq.Init.Logic.f_equal
.type .type Coq.Init.Datatypes.S
(Coq.Init.Datatypes.S (Coq.Init.Peano.plus n m))
(Coq.Init.Peano.plus n (Coq.Init.Datatypes.S m)) IHn) n

Coq.Arith.Plus.plus_comm =
\n\m

Coq.Init.Datatypes.nat_ind
.type (Coq.Init.Peano.plus_n_O m)
(\y\H

Coq.Init.Logic.eq_ind
.type (Coq.Init.Datatypes.S (Coq.Init.Peano.plus m y)) .type
(Coq.Init.Logic.f_equal

.type .type Coq.Init.Datatypes.S (Coq.Init.Peano.plus y m)
(Coq.Init.Peano.plus m y) H)

(Coq.Init.Peano.plus m (Coq.Init.Datatypes.S y))
(Coq.Init.Peano.plus_n_Sm m y)) n
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Example: commutativity of +nat (optimized realizer)

Coq.Arith.Plus.plus_comm =
\n\m\z z
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Conclusion & Perspectives

�rst real use of classical realizability & extraction

certi�ed algorithm to extract Herbrand trees

strong links between inconsistency proof and extracted tree
 improvement over Herbrand's proof

we still do not understand how the program computes

improve performances to face real-life examples

optimization theory for classical realizability

Thank you
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